Sample records for water quality human

  1. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  2. Human Health Water Quality Criteria and Methods for Toxics

    EPA Pesticide Factsheets

    Documents pertaining to Human Health Water Quality Criteria and Methods for Toxins. Includes 2015 Update for Water Quality Criteria, 2002 National Recommended Human Health Criteria, and 2000 EPA Methodology.

  3. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  4. Research and Development for Health and Environmental Hazard Assessment. Task Order 1. Development of Data Base Requirements for Human Health Based Water Quality Criteria for Military Recycle/Reuse Applications.

    DTIC Science & Technology

    1980-06-01

    Environmental Hazard Assessment -. .’.’ASK ORDER I j EVELOPMENT OF DATA BASE REQUIREMENTS I . .oR HUMAN HEALTH BASED WATER QUALITY CRITERIA | COR MILITARY...Requirements for Human Sep a -1979- June 89 Health Based Water Quality Criteria for Military -%4,o ER Reevcle/ Reuse Applications Is 8_ 3.7𔃾__=1_...KEY WORDS (Continue on reverse aide If neceseary and Identify by block number) Water Reuse, Water Recycle, Water Quality Criteria, Human Health

  5. Water quality degradation effects on freshwater availability: Impacts to human activities

    USGS Publications Warehouse

    Peters, N.E.; Meybeck, Michel

    2000-01-01

    The quality of freshwater at any point on the landscape reflects the combined effects of many processes along water pathways. Human activities on all spatial scales affect both water quality and quantity. Alteration of the landscape and associated vegetation has not only changed the water balance, but typically has altered processes that control water quality. Effects of human activities on a small scale are relevant to an entire drainage basin. Furthermore, local, regional, and global differences in climate and water flow are considerable, causing varying effects of human activities on land and water quality and quantity, depending on location within a watershed, geology, biology, physiographic characteristics, and climate. These natural characteristics also greatly control human activities, which will, in turn, modify (or affect) the natural composition of water. One of the most important issues for effective resource management is recognition of cyclical and cascading effects of human activities on the water quality and quantity along hydrologic pathways. The degradation of water quality in one part of a watershed can have negative effects on users downstream. Everyone lives downstream of the effects of some human activity. An extremely important factor is that substances added to the atmosphere, land, and water generally have relatively long time scales for removal or clean up. The nature of the substance, including its affinity for adhering to soil and its ability to be transformed, affects the mobility and the time scale for removal of the substance. Policy alone will not solve many of the degradation issues, but a combination of policy, education, scientific knowledge, planning, and enforcement of applicable laws can provide mechanisms for slowing the rate of degradation and provide human and environmental protection. Such an integrated approach is needed to effectively manage land and water resources.

  6. Connecting Humans and Water: The Case for Coordinated Data Collection

    NASA Astrophysics Data System (ADS)

    Braden, J. B.; Brown, D. G.; Jolejole-Foreman, C.; Maidment, D. R.; Marquart-Pyatt, S. T.; Schneider, D. W.

    2012-12-01

    "Water problems" are fundamentally human problems -- aligning water quality and quantity with human aspirations. In the U.S., however, the few ongoing efforts to repeatedly observe humans in relation to water at large scale are disjointed both with each other and with observing systems for water quality and quantity. This presentation argues for the systematic, coordinated, and on-going collection of primary data on humans, spanning beliefs, perceptions, behaviors, and institutions, alongside the water environments in which they are embedded. Such an enterprise would advance not only water science and related policy and management decisions, but also generate basic insights into human cognition, decision making, and institutional development as they relate to the science of sustainability. In support of this argument, two types of original analyses are presented. First, two case studies using existing data sets illustrate methodological issues involved in integrating natural system data with social data at large scale: one concerns the influence of water quality conditions on personal efforts to conserve water and contribute financially to environmental protection; the other explores relationships between recreation behavior and water quality. Both case studies show how methodological differences between data programs seriously undercut the potential to draw inference about human responses to water quality while also illustrating the scientific potential that could be realized from linking human and scientific surveys of the water environment. Second, the results of a survey of water scientists concerning important scientific and policy questions around humans and water provide insight into data collection priorities for a coordinated program of observation.

  7. Water quality assessment of bioenergy production

    Treesearch

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  8. [Quality of water for human consumption and its association with morbimortality in Colombia, 2008-2012].

    PubMed

    Guzmán, Blanca Lisseth; Nava, Gerardo; Díaz, Paula

    2015-08-01

    The quality of water for human consumption has been correlated with the occurrence of different diseases. Studying the relationship between these parameters would allow determining the impact of water quality on human health, and to direct preventative measures and promote environmental health. To analyze the quality of water intended for human consumption and its association with morbimortality in Colombia, 2008-2012. The database for surveillance of water quality was analyzed by means of descriptive statistics of the principal indicators (total coliforms, Escherichia coli , turbidity, color, pH, free residual chlorine and water quality risk index). The results were correlated with infant mortality and morbidity due to acute diarrheal diseases, foodborne diseases and hepatitis A. A risk map was prepared to identify those municipalities with the highest risk of water contamination and infant mortality. A high percentage of municipalities did not conform to existing standards for water potability values. Problems were identified that were related to presence of E. coli and total coliforms, as well as absence of free residual chlorine, a situation that was exacerbated in rural areas. Water quality showed a high correlation with infant mortality, highlighting its importance for children's health. Water quality was found to have an important impact on infant mortality. Improving water quality in Colombia will require policies that strengthen water supply systems in this country. Strengthening of environmental health surveillance programs is essential to guide actions aimed at improving water quality and exert a positive impact on health.

  9. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    Urban stormwater runoff, a leading cause of water quality impairment related to human activities in lakes and reservoirs, can have significant negative effects on receiving water quality. It can also create human health concerns when these waters are used for drinking water reso...

  10. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Li, Xuyong; Su, Jingjun; Hao, Shaonan

    2018-01-01

    Identification of the interactive responses of water quantity and quality to changes in nature and human stressors is important for the effective management of water resources. Many studies have been conducted to determine the influence of these stressors on river discharge and water quality. However, there is little information about whether sewage treatment plants can improve water quality in a region where river streamflow has decreased sharply. In this study, a seasonal trend decomposition method was used to analyze long-term (1996-2015) and seasonal trends in the streamflow and water quality of the Guanting Reservoir Basin, which is located in a semi-arid region of China. The results showed that the streamflow in the Guanting Reservoir Basin decreased sharply from 1996-2000 due to precipitation change and human activities (human use and reservoir regulation), while the streamflow decline over the longer period of time (1996-2015) could be attributed to human activities. During the same time, the river water quality improved significantly, having a positive relationship with the capacity of wastewater treatment facilities. The water quality in the Guanting Reservoir showed a deferred response to the reduced external loading, due to internal loading from sediments. These results implied that for rivers in which streamflow has declined sharply, the water quality could be improved significantly by actions to control water pollution control. This study not only provides useful information for water resource management in the Guanting Reservoir Basin, but also supports the implementation of water pollution control measures in other rivers with a sharp decline in streamflow.

  11. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF, 2006

    EPA Science Inventory

    Urban stormwater runoff is a leading cause of water quality impairment related to human activities in lakes and reservoirs. It can have significant negative effects on receiving water quality and can create human health concerns when these waters are used for drinking water resou...

  12. National Recommended Water Quality Criteria

    EPA Pesticide Factsheets

    The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health in surface water for approximately 150 pollutants. These criteria provide guidance for states and tribes to use in adopting water quality standards.

  13. Summary of selected U.S. Geological survey data on domestic well water quality for the Centers for Disease Control's National Environmental Public Health Tracking Program

    USGS Publications Warehouse

    Bartholomay, Roy C.; Carter, Janet M.; Qi, Sharon L.; Squillace, Paul J.; Rowe, Gary L.

    2007-01-01

    About 10 to 30 percent of the population in most States uses domestic (private) water supply. In many States, the total number of people served by domestic supplies can be in the millions. The water quality of domestic supplies is inconsistently regulated and generally not well characterized. The U.S. Geological Survey (USGS) has two water-quality data sets in the National Water Information System (NWIS) database that can be used to help define the water quality of domestic-water supplies: (1) data from the National Water-Quality Assessment (NAWQA) Program, and (2) USGS State data. Data from domestic wells from the NAWQA Program were collected to meet one of the Program's objectives, which was to define the water quality of major aquifers in the United States. These domestic wells were located primarily in rural areas. Water-quality conditions in these major aquifers as defined by the NAWQA data can be compared because of the consistency of the NAWQA sampling design, sampling protocols, and water-quality analyses. The NWIS database is a repository of USGS water data collected for a variety of projects; consequently, project objectives and analytical methods vary. This variability can bias statistical summaries of contaminant occurrence and concentrations; nevertheless, these data can be used to define the geographic distribution of contaminants. Maps created using NAWQA and USGS State data in NWIS can show geographic areas where contaminant concentrations may be of potential human-health concern by showing concentrations relative to human-health water-quality benchmarks. On the basis of national summaries of detection frequencies and concentrations relative to U.S. Environmental Protection Agency (USEPA) human-health benchmarks for trace elements, pesticides, and volatile organic compounds, 28 water-quality constituents were identified as contaminants of potential human-health concern. From this list, 11 contaminants were selected for summarization of water-quality data in 16 States (grantee States) that were funded by the Environmental Public Health Tracking (EPHT) Program of the Centers for Disease Control and Prevention (CDC). Only data from domestic-water supplies were used in this summary because samples from these wells are most relevant to human exposure for the targeted population. Using NAWQA data, the concentrations of the 11 contaminants were compared to USEPA human-health benchmarks. Using NAWQA and USGS State data in NWIS, the geographic distribution of the contaminants were mapped for the 16 grantee States. Radon, arsenic, manganese, nitrate, strontium, and uranium had the largest percentages of samples with concentrations greater than their human-health benchmarks. In contrast, organic compounds (pesticides and volatile organic compounds) had the lowest percentages of samples with concentrations greater than human-health benchmarks. Results of data retrievals and spatial analysis were compiled for each of the 16 States and are presented in State summaries for each State. Example summary tables, graphs, and maps based on USGS data for New Jersey are presented to illustrate how USGS water-quality and associated ancillary geospatial data can be used by the CDC to address goals and objectives of the EPHT Program.

  14. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.

    PubMed

    Nnane, Daniel Ekane

    2011-11-15

    Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Microbial (Pathogen)/Recreational Water Quality Criteria

    EPA Pesticide Factsheets

    Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.

  16. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Plan to update the Commission's human health and aquatic life stream quality objectives (also called... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware...

  17. 78 FR 52192 - Final Aquatic Life Ambient Water Quality Criteria For Ammonia-Freshwater 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... ambient water quality criteria for the protection of aquatic life from effects of ammonia in freshwater... life criteria are developed based on EPA's Guidelines for Deriving Numerical National Water Quality... quality standards for protecting aquatic life and human health. EPA's recommended water quality criteria...

  18. Water quality of four major lakes in Mississippi, USA: Impacts on human and aquatic ecosystem health

    USDA-ARS?s Scientific Manuscript database

    Harmful algal blooms (HABs), harmful microorganisms (pathogens) and toxic metals represent three major agents of water quality deterioration. Better water quality is of utmost importance to water bodies that provide recreational opportunities, even better quality is expected in the water bodies that...

  19. Water Quality Criteria for Human Health and Aquatic Life

    EPA Science Inventory

    Collaborative effort with the Office of Water to provide science in support of the development and implementation of new or revised ambient water quality criteria for microbial and chemical contaminants for human health and aquatic life. The research also addresses implementation...

  20. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    USGS Publications Warehouse

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  1. Water Quality Criteria

    EPA Pesticide Factsheets

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  2. A novel approach in water quality assessment based on fuzzy logic.

    PubMed

    Gharibi, Hamed; Mahvi, Amir Hossein; Nabizadeh, Ramin; Arabalibeik, Hossein; Yunesian, Masud; Sowlat, Mohammad Hossein

    2012-12-15

    The present work aimed at developing a novel water quality index based on fuzzy logic, that is, a comprehensive artificial intelligence (AI) approach to the development of environmental indices for routine assessment of surface water quality, particularly for human drinking purposes. Twenty parameters were included based on their critical importance for the overall water quality and their potential impact on human health. To assess the performance of the proposed index under actual conditions, a case study was conducted at Mamloo dam, Iran, employing water quality data of four sampling stations in the water basin of the dam from 2006 to 2009. Results of this study indicated that the general quality of water in all the sampling stations over all the years of the study period is fairly low (yearly averages are usually in the range of 45-55). According to the results of ANOVA test, water quality did not significantly change over time in any of the sampling stations (P > 0.05). In addition, comparison of the outputs of the fuzzy-based proposed index proposed with those of the NSF water quality index (the WQI) and Canadian Water Quality Index (CWQI) showed similar results and were sensitive to changes in the level of water quality parameters. However, the index proposed by the present study produced a more stringent outputs compared to the WQI and CWQI. Results of the sensitivity analysis suggested that the index is robust against the changes in the rules. In conclusion, the proposed index seems to produce accurate and reliable results and can therefore be used as a comprehensive tool for water quality assessment, especially for the analysis of human drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Multi-scale Landscape Factors Influencing Stream Water Quality in the State of Oregon

    EPA Science Inventory

    Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattl...

  4. NATIONAL WATER-QUALITY ASSESSMENT (NAWQA) PROGRAM

    EPA Science Inventory

    The National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nations ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. ...

  5. Fact Sheet: Revised National Recommended Water Quality Criteria for the Protection of Human Health

    EPA Pesticide Factsheets

    2003 Revised National Recommended Ambient Water Quality Criteria for the Protection of Human Health. 15 Pollutants revised criteria will be published including, chlorobenzene, cyanide, endrin, ethylbenzene, lindane, thallium, toluene, and more.

  6. Water quality in three creeks in the backcountry of Grand Teton National Park, USA

    USGS Publications Warehouse

    Farag, A.M.; Goldstein, J.N.; Woodward, D.F.

    2001-01-01

    This study was conducted in Grand Teton National Park during the summers of 1996 and 1997 to investigate the water quality in two high human use areas: Garnet Canyon and lower Cascade Canyon. To evaluate the water quality in these creeks, fecal coliform, Giardia lamblia, coccidia, and microparticulates were measured in water samples. No evidence of fecal coliform, Giardia lamblia, or coccidia, was found in Garnet Creek. The water quality and general water chemistry of Garnet Creek was similar to the reference site. No Giardia lamblia or coccidia were found in Cascade Creek, but fecal coliforms were present. The isolated colonies of Escherichia coli from Cascade Creek matched the ribosome patterns of avian, deer, canine, elk, rodent, and human coliforms.

  7. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... proposing numeric water quality criteria to protect ecological systems, aquatic life, and human health from... Technical Support Section. http://www.dep.state.fl.us/water/wqssp/.everglades/docs/pctsd/IIIChapter.2.pdf... Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida Inland...

  8. Approach to developing numeric water quality criteria for coastal waters: a transition from SeaWiFS to MODIS and MERIS satellites.

    EPA Science Inventory

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designa...

  9. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-2022: Part 1: Framework of Water-Quality Issues and Potential Approaches

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lynch, Dennis D.; Munn, Mark D.; Wolock, David W.

    2010-01-01

    In 1991, the U.S. Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to develop long-term, nationally consistent information on the quality of the Nation's streams and groundwater. Congress recognized the critical need for this information to support scientifically sound management, regulatory, and policy decisions concerning the increasingly stressed water resources of the Nation. The long-term goals of NAWQA are to: (1) assess the status of water-quality conditions in the United States, (2) evaluate long-term trends in water-quality conditions, and (3) link status and trends with an understanding of the natural and human factors that affect water quality. These goals are national in scale, include both surface water and groundwater, and include consideration of water quality in relation to both human uses and aquatic ecosystems. Since 1991, NAWQA assessments and findings have fostered and supported major improvements in the availability and use of unbiased scientific information for decisionmaking, resource management, and planning at all levels of government. These improvements have enabled agencies and stakeholders to cost-effectively address a wide range of water-quality issues related to natural and human influences on the quality of water and potential effects on aquatic ecosystems and human health (http://water.usgs.gov/nawqa/xrel.pdf). NAWQA, like all USGS programs, provides policy relevant information that serves as a scientific basis for decisionmaking related to resource management, protection, and restoration. The information is freely available to all levels of government, nongovernmental organizations, industry, academia, and the public, and is readily accessible on the NAWQA Web site and other diverse formats to serve the needs of the water-resource community at different technical levels. Water-quality conditions in streams and groundwater are described in more than 1,700 publications (available online at http://water.usgs.gov/nawqa/bib/), and are documented by more than 14 million data records representing about 7,600 stream sites, 8,100 wells, and 2,000 water-quality and ecological constituents that are available from the NAWQA data warehouse (http://infotrek.er.usgs.gov/traverse/f?p=NAWQA:HOME:0). The Program promotes collaboration and liaison with government officials, resource managers, industry representatives, and other stakeholders to increase the utility and relevance of NAWQA science to decisionmakers. As part of this effort, NAWQA supports integration of data from other organizations into NAWQA assessments, where appropriate and cost-effective, so that more comprehensive findings are available across geographic and temporal scales.

  10. Water for human and livestock consumption in rural settings of Ethiopia: assessments of quality and health aspects.

    PubMed

    Amenu, Kebede; Markemann, André; Valle Zárate, Anne

    2013-11-01

    The study aimed to assess the quality and health aspects of water intended for human and livestock consumption in two rural districts of the Rift Valley of Ethiopia. The study involved two parts: the first consisted of a questionnaire survey and farmers' group discussions, complemented by secondary health data, and the second part determined the chemical (total dissolved solids, pH, manganese, hexa-valent chromium, fluoride) and microbiological quality of different water sources during dry and wet seasons. The result showed a lack of sustainable access to safe water in the communities. Industrial pollution and mismanagement of water sources by human and livestock was found to be a source of potential health risk. Potentially linked human health problems like malaria, diarrhoea and gastrointestinal parasites were common in the districts. Overall, 76% of the assessed water sources (n = 25) failed to comply with World Health Organization guidelines for human drinking water, for at least one assessed parameter, mostly irrespective of the season. The non-compliance was mainly attributed to Escherichia coli contamination and/or high fluoride concentration. At least 20% of the water samples were also found to be unfit for livestock consumption based on assessed chemical parameters in both dry and wet seasons. To minimize the health risk associated with mismanagement and poor quality of water sources in the area, targeted action in the protection of surface water sources should be given priority.

  11. Summary of the major water-quality findings from the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2000-01-01

    Results from the EIWA NAWQA study build on previous and ongoing research and water-quality monitoring programs in Iowa and provide new insights into the relation between the quality of the State's water resources and human activities. The major findings from the study are listed below.

  12. 77 FR 20585 - Proposed Withdrawal of Certain Federal Water Quality Criteria Applicable to California, New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... proposing to amend the federal regulations to withdraw human health and aquatic life water quality criteria... to its surface water quality standards (New Jersey Administrative Code 7:9B), including aquatic life... pollutants covered in the 2002 and 2006 actions, New Jersey adopted water quality criteria for aquatic life...

  13. ASSESSING BIOACCUMULATION FOR DERIVING NATIONAL HUMAN HEALTH WATER QUALITY CRITERIA

    EPA Science Inventory

    The United States Environmental Protection Agency is revising its methodology for deriving national ambient water quality criteria (AWQC) to protect human health. A component of this guidance involves assessing the potential for chemical bioaccumulation in commonly consumed fish ...

  14. Evaluating water quality -- is it important, how can it be determined and how can it be used?

    NASA Astrophysics Data System (ADS)

    Leahy, P. P.

    2015-12-01

    Freshwater is critical to sustaining all life on Earth yet most humans take this resource for granted and often consider it a free good. However, in water-poor areas, the availability of clean drinking water limits economic development, negatively impacts human health and causes significant social instability. This was a driver for the Millennium Development Goals to include providing clean water to the developing world. Unlike other resources, another commodity cannot be substituted for water. In mineral resources, substitution is common depending on the use, for example, aluminum for steel in automotive bodies. In energy, humans can, in some instances, use natural gas instead of coal for electricity generation. Given the critical nature of freshwater for human existence, it is important that the resource be evaluated in economic terms. Although efforts to assess the value of the availability of freshwater have been developed, they are not commonly used. Water quality is also a major economic factor in availability of water resources. Quality can be prohibitively expensive to bring to acceptable standards and can easily be contaminated by human activities. Determining an economic and social value on both the availability and quality of water resources is a challenge that the hydrologic community must address at local, regional and national and even global scales to support informed policy and decision-making.

  15. Assessing the TMDL Approach to Water Quality Management

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Every human being on Earth is a stakeholder in water quality management. And so, for that matter, is every animal, domesticated or wild, though they have no constituency Water quality includes not only considerations of water composition for multiple human uses such as drinking and irrigation, but also in terms of its capacity to support systems of aquatic biota in general. This is so because we now realize that our well-being is inseparable from the well-being of, say the aquatic biota. If frogs were dying, we would be next in line!

  16. Identification of Surface Water Quality along the Coast of Sanya, South China Sea

    PubMed Central

    Wu, Zhen-Zhen; Che, Zhi-Wei; Wang, You-Shao; Dong, Jun-De; Wu, Mei-Lin

    2015-01-01

    Principal component analysis (PCA) and cluster analysis (CA) are utilized to identify the effects caused by human activities on water quality along the coast of Sanya, South China Sea. PCA and CA identify the seasonality of water quality (dry and wet seasons) and polluted status (polluted area). The seasonality of water quality is related to climate change and Southeast monsoons. Spatial pattern is mainly related to anthropogenic activities (especially land input of pollutions). PCA reveals the characteristics underlying the generation of coastal water quality. The temporal and spatial variation of the trophic status along the coast of Sanya is governed by hydrodynamics and human activities. The results provide a novel typological understanding of seasonal trophic status in a shallow, tropical, open marine bay. PMID:25894980

  17. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study has the potential to provide empirical evidence to promote large scale monitoring and education campaigns in Africa to improve health and reduce the burden of waterborne disease.

  18. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  19. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  20. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  1. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  2. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  3. 77 FR 30280 - Final National Recommended Ambient Water Quality Criteria for Carbaryl-2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... national recommended water quality criteria for the protection of aquatic life from effects of carbaryl... developed the aquatic life criteria based on EPA's Guidelines for Deriving Numerical National Water Quality... quality standards for protecting aquatic life and human health. These criteria are intended to protect...

  4. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    PubMed

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to households to motivate behavioral changes to effectively protect future water resources and human health.

  5. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  6. Interacting Coastal Based Ecosystem Services: Recreation and Water Quality in Puget Sound, WA

    PubMed Central

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments. PMID:23451067

  7. The case for regime-based water quality standards

    Treesearch

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  8. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  9. Study on water quality around mangrove ecosystem for coastal rehabilitation

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  10. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, MaryLynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  11. Development of health-based screening levels for use in state- or local-scale water-quality assessments

    USGS Publications Warehouse

    Toccalino, Patricia L.; Nowell, Lisa; Wilber, William; Zogorski, John S.; Donohue, Joyce; Eiden, Catherine; Krietzman, Sandra; Post, Gloria

    2003-01-01

    The U.S. Geological Survey (USGS) has a need to communicate the significance of the water-quality findings of its National Water-Quality Assessment (NAWQA) Program in a human-health context. Historically, the USGS has assessed water-quality conditions by comparing water concentration data against established drinking-water standards and guidelines. However, because drinking- water standards and guidelines do not exist for many of the contaminants analyzed by the NAWQA Program and other USGS studies, this approach has proven to be insufficient for placing USGS data in a human-health context. To help meet this need, health-based screening level (HBSL) concentrations or ranges are being determined for unregulated compounds (that is, those for which Federal or State drinking-water standards have not been established), using a consensus approach that was developed collaboratively by the USGS, U.S. Environmental Protection Agency(USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University. USEPA Office of Water methodologies for calculating Lifetime Health Advisory and Risk-Specific Dose values for drinking water are being used to develop HBSL concentrations (for unregulated noncarcinogens) and HBSL concentration ranges (for most unregulated carcinogens). This report describes the methodologies used to develop HBSL concentrations and ranges for unregulated compounds in State- and local-scale analyses, and discusses how HBSL values can be used as tools in water-quality assessments. Comparisons of measured water concentrations with Maximum Contaminant Level values and HBSL values require that water-quality data be placed in the proper context, with regard to both hydrology and human health. The use of these HBSL concentrations and ranges by USGS will increase by 27 percent the number of NAWQA contaminants for which health-based benchmarks are available for comparison with USGS water-quality data. USGS can use HBSL values to assist the USEPA and State and local agencies by providing them with comparisons of measured water concentrations to scientifically defensible human health-based benchmarks, and by alerting them when measured concentrations approach or exceed these benchmarks.

  12. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Great Lakes Water Quality Initiative...

  13. 40 CFR Appendix C to Part 132 - Great Lakes Water Quality Initiative Methodologies for Development of Human Health Criteria and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LAKES SYSTEM Pt. 132, App. C Appendix C to Part 132—Great Lakes Water Quality Initiative Methodologies...; or consuming fish from the water, and water-related recreation activities using the Methodologies for... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative...

  14. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health.

    PubMed

    Magwaza, Nontokozo M; Nxumalo, Edward N; Mamba, Bhekie B; Msagati, Titus A M

    2017-05-20

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites.

  15. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health

    PubMed Central

    Magwaza, Nontokozo M.; Nxumalo, Edward N.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-01-01

    Currently, there is a worldwide growing interest in the occurrence and diversity of fungi and their secondary metabolites in aquatic systems, especially concerning their role in water quality and human health. However, this concern is hampered by the scant information that is available in the literature about aquatic fungi and how they affect water quality. There are only few published reports that link certain species of aquatic fungi to human health. The common aquatic fungal species that have been reported so far in African aquatic systems belong to the hyphomycetes kingdom. This paper thus aims to survey the information about the occurrence and factors that control the distribution of different species of fungi in African aquatic systems, as well as their effect on water quality and the possible metabolic pathways that lead to the formation of toxic secondary metabolites that are responsible for the deterioration of water quality. This review will also investigate the analytical and bioanalytical procedures that have been reported for the identification of different species of waterborne fungi and their secondary metabolites. PMID:28531124

  16. Drinking Water (Environmental Health Student Portal)

    MedlinePlus

    ... teach students about water quality and effects on human health. Give Water a Hand (University of Wisconsin) - Project ... Medicine National Institutes of Health U.S. Department of Health and Human Services

  17. Building a framework to explore water-human interaction for sustainable agro ecosystems in US Midwest

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Ding, D.; Rapolu, U.

    2012-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. On this context, this team has investigated connections among agriculture, policy, climate, land use/land cover, and water quality in Iowa over the past couple of years. To help explore these connections the team is developing a variety of cyber infrastructure tools that facilitate the collection, analysis and visualization of data, and the simulation of system dynamics. In an ongoing effort, the prototype system is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa in the US Midwest, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. The primary aim of this research is to understand the connections that exist among the agricultural and biofuel economy, land use/land cover change, and water quality. To help explore these connections an agent-based model (ABM) of land use change has been developed that simulates the decisions made by farmers given alternative assumptions about market forces, farmer characteristics, and water quality regulations. The SWAT model was used to simulate the impact of these decisions on the movement of sediment, nitrogen, and phosphorus across the landscape. The paper also demonstrate how through the use of this system researchers can, for example, search for scenarios that lead to desirable socio-economic outcomes as well as preserve water quantity and quality.

  18. Quantification of Human Polyomaviruses JC Virus and BK Virus by TaqMan Quantitative PCR and Comparison to Other Water Quality Indicators in Water and Fecal Samples▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Lukasik, Jerzy O.; Paul, John H.; Harwood, Valerie J.

    2009-01-01

    In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens. PMID:19346361

  19. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Linking water quality and well-being for improved assessment and valuation of ecosystem services

    PubMed Central

    Keeler, Bonnie L.; Polasky, Stephen; Brauman, Kate A.; Johnson, Kris A.; Finlay, Jacques C.; O’Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-01-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  1. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-06

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting.

  2. A space satellite perspective to monitor water quality using your mobile phone

    EPA Science Inventory

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment r...

  3. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  4. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  5. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF - 2005 VERSION

    EPA Science Inventory

    Urban stormwater runoff is a leading cause of water quality impairment in lakes and reservoirs. Stormwater discharges, with latent bacterial loads, can negatively impact receiving water quality and create human health concerns when these waters are used for drinking water resourc...

  6. Storms do not alter long-term watershed development influences on coastal water quality.

    PubMed

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Regional characterization of freshwater Use in LCA: modeling direct impacts on human health.

    PubMed

    Boulay, Anne-Marie; Bulle, Cécile; Bayart, Jean-Baptiste; Deschênes, Louise; Margni, Manuele

    2011-10-15

    Life cycle assessment (LCA) is a methodology that quantifies potential environmental impacts for comparative purposes in a decision-making context. While potential environmental impacts from pollutant emissions into water are characterized in LCA, impacts from water unavailability are not yet fully quantified. Water use can make the resource unavailable to other users by displacement or quality degradation. A reduction in water availability to human users can potentially affect human health. If financial resources are available, there can be adaptations that may, in turn, shift the environmental burdens to other life cycle stages and impact categories. This paper proposes a model to evaluate these potential impacts in an LCA context. It considers the water that is withdrawn and released, its quality and scarcity in order to evaluate the loss of functionality associated with water uses. Regionalized results are presented for impacts on human health for two modeling approaches regarding affected users, including or not domestic uses, and expressed in disability-adjusted life years (DALY). A consumption and quality based scarcity indicator is also proposed as a midpoint. An illustrative example is presented for the production of corrugated board with different effluents, demonstrating the importance of considering quality, process effluents and the difference between the modeling approaches.

  8. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non-dominated sorting genetic algorithm II (NSGA-II), Sustainable water resources management, Flow regime, River ecosystem.

  9. Ground-water quality in Geauga County, Ohio; review of previous studies, status in 1999, and comparison of 1986 and 1999 data

    USGS Publications Warehouse

    Jagucki, Martha L.; Darner, Robert A.

    2001-01-01

    Most residents in Geauga County, Ohio, rely on ground water as their primary source of drinking water. With population growing at a steady rate, the possibility that human activity will affect ground-water quality becomes considerable. This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the Geauga County Planning Commission and Board of County Commissioners, to provide a brief synopsis of work previously done within the county, to assess the present (1999) ground-water quality, and to determine any changes in ground-water quality between 1986 and 1999. Previous studies of ground-water quality in the county have consistently reported that manganese and iron concentrations in ground water in Geauga County often exceed the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL). Road salt and, less commonly, oil-field brines and volatile organic compounds (VOCs) have been found in ground water at isolated locations. Nitrate has not been detected above the USEPA Maximum Contaminant Level (MCL) of 10 milligrams per liter as N; however, nitrate has been found in some locations at levels that may indicate the effects of fertilizer application or effluent from septic systems. Between June 7 and July 1, 1999, USGS personnel collected a total of 31 water-quality samples from wells completed in glacial deposits, the Pottsville Formation, the Cuyahoga Group, and the Berea Sandstone. All samples were analyzed for VOCs, sulfide, dissolved organic carbon, major ions, trace elements, alkalinity, total coliforms, and Escherichia coli bacteria. Fourteen of the samples also were analyzed for tritium. Water-quality data were used to determine (1) suitability of water for drinking, (2) age of ground water, (3) stratigraphic variation in water quality, (4) controls on water quality, and (5) temporal variation in water quality. Water from 16 of the 31 samples exceeded the Geauga County General Health District?s standard of 0 colonies of total coliform bacteria per 100 milliliters of water. Esthetically based SMCLs were exceeded in the indicated number of wells for pH (8), sulfate (1), dissolved solids (3), iron (19), and manganese (18). Hydrogen sulfide was detected at or above the detection limit of 0.01 milligram per liter in 17 of the 31 water samples. A range of water types was found among and within the four principal stratigraphic units. The waters can be categorized in three groups based on predominant anion type: bicarbonate-type waters, chloride-type waters, and sulfate-type waters. Chloride-to-bromide ratio analyses indicate that water from 8 of the 31 wells is in some way affected by human activity. Five other samples were in a chloride-to-bromide ratio range that could indicate possible effects of human activity. Ground-water-quality data from the current study were compared to data collected in 1986. Statistical analyses of data from the 16 wells that were sampled in both years did not indicate any significant changes that could be attributed to human activity.

  10. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  11. Water-Quality Assessment of the High Plains Aquifer, 1999-2004

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, Kevin F.; Bruce, Breton W.; Gurdak, Jason J.; Qi, Sharon L.

    2007-01-01

    Water quality of the High Plains aquifer was assessed for the period 1999-2004 as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This effort represents the first systematic regional assessment of water quality in this nationally important aquifer. A stratified, nested group of studies was designed to assess linkages between the quality of water recharging the aquifer, the effect of transport through the hydrologic system on water quality, and the quality of the resource used for human consumption and agricultural applications. The stratified, nested design facilitated upscaling of monitoring results to unmonitored areas of the aquifer as well as upscaling of process understanding from local to regional scales.

  12. Application of health-based screening levels to ground-water quality data in a state-scale pilot effort

    USGS Publications Warehouse

    Toccalino, Patricia L.; Norman, Julia E.; Phillips, Robyn H.; Kauffman, Leon J.; Stackelberg, Paul E.; Nowell, Lisa H.; Krietzman, Sandra J.; Post, Gloria B.

    2004-01-01

    A state-scale pilot effort was conducted to evaluate a Health-Based Screening Level (HBSL) approach developed for communicating findings from the U.S. Geological Survey (USGS) National Water-Quality Assessment Program in a human-health context. Many aquifers sampled by USGS are used as drinking-water sources, and water-quality conditions historically have been assessed by comparing measured contaminant concentrations to established drinking-water standards and guidelines. Because drinking-water standards and guidelines do not exist for many analyzed contaminants, HBSL values were developed collaboratively by the USGS, U.S. Environmental Protection Agency (USEPA), New Jersey Department of Environmental Protection, and Oregon Health & Science University, using USEPA toxicity values and USEPA Office of Water methodologies. The main objective of this report is to demonstrate the use of HBSL approach as a tool for communicating water-quality data in a human-health context by conducting a retrospective analysis of ground-water quality data from New Jersey. Another important objective is to provide guidance on the use and interpretation of HBSL values and other human-health benchmarks in the analyses of water-quality data in a human-health context. Ground-water samples collected during 1996-98 from 30 public-supply, 82 domestic, and 108 monitoring wells were analyzed for 97 pesticides and 85 volatile organic compounds (VOCs). The occurrence of individual pesticides and VOCs was evaluated in a human-health context by calculating Benchmark Quotients (BQs), defined as ratios of measured concentrations of regulated compounds (that is, compounds with Federal or state drinking-water standards) to Maximum Contaminant Level (MCL) values and ratios of measured concentrations of unregulated compounds to HBSL values. Contaminants were identified as being of potential human-health concern if maximum detected concentrations were within a factor of 10 of the associated MCL or HBSL (that is, maximum BQ value (BQmax) greater than or equal to 0.1) in any well type (public supply, domestic, monitoring). Most (57 of 77) pesticides and VOCs with human-health benchmarks were detected at concentrations well below these levels (BQmax less than 0.1) for all three well types; however, BQmax values ranged from 0.1 to 3,000 for 6 pesticides and 14 VOCs. Of these 20 contaminants, one pesticide (dieldrin) and three VOCs (1,2-dibromoethane, tetrachloroethylene, and trichloroethylene) both (1) were measured at concentrations that met or exceeded MCL or HBSL values, and (2) were detected in more than 10 percent of samples collected from raw ground water used as sources of drinking water (public-supply and (or) domestic wells) and, therefore, are particularly relevant to human health. The occurrence of multiple pesticides and VOCs in individual wells also was evaluated in a human-health context because at least 53 different contaminants were detected in each of the three well types. To assess the relative human-health importance of the occurrence of multiple contaminants in different wells, the BQ values for all contaminants in a given well were summed. The median ratio of the maximum BQ to the sum of all BQ values for each well ranged from 0.83 to 0.93 for all well types, indicating that the maximum BQ makes up the majority of the sum for most wells. Maximum and summed BQ values were statistically greater for individual public-supply wells than for individual domestic and monitoring wells. The HBSL approach is an effective tool for placing water-quality data in a human-health context. For 79 of the 182 compounds analyzed in this study, no USEPA drinking-water standards or guidelines exist, but new HBSL values were calculated for 39 of these 79 compounds. The new HBSL values increased the number of detected pesticides and VOCs with human-health benchmarks from 65 to 77 (of 97 detected compounds), thereby expanding the basis for interpreting contaminant-occu

  13. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. 78 FR 47241 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Revise the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...The Delaware River Basin Commission (``DRBC'' or ``Commission'') will hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan to revise the water quality criteria for polychlorinated biphenyls (``PCBs'') in the Delaware Estuary and Bay, DRBC Water Quality Management Zones 2 through 6, for the protection of human health from carcinogenic effects. The Commission will simultaneously solicit comment on a draft implementation strategy to support achievement of the criteria.

  15. Influence of land use on water quality in a tropical landscape: a multi-scale analysis

    PubMed Central

    Yackulic, Charles B.; Lim, Yili; Arce-Nazario, Javier A.

    2015-01-01

    There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services. PMID:26146455

  16. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  17. Wading through Perceptions: Understanding Human Perceptions of Water Quality in Coastal Waters

    EPA Science Inventory

    Water quality perceptions influence people’s preferences for visiting coastal areas and willingness to participate in activities on or near the water. They also influence people’s social values for a waterbody, sense of place, support for protection of a waterbody, an...

  18. An Approach to Developing Numeric Water Quality Criteria for Using the SeaWiFS Satellite Data Record

    EPA Science Inventory

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards were needed to protect coastal waters from eutrophication impacts. The Environm...

  19. Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective.

    PubMed

    Kwak, Jin Il; Nam, Sun-Hwa; An, Youn-Joo

    2018-02-01

    Since the Korean Ministry of the Environment established the Master Plan for Water Environment (2006-2015), the need to revise the water quality standards (WQSs) has driven government projects to expand the standards for the protection of human health and aquatic ecosystems. This study aimed to provide an historical overview of how these WQSs were established, amended, and expanded over the past 10 years in Korea. Here, major projects related to national monitoring in rivers and the amendment of WQSs were intensely reviewed, including projects on the categorization of hazardous chemicals potentially discharged into surface water, the chemical ranking and scoring methodology for surface water (CRAFT, Chemical RAnking of surFace water polluTants), whole effluent toxicity (WET) management systems, the 4th, 5th, and 6th revisions of the water quality standards for the protection of human health, and efforts toward developing the 7th revision. In this review, we assimilated the past and current status as well as future perspectives of Korean surface WQSs. This research provides information that aids our understanding of how surface WQSs have been expanded, and how scientific approaches to ensure water quality have been applied at each step of the process in Korea.

  20. Assessment of the quality of water for consumption by river-bank communities in areas exposed to urban and industrial pollutants in the municipalities of Abaetetuba and Barcarena in the state of Pará, Brazil.

    PubMed

    Medeiros, Adaelson Campelo; Lima, Marcelo de Oliveira; Guimarães, Raphael Mendonça

    2016-03-01

    In spite of the great technological advances in processes for treatment of water for human consumption, water actually used for supply has become a major public health challenge. This study assesses the quality of the water consumed in two riverside communities in the Brazilian state of Pará, in an area exposed to domestic and industrial pollutants. Four campaigns of sampling were carried out in the two communities. The variables used for the calculation of the water quality index - Índice de Qualidade da Água, or IQA - were: pH, total solids, chloride, fluoride, hardness and N-Nitrate. The waters used for human consumption in the Maranhão Community, where there is no contamination by industrial pollutants, presented adequate samples, with improvement in the dry season; on the other hand the waters of the Vila do Conde, a location close to the industrial activity, had quality that was unacceptable for human consumption in both the seasonal periods. The principal parameters affected were pH and N-Nitrate, with values up to 25 times the reference level of the Brazilian legislation for water for human consumption. These results indicated greater anthropic interference in the vicinity of Vila do Conde, in Barcarena. It is concluded that this population is in need of clinical assessments by specialized professionals on the state of its health.

  1. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    PubMed

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human use.

  3. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  4. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; Gunawardena, Panduka De S; Fernando, Palika S; Bandara, Jayasundera

    2017-02-14

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined "consumption of contaminated drinking water could be a silent killer". As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  5. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues

    NASA Astrophysics Data System (ADS)

    Wasana, Hewa M. S.; Perera, Gamage D. R. K.; Gunawardena, Panduka De S.; Fernando, Palika S.; Bandara, Jayasundera

    2017-02-01

    Despite WHO standards, waterborne diseases among the human being are rising alarmingly. It is known that the prolong exposure to contaminated water has major impact on public health. The effect of chemical contaminations in drinking water on human being is found to be chronic rather than acute and hence can be defined “consumption of contaminated drinking water could be a silent killer”. As the WHO recommended water quality standards are only for individual element and synergic effects of trace metals and anions have not been considered, investigation of synergic effects of trace metals and anions and their effect on human being is of prime important research. By an animal trial, we investigated the synergic effect(s) of heavy metals, aluminium, arsenic, fluoride and hardness in drinking water on kidney tissues of mice. Our investigation strongly suggests existing of a synergic effect especially among Cd, F and hardness of water which could lead to severe kidney damage in mice, even at WHO maximum recommended levels. Hence, the synergic effect(s) of trace metals, fluoride and hardness present in drinking water should be investigated meticulously when stipulating the water quality at WHO maximum recommended levels.

  6. Environmental Quality Index webinar

    EPA Pesticide Factsheets

    Environmental Quality index, data reduction approaches to help improve statistical efficiency, summarizing information on the wider environment humans are exposed to. air, water, land, built, socio-demographic, human and environmental health

  7. THE UNITED STATES EPA CONCEPT FOR DERIVING WATER QUALITY GUIDELINES FOR RECREATIONAL WATERS

    EPA Science Inventory

    The guidelines developed by the US EPA for controlling the quality of recreational waters are based on protecting the health of swimmers and other recreationists who may be exposed to waters contaminated by human and animal excreta. Risks to swimmers were determined through a se...

  8. The derivation of water quality criteria of copper in Biliu River

    NASA Astrophysics Data System (ADS)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  9. [The origin and quality of water for human consumption: the health of the population residing in the Matanza-Riachuelo river basin area in Greater Buenos Aires].

    PubMed

    Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda

    2013-04-01

    The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.

  10. 40 CFR 131.38 - Establishment of numeric criteria for priority toxic pollutants for the State of California.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...

  11. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  12. The case for regime-based water quality standards

    USGS Publications Warehouse

    Poole, Geoffrey C.; Dunham, J.B.; Keenan, D.M.; Sauter, S.T.; McCullough, D.A.; Mebane, Christopher; Lockwood, Jeffrey C.; Essig, Don A.; Hicks, Mark P.; Sturdevant, Debra J.; Materna, E.J.; Spalding, M.; Risley, John; Deppman, Marianne

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type of water quality standarda??a a??regime standarda??a??would describe desirable distributions of conditions over space and time within a stream network. By mandating the protection and restoration of the aquatic ecosystem dynamics that are required to support beneficial uses in streams, well-designed regime standards would facilitate more effective strategies for management of natural water quality parameters.

  13. Environmental Health Standards for Human Spacecraft

    NASA Technical Reports Server (NTRS)

    James John T.

    2010-01-01

    The discussion of air and water quality standards includes evidence-based standards, factors unique to spaceflight, effects from exposures to combinations of compounds, contingency versus nominal standards, tables of ISO standards for air quality (ppm) and water quality (mg/L), and updating of standards.

  14. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  15. The genomics revolution and its effect on water quality

    EPA Science Inventory

    Genomic-based molecular tools are emerging as powerful laboratory methods for assessing water quality characteristics and improving our ability to assess the human health risks posed by microbial contaminants in drinking water. To a great extent, this revolution in genomics-rese...

  16. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  17. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  18. Data from selected U.S. Geological Survey National Stream Water-Quality Networks (WQN)

    USGS Publications Warehouse

    Alexander, Richard B.; Slack, J.R.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.; Briel, L.I.; Buttleman, K.P.

    1996-01-01

    This CD-ROM set contains data from two USGS national stream water-quality networks, the Hydrologic Benchmark Network (HBN) and the National Stream Quality Accounting Network (NASQAN), operated during the past 30 years. These networks were established to provide national and regional descriptions of stream water-quality conditions and trends, based on uniform monitoring of selected watersheds throughout the United States, and to improve our understanding of the effects of the natural environment and human activities on water quality. The HBN, consisting of 63 relatively small, minimally disturbed watersheds, provides data for investigating naturally induced changes in streamflow and water quality and the effects of airborne substances on water quality. NASQAN, consisting of 618 larger, more culturally influenced watersheds, provides information for tracking water-quality conditions in major U.S. rivers and streams.

  19. Development and Application of Health-Based Screening Levels for Use in Water-Quality Assessments

    USGS Publications Warehouse

    Toccalino, Patricia L.

    2007-01-01

    Health-Based Screening Levels (HBSLs) are non-enforceable water-quality benchmarks that were developed by the U.S. Geological Survey in collaboration with the U.S. Environmental Protection Agency (USEPA) and others. HBSLs supplement existing Federal drinking-water standards and guidelines, thereby providing a basis for a more comprehensive evaluation of contaminant-occurrence data in the context of human health. Since the original methodology used to calculate HBSLs for unregulated contaminants was published in 2003, revisions have been made to the HBSL methodology in order to reflect updates to relevant USEPA policies. These revisions allow for the use of the most recent, USEPA peer-reviewed, publicly available human-health toxicity information in the development of HBSLs. This report summarizes the revisions to the HBSL methodology for unregulated contaminants, and updates the guidance on the use of HBSLs for interpreting water-quality data in the context of human health.

  20. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  1. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  2. Long-term forest paired catchment studies: What do they tell us that landscape-level monitoring does not?

    Treesearch

    Dan Neary

    2016-01-01

    Forested catchments throughout the world are known for producing high quality water for human use. In the 20th Century, experimental forest catchment studies played a key role in studying the processes contributing to high water quality. The hydrologic processes investigated on these paired catchments have provided the science base for examining water quality...

  3. Water quality in the tropical Andes hotspot: The Yacuambi river (southeastern Ecuador).

    PubMed

    Villa-Achupallas, Mercedes; Rosado, Daniel; Aguilar, Silvio; Galindo-Riaño, María Dolores

    2018-08-15

    Yacuambi river waters (southeast Ecuador, Amazonian region) were assessed to evaluate the potential risk to populations, who use it for drinking and irrigation, and ecosystems, which are part of Tropical Andes hotspot and considered some of the most biodiverse in the world. The water quality index was calculated and some quality parameters were checked to comply with Ecuadorian and North American standards for human consumption, preservation of aquatic life and irrigation. Four samplings were carried out in six stations covering the entire length of the Yacuambi river. Several parameters were analyzed: pH, conductivity, dissolved oxygen, temperature, color, phosphates, nitrite, nitrate, biochemical oxygen demand, chemical oxygen demand, total solids, turbidity, metals (Ba, Cd, Cr, Pb, As and Hg), pesticides and fecal coliforms. The water quality in the Yacuambi river was good and medium according to the classification of the Water Quality Index. However, it was unsuitable for human consumption, preservation of aquatic life and irrigation according to Ecuadorian and North American standards. Arsenic, color and fecal coliforms exceeded the limits for human consumption in all samples tested. Thresholds of preservation of aquatic life were exceeded in all samples in the case of Pb and in some samples for As, pH, nitrite and nitrate. Arsenic and fecal coliforms made Yacuambi river waters unsuitable for irrigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. SOLID PHASE EXTRACTION AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH PHOTODIODE ARRAY DETECTION OF CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION IN WATER

    EPA Science Inventory

    Faster and more sensitive analysis of water that is contaminated by human fecal matter is very important for health. The current microbiological methods to assess water quality do not meet this need. Alternate non-microbial human fecal indicators have been proposed by various r...

  5. Assessment for water quality by artificial neural network in Daya Bay, South China Sea.

    PubMed

    Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.

  6. Water mutagenic potential assessment on a semiarid aquatic ecosystem under influence of heavy metals and natural radioactivity using micronuclei test.

    PubMed

    Chaves, Luiz Cláudio Cardozo; Navoni, Julio Alejandro; de Morais Ferreira, Douglisnilson; Batistuzzo de Medeiros, Silvia; Ferreira da Costa, Thomas; Petta, Reinaldo Antônio; Souza do Amaral, Viviane

    2016-04-01

    The contamination of water bodies by heavy metals and ionizing radiation is a critical environmental issue, which can affect water quality and, thus, human health. This study aimed to evaluate the water quality of the Boqueirão de Parelhas Dam in the Brazilian semiarid region. A 1-year study (2013-2014) was performed through the assessment of physicochemical parameters, heavy metal content, and radioactivity along with the mutagenicity potential of water using micronuclei test in Orechromis niloticus (in vivo) and the cytokinesis-block micronucleus (CBMN) assay in human lymphocytes (in vitro). A deterioration of water organoleptics characteristics by the presence of high levels of sulfate and total solids was observed. High concentrations of aluminum, nickel, silver, and lead along with the alpha particle content were higher than the limits suggested by the World Health Organization and Brazilian legislation for drinking water. An increase in the frequency of micronuclei and nuclear abnormalities was observed in both experimental models. The results obtained confirmed the mutagenic potential present in water samples. This study highlights that geogenic agents affect water quality becoming a human health concern to be taken into account due to the relevance that this water reservoir has in the region.

  7. National Water-Quality Assessment Program - Red River of the North

    USGS Publications Warehouse

    Stoner, J.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources, and to provide a sound scientific understanding of the primary natural and human factors affecting the quality of these resources. The program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels.

  8. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality of these lakes are assessed by comparing their reflectance values with the spectral signatures of distilled water. The layout water quality maps of these lakes are prepared in terms of these deviations. The results of the study can be utilized for preliminary water quality monitoring of the selected lakes.

  9. New York harbor water quality survey, 1993. (Includes appendices). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1994-11-30

    The 84th Water Quality Survey of New York Harbor was performed by the New York City Department of Environmental Protection in 1993. Common indicators of water quality which were monitored include human health indicators, such as the sewage-related coliform bacteria, and environmental health indicators such as dissolved oxygen, the nutrients nitrogen and phosphorus, and phytoplankton densities as estimated from chlorophyll `a`.

  10. Water quality status and trends in the United States

    USGS Publications Warehouse

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  11. SYSTEMATIC PROCESS TO SELECT CHEMICALS FOR NEW AND REVISED AMBIENT WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) publishes and periodically updates ambient water quality criteria (AWQC) for the protection of human health and aquatic life through its authority under Section 304(a) of the Clean Water Act. The number of toxic chemicals generated ...

  12. VALIDATION OF AMBIENT WATER QUALITY CRITERIA (AWQC) BIOACCUMULATION METHODOLOGY USING FIELD DATA FROM GREEN BAY AND THE HUDSON RIVER

    EPA Science Inventory

    In 1998, EPA published its draft revision to the methodology for deriving ambient water quality criteria to protect human health. Four methods were proposed to determine lipid-normalized bioaccumulation factors based on freely-dissolved water concentrations (BAFs) for nonpolar or...

  13. Trend analysis of a tropical urban river water quality in Malaysia.

    PubMed

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.

  14. Development of a human-specific B. thetaiotaomicron IMS ...

    EPA Pesticide Factsheets

    Immunomagnetic separation/adenosine triphosphate (IMS/ATP) assays utilize paramagnetic beads and target-specific antibodies to isolate target organisms. Following isolation, adenosine tri-phosphate (ATP) is extracted from the target population and quantified. An inversely-coupled (Inv-IMS/ATP)assay for detection of Bacteroides thetaiotaomicron was developed and applied for rapid detection of human-associated fecal contamination in surface waters in Baja California. Specificity of the assay was tested against challenge solutions of varying concentrations of dog, gull, horse and chicken feces, and a field validation survey of coastal and WWTP effluent water quality in Rosarito and Enseneda, Baja California was conducted. Inv IMS/ATP measurements made shown to be specific and sensitive to human fecal contamination. At test concentrations of less than 1000 MPN ENT/100 mL, sensitivity and specificity of the assay both exceeded 80%. Moreover, the Inv-IMS/ATP assay yielded measurements of viable B. thetaiotaomicron that were comparable to the HF183 human marker in complex surface waters impacted with both wastewater and runoff, and the Inv-IMS/ATP assay was able to effectively differentiate between surface waters impacted with adequately and inadequately treated wastewater. The Inv-IMS/ATP assays shows promise for rapid evaluation of recreational water quality in areas where access to more expensive methods is limited and in areas where water quality in unpredicta

  15. Recommended Water Quality Criteria for Octahydro-1,3,5,7-Tentranitro-1, 3,5,7-Tetrazocin (HMX).

    DTIC Science & Technology

    1989-03-27

    possible to derive water quality criteria for protection of aquatic life following USEPA guidelines. Based on the NOAEL of 50 mg/kg/day from the 13-week...special reference to those on human, mammalian, and aquatic health effects, and to generate water quality criteria for drinking water and for the...and discussed below. Aquatic Invertebrates Bentley et al. (1977) performed static acute toxicity tests on four species of freshwater invertebrates

  16. Effects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China.

    PubMed

    Wang, Ruizhao; Xu, Tianle; Yu, Lizhong; Zhu, Jiaojun; Li, Xiaoyu

    2013-05-01

    Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO(3)(-)N, and NH(4)(+)-N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009-2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO(3)(-)-N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.

  17. Freshwater resources in designated wilderness areas of the United States: A state-of-knowledge review

    Treesearch

    Adam N. Johnson; David R. Spildie

    2014-01-01

    Clean water is essential for ecosystem processes and for the maintenance of human populations. However, fresh water accounts for less than three percent of the world’s total water volume. Numerous anthropogenic and natural processes impact the quality and quantity of the available resource. The value of high-quality water will likely increase as threats to water...

  18. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  19. Report: EPA Needs to Accelerate Adoption of Numeric Nutrient Water Quality Standards

    EPA Pesticide Factsheets

    Report #09-P-0223, August 26, 2009. EPA’s 1998 National Strategy and Plan to promote State adoption of nutrient water quality standards (which better protect aquatic life and human health) has been ineffective.

  20. ASSESSING WATER QUALITY: AN ENERGETICS PERPECTIVE

    EPA Science Inventory

    Integrated measures of food web dynamics could serve as important supplemental indicators of water quality that are well related with ecological integrity and environmental well-being. When the concern is a well-characterized pollutant (posing an established risk to human health...

  1. Groundwater quality in the Southeastern Coastal Plain aquifer system, southeastern United States

    USGS Publications Warehouse

    Barlow, Jeannie; Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Southeastern Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 6 percent of the study area and at moderate concentrations in about 13 percent. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  2. Backcountry water quality in Grand Teton National Park

    USGS Publications Warehouse

    Tippets, N.; O'Ney, S.; Farag, A.M.

    2001-01-01

    Over the past several decades, visitor use of the backcountry areas of Grand Teton National Park (Wyoming) has dramatically increased. The water quality of clear, sparkling mountain streams and lakes is being impacted by concentrated recreational use where, because of the potential for future wilderness designation, no restroom facilities are available. Park officials are concerned about the impacts that these activities have on water quality, and that the consumption of untreated water from these areas may pose a hazard to human health.

  3. Water quality data for selected wells in the Coastal Plain of New Jersey, 1996-98

    USGS Publications Warehouse

    Hibbs, Kathleen L.; Stackelberg, Paul E.; Kauffman, Leon J.; Ayers, Mark A.

    2001-01-01

    Water-quality data were collected during 1996-98 for 217 wells in New Jersey and 3 wells in New York as part of the U. S. Geological Survey's National Water Quality Assessment Program. Samples were collected for five ground-water surveys that were designed to assess water quality in major aquifer systems, with an emphasis on recently recharged (shallow) ground water associated with present and recent human activities. This report (1) summarizes the hydrogeologic framework in the areas of data collection; (2) describes the objectives and procedures for designing each ground-water survey; (3) summarizes the procedures and protocols for data collec-tion, analysis, and quality control; and (4) lists the concentrations of inorganic constituents, volatile organic compounds, pesticides, nutrients, and trace elements present in the ground-water samples.

  4. Physical/chemical closed-loop water-recycling

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  5. A battery of in vivo and in vitro tests useful for genotoxic pollutant detection in surface waters.

    PubMed

    Pellacani, Claudia; Buschini, Annamaria; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2006-04-20

    Since the 1980s, stricter water quality regulations have been promulgated in many countries throughout the world. We discuss the application of a battery of both in vivo and in vitro genotoxicity tests on lake water as a tool for a more complete assessment of surface water quality. The lake water concentrated by adsorption on C18 silica cartridges were used for the following in vitro biological assays: gene conversion, point mutation, mitochondrial DNA mutability assays on the diploid Saccharomyces cerevisiae D7 strain, with or without endogenous P450 complex induction; DNA damage on fresh human leukocytes by the comet. Toxicity testing on yeast and human cells was also performed. In vivo genotoxicity was determined by the comet assay on two well-established bio-indicator organisms of water quality (Cyprinus carpio erythrocytes and Dreissena polymorpha haemocytes) exposed in situ. The in vivo experiments and the water samplings were carried out during different campaigns to detect seasonal variations of both the water contents and physiological state of the animals. Temperature and oxygen level seasonal variations and different pollutant contents in the lake water appeared to affect the DNA migration in carp and zebra mussel cells. Seasonal variability of lake water quality was also evident in the in vitro genotoxicity and cytotoxicity tests, with regards to water pollutant quantity and quality (direct-acting compounds or indirect-acting compounds on yeast cells). However, the measured biological effects did not appear clearly related to the physical-chemical characteristics of lake waters. Therefore, together with the conventional chemical analysis, mutagenicity/genotoxicity assays should be included as additional parameters in water quality monitoring programs: their use could permit the quantification of mutagenic hazard in surface waters.

  6. Assessment of quality of water provided for wildlife in the Central Kalahari Game Reserve, Botswana

    NASA Astrophysics Data System (ADS)

    Selebatso, Moses; Maude, Glyn; Fynn, Richard W. S.

    2018-06-01

    Arid and semi-arid environments have low and unpredictable rainfall patterns resulting in limited availability of surface water for wildlife. In the Central Kalahari Game Reserve (CKGR) wildlife populations have lost access to natural surface water through cordon fences, livestock and human encroachment along the access routes. Artificial waterholes have been developed in the reserve to compensate for this loss. However, there have not been any assessments of the quality of water provided for wildlife and how that may be contributing to populations declines in the CKGR. We assessed water quality from 12 artificial waterholes against both Botswana and international livestock standards for drinking. Overall the quality of water provided is poor and poses a health risk to both animals and humans. Eight out of twelve boreholes tested exceeded the maximum acceptable Total Dissolved Solids (TDS) limits while three and four boreholes have toxic levels of lead and arsenic, respectively. Thus, pumping ground water could have more negative than positive impacts on wildlife thus defeating the intended management purpose. Failure to provide water of acceptable quality is a major concern for wildlife management in the CKGR and it may underlie some wildlife declines in the reserve. These findings confirm that restriction of populations from natural water sources create complex management challenges, especially where safe and sustainable alternative sources are scarce. Restriction of access of the population to natural water sources by fences and provision of poor quality water could compromise the overall fitness of wildlife populations and contribute to their decline.

  7. [Spatial Variability Characteristics of Water Quality and Its Driving Forces in Honghu Lake During High Water-level Period].

    PubMed

    Li, Kun; Wang, Ling; Li, Zhao-hua; Wang, Xiang-rong; Chen, Hong-bing; Wu, Zhong; Zhu, Peng

    2015-04-01

    Based on the high-density analysis of 139 monitoring points and samples in water of honghu lake with different degrees of eutrophication during the high water-level period, we could get the figures of spatial variability characteristics of pollution factors, the biomass of aquatic plants and water quality in Honghu Lake using the GIS interpolation methods. The result showed that the concentrations of TN, TP, NH4(+) -N, permanganate index gradually increased from south to north during this period, the trend of water pollution degree in Honghu Lake was the region of inflowing rivers > enclosure culture area > open water area > the lake protection area > region of the Yangtze river into the lake; and the contribution rate of water quality parameters was in the order of TN > TP > permanganate index > NH4(+), -N > DO; under the influence of industrial sewage, agricultural sewage, domestic sewage, bait, aquatic plants and water exchange, 59% of TN, 35.2% of TP, 13.7% of permanganate index, 4.3% of NH4(+)-N exceeded the water quality targets, respectively, accordingly, 66.2% of the water quality also exceeded the water quality target. Nonetheless, DO reached the water quality target due to the influences of monsoon climate and other environment factors. The spatial variation analysis could directly reflect the mutual interaction among human activity, land-use types and environment factors which had an enormous impact on Honghu Lake water environment. In order to ensure that the lake water environment is beneficial for human productions and livings, it is necessary for us to control the discharge of industrial sewage, agricultural sewage and domestic sewage, as well as the expanding area of aquaculture, all the above measures would be significant for gradually resuming the self-purification capacity of water body and finally achieving the ecological sustainable development of Honghu Lake water environment.

  8. Assessment of physico-chemical characteristics of water in Tamilnadu.

    PubMed

    Udhayakumar, R; Manivannan, P; Raghu, K; Vaideki, S

    2016-12-01

    Water is an important component to human life. The major aims of the present work are to assess the quality of the ground water and its impact in Villupuram District of Tamilnadu. The present study focus to bring an awareness among the people about the quality of ground water by taking water samples from various locations for Physico - Chemical analysis of the ground water. This analysis result was compared with the WHO, ICMR, USPH and European standards of drinking water quality parameters with the following water quality parameters namely pH, Electrical conductivity, Cl, , Na, K, Ca , Mg, Total dissolved solids, Total hardness, Dissolved oxygen, Fluoride etc. Various chemical methods have been employed to investigate the extent level of pollution in ground water. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Quality of Water from Shallow Wells in Urban Residential and Light Commercial Areas in Lafayette Parish, Louisiana, 2001 through 2002

    USGS Publications Warehouse

    Fendick, Robert B.; Tollett, Roland W.

    2004-01-01

    In 2001-02, the U.S. Geological Survey installed and sampled 28 shallow wells in urban residential and light commercial areas in Lafayette Parish, Louisiana, for a land-use study in the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment (NAWQA) Program. The wells were installed in the Chicot aquifer system, the primary source of water for irrigation and public-water supplies in southwestern Louisiana. The purpose of this report is to describe the quality of water from the 28 shallow wells and to relate that water quality to natural factors and to human activities. Ground-water samples were analyzed for general ground-water properties and about 240 water-quality contituents, including dissolved solids, major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), radon, chlorofluorocarbons, selected stable isotopes, pesticides, pesticide degradation products, and volatile organic compounds (VOC's).

  10. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.

    PubMed

    Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando

    2018-01-01

    This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.

  11. Water quality, physical habitat, and fish community composition in streams in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.

    1999-01-01

    Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.

  12. Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Guzmán-Ríos, Senén

    2017-06-26

    A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen isotopes of nitrate indicates that the origin of nitrate in the streams is most likely animal and human waste. A baseline was established for the concentrations of selected human health and pharmaceutical products at stations in some of the streams within the Municipality of Caguas. Thirty-eight human health and pharmaceutical products were present at or above the measurement detection level.

  13. The challenges of sustainable access to safe drinking water in rural areas of developing countries: case of Zawtar El-Charkieh, Southern Lebanon.

    PubMed

    Massoud, May A; Al-Abady, Abdolmonim; Jurdi, Mey; Nuwayhid, Iman

    2010-06-01

    Adequate and safe water is important for human health and well-being, economic production, and sustainable development. Failure to ensure the safety of drinking water may expose the community to the risk of outbreaks of waterborne and infectious diseases. Although drinking water is a basic human right, many people do not have access to safe and adequate drinking water or proper sanitation facilities. The authors conducted a study to assess the quantity, cost, continuity, coverage, and quality of drinking water in the village of Zawtar El-Charkieh, Lebanon. Their aim was to identify the challenges of sustainable access to safe drinking water in order to determine the short-term management actions and long-term strategies to improve water quality. Results revealed that contamination of the source, absence of any disinfection method or insufficient dose, poor maintenance operations, and aging of the networks are significant factors contributing to water contamination during the storage and distribution process. Establishing a comprehensive drinking water system that integrates water supply, quality, and management as well as associated educational programs in order to ensure the safety and sustainability of drinking water supplies is essential.

  14. Land Use and Water Quality Along a Mekong Tributary in Northern Lao P.D.R.

    NASA Astrophysics Data System (ADS)

    Ribolzi, Olivier; Cuny, Juliette; Sengsoulichanh, Phonexay; Mousquès, Claire; Soulileuth, Bounsamai; Pierret, Alain; Huon, Sylvain; Sengtaheuanghoung, Oloth

    2011-02-01

    Improving access to clean water has the potential to make a major contribution toward poverty reduction in rural communities of Lao P.D.R. This study focuses on stream water quality along a Mekong basin tributary, the Houay Xon that flows within a mountainous, mosaic land-use catchment of northern Lao P.D.R. To compare direct water quality measurements to the perception of water quality within the riparian population, our survey included interviews of villagers. Water quality was found to vary greatly depending on the location along the stream. Overall, it reflected the balance between the stream self-cleaning potential and human pressure on the riparian zone: (i) high bacteria and suspended load levels occurred where livestock are left to free-range within the riparian zone; (ii) very low oxygen content and high bacteriological contamination prevailed downstream from villages; (iii) high concentrations of bacteria were consistently observed along urbanized banks; (iv) low oxygen content were associated with the discharge of organic-rich wastewater from a small industrial plant; (v) very high suspended load and bacteria levels occurred during flood events due to soil erosion from steep cultivated hill slopes. Besides these human induced pollutions we also noted spontaneous enrichments in metals in wetland areas fed by dysoxic groundwater. These biophysical measurements were in agreement with the opinions expressed by the majority of the interviewees who reported poor and decreasing water quality in the Houay Xon catchment. Based on our survey, we propose recommendations to improve or maintain stream water quality in the uplands of northern Lao P.D.R.

  15. How Do Our Actions Affect Water Quantity and Quality?

    ERIC Educational Resources Information Center

    Gordon, Jessica

    2008-01-01

    Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…

  16. EVALUATION OF A PROTOCOL FOR DRINKING WATER TREATMENT DATA REQUIRED BY THE FOOD QUALITY PROTECTION ACT

    EPA Science Inventory

    Under the Food Quality Protection Act (FQPA), the USEPA Office of Pesticide Programs (OPP) considers drinking water as a route for pesticide exposure in its human health risk assessments, and may require data on the fate of a pesticide in drinking water be supplied to OPP by the ...

  17. A Human Fecal Contamination Score for Ranking Recreational Sites using the HF183/BacR287 Quantitative Real-Time PCR Method

    EPA Science Inventory

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...

  18. Plants, arthropods, and birds of the Rio Grande [chapter 7

    Treesearch

    Deborah M. Finch; Gale L. Wolters; Wang Yong; Mary Jean Mund

    1995-01-01

    Human populations have increased dramatically along the Rio Grande since European settlement. Human use of water for irrigation and consumption, and human use of land for agriculture, urban centers, livestock grazing, and recreation have changed Rio Grande ecosystems by altering flood cycles, channel geomorphology, upslope processes, and water quality and quantity....

  19. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  20. Biological Criteria for Protection of U.S. Coral Reefs.

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  1. Biological Criteria for Protection of U.S. Coral Reefs

    EPA Science Inventory

    Coral reef ecosystems are threatened by natural stressors, human activities, and natural stressors exacerbated by human activities. Under the U.S. Clean Water Act, States and Territories may guard against anthropogenic threats by adopting water quality standards based on biologic...

  2. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.

    PubMed

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

    2015-01-01

    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  3. Assessment of Ganga river ecosystem at Haridwar, Uttarakhand, India with reference to water quality indices

    NASA Astrophysics Data System (ADS)

    Bhutiani, R.; Khanna, D. R.; Kulkarni, Dipali Bhaskar; Ruhela, Mukesh

    2016-06-01

    The river Ganges is regarded as one of the most holy and sacred rivers of the world from time immemorial. The evaluation of river water quality is a critical element in the assessment of water resources. The quality/potability of water that is consumed defines the base line of protection against many diseases and infections. The present study aimed to calculate Water Quality Index (WQI) by the analysis of sixteen physico-chemical parameters on the basis of River Ganga index of Ved Prakash, weighted arithmetic index and WQI by National sanitation foundation (NSF) to assess the suitability of water for drinking, irrigation purposes and other human uses. These three water quality indices have been used to assess variation in the quality of the River Ganga at monitored locations over an 11-year period. Application of three different indexes to assess the water quality over a period of 11 years shows minor variations in water quality. Index values as per River Ganga Index by Ved Prakash et al. from 2000 to 2010 ranged between medium to good, Index values as per NSF Index for years 2000-2010 indicate good water quality, while Index values as per the weighted arithmetic index method for the study period indicate poor water quality.

  4. Groundwater quality in the Basin and Range Basin-Fill Aquifers, southwestern United States

    USGS Publications Warehouse

    Musgrove, MaryLynn; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Basin and Range basin-fill aquifers constitute one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 20 percent of the study area and at moderate concentrations in about 49 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  5. Relationships between environmental governance and water quality in growing metropolitan areas: a synthetic view through the coupled natural and human system lens

    NASA Astrophysics Data System (ADS)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2013-06-01

    We investigate relationships between environmental governance and water quality in two adjacent, growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining a coupled human and natural system (CHANS). We conceptualize feedback loops in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly, using the metric of changes in the sale price of single-family residential properties. Governance then influences water quality directly through, for example, changes in the monitoring regime and riparian restoration and indirectly through land use policy. We investigate these hypotheses by presenting evidence of these linkages. Our results show that changes in monitoring regimes and land use differed in response to differences in governance systems. On the other hand, property sale prices increased in response to water quality improvement for both studied watersheds. Our results show that sales prices responded positively to improved water quality (i.e. DO) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in changes in water temperature over time. While urban areas expanded more than 20% over 24 yr, water temperature did not change. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefitted indirectly from land use policy. A combination of a long-term legacy effect of land development and a relatively short history of riparian restoration in both the Portland and Vancouver regions may have masked any subtle differences in both regions. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a long-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies.

  6. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  7. 40 CFR 264.93 - Hazardous constituents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste... quality; (viii) The potential for health risks caused by human exposure to waste constituents; (ix) The... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  8. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  9. Progress in Working Towards a More Sustainable Agri-Food Industry

    EPA Science Inventory

    The human health and environmental issues related to food, feed, and bio-based systems, range widely from greenhouse gas emissions and energy use to land use, water availability, soil quality, water quality and quantity, biodi-versity losses, and chemical exposure. Threats that s...

  10. Methods of Statistical Control for Groundwater Quality Indicators

    NASA Astrophysics Data System (ADS)

    Yankovich, E.; Nevidimova, O.; Yankovich, K.

    2016-06-01

    The article describes the results of conducted groundwater quality control. Controlled quality indicators included the following microelements - barium, manganese, iron, mercury, iodine, chromium, strontium, etc. Quality control charts - X-bar chart and R chart - were built. For the upper and the lower threshold limits, maximum permissible concentration of components in water and the lower limit of their biologically significant concentration, respectively, were selected. The charts analysis has shown that the levels of microelements content in water at the area of study are stable. Most elements in the underground water are contained in concentrations, significant for human organisms consuming the water. For example, such elements as Ba, Mn, Fe have concentrations that exceed maximum permissible levels for drinking water.

  11. Stochastic modeling for river pollution of Sungai Perlis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunus, Nurul Izzaty Mohd.; Rahman, Haliza Abd.; Bahar, Arifah

    2015-02-03

    River pollution has been recognized as a contributor to a wide range of health problems and disorders in human. It can pose health dangers to humans who come into contact with it, either directly or indirectly. Therefore, it is most important to measure the concentration of Biochemical Oxygen Demand (BOD) as a water quality parameter since the parameter has long been the basic means for determining the degree of water pollution in rivers. In this study, BOD is used as a parameter to estimate the water quality at Sungai Perlis. It has been observed that Sungai Perlis is polluted duemore » to lack of management and improper use of resources. Therefore, it is of importance to model the Sungai Perlis water quality in order to describe and predict the water quality systems. The BOD concentration secondary data set is used which was extracted from the Drainage and Irrigation Department Perlis State website. The first order differential equation from Streeter – Phelps model was utilized as a deterministic model. Then, the model was developed into a stochastic model. Results from this study shows that the stochastic model is more adequate to describe and predict the BOD concentration and the water quality systems in Sungai Perlis by having smaller value of mean squared error (MSE)« less

  12. Water-quality trends in New England rivers during the 20th century

    USGS Publications Warehouse

    Robinson, Keith W.; Campbell, Jean P.; Jaworski, Norbert A.

    2003-01-01

    Water-quality data from the Merrimack, Blackstone, and Connecticut Rivers in New England during parts of the 20th century were examined for trends in concentrations of sulfate, chloride, residue upon evaporation, nitrate, and total phosphorus. The concentrations of all five of these constituents show statistically significant trends during the century. Annual concentrations of sulfate and total phosphorus decreased during the second half of the century, whereas annual concentrations of nitrate, chloride, and residues increased throughout the century. In the Merrimack River, annual chloride concentrations increased by an order of magnitude. Annual nitrate concentrations also increased by an order of magnitude in the Merrimack and Connecticut Rivers. These changes in the water quality probably are related to changing human activities. Most notable is the relation between increasing use of road de-icing salts and chloride concentrations in rivers. In addition, changes in concentrations of nitrate and phosphorus probably are related to agricultural use of nitrogen and phosphorus fertilizers. For all the water-quality constituents assessed, concentrations were greatest in the Blackstone River. The Blackstone River Basin is smaller and more highly urbanized than the other basins studied. Data-collection programs that span multiple decades can provide valuable insight on the effects of changing human population and societal activities on the water quality of rivers. This study was done as part of the U.S. Geological Survey's National Water-Quality Assessment Program.

  13. The Potential Impacts of Climate Change on the Quality and Quantity of Freshwater Available to Humans in the Arctic

    NASA Astrophysics Data System (ADS)

    White, D. M.; Strang, E. T.; Alessa, L.; Hinzman, L.; Kliskey, A.

    2005-12-01

    The objective of this research is to understand how humans rely on freshwater at local and regional scales in selected parts of the Arctic, how these dependencies have changed in the recent past, and how they are likely to change in the future. The study seeks to incorporate likely effects of climate change on the hydrologic cycle and water availability to humans in the Arctic. The human demand for freshwater has risen dramatically over the past hundred years. Communities on the Seward Peninsula currently rely on both treated and traditional water sources for their drinking water. In many cases, availability of freshwater limits the use of both of these types of water sources. Future water demand predictions suggest that the demand for treated water will increase significantly as water systems are upgraded and the population of the area increases. Preliminary research indicates that water quality may by impacted by hydrologic changes, and further research is underway to determine the extent of these changes and how they will affect drinking water supplies on the Seward Peninsula. Understanding how climate change will impact the hydrology of this area will help minimize the impact these changes have on both engineered water systems and traditional water uses in the future. This presentation provides the most recent results of this research program. This study is being funded under the NSF Arctic System Science Program, Human Dimensions of the Arctic (OPP-0328686).

  14. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece.

    PubMed

    Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos

    2014-12-02

    Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public healthThe microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci/enterococci instead four microbiological parameters (the two mentioned above plus Total coliforms and Faecal coliforms) that are usually monitored today. As a consequence, countries, especially those with large quantities of coastal bathing sites, can perform microbiological monitoring of their bathing waters by checking only the mentioned two parameters, thus ensuring economies of scale. Thus, funds can be used in other actions to preserve the quality of coastal water and human health. This in turn, would aid in the assessment of the quality of coastal bathing waters and provide a more timely indication of bathing water quality, hence contributing to the immediate health protection of bathers.

  15. The National Water-Quality Assessment (NAWQA) Program planned monitoring and modeling activities for Texas, 2013–23

    USGS Publications Warehouse

    Ging, Patricia

    2013-01-01

    The U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Program was established by Congress in 1992 to answer the following question: What is the status of the Nation’s water quality and is it getting better or worse? Since 1992, NAWQA has been a primary source of nationally consistent data and information on the quality of the Nation’s streams and groundwater. Data and information obtained from objective and nationally consistent water-quality monitoring and modeling activities provide answers to where, when, and why the Nation’s water quality is degraded and what can be done to improve and protect it for human and ecosystem needs. For NAWQA’s third decade (2013–23), a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing the USGS’s ongoing assessment of the Nation’s freshwater quality and aquatic ecosystems.

  16. Environmental and economic benefits of preserving forests within urban areas: air and water quality. Chapter 4.

    Treesearch

    David J. Nowak; Jun Wang; Ted Endreny

    2007-01-01

    Forests and trees in urban areas provide many environmental and economic benefits that can lead to improved environmental quality and human health. These benefits include improvements in air and water quality, richer terrestrial and aquatic habitat, cooler air temperatures, and reductions in building energy use, ultraviolet radiation levels, and noise. As urbanization...

  17. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    PubMed

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  18. The impact of human activities in the Wulan Delta Estuary, Indonesia

    NASA Astrophysics Data System (ADS)

    Fadlillah, L. N.; Sunarto; Widyastuti, M.; Marfai, M. A.

    2018-04-01

    The increasing of human population in the watershed and the coastal area and the need of life exert pressure in the delta that provides various resources. Wulan Delta is one of active Delta in Central Java, Indonesia. It has been experienced multiple pressures because of natural factors and human factors. In order to provide the scientific solution and to analyze the impact of human intervention in delta, we collected several pieces of evidence based on secondary data and primary data. The secondary data is water quality data on sites 6 and 7, meanwhile the secondary data is the water quality data in site 1 to 5. This paper present a review and problems identification in Wulan Delta, based on hydrological condition, land use, and human activities in the delta. Meanwhile, the human intervention in the land which is land use exchange leads to several problems such as the land use changes, high sediment load, and water degradation. Almost 80% of Delta has been transformed into the fish pond by local communities.

  19. Predicting microbial water quality with models: over-arching questions for managing risk in agricultural catchments

    USDA-ARS?s Scientific Manuscript database

    Determining the microbial quality of recreational, irrigation and shellfish-harvesting waters is important to ensure compliance with health-related standards and associated legislation. Animal faeces represent a significant human health risk, and concentrations of fecal indicator organisms (FIOs) pr...

  20. Water quality criteria for hexachloroethane: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  1. Water Quality Standards for Coral Reef Protection | Science ...

    EPA Pesticide Factsheets

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality standards have not been effectively applied to coral reefs. The Environmental Protection Agency is promoting biocriteria and other water quality standards through collaborative development of bioassessment procedures, indicators and monitoring strategies. To support regulatory action, bioassessment indicators must be biologically meaningful, relevant to management, responsive to human disturbance, and relatively immune to natural variability. A rapid bioassessment protocol for reef-building stony corals was developed and tested for regulatory applicability. Preliminary testing in the Florida Keys found indicators had sufficient precision and provided information relevant to coral reef management. Sensitivity to human disturbance was demonstrated in the U.S. Virgin Islands for five of eight indicators tested. Once established, monitoring programs using these indicators can provide valuable, long-term records of coral condition and regulatory compliance. Development of a rapid bioassement protocol for reef-building stony corals was tested for regulatory applicability.

  2. Detection of Viral Pathogens by Reverse Transcriptase PCR and of Microbial Indicators by Standard Methods in the Canals of the Florida Keys

    PubMed Central

    Griffin, Dale W.; Gibson, Charles J.; Lipp, Erin K.; Riley, Kelley; Paul, John H.; Rose, Joan B.

    1999-01-01

    In order to assess the microbial water quality in canal waters throughout the Florida Keys, a survey was conducted to determine the concentration of microbial fecal indicators and the presence of human pathogenic microorganisms. A total of 19 sites, including 17 canal sites and 2 nearshore water sites, were assayed for total coliforms, fecal coliforms, Escherichia coli, Clostridium perfringens, enterococci, coliphages, F-specific (F+) RNA coliphages, Giardia lamblia, Cryptosporidium parvum, and human enteric viruses (polioviruses, coxsackie A and B viruses, echoviruses, hepatitis A viruses, Norwalk viruses, and small round-structured viruses). Numbers of coliforms ranged from <1 to 1,410, E. coli organisms from <1 to 130, Clostridium spp. from <1 to 520, and enterococci from <1 to 800 CFU/100 ml of sample. Two sites were positive for coliphages, but no F+ phages were identified. The sites were ranked according to microbial water quality and compared to various water quality standards and guidelines. Seventy-nine percent of the sites were positive for the presence of enteroviruses by reverse transcriptase PCR (polioviruses, coxsackie A and B viruses, and echoviruses). Sixty-three percent of the sites were positive for the presence of hepatitis A viruses. Ten percent of the sites were positive for the presence of Norwalk viruses. Ninety-five percent of the sites were positive for at least one of the virus groups. These results indicate that the canals and nearshore waters throughout the Florida Keys are being impacted by human fecal material carrying human enteric viruses through current wastewater treatment strategies such as septic tanks. Exposure to canal waters through recreation and work may be contributing to human health risks. PMID:10473424

  3. Application of CCME Water Quality Index to monitor water quality: a case study of the Mackenzie River Basin, Canada.

    PubMed

    Lumb, Ashok; Halliwell, Doug; Sharma, Tribeni

    2006-02-01

    All six ecosystem initiatives evolved from many years of federal, provincial, First Nation, local government and community attention to the stresses on sensitive habitats and species, air and water quality, and the consequent threats to community livability. This paper assesses water quality aspect for the ecosystem initiatives and employs newly developed Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) which provides a convenient mean of summarizing complex water quality data that can be easily understood by the public, water distributors, planners, managers and policy makers. The CCME WQI incorporates three elements: Scope - the number of water quality parameters (variables) not meeting water quality objectives (F(1)); Frequency - the number of times the objectives are not met (F(2)); and Amplitude. the extent to which the objectives are not met (F(3)). The index produces a number between 0 (worst) to 100 (best) to reflect the water quality. This study evaluates water quality of the Mackenzie - Great Bear sub-basin by employing two modes of objective functions (threshold values): one based on the CCME water quality guidelines and the other based on site-specific values that were determined by the statistical analysis of the historical data base. Results suggest that the water quality of the Mackenzie-Great Bear sub-basin is impacted by high turbidity and total (mostly particulate) trace metals due to high suspended sediment loads during the open water season. Comments are also provided on water quality and human health issues in the Mackenzie basin based on the findings and the usefulness of CCME water quality guidelines and site specific values.

  4. Physical/chemical closed-loop water-recycling for long-duration missions

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Ted

    1990-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.

  5. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  6. Groundwater studies: principal aquifer surveys

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth

    2014-01-01

    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  7. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... quality; water quality and use; geology and soils; ecology; noise; historical and cultural; scenic and... significantly affect the quality of the human environment. Therefore, preparation of an environmental impact...

  8. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  9. Quality of Shallow Ground Water in Three Areas of Unsewered Low-Density Development in Wyoming and Montana, 2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Quinn, Thomas L.; Hallberg, Laura L.; Eddy-Miller, Cheryl A.

    2008-01-01

    The quality of shallow ground water underlying unsewered low-density development outside of Sheridan and Lander, Wyo., and Red Lodge, Mont., was evaluated. In 2001, 29 wells (10 each in Sheridan and Lander and 9 in Red Lodge) were installed at or near the water table and sampled for a wide variety of constituents to identify potential effects of human activities on shallow ground-water quality resulting from development on the land surface. All wells were completed in unconfined aquifers in unconsolidated deposits of Quaternary age with shallow water tables (less than 50 feet below land surface). Land use and land cover was mapped in detail within a 500-meter radius surrounding each well, and potential contaminant sources were inventoried within the radii to identify human activities that may affect shallow ground-water quality. This U.S. Geological Survey National Water-Quality Assessment ground-water study was conducted to examine the effects of unsewered low-density development that often surrounds cities and towns of many different sizes in the western United States?a type of development that often is informally referred to as ?exurban? or ?rural ranchette? development. This type of development has both urban and rural characteristics. Residents in these developments typically rely on a private ground-water well for domestic water supply and a private septic system for sanitary waste disposal. Although the quality of shallow ground water generally was suitable for domestic or other uses without treatment, some inorganic constituents were detected infrequently in ground water in the three study areas at concentrations larger than U.S. Environmental Protection Agency drinking-water standards or proposed standards. Natural factors such as geology, aquifer properties, and ground-water recharge rates likely influence most concentrations of these constituents. These inorganic constituents generally occur naturally in the study areas and were more likely to limit suitability of water for drinking or other intended uses rather than any constituents suspected of being introduced as a result of human activities. Effects of human activities associated with low-density development, such as septic systems; fertilizer and pesticide use on pastures, lawns and gardens; manure from horses, cattle, and pets; and increases in road construction and vehicular traffic, were minimal at the time of sampling (2001) but were apparent in the presence of a few types of constituents in shallow ground water. Concentrations of nitrate generally were less than a national background level (1.1 milligrams per liter) assumed to indicate effects from human activities. Total coliform bacteria were detected infrequently (in samples from three wells), and Escherichia coli were not detected in samples from a subset of wells. Trace concentrations of methylene blue active substances (ingredients in laundry detergents) were detected at concentrations slightly greater than laboratory reporting levels in samples from 11 wells, but it is unclear if the detections are indicative of natural sources or possible aquifer contamination from septic-tank effluent. Pesticides were detected in both the Sheridan and Lander, Wyo., study areas. Volatile organic compounds were detected very infrequently in all three study areas. Most pesticides and volatile organic compounds were found in water from a few wells in each study area, and commonly as mixtures. The primary exception to this generalization was the relatively widespread detection of the pesticide prometon at trace levels in the Sheridan and Lander study areas. Concentrations of pesticides and volatile organic compounds generally were small and always were smaller than applicable drinking-water standards. Detections of all constituents indicating possible human effects on shallow ground-water quality were consistent with overlying land use mapped during the study, and potential sources of contamination inventoried du

  10. Current and future water issues in the Oldman River Basin of Alberta, Canada.

    PubMed

    Byrne, J; Kienzle, S; Johnson, D; Duke, G; Gannon, V; Selinger, B; Thomas, J

    2006-01-01

    Long-term trends in alpine and prairie snow pack accumulation and melt are affecting streamflow within the Oldman River Basin in southern Alberta, Canada. Unchecked rural and urban development also has contributed to changes in water quality, including enhanced microbial populations and increased waterborne pathogen occurrence. In this study we look at changing environment within the Oldman River Basin and its impact on water quality and quantity. The cumulative effects include a decline in net water supplies, and declining quality resulting in increased risk of disease. Our data indicates that decreases in the rate of flow of water can result in sedimentation of bacterial contaminants within the water column. Water for ecosystems, urban consumption, recreation and distribution through irrigation is often drawn from waterholding facilities such as dams and weirs, and concern must be expressed over the potential for contaminate build-up and disproportionate potential of these structures to pose a risk to human and animal health. With disruption of natural flow rates for water resulting from environmental change such as global warming and/or human intervention, increased attention needs to be paid to use of best management practices to protect source water supplies.

  11. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  12. Evaluation of water quality index for River Sabarmati, Gujarat, India

    NASA Astrophysics Data System (ADS)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  13. Water quality of arctic rivers in Finnish Lapland.

    PubMed

    Niemi, Jorma

    2010-02-01

    The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.

  14. Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: A Bayesian Network approach.

    PubMed

    Wijesiri, Buddhi; Deilami, Kaveh; McGree, James; Goonetilleke, Ashantha

    2018-02-01

    Urban water pollution poses risks of waterborne infectious diseases. Therefore, in order to improve urban liveability, effective pollution mitigation strategies are required underpinned by predictions generated using water quality models. However, the lack of reliability in current modelling practices detrimentally impacts planning and management decision making. This research study adopted a novel approach in the form of Bayesian Networks to model urban water quality to better investigate the factors that influence risks to human health. The application of Bayesian Networks was found to enhance the integration of quantitative and qualitative spatially distributed data for analysing the influence of environmental and anthropogenic factors using three surrogate indicators of human health risk, namely, turbidity, total nitrogen and fats/oils. Expert knowledge was found to be of critical importance in assessing the interdependent relationships between health risk indicators and influential factors. The spatial variability maps of health risk indicators developed enabled the initial identification of high risk areas in which flooding was found to be the most significant influential factor in relation to human health risk. Surprisingly, population density was found to be less significant in influencing health risk indicators. These high risk areas in turn can be subjected to more in-depth investigations instead of the entire region, saving time and resources. It was evident that decision making in relation to the design of pollution mitigation strategies needs to account for the impact of landscape characteristics on water quality, which can be related to risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  16. Towards a Satellite-Based Near Real-Time Monitoring System for Water Quality; September 27th 2017

    EPA Science Inventory

    Declining water quality in inland and coastal systems has become, and will continue to be, a major environmental, social and economic problem as human populations increase, agricultural activities expand, and climate change effects on hydrological cycles and extreme events become...

  17. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  18. Associations of aquatic invertebrates and water quality in the ecology of an emerging tropical disease

    NASA Astrophysics Data System (ADS)

    Benbow, M.; Merritt, R. W.; Kimbirauskas, R.; Kolar, R.

    2005-05-01

    Mycobacterium ulcerans Infection is commonly called Buruli ulcer, a rapidly emerging skin disease that is often disfiguring and causes severe and lasting morbidity in developing nations of the tropics and sub-tropics. Outbreaks of BU are nearly always associated with slow-flowing aquatic habitats affected by human-mediated landscape changes, and biting aquatic insects are thought to play a role in transmission. As a part of a World Health Organization initiative, we are determining landscape factors that determine water quality conditions conducive for enhanced M. ulcerans growth and abundance in the aquatic environment. In June 2004 we collected water quality and invertebrate data from 12 water bodies near Accra, Ghana, Africa. Preliminary analyses found predator-dominated communities (from 47% - 64%) with Hemiptera (e.g., Belostomatidae and Naucoridae) most often collected. Using exploratory canonical correspondence analysis, sites separated out by functional feeding groups and water quality variables. Higher water hardness and total suspended solids was most associated with scrapers (i.e., snails) and shrimp, respectively. PCR evidence suggests that M. ulcerans is found among snails, fish and invertebrates. Future studies are proposed that take a multi-scale, multidisciplinary approach for identifying disturbance metrics that can be used to predict human Buruli ulcer incidence near monitored water bodies.

  19. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  20. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  1. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  2. DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Bhatt, M. P.; McDowell, W. H.

    2005-05-01

    We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.

  3. Challenge theme 2: assuring water availability and quality in the 21st century: Chapter 4 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Callegary, James; Langeman, Jeff; Leenhouts, Jim; Martin, Peter

    2013-01-01

    Along the United States–Mexican border, the health of communities, economies, and ecosystems is inextricably intertwined with the availability and quality of water, but effective water management in the Borderlands is complicated. Water users compete for resources, and their needs are increasing. Managers are faced with issues such as finding a balance between agriculture and rapidly growing cities or maintaining public supplies while ensuring sufficient resources for aquatic ecosystems. In addition to human factors, the dry climate of the Borderlands, as compared to more temperate regions, also increases the challenge of balancing water supplies between humans and ecosystems. Warmer, drier, and more variable conditions across the southwestern United States—the projected results of climate change (Seager and others, 2007)—would further stress water supplies.

  4. Relations between hydrology, water quality, and taste-and-odor causing organisms and compounds in Lake Houston, Texas, April 2006-September 2008

    USGS Publications Warehouse

    Beussink, Amy M.; Graham, Jennifer L.

    2011-01-01

    Lake Houston is a surface-water-supply reservoir and an important recreational resource for the city of Houston, Texas. Growing concerns over water quality in Lake Houston prompted a detailed assessment of water quality in the reservoir. The assessment focused on water-quality constituents that affect the aesthetic quality of drinking water. The hydrologic and water-quality conditions influencing the occurrence of taste-and-odor causing organisms and compounds in Lake Houston were assessed using discrete and continuously monitored water-quality data collected during April 2006– September 2008. The hydrology of Lake Houston is characterized by rapidly changing conditions. During inflow events, water residence time can change by orders of magnitude within a matter of hours. Likewise, the reservoir can stratify and destratify over a period of several hours, even during non-summer and at relatively short water residence times, given extended periods with warm temperatures and little wind. The rapidly changing hydrology likely influences all other aspects of water quality in Lake Houston, including the occurrence of taste-and-odor causing organisms and compounds. Water quality in Lake Houston varied with respect to season and water residence time but typically was indicative of turbid, eutrophic to hypereutrophic conditions. In general, turbidity and nutrient concentrations were largest during non-summer (October–May) and when water residence times were relatively short (less than 100 days), which reflects the influence of inflow events on water-quality conditions. Large inflow events can cause substantial changes in water-quality conditions over relatively short periods of time (hours). The taste-and-odor causing organisms cyanobacteria and actinomycetes bacteria were always present in Lake Houston. Cyanobacterial biovolume was largest during summer (June– September) and when water residence time was greater than 100 days. Annual maxima in cyanobacterial biovolume occurred during July-September of each year, when temperatures were larger than 27 degrees Celsius and water residence times were longer than 400 days. In contrast, actinomycetes bacteria were most abundant during non-summer and when water residence times were less than 100 days, reflecting the close association between these organisms and transport of suspended sediments. Geosmin and 2-methylisoborneol are the taste-and-odor causing compounds most commonly produced by cyanobacteria and actinomycetes bacteria. Geosmin was detected more frequently (62 percent of samples) than 2-methylisoborneol (29 percent of samples) in Lake Houston. Geosmin exceeded the human detection threshold (10 nanograms per liter) only once during the study period and 2-methylisoborneol exceeded the human detection threshold twice. Manganese is a naturally occurring trace element that can occasionally cause taste-andodor problems in drinking water. Manganese concentrations exceeded the human detection threshold (about 50 micrograms per liter) in about 50 percent of samples collected near the surface and 84 percent of samples collected near the bottom. The cyanotoxin microcystin was detected relatively infrequently (16 percent of samples) and at small concentrations (less than or equal to 0.2 micrograms per liter). The abundance of the taste-and-odor causing organisms cyanobacteria and actinomycetes bacteria in Lake Houston was coupled with inflow events and subsequent changes in water-quality conditions. Cyanobacterial biovolume (biomass) in Lake Houston was largest during warm periods with little inflow and relatively small turbidity values. In contrast, actinomycetes bacteria were most abundant following inflow events when turbidity was relatively large. Severe taste-and-odor problems were not observed during the study period, precluding quantification of the hydrologic and water-quality conditions associated with large concentrations of taste-and-odor causing compounds and development of predictive models. Reservoir inflow (water residence time) and turbidity, variables related to the abundance of potential taste-andodor causing organisms, are currently (2011) continuously measured in Lake Houston, and predictive models could be developed in the future when the hydrologic and water-quality conditions associated with taste-and-odor problems have been better quantified. Seasonal and water residence time influences on water-quality conditions altered relations between hydrologic and water-quality conditions and taste-and-odor causing organisms and compounds. Future data collection and development of predictive models need to account for the variability associated with season and water residence time. 

  5. Heavy Metal Contamination in Groundwater around Industrial Estate vs Residential Areas in Coimbatore, India

    PubMed Central

    Mohankumar, K.; Rao, N. Prasada

    2016-01-01

    Introduction Water is the vital resource, necessary for all aspects of human and ecosystem survival and health. Depending on the quality, bore water may be used for human consumption, irrigation purposes and livestock watering. The quality of bore water can vary widely depending on the quality of ground water that is its source. Pollutants are being added to the ground water system through human and natural processes. Solid waste from industrial units is being dumped near the factories, which react with percolating rainwater and reaches the ground water. The percolating water picks up a large number of heavy metals and reaches the aquifer system and contaminates the ground water. The usage of the contaminated bore water causes the diseases. Mercury, Arsenic and Cadmium are used or released by many industries. Aim This study was conducted to investigate the pollution of bore water in the industrial region (Kurichi Industrial Cluster) of Coimbatore, in the state of Tamilnadu, India. Materials and Methods Four samples were taken from residential areas around Kurichi Industrial Cluster and analysed to find the concentrations of Mercury, Arsenic and Cadmium. Four more samples were taken from other residential regions far from the industrial estate and served as control. Samples were analysed using Atomic absorption spectrophotometry method. Results We found that the ground water of the areas surrounding the industrial cluster does not contain significant amount of those metals. Instead, Heavy metal contamination of ground water were observed in some residential areas of coimbatore. Conclusion The regulatory measures to contain and prevent ground water contamination by industries undertaken by Tamilnadu pollution control board may have lead to absence of heavy metal contamination in Kurichi Industrial cluster, Coimbatore, India. PMID:27190788

  6. Water pollution in Pakistan and its impact on public health--a review.

    PubMed

    Azizullah, Azizullah; Khattak, Muhammad Nasir Khan; Richter, Peter; Häder, Donat-Peter

    2011-02-01

    Water pollution is one of the major threats to public health in Pakistan. Drinking water quality is poorly managed and monitored. Pakistan ranks at number 80 among 122 nations regarding drinking water quality. Drinking water sources, both surface and groundwater are contaminated with coliforms, toxic metals and pesticides throughout the country. Various drinking water quality parameters set by WHO are frequently violated. Human activities like improper disposal of municipal and industrial effluents and indiscriminate applications of agrochemicals in agriculture are the main factors contributing to the deterioration of water quality. Microbial and chemical pollutants are the main factors responsible exclusively or in combination for various public health problems. This review discusses a detailed layout of drinking water quality in Pakistan with special emphasis on major pollutants, sources of pollution and the consequent health problems. The data presented in this review are extracted from various studies published in national and international journals. Also reports released by the government and non-governmental organizations are included. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  8. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  9. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural processes and human activities are affecting ground-water quality in the upper part of the southeastern Sacramento Valley aquifer. The factors identified as having an influence on ground-water quality were redox condition in the aquifer, depth within the aquifer, and land use overlying the aquifer. Nitrate concentra-tions showed a statistical correlation with each of these factors. Detections of pesticides and volatile organic compounds were too few to compare concentrations with the various factors, but the types of synthetic compounds detected were consistent with the sur-rounding land use. Sixty-one percent of the wells sampled in this study showed the effect of human activities on ground-water quality in the form of a nitrate concentration over 3 milligrams per liter or a detection of a pesticide or volatile organic compound. In general, the water quality in the southeastern Sacramento Valley aquifer was found suitable for most uses.

  10. Upstream/Downstream

    ERIC Educational Resources Information Center

    Slack, Amy

    2014-01-01

    In our increasingly digital world, students are often disconnected from the natural environment and may not understand how human actions affect it. One of the most significant human impacts on ecosystems is water pollution. Measuring the water quality of a local stream, river, or lake can be a valuable learning experience but is often impractical.…

  11. Cations and microbial indicators: strong relationships in waters of urban/mixed land use watersheds of Southwest, VA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Badgley, B.

    2016-12-01

    Background The salinity and composition of salts in freshwater streams, rivers, and waterbodies varies substantially, often impacted by human urban, agricultural, and mining land uses. While extreme fluctuations in salinity have been shown to influence both microbial communities and biogeochemical cycles, the differential effects of specific ion species at low salinity levels is poorly understood. The objective of this study was to examine the relationship between water chemistry and microbial water quality indicators. We collected weekly grab samples from nine sub-watersheds in Southwest Virginia. Samples were measured for standard physical and chemical properties: dissolved oxygen, temperature, specific conductance, pH, calcium, magnesium, potassium, chloride, fluoride, sulfate, nitrogen species, phosphorus, and dissolved organic carbon. In addition, three types of microbial fecal indicators were measured: total coliforms, E. coli, and HF183 (a human specific genomic marker). Results The relationships within and between water chemistry and water quality indicators are complex and frequently co-correlated. Concentrations of traditional biogeochemical elements (N, P, C) were less strongly related to water quality indicators than were Ca, Mg, Na in watersheds. Ca and Mg were strongly correlated with total coliforms, r2 = 0.88 and r2 = 0.86 respectively. While potassium is very strongly related to E. coli (r2 = 0.96). Currently, we cannot reasonably explain these relationships by the land use composition or common sources within the landscape. The human specific fecal indicator was not well correlated with other microbial water quality indicators, and yet found ubiquitously across the developed watersheds and most strongly correlated with sodium concentrations (r2 = 0.84). The results suggest that 1) wastewater via subsurface flowpaths may more broadly impact surface water chemistry and quality than expected, and 2) that cation chemistry may influence the microbial community and serve as a mediator of watershed biogeochemical cycling.

  12. Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking

    USGS Publications Warehouse

    Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  13. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    PubMed

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  14. Determinants of Post-fire Water Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Dolan, F.; Hogue, T. S.; McCray, J. E.

    2015-12-01

    Large wildfires are becoming increasingly common in the Western United States. Wildfires that consume greater than twenty percent of the watershed impact river water quality. The surface waters of the arid West are limited and in demand by the aquatic ecosystems, irrigated agriculture, and the region's growing human population. A range of studies, typically focused on individual fires, have observed mobilization of contaminants, nutrients (including nitrates), and sediments into receiving streams. Post-fire metal concentrations have also been observed to increase when fires were located in streams close to urban centers. The objective of this work was to assemble an extensive historical water quality database through data mining from federal, state and local agencies into a fire-database. Data from previous studies on individual fires by the co-authors was also included. The fire-database includes observations of water quality, discharge, geospatial and land characteristics from over 200 fire-impacted watersheds in the western U.S. since 1985. Water quality data from burn impacted watersheds was examined for trends in water quality response using statistical analysis. Watersheds where there was no change in water quality after fire were also examined to determine characteristics of the watershed that make it more resilient to fire. The ultimate goal is to evaluate trends in post-fire water quality response and identify key drivers of resiliency and post-fire response. The fire-database will eventually be publicly available.Large wildfires are becoming increasingly common in the Western United States. Wildfires that consume greater than twenty percent of the watershed impact river water quality. The surface waters of the arid West are limited and in demand by the aquatic ecosystems, irrigated agriculture, and the region's growing human population. A range of studies, typically focused on individual fires, have observed mobilization of contaminants, nutrients (including nitrates), and sediments into receiving streams. Post-fire metal concentrations have also been observed to increase when fires were located in streams close to urban centers. The objective of this work was to assemble an extensive historical water quality database through data mining from federal, state and local agencies into a fire-database. Data from previous studies on individual fires by the co-authors was also included. The fire-database includes observations of water quality, discharge, geospatial and land characteristics from over 200 fire-impacted watersheds in the western U.S. since 1985. Water quality data from burn impacted watersheds was examined for trends in water quality response using statistical analysis. Watersheds where there was no change in water quality after fire were also examined to determine characteristics of the watershed that make it more resilient to fire. The ultimate goal is to evaluate trends in post-fire water quality response and identify key drivers of resiliency and post-fire response. The fire-database will eventually be publicly available.

  15. 42 CFR 494.40 - Condition: Water and dialysate quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Water and dialysate quality. 494.40 Section 494.40 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS FOR COVERAGE FOR END-STAGE RENAL DISEASE FACILITIES Patient Safety § 494.40 Condition: Wate...

  16. 42 CFR 494.40 - Condition: Water and dialysate quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Water and dialysate quality. 494.40 Section 494.40 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS FOR COVERAGE FOR END-STAGE RENAL DISEASE FACILITIES Patient Safety § 494.40 Condition: Wate...

  17. 42 CFR 494.40 - Condition: Water and dialysate quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Water and dialysate quality. 494.40 Section 494.40 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION CONDITIONS FOR COVERAGE FOR END-STAGE RENAL DISEASE FACILITIES Patient Safety § 494.40 Condition: Wate...

  18. Interactions of water quality and integrated groundwater management: exampled from the United States

    USDA-ARS?s Scientific Manuscript database

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chap...

  19. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Association of Fecal Indicator Bacteria with Human Viruses and Microbial Source Tracking Markers at Coastal Beaches Impacted by Nonpoint Source Pollution

    PubMed Central

    McQuaig, Shannon; Griffith, John

    2012-01-01

    Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided. PMID:22773625

  1. Human exposure risk to heavy metals through groundwater used for drinking in an intensively irrigated river delta

    NASA Astrophysics Data System (ADS)

    Vetrimurugan, E.; Brindha, K.; Elango, L.; Ndwandwe, Osman Muzi

    2017-10-01

    Drinking water containing heavy metals above the maximum permissible limits cause potential risk to human health. The aim of this study was to determine the groundwater suitability for drinking use based on heavy metal concentration and the associated human exposure risk in an intensively irrigated part of the Cauvery river basin, Tamil Nadu, India. Sixteen heavy metals analysed were in the order of dominance of chromium < zinc < copper < cadmium < cobalt < iron < aluminium < nickel < titanium < zirconium < boron < silver < manganese < lead < lithium < silicon in groundwater. Chromium and zinc were within permissible limits of the Bureau of Indian Standards for drinking water quality, and silver, lead and nickel were above limits in all the groundwater samples. In less than 50 % of the groundwater samples, aluminium, boron, cadmium, copper, iron and manganese exceeded their individual permissible limits. Heavy metal pollution index based on 11 heavy metals indicated that groundwater quality of this area is poor-to-unsuitable. Non-carcinogenic risk for humans due to ingestion of groundwater through drinking water pathway was very high for infants, children and adults. Silver, lead, nickel, cadmium and manganese largely contributed to the health hazard. Sources of heavy metals were identified to be geological and from human activities, i.e., application of fertilizers in agricultural fields, seawater intrusion due to intensive pumping for agriculture and wastewater from industries. Groundwater and surface water in this area pose large threat due to high levels of heavy metals, and it is necessary to avoid this water for drinking due to potential risk of health hazard. This study also demonstrated the application of HPI and human exposure hazard index to study the groundwater quality based on heavy metals' concentration.

  2. 40 CFR 142.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Public water system or PWS means a system for the provision to the public of water for human consumption... piping and plumbing caused by water quality are excluded from this definition. Municipality means a city... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL...

  3. Groundwater microbiological quality in Canadian drinking water municipal wells.

    PubMed

    Locas, Annie; Barthe, Christine; Margolin, Aaron B; Payment, Pierre

    2008-06-01

    To verify previous conclusions on the use of bacterial indicators suggested in regulations and to investigate virological quality of groundwater, a 1-year study was undertaken on groundwater used as a source of drinking water in 3 provinces in Canada. Raw water from 25 municipal wells was sampled during a 1-year period for a total of 167 samples. Twenty-three sites were selected on the basis of their excellent historical bacteriological water quality data, and 2 sites with known bacteriological contamination were selected as positive controls. Water samples were analyzed for general water quality indicators (aerobic endospores, total coliforms), fecal indicators (Escherichia coli, enterococci, somatic and male-specific coliphages), total culturable human enteric viruses (determined by cell culture and immunoperoxidase), noroviruses (analyzed by reverse-transcriptase -- polymerase chain reaction (RT-PCR)), adenovirus types 40 and 41 (analyzed by integrated cell culture (ICC) - PCR), and enteroviruses and reoviruses types 1, 2, and 3 (analyzed by ICC-RT-PCR). General water quality indicators were found very occasionally at the clean sites but were frequently present at the 2 contaminated sites. Only one of 129 samples from the 23 clean sites was positive for enterococci. These results confirm the value of raw water quality historical data to detect source water contamination affecting wells that are vulnerable. Samples from the 2 contaminated sites confirmed the frequent presence of fecal indicators: E. coli was found in 20/38 samples and enterococci in 12/38 samples. Human enteric viruses were not detected by cell culture on MA-104 cells nor by immunoperoxidase detection in any sample from the clean sites but were found at one contaminated site. By ICC-RT-PCR and ICC-PCR, viruses were found by cytopathic effect in one sample from a clean site and they were found in 3 samples from contaminated sites. The viruses were not detected by the molecular methods but were confirmed as picornaviruses by electron microscopy. Noroviruses were not detected in any samples. The results obtained reinforce the value of frequent sampling of raw water using simple parameters: sampling for total coliforms and E. coli remains the best approach to detect contamination of source water by fecal pollutants and accompanying pathogens. The absence of total coliforms at a site appears to be a good indication of the absence of human enteric viruses.

  4. Water Quality in the Delmarva Peninsula, Delaware, Maryland, and Virginia, 1999-2001

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.; Debrewer, Linda M.; Ferrari, Matthew J.; Barbaro, Jeffrey R.; Hancock, Tracy C.; Brayton, Michael J.; Nardi, Mark R.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Delmarva Peninsula. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from local ground-water flow paths to regional ground-water networks and in surface water?and is discussed in terms of local, State, and regional issues. Conditions in the Delmarva Peninsula are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Delmarva Peninsula are available. Detailed technical information, data and analyses, methodology, models, graphs, and maps that support the findings presented in this report can be accessed from http://md.water.usgs.gov/delmarva. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  5. Progress and lessons learned from water-quality monitoring networks

    USGS Publications Warehouse

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  6. Groundwater quality in the Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers, eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers constitute two of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 2 percent of the study area.

  7. Evaluating confidence in the impact of regulatory nutrient reduction and assessing the competing impact of climate change

    NASA Astrophysics Data System (ADS)

    Irby, I.; Friedrichs, M. A. M.

    2017-12-01

    Human impacts on the Chesapeake Bay through increased nutrient run-off as a result of land-use change, urbanization, and industrialization, have resulted in a degradation of water quality over the last half-century. These direct impacts, compounded with human-induced climate changes such as warming, rising sea level, and changes in precipitation, have elevated the conversation surrounding the future of the Bay's water quality. As a result, in 2010, a Total Maximum Daily Load (TMDL) was established for the Chesapeake Bay that limited nutrient and sediment input in an effort to increase dissolved oxygen. This research utilizes a multiple model approach to evaluate confidence in the estuarine water quality modeling portion of the TMDL. One of the models is then used to assess the potential impact climate change may have on the success of currently mandated nutrient reduction levels in 2050. Results demonstrate that although the models examined differ structurally and in biogeochemical complexity, they project a similar attainment of regulatory water quality standards after nutrient reduction, while also establishing that meeting water quality standards is relatively independent of hydrologic conditions. By developing a Confidence Index, this research identifies the locations and causes of greatest uncertainty in modeled projections of water quality. Although there are specific locations and times where the models disagree, this research lends an increased degree of confidence in the appropriateness of the TMDL levels and in the general impact nutrient reductions will have on Chesapeake Bay water quality under current environmental conditions. However, when examining the potential impacts of climate change, this research shows that the combined impacts of increasing temperature, sea level, and river flow negatively affect dissolved oxygen throughout the Chesapeake Bay and impact progress towards meeting the water quality standards associated with the TMDL with increased temperature as the primary culprit. These results, having been continually shared with the regulatory TMDL modelers, will aid in the decision making for the 2017 TMDL Mid-Point Assessment.

  8. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    NASA Astrophysics Data System (ADS)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural Development (LE 07-13). ReferencesDerx, J. et al. (2016) QMRAcatch: Human-Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment. J Env Qual 45(4), 1205-1214 Schijven, J., et al. (2015) QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment. J Env Qual 44(5), 1491-1502

  9. Effects of modifying water environments on water supply and human health

    NASA Astrophysics Data System (ADS)

    Takizawa, S.; Nguyen, H. T.; Takeda, T.; Tran, N. T.

    2008-12-01

    Due to increasing population and per-capita water demand, demands for water are increasing in many parts of the world. Consequently, overuse of limited water resources leaves only small amounts of water in rivers and is bringing about rapid drawdown of groundwater tables. Water resources are affected by human activities such as excessive inputs of nutrients and other contaminants, agriculture and aquaculture expansions, and many development activities. The combined effects of modifying the water environments, both in terms of quantity and quality, on water supply and human health are presented in the paper with some examples from the Asian countries. In rural and sub-urban areas in Bangladesh and Vietnam, for example, the traditional way of obtaining surface water from ponds had been replaced by taking groundwaters to avert the microbial health risks that had arisen from contamination by human wastes. Such a change of water sources, however, has brought about human health impact caused by arsenic on a massive scale. In Thailand, the industrial development has driven the residents to get groundwater leaden with very high fluoride. Monitoring the urine fluoride levels reveal the risk of drinking fluoride-laden groundwaters. Rivers are also affected by extensive exploitation such as sand mining. As a result, turbidity changes abruptly after a heavy rainfall. In cities, due to shrinking water resources they have to take poor quality waters from contaminated sources. Algal blooms are seen in many reservoirs and lakes due to increasing levels of nutrients. Hence, it is likely that algal toxins may enter the water supply systems. Because most of the water treatment plants are not designed to remove those known and unknown contaminants, it is estimated that quite a large number of people are now under the threat of the public health "gtime bomb,"h which may one day bring about mass-scale health problems. In order to mitigate the negative impacts of modifying the water environments on human health, we have to develop tools to assess and predict such impacts. This paper presents methodologies to assess the current status of water resources degradation and resultant effects on human health are discussed based on some case studies.

  10. A space satellite perspective to monitor water quality using ...

    EPA Pesticide Factsheets

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  11. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in the arid to semiarid climate, cultural and economic activities in the Southwest are particularly dependent on supplies of good-quality groundwater. Irrigation and public-supply withdrawals from basin-fill aquifers in the study area account for about one quarter of the total withdrawals from all aquifers in the United States.Many factors influence the quality of groundwater in the 15 case-study basins, but some common factors emerge from the basin summaries presented in this report. These factors include the chemical composition of the recharge water, consolidated rock geology and composition of aquifer materials derived from consolidated rock, and land and water use. The major water-quality issues in many of the developed case-study basins are increased concentrations of dissolved solids, nitrate, and VOCs in groundwater as a result of human activities.The information presented and the citations listed in this report serve as a resource for those interested in the groundwater-flow systems in the NAWQA case-study basins. The summaries of water-development history, hydrogeology, conceptual understanding of the groundwater system under both predevelopment and modern conditions, and effects of natural and human-related factors on groundwater quality presented in the sections on each basin also serve as a foundation for the synthesis and modeling phases of the SWPA regional study.

  12. Water quality and relation to taste-and-odor compounds in North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997-2003

    USGS Publications Warehouse

    Christensen, Victoria G.; Graham, Jennifer L.; Milligan, Chad R.; Pope, Larry M.; Ziegler, Andrew C.

    2006-01-01

    Regression models were developed between geosmin and the physical property measurements continuously recorded by water-quality monitors at each site. The geosmin regression model was applied to water-quality monitor measurements, providing a continuous estimate of geosmin for 2003. The city of Wichita will be able to use this type of analysis to determine the probability of when concentrations of geosmin are likely to be at or above the human detection level of 0.01 microgram per liter.

  13. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.

  14. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G.

    2015-10-01

    Sediment denitrification in lakes alleviates the effects of eutrophication through the removal of nitrogen to the atmosphere as N2O and N2. However, N2O contributes notably to the greenhouse effect and global warming. Human land uses (e.g. agricultural and urban areas) strongly affect lake water quality and sediment characteristics, which, in turn, may regulate lake sediment denitrification and N2O production. In this study, we investigated sediment denitrification and N2O production and their relationships to within-lake variables and watershed land uses in 20 lakes from the Yangtze River basin in China. The results indicated that both lake water quality and sediment characteristics were significantly influenced by watershed land uses. N2O production rates increased with increasing background denitrification rates. Background denitrification and N2O production rates were positively related to water nitrogen concentrations but were not significantly correlated with sediment characteristics and plant community structure. A significant positive relationship was observed between background denitrification rate and percentage of human-dominated land uses (HDL) in watersheds. Structural equation modelling revealed that the indirect effects of HDL on sediment denitrification and N2O production in Yangtze lakes were mediated primarily through lake water quality. Our findings also suggest that although sediments in Yangtze lakes can remove large quantities of nitrogen through denitrification, they may also be an important source of N2O, especially in lakes with high nitrogen content.

  15. The Impact of Human Activities on Microbial Quality of Rivers in the Vhembe District, South Africa.

    PubMed

    Traoré, Afsatou N; Mulaudzi, Khodani; Chari, Gamuchirai J E; Foord, Stefan H; Mudau, Lutendo S; Barnard, Tobias G; Potgieter, Natasha

    2016-08-12

    Water quality testing is dictated by microbial agents found at the time of sampling in reference to their acceptable risk levels. Human activities might contaminate valuable water resources and add to the microbial load present in water bodies. Therefore, the effects of human activities on the microbial quality of rivers collected from twelve catchments in the Vhembe District in South Africa were investigated, with samples analyzed for total coliform (TC) and Eschericha coli (E. coli) contents. Physical parameters and various human activities were recorded for each sampling site. The Quanti-Tray(®) method was adopted for the assessment of TC and E. coli contents in the rivers over a two-year period. A multiplex polymerase chain (PCR) method was used to characterize the strains of E. coli found. The microbial quality of the rivers was poor with both TC and E. coli contents found to be over acceptable limits set by the South African Department of Water and Sanitation (DWS). No significant difference (p > 0.05) was detected between TC and E. coli risks in dry and wet seasons. All six pathogenic E. coli strains were identified and Enteroaggregative E. coli (EAEC), atypical Enteropathogenic E. coli (a-EPEC) and Enterotoxigenic E. coli (ETEC) were the most prevalent E. coli strains detected (respectively, 87%, 86% and 83%). The study indicated that contamination in the majority of sampling sites, due to human activities such as car wash, animal grazing and farming, poses health risks to communities using the rivers for various domestic chores. It is therefore recommended that more education by the respective departments is done to avert pollution of rivers and prevent health risks to the communities in the Vhembe District.

  16. The Impact of Human Activities on Microbial Quality of Rivers in the Vhembe District, South Africa

    PubMed Central

    Traoré, Afsatou N.; Mulaudzi, Khodani; Chari, Gamuchirai J.E.; Foord, Stefan H.; Mudau, Lutendo S.; Barnard, Tobias G.; Potgieter, Natasha

    2016-01-01

    Background: Water quality testing is dictated by microbial agents found at the time of sampling in reference to their acceptable risk levels. Human activities might contaminate valuable water resources and add to the microbial load present in water bodies. Therefore, the effects of human activities on the microbial quality of rivers collected from twelve catchments in the Vhembe District in South Africa were investigated, with samples analyzed for total coliform (TC) and Eschericha coli (E. coli) contents. Methods: Physical parameters and various human activities were recorded for each sampling site. The Quanti-Tray® method was adopted for the assessment of TC and E. coli contents in the rivers over a two-year period. A multiplex polymerase chain (PCR) method was used to characterize the strains of E. coli found. Results: The microbial quality of the rivers was poor with both TC and E. coli contents found to be over acceptable limits set by the South African Department of Water and Sanitation (DWS). No significant difference (p > 0.05) was detected between TC and E. coli risks in dry and wet seasons. All six pathogenic E. coli strains were identified and Enteroaggregative E. coli (EAEC), atypical Enteropathogenic E. coli (a-EPEC) and Enterotoxigenic E. coli (ETEC) were the most prevalent E. coli strains detected (respectively, 87%, 86% and 83%). Conclusions: The study indicated that contamination in the majority of sampling sites, due to human activities such as car wash, animal grazing and farming, poses health risks to communities using the rivers for various domestic chores. It is therefore recommended that more education by the respective departments is done to avert pollution of rivers and prevent health risks to the communities in the Vhembe District. PMID:27529265

  17. The quality of our Nation's waters: Water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009

    USGS Publications Warehouse

    Thiros, Susan A.; Paul, Angela P.; Bexfield, Laura M.; Anning, David W.

    2015-01-01

    The Southwest Principal Aquifers consist of many basin-fill aquifers in California, Nevada, Utah, Arizona, New Mexico, and Colorado. Demands for irrigation and drinking water have substantially increased groundwater withdrawals and irrigation return flow to some of these aquifers. These changes have increased the movement of contaminants from geologic and human sources to depths used to supply drinking water in several basin-fill aquifers in the Southwest.

  18. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    PubMed

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  19. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  20. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa.

    PubMed

    Palamuleni, Lobina; Akoth, Mercy

    2015-07-23

    Groundwater is generally considered a "safe source" of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate) and bacteriological (both faecal and total coliform bacteria) contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO) and Department of Water Affairs (DWAF-SA) water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water.

  1. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa

    PubMed Central

    Palamuleni, Lobina; Akoth, Mercy

    2015-01-01

    Groundwater is generally considered a “safe source” of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate) and bacteriological (both faecal and total coliform bacteria) contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO) and Department of Water Affairs (DWAF-SA) water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water. PMID:26213950

  2. Water quality in the Old Plantation Water Control District, Broward County, Florida; progress report, July 1976-June 1977

    USGS Publications Warehouse

    Russell, Gary M.; Hanson, Chris E.; Pitt, William A.J.

    1978-01-01

    Water quality in the Old Plantation Water Control District in Broward County, Florida has been affected by effluent from sewage-treatment plants, agriculture, and storm-water runoff. Effect of effluent from sewage-treatment plants on water quality was evident at 3 sites where concentrations of nutrients and bacteria in the Broward County canals exceeded State standards of 2,400 colonies per 100 milliliters for total coliform bacteria. At 2 of the 3 sites the fecal coliform/fecal streptococcus ratios indicated possible human contamination. The effect of agriculture on water quality was evident where relatively high levels of chlorinated hydrocarbon insecticides had concentrated in the bottom sediments, of the canals. For example, DDD reached levels of 330 micrograms per kilogram at one site. The effects of storm-water runoff on water quality were detected during the wet season when concentrations of several trace elements increased. For example, zinc averaged 30 micrograms per milliliter in the wet season compared with 20 micrograms per milliliter during the dry season. (Woodard-USGS)

  3. Meet EPA Scientist Chris Weaver, Ph.D.

    EPA Pesticide Factsheets

    EPA scientist Dr. Chris Weaver’s research focuses on climate change science, especially evaluating the specific risks global change poses to air quality, water quality, human health, and ecosystems.

  4. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The conceptual models are intended in part to provide a foundation for subsequent development of regional-scale statistical models that relate specific constituent concentrations or occurrence in groundwater to natural and human factors.

  5. Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana.

    PubMed

    Gibson, Kristen E; Opryszko, Melissa C; Schissler, James T; Guo, Yayi; Schwab, Kellogg J

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses.

  6. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  7. When the Well Runs Dry: Climate Change, Water and Human Health

    NASA Astrophysics Data System (ADS)

    Balbus, J. M.

    2014-12-01

    Water is a critical pathway between changes in climate and impacts on human health. Increased intensity of the hydrologic cycle can impair water quality through both drought and runoff associated with extreme precipitation events. Local changes or extremes in hydrological cycles can also alter the life cycles of moquitoes, ticks, snails, and other carriers of human diseases. These impacts in turn can affect the transmission of malaria, schistosomiasis, and many other human diseases. Warmer freshwater and coastal waters, in combination with other factors like fertilizer runoff and salinity, are also associated with proliferation of a variety of human pathogens, including cyanobacteria and vibrio species. This presentation will highlight the many linkages between climate change, water and human health. It will review recent findings of the US National Climate Assessment and 5th Assessment Report of the IPCC with regards to water-related threats to health, and discuss approaches to modeling health outcomes of water-associated climate change impacts.

  8. A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves.

    PubMed

    Zhang, Yinan; Chu, Chunli; Li, Tong; Xu, Shengguo; Liu, Lei; Ju, Meiting

    2017-12-01

    Severe water pollution and resource scarcity is a major problem in China, where it is necessary to establish water quality-oriented monitoring and intelligent watershed management. In this study, an effective watershed management method is explored, in which water quality is first assessed using the heavy metal pollution index and the human health risk index, and then by classifying the pollution and management grade based on cluster analysis and GIS visualization. Three marine reserves in Tianjin were selected and analyzed, namely the Tianjin Ancient Coastal Wetland National Nature Reserve (Qilihai Natural Reserve), the Tianjin DaShentang Oyster Reef National Marine Special Reserve (DaShentang Reserve), and the Tianjin Coastal Wetland National Marine Special Reserve (BinHai Wetland Reserve) which is under construction. The water quality and potential human health risks of 5 heavy metals (Pb, As, Cd, Hg, Cr) in the three reserves were assessed using the Nemerow index and USEPA methods. Moreover, ArcGIS10.2 software was used to visualize the heavy metal index and display their spatial distribution. Cluster analysis enabled classification of the heavy metals into 4 categories, which allowed for identification of the heavy metals whose pollution index and health risks were highest, and, thus, whose control in the reserve is a priority. Results indicate that heavy metal pollution exists in the Qilihai Natural Reserve and in the north and east of the DaShentang Reserve; furthermore, human health risks exist in the Qilihai Natural Reserve and in the BinHai Wetland Reserve. In each reserve, the main factor influencing the pollution and health risk were high concentrations of As and Pb that exceed the corresponding standards. Measures must be adopted to control and remediate the pollutants. Furthermore, to protect the marine reserves, management policies must be implemented to improve water quality, which is an urgent task for both local and national governments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury-Contaminated Site.

    PubMed

    Harris, Meagan J; Stinson, Jonah; Landis, Wayne G

    2017-07-01

    We conducted a regional-scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN-RRM) to a case study of the South River, Virginia mercury-contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor-multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN-RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape. © 2017 Society for Risk Analysis.

  10. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models

    DTIC Science & Technology

    2016-07-01

    through the food chain. Human health may also be affected by ingesting contaminated water or fish. As a result, the criteria for protecting human...ER D C/ EL T R- 16 -8 Environmental Quality Technology Research Program Aquatic Contaminant and Mercury Simulation Modules Developed...Quality Technology Research Program ERDC/EL TR-16-8 July 2016 Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and

  11. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  12. Water Quality in the Cook Inlet Basin Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Brabets, Timothy P.; Frenzel, Steven A.; Whitman, Matthew S.; Ourso, Robert T.

    2004-01-01

    This report contains the major findings of a 1998?2001 assessment of water quality in the Cook Inlet Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Cook Inlet Basin summarized in this report are discussed in detail in other reports that can be accessed at http://ak.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  13. Water Quality on the Island of Oahu, Hawaii, 1999-2001

    USGS Publications Warehouse

    Anthony, Stephen S.; Hunt, Charles D.; Brasher, Anne M.D.; Miller, Lisa D.; Tomlinson, Michael S.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality on the island of Oahu, Hawaii. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions on Oahu summarized in this report are discussed in detail in other reports that can be accessed from (http://hi.water.usgs.gov/nawqa). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  14. Water Quality in the Upper Illinois River Basin Illinois, Indiana, and Wisconsin, 1999-2001

    USGS Publications Warehouse

    Groschen, George E.; Arnold, Terri L.; Harris, Mitchell A.; Dupre, David H.; Fitzpatrick, Faith A.; Scudder, Barbara C.; Morrow, William S.; Terrio, Paul J.; Warner, Kelly L.; Murphy, Elizabeth A.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the upper Illinois River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public-interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the upper Illinois River Basin summarized in this report are discussed in detail in other reports that can be accessed from (http://il.water.usgs.gov/nawqa/uirb). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site at (http://water.usgs.gov/nawqa).

  15. Water quality in the Northern Rockies Intermontane basins, Idaho, Montana, and Washington, 1999-2001

    USGS Publications Warehouse

    Clark, Gregory M.; Caldwell, Rodney R.; Maret, Terry R.; Bowers, Craig L.; Dutton, DeAnn M.; Becksmith, Michael A.

    2003-01-01

    This report contains the major findings of a 1999–2001 assessment of water quality in the Northern Rockies Intermontane Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Northern Rockies Intermontane Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://id.water.usgs.gov/nrok/index.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  16. Water quality in the Yellowstone River Basin, Wyoming, Montana, and North Dakota, 1999-2001

    USGS Publications Warehouse

    Peterson, David A.; Bartos, Timothy T.; Clark, Melanie L.; Miller, Kirk A.; Porter, Stephen D.; Quinn, Thomas L.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Yellowstone River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Yellowstone River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://wy.water.usgs.gov/YELL/index.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  17. Fish consumption as a driver of risk-management decisions and human health-based water quality criteria.

    PubMed

    Judd, Nancy; Lowney, Yvette; Anderson, Paul; Baird, Suzanne; Bay, Steven M; Breidt, Jay; Buonanduci, Michele; Dong, Zhao; Essig, Don; Garry, Michael R; Jim, Rebecca C; Kirkwood, Gemma; Moore, Shelly; Niemi, Cheryl; O'Rourke, Rory; Ruffle, Betsy; Schaider, Laurel A; Vidal-Dorsch, Doris E

    2015-11-01

    The use and interpretation of fish consumption surveys and interviews, the application of fish consumption rates for sediment evaluation and cleanup, and the development of human health water quality criteria (HH WQC) are complex and interrelated issues. The present article focuses on these issues using examples from the United States, although the issues may be relevant for other countries. Some key considerations include the fact that there are many types of fish consumption surveys (e.g., 24-h recall surveys, food frequency questionnaires, creel surveys), and these surveys have different advantages and limitations. Identification of target populations for protection, identification of the species and quantities of fish consumed, and determination of bioaccumulation assumptions are important factors when developing water quality and sediment screening levels and standards. Accounting for the cultural importance of fish consumption for some populations is an even more complex element. Discussions about HH WQC often focus only on the fish consumption rate and may not have broad public input. Some states are trying to change this through extensive public participation efforts and use of probabilistic approaches to derive HH WQC. Finally, there are limits to what WQC can achieve. Solutions beyond the establishment of WQC that target toxics reduction from other sources may provide the greatest improvements to water quality and reductions in human health risks in the future. © 2015 SETAC.

  18. Factors Affecting Spatial and Temporal Variability in Nutrient and Pesticide Concentrations in the Surficial Aquifer on the Delmarva Peninsula

    USGS Publications Warehouse

    Debrewer, Linda M.; Ator, Scott W.; Denver, Judith M.

    2007-01-01

    Water quality in the unconfined, unconsolidated surficial aquifer on the Delmarva Peninsula is influenced by the availability of soluble ions from natural and human sources, and by geochemical factors that affect the mobility and fate of these ions within the aquifer. Ground-water samples were collected from 60 wells completed in the surficial aquifer of the peninsula in 2001 and analyzed for major ions, nutrients, and selected pesticides and degradation products. Analytical results were compared to similar data from a subset of sampled wells in 1988, as well as to land use, soils, geology, depth, and other potential explanatory variables to demonstrate the effects of natural and human factors on water quality in the unconfined surficial aquifer. This study was conducted as part of the National Water-Quality Assessment Program of the U.S. Geological Survey, which is designed (in part) to describe the status and trends in ground-water quality and to provide an understanding of natural and human factors that affect ground-water chemistry in different parts of the United States. Results of this study may be useful for water-resources managers tasked with addressing water-quality issues of local and regional importance because the surficial aquifer on the Delmarva Peninsula is a major source of water for domestic and public supply and provides the majority of flow in local streams. Human impacts are apparent in ground-water quality throughout the surficial aquifer. The surficial aquifer on the Delmarva Peninsula is generally sandy and very permeable with well-oxygenated ground water. Dissolved constituents found throughout various depths of the unconfined aquifer are likely derived from the predominantly agricultural practices on the peninsula, although effects of road salt, mineral dissolution, and other natural and human influences are also apparent in some areas. Nitrate occurred at concentrations exceeding natural levels in many areas, and commonly exceeded 10 milligrams per liter (as nitrogen). In addition to land use in the aquifer recharge area, concentrations of nitrate in ground water are related to regional patterns in soil drainage that affect underlying aquifer redox conditions. Over the peninsula, nitrate concentrations are not related to recharge date of the water, but are positively correlated with depth in shallow wells screened beneath agricultural areas. Nitrate concentrations increased in oxic areas (dissolved oxygen greater than 1 milligram per liter) of the deeper part of the surficial aquifer used for domestic supply by an average of about 2 milligrams per liter between 1988 and 2001, although no changes were apparent in shallower parts of the aquifer over that same period. Water in the surficial aquifer generally flows from land-surface recharge to surface-water discharge areas in less than 30 years. As a result, the entire flow system in the surficial aquifer has likely been affected by human activities on and near the land surface over the past several decades. Pesticide compounds occurred widely at low levels throughout the surficial aquifer. The most commonly used herbicides (metolachlor, alachlor, and atrazine) were the most commonly detected. These pesticides primarily occurred in ground water in the form of degradation products. The widespread occurrence of these and other pesticide compounds reflects their abundant use as well as chemical properties and aquifer characteristics that allow their movement into ground water. Mixtures of pesticides are common. Most samples contained at least 3 different compounds; several samples contained as many as 11. Pesticide concentrations in the surficial aquifer are relatively high beneath recharge areas with well-drained soils in the shallow part of the aquifer and in oxic environments throughout the surficial aquifer. Concentrations are generally below existing drinking-water standards, although standards are not available for all of the pesticide compound

  19. New Water Disinfection Technology for Earth and Space Applications as Part of the NPP Fellowship Research

    NASA Technical Reports Server (NTRS)

    SilvestryRodriquez, Nadia

    2010-01-01

    There is the need for a safe, low energy consuming and compact water disinfection technology to maintain water quality for human consumption. The design of the reactor should present no overheating and a constant temperature, with good electrical and optical performance for a UV water treatment system. The study assessed the use of UVA-LEDs to disinfectant water for MS2 Bacteriophage. The log reduction was sufficient to meet US EPA standards as a secondary disinfectant for maintaining water quality control. The study also explored possible inactivation of Pseudomonas aeruginosa and E. coli.

  20. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  1. Co-evolution of land use changes, water quality deterioration and social conflicts in arid Northern Chile

    NASA Astrophysics Data System (ADS)

    Zang, Carina; Dame, Juliane

    2017-04-01

    Water scarcity concerns not only the limited availability of water but also water of inadequate quality in terms of its designated purposes. Arid regions, such as found in Northern Chile, are especially vulnerable to water contamination, owing to missing dilution. Additionally, the national government of Chile's goal to make the country a globally important food exporter has led to the widespread expansion of agricultural surfaces over the last 20 years, thereby increasing pressure on limited water resources and water quality. Mining, being one of the most important economic sectors in Chile, threatens both surface and groundwater quality. This scenario increases the potential for water use conflicts, which is further compounded by the demand for potable water provided by rivers and groundwater. In order to better understand the role of both physical and human dimensions of water quality, this research uses a socio-hydrological conceptual framework. This approach is used in order to broaden the scope of hydrology to include the anthropogenic impact on the environment. It therefore focuses on human and natural interactions and two-sided feedback loops, instead of purely hydrological cycles. Using the case study of the Rio Huasco watershed changes in water quality, which originate at the nexus of physical parameters, social conflicts and changing land use regimes in Northern Chile, are discussed. This region was chosen as an exemplary case for the development of Chile's arid regions: the valley is located at the southern edge of the Atacama Desert, where water scarcity is a major problem. At present, the watershed is predominantly used for agriculture. Many small farmers still practise strip cultivation, but are pressured to shift towards an international export-orientated future with monocultures. International companies are planning to mine the Pascua Lama Mine, one of the world's biggest gold reserves located in the headwaters of the Rio Huasco. Meanwhile, the problem of scarce water is complicated by the privatization of water rights in Chile. Within the watershed, the amount of sold water rights already exceeds the real water availability by far. An interdisciplinary set of methods was used, including measurements of the chemical and physical parameters of water quality, as well as semi-structured interviews. Water samples across spatial scales were analysed, with the results compared with local people's perceptions of water quality and how this affects their use decisions. The study showed that perceptions of water quality and fear of contamination were influenced by the social conflicts surrounding the controversial construction of the Pascua Lama Mine. The social conflicts were further aggravated by local mistrust towards the multilayered and so-perceived neoliberal and top-down governance structures of water resources in Chile.

  2. Enterococci in the environment

    USGS Publications Warehouse

    Byappanahalli, Muruleedhara N.; Nevers, Meredith B.; Korajkic, Asja; Staley, Zachery R.; Harwood, Valerie J.

    2012-01-01

    Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens.

  3. Enterococci in the Environment

    PubMed Central

    Byappanahalli, Muruleedhara N.; Nevers, Meredith B.; Korajkic, Asja; Staley, Zachery R.

    2012-01-01

    Summary: Enterococci are common, commensal members of gut communities in mammals and birds, yet they are also opportunistic pathogens that cause millions of human and animal infections annually. Because they are shed in human and animal feces, are readily culturable, and predict human health risks from exposure to polluted recreational waters, they are used as surrogates for waterborne pathogens and as fecal indicator bacteria (FIB) in research and in water quality testing throughout the world. Evidence from several decades of research demonstrates, however, that enterococci may be present in high densities in the absence of obvious fecal sources and that environmental reservoirs of these FIB are important sources and sinks, with the potential to impact water quality. This review focuses on the distribution and microbial ecology of enterococci in environmental (secondary) habitats, including the effect of environmental stressors; an outline of their known and apparent sources, sinks, and fluxes; and an overview of the use of enterococci as FIB. Finally, the significance of emerging methodologies, such as microbial source tracking (MST) and empirical predictive models, as tools in water quality monitoring is addressed. The mounting evidence for widespread extraenteric sources and reservoirs of enterococci demonstrates the versatility of the genus Enterococcus and argues for the necessity of a better understanding of their ecology in natural environments, as well as their roles as opportunistic pathogens and indicators of human pathogens. PMID:23204362

  4. Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1998-2001

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Riva-Murray, Karen; Hickman, R. Edward; Chichester, Douglas C.; Brightbill, Robin A.; Romanok, Kristin M.; Bilger, Michael D.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Delaware River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Delaware River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://nj.water.usgs.gov/nawqa/delr/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  5. Evaluation of global water quality - the potential of a data- and model-driven analysis

    NASA Astrophysics Data System (ADS)

    Bärlund, Ilona; Flörke, Martina; Alcamo, Joseph; Völker, Jeanette; Malsy, Marcus; Kaus, Andrew; Reder, Klara; Büttner, Olaf; Katterfeld, Christiane; Dietrich, Désirée; Borchardt, Dietrich

    2016-04-01

    The ongoing socio-economic development presents a new challenge for water quality worldwide, especially in developing and emerging countries. It is estimated that due to population growth and the extension of water supply networks, the amount of waste water will rise sharply. This can lead to an increased risk of surface water quality degradation, if the wastewater is not sufficiently treated. This development has impacts on ecosystems and human health, as well as food security. The United Nations Member States have adopted targets for sustainable development. They include, inter alia, sustainable protection of water quality and sustainable use of water resources. To achieve these goals, appropriate monitoring strategies and the development of indicators for water quality are required. Within the pre-study for a 'World Water Quality Assessment' (WWQA) led by United Nations Environment Programme (UNEP), a methodology for assessing water quality, taking into account the above-mentioned objectives has been developed. The novelty of this methodology is the linked model- and data-driven approach. The focus is on parameters reflecting the key water quality issues, such as increased waste water pollution, salinization or eutrophication. The results from the pre-study show, for example, that already about one seventh of all watercourses in Latin America, Africa and Asia show high organic pollution. This is of central importance for inland fisheries and associated food security. In addition, it could be demonstrated that global water quality databases have large gaps. These must be closed in the future in order to obtain an overall picture of global water quality and to target measures more efficiently. The aim of this presentation is to introduce the methodology developed within the WWQA pre-study and to show selected examples of application in Latin America, Africa and Asia.

  6. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  7. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from conserving water and from the impact of climate change on head flows and thus helps planning for the future of our water resources and ecosystem.

  8. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays.

    PubMed

    Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H

    2009-01-01

    Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.

  9. Water quality at points-of-use in the Galapagos Islands.

    PubMed

    Gerhard, William A; Choi, Wan Suk; Houck, Kelly M; Stewart, Jill R

    2017-04-01

    Piped drinking water is often considered a gold standard for protecting public health but research is needed to explicitly evaluate the effect of centralized treatment systems on water quality in developing world settings. This study examined the effect of a new drinking water treatment plant (DWTP) on microbial drinking water quality at the point-of-use on San Cristobal Island, Galapagos using fecal indicator bacteria total coliforms and Escherichia coli. Samples were collected during six collection periods before and after operation of the DWTP began from the freshwater sources (n=4), the finished water (n=6), and 50 sites throughout the distribution system (n=287). This study found that there was a significant decrease in contamination by total coliforms (two orders of magnitude) and E. coli (one order of magnitude) after DWTP operation began (p<0.001). However, during at least one post-construction collection cycle, total coliforms and E. coli were still found at 66% and 28% of points-of-use (n=50), respectively. During the final collection period, conventional methods were augmented with human-specific Bacteroides assays - validated herein - with the goal of elucidating possible microbial contamination sources. Results show that E. coli contamination was not predictive of contamination by human wastes and suggests that observed indicator bacteria contamination may have environmental origins. Together these findings highlight the necessity of a holistic approach to drinking water infrastructure improvements in order to deliver high quality water through to the point-of-use. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Microbiological, chemical and physical quality of drinking water for commercial turkeys: a cross-sectional study.

    PubMed

    Di Martino, G; Piccirillo, A; Giacomelli, M; Comin, D; Gallina, A; Capello, K; Buniolo, F; Montesissa, C; Bonfanti, L

    2018-04-17

    Drinking water for poultry is not subject to particular microbiological, chemical and physical requirements, thereby representing a potential transmission route for pathogenic microorganisms and contaminants and/or becoming unsuitable for water-administered medications. This study assessed the microbiological, chemical and physical drinking water quality of 28 turkey farms in North-Eastern Italy: 14 supplied with tap water (TW) and 14 with well water (WW). Water salinity, hardness, pH, ammonia, sulphate, phosphate, nitrate, chromium, copper and iron levels were also assessed. Moreover, total bacterial count at 22°C, presence and enumeration of Enterococcus spp. and E. coli, presence of Salmonella spp. and Campylobacter spp. were quantified. A water sample was collected in winter and in summer at 3 sampling sites: the water source (A), the beginning (B) and the end (C) of the nipple line (168 samples in total). Chemical and physical quality of both TW and WW sources was mostly within the limits of TW for humans. However, high levels of hardness and iron were evidenced in both sources. In WW vs. TW, sulphate and salinity levels were significantly higher, whilst pH and nitrate levels were significantly lower. At site A, microbiological quality of WW and TW was mostly within the limit of TW for humans. However, both sources had a significantly lower microbiological quality at sites B and C. Salmonella enterica subsp. enterica serotype Kentucky was isolated only twice from WW. Campylobacter spp. were rarely isolated (3.6% of farms); however, Campylobacter spp. farm-level prevalence by real-time PCR was up to 43% for both water sources. Winter posed at higher risk than summer for Campylobacter spp. presence in water, whereas no significant associations were found with water source, site, recirculation system, and turkey age. Low salinity and high hardness were significant risk factors for C. coli and C. jejuni presence, respectively. These results show the need of improving sanitization of drinking water pipelines for commercial turkeys.

  11. The role of hydrological and water quality models in the application of the ecosystem services framework for the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Hallouin, Thibault; Bruen, Michael; Feeley, Hugh B.; Christie, Michael; Bullock, Craig; Kelly, Fiona; Kelly-Quinn, Mary

    2017-04-01

    The hydrological cycle is intimately linked with environmental processes that are essential for human welfare in many regards including, among others, the provision of safe water from surface and subsurface waterbodies, rain-fed agricultural production, or the provision of aquatic-sourced food. As well as being a receiver of these natural benefits, the human population is also a manager of the water and other natural resources and, as such, can affect their future sustainable provision. With global population growth and climate change, both the dependence of the human population on water resources and the threat they pose to these resources are likely to intensify so that the sustainability of the coupled natural and human system is threatened. In the European Union, the Water Framework Directive is driving policy and encouraging member states to manage their water resources wisely in order to maintain or restore ecological quality. To this end, the ecosystem services framework can be a useful tool to link the requirements in terms of ecological status into more tangible descriptors, that is the ecosystem services. In the ESManage Project, existing environmental system models such as hydrological models and water quality models are used as the basis to quantify the provision of many hydrological and aquatic ecosystem services by constructing indicators for the ecosystem services from the modelled environmental variables. By allowing different management options and policies to be compared, these models can be a valuable source of information for policy makers when they are used for climate and land use scenario analyses. Not all hydrological models developed for flood forecasting are suitable for this application and inappropriate models can lead to questionable conclusions. This paper demonstrates the readily available capabilities of a specially developed catchment hydrological model coupled with a water quality model to quantify a wide range of biophysically quantifiable water-related ecosystem services such as water provision (river flows, groundwater recharge and vegetation transpiration), flood regulation or nutrient and sediment retention. This combination of models will be used to carry out scenario analyses on IPCC climate change scenarios as well as various land use scenarios. Results will be presented for a test catchment in the Republic of Ireland.

  12. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  13. Climate Action Benefits: Health

    EPA Pesticide Factsheets

    This page provides background on the relationship between human health and climate change and describes what the CIRA Health analyses cover. It provides links to the subsectors Air Quality, Extreme Temperature, Labor, and Water Quality.

  14. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  15. Microbial and geochemical quality of shallow well water in high-density areas in Mzuzu City in Malawi

    NASA Astrophysics Data System (ADS)

    Msilimba, Golden; Wanda, Elijah M. M.

    In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80-500 μS cm-1), with hydrogeochemical facies dominated by Ca-HCO3, which evolves to Ca-Cl water type. The shallow well water registered a WQI range of 50.16-66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the shallow wells were at risk of pollution from onsite sanitation because of their proximity to sanitary facilities. It was strongly recommended that onsite treatment interventions have to be mobilised and initiated to protect the households from further possible consequences of using the water.

  16. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    USGS Publications Warehouse

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural, and non-agricultural purposes. All pesticide concentrations were below state and federal 2000 drinking-water standards. The relation of the ground-water quality to natural processes and human activities was tested using statistical methods (Spearman rank correlation, Kruskal?Wallis, or rank-sum tests) to determine whether an influence from rice land-use or other human activities on ground-water chemistry could be identified. The detection of pesticides in 89 percent of the wells sampled indicates that human activities have affected shallow ground-water quality. Concentrations of dissolved solids and inorganic constituents that exceeded state or federal 2000 drinking-water standards showed a statistical relation to geomorphic unit. This is interpreted as a relation to natural processes and variations in geology in the Sacramento River Basin; the high concentrations of dissolved solids and most inorganic constituents did not appear to be related to rice land use. No correlation was found between nitrate concentration and pesticide occurrence, indicating that an absence of high nitrate concentrations is not a predictor of an absence of pesticide contamination in areas with reducing ground-water conditions in the Sacramento Valley. Tritium concentrations, pesticide detections, stable isotope data, and dissolved-solids concentrations suggest that shallow ground water in the ricegrowing areas of the Sacramento Valley is a mix of recently recharged ground water containing pesticides, nitrate, and tritium, and unknown sources of water that contains high concentrations of dissolved solids and some inorganic constituents and is enriched in oxygen-18. Evaporation of applied irrigation water, which leaves behind salt, accounts for some of the elevated concentrations of dissolved solids. More work needs to be done to understand the connections between the land surface, shallow ground water, deep ground water, and the drinking-water supplies in the Sacramento Valley.

  17. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  18. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards. Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-

  19. [Experience of the implementation of the method of the integral assessment of drinking water on indicators of chemical harmlessness in St. Petersburg].

    PubMed

    Mel'tser, A V; Erastova, N V; Kiselev, A V

    2013-01-01

    Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.

  20. Water Quality and Hydrology of Whitefish (Bardon) Lake, Douglas County, Wisconsin, With Special Emphasis on Responses of an Oligotrophic Seepage Lake to Changes in Phosphorus Loading and Water Level

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Juckem, Paul F.

    2009-01-01

    Whitefish Lake, which is officially named Bardon Lake, is an oligotrophic, soft-water seepage lake in northwestern Wisconsin, and classified by the Wisconsin Department of Natural Resources as an Outstanding Resource Water. Ongoing monitoring of the lake demonstrated that its water quality began to degrade (increased phosphorus and chlorophyll a concentrations) around 2002 following a period of high water level. To provide a better understanding of what caused the degradation in water quality, and provide information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. The goals of the study were to describe the past and present water quality of the lake, quantify water and phosphorus budgets for the lake, simulate the potential effects of changes in phosphorus inputs on the lake's water quality, analyze changes in the water level in the lake since 1900, and relate the importance of changes in climate and changes in anthropogenic (human-induced) factors in the watershed to the water quality of the lake. Since 1998, total phosphorus concentrations increased from near the 0.005-milligrams per liter (mg/L) detection limit to about 0.010 mg/L in 2006, and then decreased slightly in 2007-08. During this time, chlorophyll a concentrations and Secchi depths remained relatively stable at about 1.5 micrograms per liter (ug/L) and 26 feet, respectively. Whitefish Lake is typically classified as oligotrophic. Because the productivity in Whitefish Lake is limited by phosphorus, phosphorus budgets were constructed for the lake. Because it was believed that much of its phosphorus comes from the atmosphere, phosphorus deposition was measured in this study. Phosphorus input from the atmosphere was greater than computed based on previously reported wetfall phosphorus concentrations. The concentrations and deposition rates can be used to estimate atmospheric loading in future lake studies. The average annual load of phosphorus to the lake was 232 pounds: 56 percent from precipitation, 27 percent from groundwater, and 16 percent from septic systems. During a series of dry years (low water levels) and wet years (high water levels), the inputs of water and phosphorus ranged by only 10-13 percent. Results from the Canfield and Bachmann eutrophication model and Carlson trophic-state-index equations demonstrated that the lake directly responds to changes in external phosphorus loading, with percent change in chlorophyll a being similar to the percent change in loading and the change in total phosphorus and Secchi depth being slightly smaller. Therefore, changes in phosphorus loading should affect the water quality of the lake. Specific scenarios that simulated the effects of anthropogenic (human-induced) and climatic (water level) changes demonstrated that: surface-water inflow (runoff) based on current development has little effect on pelagic water quality, changes in the inputs from septic systems and development in the watershed could have a large effect on water quality, and decreases in water and phosphorus loading during periods of low water level had little effect on water quality. Sustained high water levels, resulting from several wet years with relatively high water and phosphorus input, however, could cause a small degradation in water quality. Although high water levels may be associated with a degradation in water quality, it appears that anthropogenic changes in the watershed may be more important in affecting the future water quality of the lake. Fluctuations in water levels since 1998 are representative of what has occurred since 1900, with fluctuations of about 3 feet occurring about every 15 years. Based on total phosphorus concentrations inferred from sediment core analysis, there has been little long-term change in water quality and there has been a slight deterioration in water quality following most periods of high water levels. There

  1. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    PubMed

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  2. Rates of urbanisation and the resiliency of air and water quality.

    PubMed

    Duh, Jiunn-Der; Shandas, Vivek; Chang, Heejun; George, Linda A

    2008-08-01

    Global human population and urban development are increasing at unprecedented rates and creating tremendous stress on local, regional, and global air and water quality. However, little is known about how urban areas vary in their capacity to address effectively air and water quality impacts associated to urban development. There exists a need to better understanding the factors that mediate the interactions between urbanisation and variations of environmental quality. By synthesizing literatures on the relationship between urban development and air and water quality, we assess the amount of scholarship for each of these cities, characterize population growth rates in one hundred of the largest global cities, and link growth trends to changes in air and water quality. Our results suggest that, while there is a growing literature linking urbanisation and environmental quality, some regions of the globe are better represented than others, and that these trends are consistent with our characterization of population growth rates. In addition, the comparison between population growth rates and air and water quality suggest that multiple factors affect the environmental quality, and that approaching rates of urbanisation through the lens of 'resiliency' can be an effective integrative concept for studying the capacity of urban areas to respond to rapid rates of change. Based on these results we offer a framework for systematically assessing changes in air and water quality in megacities.

  3. [Diseases transmitted through water for human consumption].

    PubMed

    Franco, E; Dentamaro, M

    2003-01-01

    The water for human consumption maintains a biological risk and can transmit diseases. The classical waterborne and the presently frequent diseases caused by protozoi Giardia and Cryptosporidium are considered and Arcobacter butzleri, a new waterborne pathogen, is described. Many measures have been adopted by institutions to ensure the quality of the drinking water. Managers and public health operators is working in order to verify the efficiency of more suitable indicators for its monitoring.

  4. Involvement of stakeholders in the water quality monitoring and surveillance system: The case of Mzingwane Catchment, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nare, Lerato; Love, David; Hoko, Zvikomborero

    Stakeholder participation is viewed as critical in the current water sector reforms taking place in the Southern African region. In Zimbabwe, policies and legislation encourage stakeholder participation. A study was undertaken to determine the extent of stakeholder participation in water quality monitoring and surveillance at the operational level, and also to assess indigenous knowledge and practices in water quality monitoring. Two hundred and forty one questionnaires were administered in Mzingwane Catchment, the portion of the Limpopo Basin that falls within Zimbabwe. The focus was on small users in rural communities, whose experiences were captured using a questionnaire and focus group discussions. Extension workers, farmers and NGOs and relevant sector government ministries and departments were also interviewed and a number of workshops held. Results indicate that there is very limited stakeholder participation despite the presence of adequate supportive structures and organisations. For the Zimbabwe National Water Authority (ZINWA), stakeholders are the paying permit holders to whom feedback is given following analysis of samples. However, the Ministry of Health and Child Welfare generally only releases information to rural communities when it is deemed necessary for their welfare. There are no guidelines on how a dissatisfied member of the public can raise a complaint - although some stakeholders carry such complaints to Catchment Council meetings. With regard to water quality, the study revealed widespread use of indigenous knowledge and practice by communities. Such knowledge is based on smell, taste, colour and odour perceptions. Residents are generally more concerned about the physical parameters than the bacteriological quality of water. They are aware of what causes water pollution and the effects of pollution on human health, crops, animals and aquatic ecology. They have ways of preventing pollution and appropriate interventions to take when a source of water is polluted, such as boiling water for human consumption, laundry and bathing, or abandoning a water source in extreme cases. Stakeholder participation and ownership of resources needs to be encouraged through participatory planning, and integration between the three government departments (water, environment and health). Local knowledge systems could be integrated into the formal water quality monitoring systems, in order to complement the conventional monitoring networks.

  5. Emergency field water supply system using natural filtration elements

    NASA Astrophysics Data System (ADS)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  6. 40 CFR 143.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... public of piped water for human consumption, if such a system has at least fifteen service connections or... corrosion of piping and plumbing caused by water quality, are excluded from this definition. [44 FR 42198... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL...

  7. Key water issues now facing our nation

    USGS Publications Warehouse

    Hirsch, Robert M.; Miller, Timothy L.; Hamilton, Pixie A.; Gilliom, Robert J.

    2008-01-01

    Challenges to sustaining sufficient and high-quality water for human consumption, industry, farms, energy production, and ecosystem services continue to intensify in many parts of the Nation. We face four key water issues that call for support from the science and engineering communities.

  8. Tsunamis: Water Quality

    MedlinePlus

    ... viruses, parasites) and chemicals that can adversely affect human health. The sea salts associated with saltwater flooding of ... 232-6348 Email CDC-INFO U.S. Department of Health & Human Services HHS/Open USA.gov Top

  9. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Treesearch

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  10. Setting limits: Using air pollution thresholds to protect and restore U.S

    Treesearch

    Mark E Fenn; Kathleen F. Lambert; Tamara F. Blett; Douglas A. Burns; Linda H. Pardo; Gary M. Lovett; Richard A. Haeuber; David C. Evers; Charles T. Driscoll; Dean S. Jeffries

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation’s lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies...

  11. Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material

    EPA Science Inventory

    Scientific evidence supporting recreational water quality benchmarks primarily stems from epidemiological studies conducted at beaches impacted by human fecal sources. Epidemiological studies conducted at locations impacted by non-human faecal sources have provided ambiguous and ...

  12. A regional classification scheme for estimating reference water quality in streams using land-use-adjusted spatial regression-tree analysis

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, D.A.; Heisey, D.M.

    2006-01-01

    Various approaches are used to subdivide large areas into regions containing streams that have similar reference or background water quality and that respond similarly to different factors. For many applications, such as establishing reference conditions, it is preferable to use physical characteristics that are not affected by human activities to delineate these regions. However, most approaches, such as ecoregion classifications, rely on land use to delineate regions or have difficulties compensating for the effects of land use. Land use not only directly affects water quality, but it is often correlated with the factors used to define the regions. In this article, we describe modifications to SPARTA (spatial regression-tree analysis), a relatively new approach applied to water-quality and environmental characteristic data to delineate zones with similar factors affecting water quality. In this modified approach, land-use-adjusted (residualized) water quality and environmental characteristics are computed for each site. Regression-tree analysis is applied to the residualized data to determine the most statistically important environmental characteristics describing the distribution of a specific water-quality constituent. Geographic information for small basins throughout the study area is then used to subdivide the area into relatively homogeneous environmental water-quality zones. For each zone, commonly used approaches are subsequently used to define its reference water quality and how its water quality responds to changes in land use. SPARTA is used to delineate zones of similar reference concentrations of total phosphorus and suspended sediment throughout the upper Midwestern part of the United States. ?? 2006 Springer Science+Business Media, Inc.

  13. Water Quality in the Santa Ana Basin, California, 1999-2001

    USGS Publications Warehouse

    Belitz, Kenneth; Hamlin, Scott N.; Burton, Carmen A.; Kent, Robert; Fay, Ronald G.; Johnson, Tyler D.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Santa Ana River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to other areas across the Nation. The water-quality conditions in the Santa Ana River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://ca.water.usgs.gov/ sana_nawqa/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  14. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    USGS Publications Warehouse

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  15. Water Quality in the Acadian-Pontchartrain Drainages; Louisiana and Mississippi, 1999-2001

    USGS Publications Warehouse

    Demcheck, Dennis K.; Tollett, Roland W.; Mize, Scott V.; Skrobialowski, Stanley C.; Fendick, Robert B.; Swarzenski, Christopher M.; Porter, Stephen

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Acadian-Pontchartrain Drainages Study Unit. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report also is for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to other areas across the Nation. The water-quality conditions in the Acadian-Pontchartrain Drainages Study Unit summarized in this report are discussed in detail in other reports that can be accessed from (http://la.water.usgs.gov/nawqa/default.htm). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  16. Technical report series: North Alabama water quality assessment: Volume 4, Bacteriological quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinert, D.L.

    1986-07-01

    This report evaluates bacteriological water quality in the Shoals area of North Alabama by collection of samples at water contact recreation areas on Pickwick and Wilson Reservoirs. Samples collected in the summer of 1985 in the Muscle Shoals region at 15 public use and public access areas on Pickwick and Wilson Reservoirs indicate good quality. All 15 of the recreation areas sampled had geometric mean concentrations well below the criterion for water contact recreation (200 fecal coliform bacteria per 100 m1 of sample). Further, FC/FS were quite low and did not indicate any sources of human waste to these areas.more » The fecal streptococcus data were the first to be collected are recreation areas on Pickwick and Wilson Reservoirs.« less

  17. [Influence of human activities on groundwater environment based on coefficient variation method].

    PubMed

    Zhao, Wei; Lin, Jian; Wang, Shu-Fang; Liu, Ji-Lai; Chen, Zhong-Rong; Kou, Wen-Jie

    2013-04-01

    Groundwater system in the plain area of Beijing can be divided into six subsystems. Due to the different hydrogeological conditions of the subsystems, the degrees to which human activities affect the subsystems are also diverse. In order to evaluate the influence of human activities on each subsystem, the first and second aquifer with relatively poor water quality were chosen to be the evaluating positions, based on the data of groundwater sampled in September, 2011. With respect to human activities affect index such as total hardness, TDS, sulfate and ammonium, variation coefficient methods were used to calculate the weight of each index. Then scores were obtained for each index with national standard as reference, and superposition calculations were used to gain comprehensive scores, finally the groundwater quality conditions were evaluated. Contrast analyses were used to evaluate the incidence of human activities with groundwater subsystems as evaluation unit and water quality partitions as evaluation factors. The results indicate that the influence of human activities on the first aquifer is greater than that of the second aquifer, the Yongding river groundwater subsystems and the Chaobai river groundwater subsystems are affected more than other groundwater subsystems.

  18. Volatile organic compounds in samples from domestic and public wells, 1985-2002

    USGS Publications Warehouse

    Rowe, Barbara L.; Zogorski, John S.; Valder, Joshua F.

    2006-01-01

    The U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program recently completed a national study of volatile organic compounds (VOCs) in the Nation's ground water (Zogorski and others, 2006). Part of this assessment emphasizes the occurrence of 55 VOCs in samples from 2,401 domestic wells and 1,096 public wells during 1985-2002. Samples were collected prior to any treatment or blending of water. Domestic wells are privately owned, self-supplied sources used for drinking water and household use (Moran and others, 2002). Public wells are privately or publicly owned and supply water to public water systems (PWSs). Samples from public wells in this assessment characterize the quality of water captured by wells that supply drinking water to PWSs. These systems supply drinking water to at least 15 service connections or regularly serve at least 25 individuals daily at least 60 days a year (U.S. Environmental Protection Agency, 2005). For a screening-level assessment, VOC concentrations were compared to human-health benchmarks. Concentrations greater than the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Levels (MCLs) (U.S. Environmental Protection Agency, 2004) or the USGS's Health-Based Screening Levels (HBSLs) (Zogorski and others, 2006) were considered of potential human-health concern. The findings from the well samples provide an important perspective on the quality of the Nation's ground water used for drinking-water supplies. More information about this national assessment of VOCs is available (http://water.usgs.gov/nawqa/vocs/national_assessment).

  19. Human activities and threats of chronic epidemics in a fragile geologic environment

    NASA Astrophysics Data System (ADS)

    Nkhuwa, D. C. W.

    The quality of groundwater in the Lusaka aquifer is becoming matter of great concern to the city’s inhabitants. Access to good quality water in sufficient quantities to support life is becoming increasingly scarce, while waterborne diseases are becoming rife and on the increase. As a result of rapid urbanisation and a proportionate increase in human activities, there has been increased use of the ground to dispose of different types of solid and liquid wastes. Usually, this has been with no due consideration of the underlying geology. Such unsatisfactory management of wastes over a fragile geologic environment has heightened threats of aquifer pollution through unhindered access of components of the wastes to the groundwater store. Consumption of such water may be responsible for the near-endemic outbreaks of diarrhoeal and dysentery cases in parts of the city. As the demand for water continues to heighten, current trends of aquifer pollution of the meagre available water resources threaten to exacerbate this scenario. Consequently, this will impose further restrictions on the city environment’s ability to sustain human life. This paper highlights some of Lusaka’s typical and pertinent water supply problems. It also implicitly expresses the urgent need for reconciliation between human activities and the underlying geology and hydrogeology in order to preserve an environment that promotes and perpetuates good human health.

  20. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.

  1. Looking Upstream: Findings from Focus Groups on Public Perceptions of Source Water Quality in British Columbia, Canada

    PubMed Central

    Henrich, Natalie; Holmes, Bev; Prystajecky, Natalie

    2015-01-01

    In association with the development of new microbial tests for source water quality (SWQ), focus groups with members of the public were conducted to gain insight into their perceptions of SWQ, behaviours and contaminants they think pose the greatest threat to its quality, and what/how they want to know about SWQ. Discussions revealed a low concern about SWQ in general, and in particular about microbial contamination. Participants identified behaviours that threaten SWQ, barriers to changing behaviour and suggestions for inducing change. A strong desire was expressed for water quality information to be interpreted and communicated in terms of how SWQ may impact human health and how their actions should be altered in response to test results. The information can be used to inform communication strategies and possibly impact policies associated with water quality testing and implementation of new tests. More broadly, awareness of the public’s understanding and beliefs about source water can be used in working with the public to adopt water-friendly behaviours, influence the content and methods of communicating with the public about water issues and water quality, and could contribute to the direction of future research and investment into water technologies to align with the public’s priorities. PMID:26540561

  2. Looking Upstream: Findings from Focus Groups on Public Perceptions of Source Water Quality in British Columbia, Canada.

    PubMed

    Henrich, Natalie; Holmes, Bev; Prystajecky, Natalie

    2015-01-01

    In association with the development of new microbial tests for source water quality (SWQ), focus groups with members of the public were conducted to gain insight into their perceptions of SWQ, behaviours and contaminants they think pose the greatest threat to its quality, and what/how they want to know about SWQ. Discussions revealed a low concern about SWQ in general, and in particular about microbial contamination. Participants identified behaviours that threaten SWQ, barriers to changing behaviour and suggestions for inducing change. A strong desire was expressed for water quality information to be interpreted and communicated in terms of how SWQ may impact human health and how their actions should be altered in response to test results. The information can be used to inform communication strategies and possibly impact policies associated with water quality testing and implementation of new tests. More broadly, awareness of the public's understanding and beliefs about source water can be used in working with the public to adopt water-friendly behaviours, influence the content and methods of communicating with the public about water issues and water quality, and could contribute to the direction of future research and investment into water technologies to align with the public's priorities.

  3. Climate Change and Water Scarcity: The Case of Saudi Arabia.

    PubMed

    DeNicola, Erica; Aburizaiza, Omar S; Siddique, Azhar; Khwaja, Haider; Carpenter, David O

    2015-01-01

    Climate change is expected to bring increases in average global temperatures (1.4°C-5.8°C [34.52°F-42.44°F] by 2100) and precipitation levels to varying degrees around the globe. The availability and quality of water will be severely affected, and public health threats from the lack of this valuable resource will be great unless water-scarce nations are able to adapt. Saudi Arabia provides a good example of how the climate and unsustainable human activity go hand in hand in creating stress on and depleting water resources, and an example for adaptation and mitigation. A search of the English literature addressing climate change, water scarcity, human health, and related topics was conducted using online resources and databases accessed through the University at Albany, State University of New York library web page. Water scarcity, which encompasses both water availability and water quality, is an important indicator of health. Beyond drinking, water supply is intimately linked to food security, sanitation, and hygiene, which are primary contributors to the global burden of disease. Poor and disadvantaged populations are the ones who will suffer most from the negative effects of climate change on water supply and associated human health issues. Examples of adaptation and mitigation measures that can help reduce the strain on conventional water resources (surface waters and fossil aquifers or groundwater) include desalination, wastewater recycling and reuse, and outsourcing food items or "virtual water trade." These are strategies being used by Saudi Arabia, a country that is water poor primarily due to decades of irresponsible irrigation practices. The human and environmental health risks associated with these adaptation measures are examined. Finally, strategies to protect human health through international collaboration and the importance of these efforts are discussed. International, multidisciplinary cooperation and collaboration will be needed to promote global water security and to protect human health, particularly in low-income countries that do not have the resources necessary to adapt on their own. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Tampa's Well-being: A Demonstration of ORD's Human Well-being Index (web content for the Tampa Bay Ecosystem services website)

    EPA Science Inventory

    Ecosystems provide services to humans that support our well-being. Well-being is not only our health but also our quality of life. We rely upon the services provided by nature to help maintain good health and a high quality of life, including clean water, clean air, food and recr...

  5. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper Floridan aquifer, distributed between developed and undeveloped parts of the basin. Water samples collected should be analyzed for a wide range of constituents, including physical properties, nutrients, suspended sediment, and constituents associated with increased urban development such as pesticides, other trace organic compounds associated with domestic and industrial waste, and trace elements.

  6. Identification of hotspots and trends of fecal surface water pollution in developing countries

    NASA Astrophysics Data System (ADS)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal pollution is increasing from 1990 to 2010 with increased loadings and larger number of river kilometers with high fecal pollution. Fecal pollution is mainly caused by the domestic sector, and hence, the sanitation type, collection and treatment (level) of collected wastewater are highly important to ensure good quality of water bodies.

  7. PERFORMANCE OF RETENTION PONDS AND CONSTRUCTED WETLANDS FOR ATTENUATING BACTERIAL STRESSORS

    EPA Science Inventory

    Microbial contamination from fecal origins in stormwater runoff poses a risk to human health through the consumption of drinking water and recreational and bathing contact with surface waters. Indicator bacteria serve as the regulatory meter by which water quality is measured and...

  8. 78 FR 69460 - Proposed License Renewal of the Prairie Island Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...; climatology, meteorology and air quality; geology and soils; water resources; ecology and threatened and... significantly affect the quality of the human environment. No significant changes in NSPM's authorized...

  9. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  10. Coral reef health response to chronic and acute changes in water quality in St. Thomas, United States Virgin Islands.

    PubMed

    Ennis, Rosmin S; Brandt, Marilyn E; Wilson Grimes, Kristin R; Smith, Tyler B

    2016-10-15

    It is suspected that land cover alteration on the southern coast of St. Thomas, USVI has increased runoff, degrading nearshore water quality and coral reef health. Chronic and acute changes in water quality, sediment deposition, and coral health metrics were assessed in three zones based upon perceived degree of human influence. Chlorophyll (p<0.0001) and turbidity (p=0.0113) were significantly higher in nearshore zones and in the high impact zone during heavy precipitation. Net sediment deposition and terrigenous content increased in nearshore zones during periods of greater precipitation and port activity. Macroalgae overgrowth significantly increased along a gradient of decreasing water quality (p<0.0001). Coral bleaching in all zones peaked in November with a regional thermal stress event (p<0.0001). However, mean bleaching prevalence was significantly greater in the most impacted zone compared to the offshore zone (p=0.0396), suggesting a link between declining water quality and bleaching severity. Published by Elsevier Ltd.

  11. The Ozark Highlands

    USGS Publications Warehouse

    Ethridge, Max

    2009-01-01

    The Ozark Highlands include diverse topographic, geologic, soil, and hydrologic conditions that support a broad range of habitat types. The landscape features rugged uplands - some peaks higher than 2,500 feet above sea level - with exposed rock and varying soil depths and includes extensive areas of karst terrain. The Highlands are characterized by extreme biological diversity and high endemism (uniqueness of species). Vegetation communities are dominated by open oak-hickory and shortleaf pine woodlands and forests. Included in this vegetation matrix is an assemblage of various types of fens, forests, wetlands, fluvial features, and carbonate and siliceous glades. An ever-growing human population in the Ozark Highlands has become very dependent on reservoirs constructed on major rivers in the region and, in some cases, groundwater for household and public water supply. Because of human population growth in the Highlands and increases in industrial and agricultural activities, not only is adequate water quantity an issue, but maintaining good water quality is also a challenge. Point and nonpoint sources of excessive nutrients are an issue. U.S. Geological Survey (USGS) partnership programs to monitor water quality and develop simulation tools to help stakeholders better understand strategies to protect the quality of water and the environment are extremely important. The USGS collects relevant data, conducts interpretive studies, and develops simulation tools to help stakeholders understand resource availability and sustainability issues. Stakeholders dependent on these resources are interested in and benefit greatly from evolving these simulation tools (models) into decision support systems that can be used for adaptive management of water and ecological resources. The interaction of unique and high-quality biological and hydrologic resources and the effects of stresses from human activities can be evaluated best by using a multidisciplinary approach that the USGS can provide. Information varying from defining baseline resource conditions to developing simulation models will help resource managers and users understand the human impact on resource sustainability. Varied expertise and experience in biological and water-resources activities across the entire Highlands make the USGS a valued collaborator in studies of Ozark ecosystems, streams, reservoirs, and groundwater. A large part of future success will depend on the involvement and active participation of key partners.

  12. Green Streets, Green Jobs, Green Towns (G3) Integrated Planning

    EPA Pesticide Factsheets

    This page describes EPA's perspective on integrated planning to achieve the human health and water quality objectives of the Clean Water Act. It also provides links to several resources on integrated planning.

  13. Routine screening of harmful microorganisms in beach sands: implications to public health

    USGS Publications Warehouse

    Sabino, Raquel; Rodrigues, R.; Costa, I.; Carneiro, Carlos; Cunha, M.; Duarte, A.; Faria, N.; Ferriera, F.C.; Gargate, M.J.; Julio, C.; Martins, M.L.; Nevers, Meredith; Oleastro, M.; Solo-Gabriele, H.; Verissimo, C.; Viegas, C.; Whitman, Richard L.; Brandao, J.

    2014-01-01

    Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the “Microareias 2012” workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.

  14. Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices.

    PubMed

    Aazami, Jaber; Esmaili-Sari, Abbas; Abdoli, Asghar; Sohrabi, Hormoz; Van den Brink, Paul J

    2015-01-01

    Nowadays, aquatic organisms are used as bio-indicators to assess ecological water quality in western regions, but have hardly been used in an Iranian context. We, therefore, evaluated the suitability of several indices to assess the water quality for an Iranian case study. Measured data on biotic (fish and macroinvertebrates) and abiotic elements (28 physicochemical and habitat parameters), were used to calculate six indices for assessment of water quality and the impact of human activities in the Tajan river, Iran. GIS, uni- and multivariate statistics were used to assess the correlations between biological and environmental endpoints. The results showed that ecological condition and water quality were reduced from up- to downstream. The reduced water quality was revealed by the biotic indices better than the abiotic ones which were linked to a variety of ecological water quality scales. The fish index showed a strong relationship with long-term database of physicochemical parameters (12 years (94%)), whereas macroinvertebrates index is more correlated with short-term data (76%). Meanwhile, the biotic and abiotic elements in this study were also classified well by PCA. Pulp and wood plants and sand mining are indicated to have the most negative effects on the river ecosystem.

  15. Water quality criteria for colored smokes: Solvent Yellow 33, Final report. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.

    1987-11-01

    The available data on the environmental fate, aquatic toxicity, and mammalian toxicity of Solvent Yellow 33, a quinoline dye used in colored smoke grenades, were reviewed. The US Environmental Protection Agency (USEPA) guidelines were used in an attempt to generate water quality criteria for the protection of aquatic life and its use and of human health. 87 refs., 2 figs., 13 tabs.

  16. CONCENTRATION OF NATURAL RADIONUCLIDES IN PRIVATE DRINKING WATER WELLS.

    PubMed

    Cerny, R; Otahal, P; Merta, J; Burian, I

    2017-11-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/EUROATOM, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  18. Drinking Water Quality Status and Contamination in Pakistan

    PubMed Central

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  19. Drinking Water Quality Status and Contamination in Pakistan.

    PubMed

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  20. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    USGS Publications Warehouse

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the October 5 sample from Dunloup Creek. Cow, white-tailed deer, and Canada goose DNA were not detected in any of the samples collected from the four tributaries, despite the presence of these animals in the watersheds. Future studies with more rigorous quality-control analyses are needed to investigate the potential applicability and use of these emerging methods. Because many of the detections for the various methods could vary over time and with flow conditions, repeated sampling during both base flow and storm events would be necessary to more definitively determine the sources of fecal contamination for each watershed.

  1. Review of factors affecting the distribution and abundance of waterfowl in shallow-water habitats of Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Deller, A.S.

    1996-01-01

    Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria ), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater restrictions on boat traffic in shallow-water habitats and establishing more sanctuaries in shallow-water areas that have complete protection from human disturbance.

  2. Hand dug wells in Namibia: An underestimated water source or a threat to human health?

    NASA Astrophysics Data System (ADS)

    Wanke, H.; Nakwafila, A.; Hamutoko, J. T.; Lohe, C.; Neumbo, F.; Petrus, I.; David, A.; Beukes, H.; Masule, N.; Quinger, M.

    The rural population of parts of northern and western Namibia uses hand dug wells for their domestic water supply, partly because no other source (e.g., deep tube wells) is available, but also as a substitute for pipeline water that is often perceived as being too expensive. The water quality of these wells is usually not monitored or controlled, thus a study has been carried out in four study areas in Namibia: southern Omusati/Oshana area, Okongo/Ohangwena area, Omatjete/Omaruru area, Okanguati/Kunene area. Hand dug wells have been tested for on-site parameters: electric conductivity, pH and temperature while samples were taken for major inorganic constituents and several minor and trace constituents including fluoride and nitrate. In addition a sampling campaign in 2010 included the determination of coliform bacteria and Escherichia coli. Results were classified according to the Namibian Water Guidelines. The constituents making the water unfit for human consumption are fluoride, nitrate, sulphate and total dissolved solids. Contamination by E. coli was indicated in nearly all wells that are used for livestock watering. For the Omatjete/Omaruru study area an isotope based study on the source of nitrate has indicated manure as a source. The range of recharge values obtained for the studied villages ranges from 1 mm/a to locally more than 100 mm/a. Overall the water resource in the shallow perched aquifers in the study areas is in many places inappropriate for human consumption. Treatment to improve the quality or introduction of protection measures is necessary to bring this resource to an acceptable quality according to national and/or international standards.

  3. Changes in river water temperature between 1980 and 2012 in Yongan watershed, eastern China: Magnitude, drivers and models

    NASA Astrophysics Data System (ADS)

    Chen, Dingjiang; Hu, Minpeng; Guo, Yi; Dahlgren, Randy A.

    2016-02-01

    Climate warming is expected to have major impacts on river water quality, water column/hyporheic zone biogeochemistry and aquatic ecosystems. A quantitative understanding of spatio-temporal air (Ta) and water (Tw) temperature dynamics is required to guide river management and to facilitate adaptations to climate change. This study determined the magnitude, drivers and models for increasing Tw in three river segments of the Yongan watershed in eastern China. Over the 1980-2012 period, Tw in the watershed increased by 0.029-0.046 °C yr-1 due to a ∼0.050 °C yr-1 increase of Ta and changes in local human activities (e.g., increasing developed land and population density and decreasing forest area). A standardized multiple regression model was developed for predicting annual Tw (R2 = 0.88-0.91) and identifying/partitioning the impact of the principal drivers on increasing Tw:Ta (76 ± 1%), local human activities (14 ± 2%), and water discharge (10 ± 1%). After normalizing water discharge, climate warming and local human activities were estimated to contribute 81-95% and 5-19% of the observed rising Tw, respectively. Models forecast a 0.32-1.76 °C increase in Tw by 2050 compared with the 2000-2012 baseline condition based on four future scenarios. Heterogeneity of warming rates existed across seasons and river segments, with the lower flow river and dry season demonstrating a more pronounced response to climate warming and human activities. Rising Tw due to changes in climate, local human activities and hydrology has a considerable potential to aggravate river water quality degradation and coastal water eutrophication in summer. Thus it should be carefully considered in developing watershed management strategies in response to climate change.

  4. Water quality in the Mobile River Basin, Alabama, Georgia, and Mississippi, and Tennessee, 1999-2001

    USGS Publications Warehouse

    Atkins, J. Brian; Zappia, Humbert; Robinson, James L.; McPherson, Ann K.; Moreland, Richard S.; Harned, Douglas A.; Johnston, Brett F.; Harvill, John S.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Mobile River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Mobile River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Mobile River Basin Web site (http://al.water.usgs.gov/pubs/mobl/mobl.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  5. Water quality in the lower Tennessee River Basin, Tennessee, Alabama, Kentucky, Mississippi, and Georgia, 1999-2001

    USGS Publications Warehouse

    Woodside, Michael D.; Hoos, Anne B.; Kingsbury, James A.; Powell, Jeffrey R.; Knight, Rodney R.; Garrett, Jerry W.; Mitchell, Reavis L.; Robinson, John A.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Lower Tennessee River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Lower Tennessee River Basin summarized in this report are discussed in detail in other reports that can be accessed from the Lower Tennessee River Basin Web site (http://tn.water.usgs.gov/lten/lten.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  6. Water quality in the Great and Little Miami River Basins, Ohio and Indiana, 1999-2001

    USGS Publications Warehouse

    Rowe, Gary L.; Reutter, David C.; Runkle, Donna L.; Hambrook, Julie A.; Janosy, Stephanie D.; Hwang, Lee H.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the Great and Little Miami River Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Great and Little Miami River Basins summarized in this report are discussed in detail in other reports that can be accessed from (http://oh.water.usgs.gov/miam/intro.html). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  7. Water Quality in the New England Coastal Basins, Maine, New Hampshire, Massachusetts, and Rhode Island 1999-2001

    USGS Publications Warehouse

    Robinson, Keith W.; Flanagan, Sarah M.; Ayotte, Joseph D.; Campo, Kimberly W.; Chalmers, Ann; Coles, James F.; Cuffney, Thomas F.

    2004-01-01

    This report contains the major findings of a 1999?2001 assessment of water quality in the New England Coastal Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the New England Coastal Basins summarized in this report are discussed in detail in other reports that can be accessed from http://nh.water.usgs.gov/CurrentProjects/nawqa/nawqaweb.htm. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  8. High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary

    USGS Publications Warehouse

    Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.

    2015-01-01

    The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.

  9. Framework and tools for agricultural landscape assessment relating to water quality protection.

    PubMed

    Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine

    2009-05-01

    While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

  10. TRIHALOMETHANE LEVELS AND SEMEN QUALITY

    EPA Science Inventory

    Trihalomethanes (THMs) are common byproducts of chlorinating drinking water. The effects of disinfection byproducts on semen quality have not yet been studied in humans, despite animal studies linking exposure to sperm abnormalities. We are currently analyzing the relationship of...

  11. Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.

    2007-01-01

    As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.

  12. Human Health and Toxic Cyanobacteria – What do we know? ...

    EPA Pesticide Factsheets

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and climate change. We present the evidence for adverse human health effects associated with exposure to cyanobacteria and their toxins in drinking water, recreational water and via medical procedures. We will discuss the range of effects reported to be associated with exposure, and the current state of the epidemiology of toxic cyanobacteria. This is a description of a proposed presentation and does not necessarily reflect EPA policy. Abstract will be presented at the Water and Health conference during a session on water quality challenges in North Carolina. This summary of existing published scientific reports on the associations between adverse human health effects and toxic cyanobacteria will be of interest to the public health and water researchers in the audience. This work fits topically in the Task: SSWR 4.01B

  13. Human factors and tidal influences on water quality of an urban river in Can Tho, a major city of the Mekong Delta, Vietnam.

    PubMed

    Ozaki, Hirokazu; Co, Thi Kinh; Le, Anh Kha; Pham, Viet Nu; Nguyen, Van Be; Tarao, Mitsunori; Nguyen, Huu Chiem; Le, Viet Dung; Nguyen, Hieu Trung; Sagehashi, Masaki; Ninomiya-Lim, Sachi; Gomi, Takashi; Hosomi, Masaaki; Takada, Hideshige

    2014-02-01

    In this study, we focused on water quality in an urban canal and the Mekong River in the city of Can Tho, a central municipality of the Mekong Delta region, southern Vietnam. Water temperature, pH, electrical conductivity, BOD5, CODCr, Na(+), Cl(-), NH4 (+)-N, SO4 (2-)-S, NO3 (-)-N, and NO2 (-)-N for both canal and river, and tide level of the urban canal, were monitored once per month from May 2010 to April 2012. The urban canal is subject to severe anthropogenic contamination, owing to poor sewage treatment. In general, water quality in the canal exhibited strong tidal variation, poorer at lower tides and better at higher tides. Some anomalies were observed, with degraded water quality under some high-tide conditions. These were associated with flow from the upstream residential area. Therefore, it was concluded that water quality in the urban canal changed with a balance between dilution effects and extent of contaminant supply, both driven by tidal fluctuations in the Mekong River.

  14. Quality of Water from Public-Supply Wells in the United States, 1993-2007Overview of Major Findings

    USGS Publications Warehouse

    Toccalino, Patricia L.; Hopple, Jessica A.

    2010-01-01

    Summary of Major Findings and Implications About 105 million people in the United States-more than one-third of the Nation's population-receive their drinking water from about 140,000 public water systems that use groundwater as their source. Although the quality of finished drinking water (after treatment and before distribution) from these public water systems is regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA), long-term protection and management of groundwater, a vital source of drinking water, requires an understanding of the occurrence of contaminants in untreated source water. Sources of drinking water are potentially vulnerable to a wide range of man-made and naturally occurring contaminants, including many that are not regulated in drinking water under the SDWA. In this study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS), chemical water-quality conditions were assessed in source (untreated) groundwater from 932 public-supply wells, hereafter referred to as public wells, and in source and finished water from a subset of 94 wells. The public wells are located in selected parts of 41 states and withdraw water from parts of 30 regionally extensive water-supply aquifers, which constitute about one-half of the principal aquifers in the United States. Although the wells sampled in this study represent less than 1 percent of all groundwater-supplied public water systems in the United States, they are widely distributed nationally and were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. All source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations. As a result, the sampled groundwater represents the quality of the source water and not necessarily the quality of finished water ingested by the people served by these public wells. A greater number of chemical contaminants-as many as 337-both naturally occurring and man-made, were assessed in this study than in any previous national study of public wells (Appendixes 1 and 2). Consistent with the terminology used in the SDWA, all constituents analyzed in water samples in this study are referred to as 'contaminants,' regardless of their source, concentration, or potential for health effects (see sidebar on page 3). Eighty-three percent (279) of the contaminants analyzed in this study are not regulated in drinking water under the SDWA. The USEPA uses USGS data on the occurrence of unregulated contaminants to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. By focusing primarily on source-water quality, and by analyzing many contaminants that are not regulated in drinking water by USEPA, this study complements the extensive sampling of public water systems that is routinely conducted for the purposes of regulatory compliance monitoring by federal, state, and local drinking-water programs. The objectives of this study were to evaluate (1) the occurrence of contaminants in source water from public wells and their potential significance to human health, (2) whether contaminants that occur in source water also occur in finished water after treatment, and (3) the occurrence and characteristics of contaminant mixtures. To evaluate the potential significance of contaminant occurrence to human health, contaminant concentrations were compared to regulatory Maximum Contaminant Levels (MCLs) or non-regulatory Health-Based Screening Levels (HBSLs)-collectively referred to as human-health benchmarks in this study (see sidebars on pages 4 and 19). The major findings and implications of this study are summarized below and the results are described in greater detail in the remainder of the report. These findings build upon water-quality data from previous public-well studies and

  15. Groundwater quality in the Northern Atlantic Coastal Plain aquifer system, eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Northern Atlantic Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area.

  16. Groundwater quality in the Coastal Lowlands aquifer system, south-central United States

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Coastal Lowlands aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 12 percent of the study area and at moderate concentrations in about 18 percent. Organic constituents were not detected at high or moderate concentrations in the study area.

  17. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  18. USING ENERGY AND EMERGY TO COUPLE GEOMORPHOLOGY AND HUMAN INFLUENCES INTO A WATERSHED/LANDSCAPE INDEX AND LINK THE INDEX TO DOWNSTREAM WATER AND HABITAT QUALITY

    EPA Science Inventory

    The Clean Water Act requires identification of all waters whose abiotic and biotic integrity have been compromised or impaired, but it is impossible to assess each water body in the nation. Although landscape studies attempting to find correlations between land use and water con...

  19. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    EPA Science Inventory

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  20. Evidence of Water Quality Degradation in Lower Mekong Basin Revealed by Self-Organizing Map

    PubMed Central

    Chea, Ratha; Grenouillet, Gaël; Lek, Sovan

    2016-01-01

    To reach a better understanding of the spatial variability of water quality in the Lower Mekong Basin (LMB), the Self-Organizing Map (SOM) was used to classify 117 monitoring sites and hotspots of pollution within the basin identified according to water quality indicators and US-EPA guidelines. Four different clusters were identified based on their similar physicochemical characteristics. The majority of sites in upper (Laos and Thailand) and middle part (Cambodia) of the basin were grouped in two clusters, considered as good quality water with high DO and low nutrient levels. The other two clusters were mostly composed of sites in Mekong delta (Vietnam) and few sites in upstream tributaries (i.e., northwestern Thailand, Tonle Sap Lake, and swamps close to Vientiane), known for moderate to poor quality of water and characterized by high nutrient and dissolved solid levels. Overall, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMB. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human disturbance and particularly apparent in sites distributed along the man-made canals in Vietnam delta where population growth and agricultural development are intensive. PMID:26731522

  1. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  2. Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece).

    PubMed

    Katsiapi, Matina; Moustaka-Gouni, Maria; Michaloudi, Evangelia; Kormas, Konstantinos Ar

    2011-10-01

    Phytoplankton and water quality of Marathonas drinking-water Reservoir were examined for the first time. During the study period (July-September 2007), phytoplankton composition was indicative of eutrophic conditions although phytoplankton biovolume was low (max. 2.7 mm³ l⁻¹). Phytoplankton was dominated by cyanobacteria and diatoms, whereas desmids and dinoflagellates contributed with lower biovolume values. Changing flushing rate in the reservoir (up to 0.7% of reservoir's water volume per day) driven by water withdrawal and occurring in pulses for a period of 15-25 days was associated with phytoplankton dynamics. Under flushing pulses: (1) biovolume was low and (2) both 'good' quality species and the tolerant to flushing 'nuisance' cyanobacterium Microcystis aeruginosa dominated. According to the Water Framework Directive, the metrics of phytoplankton biovolume and cyanobacterial percentage (%) contribution indicated a moderate ecological water quality. In addition, the total biovolume of cyanobacteria as well as the dominance of the known toxin-producing M. aeruginosa in the reservoir's phytoplankton indicated a potential hazard for human health according to the World Health Organization.

  3. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  4. Modeling the Impacts of Hydromodification on Water Quantity and Quality

    EPA Science Inventory

    Hydromodification activities are driven by human population growth and resource extraction and consumption including urbanization, agriculture, forestry, mining, water withdrawal, climate change, and flow regulation by dams and impoundments. These anthropogenic activities alter n...

  5. Improving collected rainwater quality in rural communities.

    PubMed

    Garrido, S; Aviles, M; Ramirez, A; Gonzalez, A; Montellano, L; Gonzalez, B; de la Paz, J; Ramirez, R M

    2011-01-01

    The country of Mexico is facing serious problems with water quality and supply for human use and consumption in rural communities, mainly due to topographic and isolation. In Mexico the average annual precipitation is 1,500 cubic kilometers of water, if 3% of that amount were used, 13 million Mexicans could be supplied with drinking water that they currently do not have access. Considering the limited infrastructure and management in rural communities, which do not receive services from the centralized systems of large cities, a modified pilot multi-stage filtration (MMSF) system was designed, developed, and evaluated for treating collected rainwater in three rural communities, Ajuchitlan and Villa Nicolas Zapata (Morelos State) and Xacxamayo (Puebla State). The efficiencies obtained in the treatment system were: colour and turbidity >93%. It is worth mentioning that the water obtained for human use and consumption complies with the Mexican Standard NOM-127-SSA1-1994.

  6. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream.

  7. The role of seasonal water scarcity on water quality: a global analysis with case study in the Magdalena, Colombia

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    Water scarcity is not just a problem of its own right (hydrological drought) but cascades the hydro-economic system to create problems for crop growth and livestock (agricultural drought) and thus for wellbeing and economic productivity (economic drought). One of these cascades is the impact of reduced water quantity on water quality as a result of non-point source pollutant concentration in water bodies such as rivers, lakes and wetlands. This paper investigates the impact of seasonal water shortages on the quality of supplied water to urban centres with a view to better understanding how land use management can reduce dry-season pollutant spikes. We apply a widely used spatial hydrological model (WaterWorld) and its water quality index (the human footprint on water quality, HFWQ) to examine to what extent HFWQ of water flowing into urban water intakes is affected by flow seasonality and by typical "dry year" events. A global analysis shows trends across climatic and land use gradients and is followed by a regional analysis of the Magdalena basin in Colombia: a large basin with 79% of the countries population and a mixture of intensively farmed and protected lands along a seasonality gradient from South to North. The Magdalena is a case study basin of the EartH2Observe project.

  8. Advancing Water Science through Improved Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI industry-proven practices such as open-source community architecture, agile development methodologies, and sound software engineering methods offer a promising pathway to a transformed water science CI capable of meeting the demands of both individual scientists and community-wide research initiatives.

  9. Roughing in Human Replumbing of the Water Cycle: Challenges, Opportunities, and Progress in Capturing the Influence of Water Management in Regional Models of Hydrology and Climate

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Kaiser, K. E.; Steimke, A.; Leonard, A.; FitzGerald, K.; Benner, S. G.; Vache, K. B.; Hillis, V.; Bolte, J.; Han, B.

    2017-12-01

    Humans exert tremendous influence on the redistribution of water in space and time. Humans have developed substantial infrastructure to provide water in adequate quantity and quality for production of food and energy, while seeking to maintain landscape processes and properties giving rise to ecosystem services on which humans rely (even when and if they are not well understood). Cyber-physical infrastructure includes dams, distributary canal networks, ditches to manage return flow, and networks of sensors to monitor environmental conditions. Social infrastructure includes legal frameworks for water rights, governance networks, and land management policies aimed at maintaining water quality. Changes in regional climate, land use and its intensity, and land cover in source areas exert pressures on this infrastructure, requiring models to characterize system-wide vulnerability and resilience. Here we present a synthesis of several ongoing and completed studies aimed at advancing our fundamental understanding of and ability to numerically model a system in which biophysical and human components cannot be separated. These studies are set within the Boise and Snake River Basin in the US Pacific Northwest and are organized around the aims of: (1) developing improved understanding and models of the ways that humans interact with each other and with biophysical processes at a range of spatiotemporal scales, and (2) using those models to predict how changes in climate and societal drivers, including in-migration and shifts in agricultural practices, will impact regional hydroclimate and associated ecosystem services. Key findings indicate differential pressures on water availability based on water rights seniority within the Lower Boise River basin under historical conditions, the potential for significantly earlier curtailment of water rights in future decades, and potential changes in agricultural practices in anticipation of future climate changes. This ongoing suite of projects illustrate significant improvements in modeling human modification of the timing and partitioning of hydrologic fluxes. Important challenges and opportunities remain, however, particularly in improving modeling the interactions between and among actors that exert controls on the redistribution of water.

  10. Use of SeaWiFS, MODIS, and MERIS in developing water quality numeric criteria for Florida’s coastal waters

    EPA Science Inventory

    Human activities on land often increase nutrient loads to coastal waters and may cause increased phytoplankton production, algal biomass, and eutrophication. The U. S. Environmental Protection Agency determined that numeric criteria were necessary to protect Florida's coastal wa...

  11. 21 CFR 129.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER General Provisions § 129.3 Definitions. For the... inspected and the water sampled, analyzed, and found to be of a safe and sanitary quality according to... means all water which is sealed in bottles, packages, or other containers and offered for sale for human...

  12. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    USDA-ARS?s Scientific Manuscript database

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted du...

  13. Agricultural applications for remotely sensed evapotranspiration data in monitoring water use, water quality, and water security

    USDA-ARS?s Scientific Manuscript database

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being un...

  14. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  15. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  16. Occurrence of bacteria in Blue Marsh Lake and selected tributaries, Berks County, Pennsylvania; September-October 2001

    USGS Publications Warehouse

    Zimmerman, Michele L.

    2002-01-01

    The Commonwealth of Pennsylvania has water-quality standards that limit the number of specific bacteria in water that is considered safe for recreational use. Bacteria such as fecal streptococci, fecal coliforms, and Escherichia coli (E. coli) are used to assess recreational water quality because they usually live in the intestines of warm-blooded animals. Fecal indicator bacteria commonly are associated with waterborne disease-causing organisms (pathogens). These indicator bacteria are used routinely as a measure of the quality of water for recreational activities such as swimming, boating, and water skiing. If the indicator bacteria are present, effective measures could be taken to prevent the transmission or epidemic outbreak of waterborne diseases as a result of contamination of these waters from human or animal waste.Blue Marsh Lake is on Tulpehocken Creek in Berks County, Pa., and drains a largely agricultural basin. Land use in the basin is approximately 60 percent cropland, and 85 percent of the farms are livestock and poultry farms.The potential sources of fecal bacteria are:geese that inhabit the recreational areas of the lake,humans that visit the Dry Brooks Day Use Area (swimming area), andfarm animals, wastewater facilities, and household septic systems in the basin (bacteria from these sources could enter the lake through tributaries).To meet the recreational water-quality standard, lake water may not have more than 200 colony-forming units (CFU) of fecal coliforms per 100 milliliters (mL). During the week of July 23, 2001, data collected by the U.S. Army Corps of Engineers (USACE) at the swimming area at Blue Marsh Lake showed concentrations of fecal coliforms in the water exceeding the standard. To determine the extent of elevated concentrations of fecal indicator bacteria, further study of the lake and selected tributaries was needed.

  17. Analysis of Water Well Quality Drilling Around Waste Disposal Site in Makassar City Indonesia

    NASA Astrophysics Data System (ADS)

    Maru, R.; Baharuddin, I. I.; Badwi, N.; Nyompa, S.; Sudarso

    2018-02-01

    Clean water is one of human need which is very important in carrying out its life. Therefore, this article analyzes the quality of the well water dug around the landfill. The method used is a well water well sample taken from 4 wells around a landfill taken by a purposive sampling at a different distance. The parameters measured are physical, chemical, and biological properties. The results of the analysis were then compared with the standard of drinking water quality criteria allowed under The Regulation of Health Minister of Indonesia No. 416 year 1990 on the Terms and Supervision of Water Quality of the Minister of Health of the Republic of Indonesia. The result of the research shows that there are two wells whose water quality does not meet the physical requirement i.e Location of Points II and III, based on the construction of wells also does not meet the requirements of the wells in general. While at the well Locations Point I and IV the quality of water physically, chemically and biologically as well as well construction qualify. From the result of this research, the researcher give suggestion of the need to improve the physical condition of dug wells, it is necessary to do the extension to the well water user community for drinking water about the physical condition of the dug well, the need to monitor and supervise the quality of drinking water, and should involve the community to independently meet the needs absolute i.e clean water to drink.

  18. [Local contexts of drinking-water quality surveillance: Brazil and Colombia].

    PubMed

    Guzmán-Barragán, Blanca L; Días Bevilacqua, Paula; Nava-Tovar, Gerardo

    2015-12-01

    Objective This article aims to analyze comparatively the national surveillance systems of water quality for human consumption (DWQS) of Brazil and Colombia, seeking to understand how practices are organized in these countries, along with their limits and possibilities. Methods The National Cross Comparison methodology was used with document analysis of secondary sources, with the purpose of discussing the similarities and differences between the two systems using the WHO’s Guidelines for Drinking Water Quality. Results The legal framework on DWQS in Brazil and Colombia was defined in the 70s and 80s, coinciding with the international visibility of this issue. Thereafter, DWQS practices in Brazil have been defined and organized in a national program, which has only recently started in Colombia. The current Brazilian and Colombian legislations show progress in technical elements that guide surveillance practices, such as the incorporation of risk assessment methodologies. The Colombian legislation defines the regulation of water supply services provision, which is not contemplated in Brazilian legislation. Elements such as decentralization, intersectionality, universality and right to information are included in the legislations of both countries, although further action on DWQS is needed. Conclusions Brazil and Colombia have similarities in the implementation of DWQS, despite being at different points in the implementation timeline. Actions on drinking-water quality surveillance are necessary to guarantee human rights related to the protection of the environment, such as universal access to drinking water, contributing to the promotion of health.

  19. A spatial evaluation of global wildfire-water risks to human and natural systems

    Treesearch

    Francois-Nicolas Robinne; Kevin D. Bladon; Carol Miller; Marc-Andre Parisien; Jerome Mathieu; Mike D. Flannigan

    2017-01-01

    The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for...

  20. QUALITY ASSURANCE FOR METHODS TO DETECT HUMAN ENTERIC VIRUSES IN DRINKING WATER

    EPA Science Inventory

    Surface or groundwaters impacted by untreated or inadequately treated domestic wastes may contain human pathogenic viruses that cause hepatitis, gastroenteritis, meningitis, encephalitis, myocarditis, diabetes, conjunctivitis and temporary or permanent paralysis. These viruses c...

  1. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  2. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa.

    PubMed

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-12-15

    Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Integration of social perceptions, behaviors, and economic valuations of groundwater quality as an ecosystem service following exurban development

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Larson, D. M.; Ohr, C. A.; Kobs-Nawotniak, S. E.; Lohse, K. A.; Lybecker, D.; Hale, R. L.; Stoutenborough, J.

    2015-12-01

    Millions of people rely on groundwater as a key, provisioning ecosystem service (ES). Our previous data suggested that drinking water nitrate concentrations and exurban development have significantly increased in the last three decades in Pocatello, Idaho, USA. Increased nitrate can lead to changes in ES and human values (such as water quality, people's knowledge, and housing values). We predicted people who tested their water quality would be aware of nitrate contamination and its potential to affect their housing prices, and they would choose to invest in home drinking water treatment systems. To test these hypotheses, we measured nitrate concentrations in hundreds of drinking water wells in years 1985, 1994, 2004, and 2015. We conducted a randomized public survey to determine the degrees to which: (1) people tested their private well water for nitrate and (2) were concerned about health issues related to contamination; (3) how important water quality is for determining local property values; and (4) if people treat their drinking water. We then developed a biophysical model to understand how exurban growth, local geology, and time influenced groundwater nitrate. Finally, we applied an economic, hedonic model to determine if groundwater nitrate concentrations negatively correlated to property values. Aquifer boundaries, slope, rock and soil type were significant predictors of nitrate (ordinary least squares, α <0.05). The hedonic model suggested that although nitrate and local housing values were spatially heterogeneous and increasing through time, exurban growth and nitrate alone were not strong predictors of water quality or property values. We also present an integrated biophysical, economic, and social model to better understand people's perceptions and behaviors of local nitrate pollution. Interdisciplinary ES and valuation may require multiple data types and integrated models to understand how ES and human values are influenced by exurban growth.

  4. The impact of hospital and urban wastewaters on the bacteriological contamination of the water resources in Kinshasa, Democratic Republic of Congo.

    PubMed

    Kilunga, Pitchouna I; Kayembe, John M; Laffite, Amandine; Thevenon, Florian; Devarajan, Naresh; Mulaji, Crispin K; Mubedi, Josué I; Yav, Zéphirin G; Otamonga, Jean-Paul; Mpiana, Pius T; Poté, John

    2016-10-14

    Although the United Nations General Assembly recognized in 2010 the right to safe and clean drinking water and sanitation as a human right that is essential to the full enjoyment of life and all other human rights, the contamination of water supplies with faecal pathogens is still a major and unsolved problem in many parts of the world. In this study, faecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enterococcus (ENT), were quantified over the period of June/July 2014 and June/July 2015 to assess the quality of hospital effluents (n = 3: H1, H2 and H3) and of rivers receiving wastewaters from the city of Kinshasa, Democratic Republic of Congo. The water and sediment samples from the river-receiving systems were collected in, upstream and downstream of the hospital outlet pipe (HOP) discharge. The analysis of E. coli and ENT in water and sediment suspension was performed using the cultural membrane filter method. The FIB characterization was performed for general E. coli, Enterococcus faecalis(E. faecalis) and human-specific Bacteroides by PCR using specific primers. The results revealed very high FIB concentration in the hospital effluent waters, with E. coli reaching the values of 4.2 × 10(5), 16.1 × 10(5) and 5.9 × 10(5) CFU 100 mL(-1), for the hospital effluents from H1, H2, and H3, respectively; and Enterococcus reaching the values of 2.3 × 10(4), 10.9 × 10(4) and 4.1 × 10(4) CFU 100 mL(-1), respectively. Interestingly, the FIB levels in the water and sediment samples from river-receiving systems are spatially and temporally highly variable and present in some samples with higher values than the hospital effluents. The PCR assays for human-specific Bacteroides HF183/HF134 further indicate that more than 98% of bacteria were from human origin. The results of this research therefore confirm the hypothesis of our previous studies, indicating that in developing countries (e.g., Democratic Republic of Congo and South India), the hospital effluent waters can be a significant source of the deterioration of the bacteriological quality for urban rivers. The approach used in this investigation can be further used to decipher the pollution of water resources by human faecal contamination. The results of this research will help to better understand the microbiological pollution problems in river-receiving systems and will guide municipality decisions on improving the urban water quality.

  5. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of water in Albemarle-Pamlico Sounds, the second largest estuarine system in the United States.

  6. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  7. National Water-Quality Assessment Program: Central Arizona Basins

    USGS Publications Warehouse

    Cordy, Gail E.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policymakers and managers at the National, State, and local levels. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the national assessment. The 60 study units range in size from 1,000 to about 60,000 mi2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional studies started in 1994, and 20 more are planned to start in 1997. The Central Arizona Basins study unit began assessment activities in 1994.

  8. Alaska Native Villages and Rural Communities Water Grant Program

    EPA Pesticide Factsheets

    Significant human health and water quality problems exist in Alaska Native Village and other rural communities in the state due to lack of sanitation. To address these issues, EPA created the Alaska Rural and Native Villages Grant Program.

  9. Current status and future trends in Cryptosporidium and Giardia epidemiology in Malaysia.

    PubMed

    Lim, Y A L; Ahmad, R A; Smith, H V

    2008-06-01

    Cryptosporidium and Giardia are major causes of diarrhoeal diseases of humans worldwide, and are included in the World Health Organisation's 'Neglected Diseases Initiative'. Cryptosporidium and Giardia occur commonly in Malaysian human and non-human populations, but their impact on disease, morbidity and cost of illness is not known. The commonness of contributions from human (STW effluents, indiscriminate defaecation) and non-human (calving, lambing, muck spreading, slurry spraying, pasturing/grazing of domestic animals, infected wild animals) hosts indicate that many Malaysian environments, particularly water and soil, are sufficiently contaminated to act as potential vehicles for the transmission of disease. To gain insight into the morbidity and mortality caused by human cryptosporidiosis and giardiasis, they should be included into differential diagnoses, and routine laboratory testing should be performed and (as for many infectious diseases) reported to a centralised public health agency. To understand transmission routes and the significance of environmental contamination better will require further multidisciplinary approaches and shared resources, including raising national perceptions of the parasitological quality of drinking water. Here, the detection of Cryptosporidium and Giardia should be an integral part of the water quality requirement. A multidisciplinary approach among public health professionals in the water industry and other relevant health- and environment-associated agencies is also required in order to determine the significance of Cryptosporidium and Giardia contamination of Malaysian drinking water. Lastly, adoption of validated methods to determine the species, genotype and subgenotype of Cryptosporidium and Giardia present in Malaysia will assist in developing effective risk assessment, management and communication models.

  10. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    USGS Publications Warehouse

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).

  11. Assessment of groundwater quality and health risk in drinking water basin using GIS.

    PubMed

    Şener, Şehnaz; Şener, Erhan; Davraz, Ayşen

    2017-02-01

    Eğirdir Lake basin was selected as the study area because the lake is the second largest freshwater lake in Turkey and groundwater in the basin is used as drinking water. In the present study, 29 groundwater samples were collected and analyzed for physico-chemical parameters to determine the hydrochemical characteristics, groundwater quality, and human health risk in the study area. The dominant ions are Ca 2+ , Mg 2+ , HCO 3 2- , and SO 4 2 . According to Gibbs plot, the predominant samples fall in the rock-water interaction field. A groundwater quality index (WQI) reveals that the majority of the samples falls under good to excellent category of water, suggesting that the groundwater is suitable for drinking and other domestic uses. The Ca-Mg-HCO 3 , Ca-HCO 3 , Ca-SO 4 -HCO 3 , and Ca-Mg-HCO 3 -SO 4 water types are the dominant water types depending on the water-rock interaction in the investigation area. Risk of metals to human health was then evaluated using hazard quotients (HQ) by ingestion and dermal pathways for adults and children. It was indicated that As with HQ ingestion >1 was the most important pollutant leading to non-carcinogenic concerns. It can be concluded that the highest contributors to chronic risks were As and Cr for both adults and children.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S.

    Louisiana, now in a developmental stage of policy and planning, has completed a project aimed at reducing hazardous releases of air toxics in thee state. The state is also conducting a Comparative Risk Project and is using risk assessment practices to develop its waste quality standards. In developing an air toxic list, Louisiana incorporated four major criteria into the ranking: emission levels, human health effects, potential population exposure, and persistence or accumulation in the environment. For the human health effects criterion, data for each substance was gathered from numerous sources, although the Integrated Risk Information System (IRIS) database was usedmore » as a primary source for toxicological information. Following guidelines established by the Environmental Protection Agency (EPA), the Office of Water Resources, Water Pollution Control Division, has developed numerical criteria for human health protection based on risk assessment procedures in the 1989 Water Quality Standards Revision. Currently over 30 toxic substances have risk-based criteria for th protection of human health in the standards. Numerical criteria were calculated for carcinogenic substances having an EPA Classification of A, B1, B2, or C. Cancer class designations along with cancer potency slopes and reference doses were extracted from the IRIS database, with the exception of those chemicals that had not been assessed in IRIS as of December 1, 1988. The parameters necessary for calculating human health criteria for the missing chemicals were taken from 1980, 1984, and 1985 ambient water quality criteria documents: data on bioconcentration factors were included. Currently, Louisiana is working on a Comparative Risk Project, a ranking of the environmental issues in the state relative to potential risk to the public, which is the basis for a widespread 1991 public outreach effort.« less

  13. Reconnaissance of surface-water and ground-water quality at the Lincoln Boyhood National Memorial near Lincoln City, Indiana, 2001-02

    USGS Publications Warehouse

    Buszka, Paul M.; Fowler, Kathleen K.

    2005-01-01

    In cooperation with the National Park Service, the U.S. Geological Survey investigated water quality of key water bodies at the Lincoln Boyhood National Memorial near Lincoln City in southwestern Indiana. The key water bodies were a stock pond, representing possible nonpoint agricultural effects on water quality; an ephemeral stream, representing the water quality of drainage from forested areas of the park; parking-lot runoff, representing water quality related to roads and parking lots; an unnamed ditch below the parking lot, representing the water quality of drainage from the parking lot and from an adjacent railroad track; and Lincoln Spring, a historical ground-water source representing ground-water conditions near a former diesel-fuel-spill site along a rail line. Water samples were analyzed for pH, temperature, specific conductance, and dissolved oxygen and for concentrations of selected major ions and trace metals, nutrients, organic constituents, and Escherichia coli bacteria. Surface-water-quality data of water samples from the park represent baseline conditions for the area in relation to the data available from previous studies of area streams. Specific-conductance values and concentrations of most major ions and various nutrients in surface-water samples from the park were smaller than those reported for samples collected in other USGS studies in areas adjacent to the park. Water-quality-management issues identified by this investigation include potentially impaired water quality from parking-lot runoff, unknown effects on surface-water quality from adjacent railroads, and the potential impairment of water quality in Lincoln Spring from human influences. Parking-lot runoff is a source of calcium, alkalinity, iron, lead, and organic carbon in the water samples from the unnamed ditch. Detection of small concentrations of petroleum hydrocarbons in water from Lincoln Spring could indicate residual contamination from a 1995 diesel-fuel spill and cleanup. The concentration of nitrite plus nitrate in water from Lincoln Spring was 16.5 milligrams per liter as nitrogen, greater than the State of Indiana standard for nitrate in drinking water (10 milligrams per liter as nitrogen). Lead concentrations in samples from the stock pond, parking-lot runoff, and the unnamed ditch exceeded the Indiana chronic aquatic criteria.

  14. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  15. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China.

    PubMed

    Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying

    2012-05-15

    Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    PubMed

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six representative 'sentinel' sites. The correlation coefficient between presumptive E. coli and phages of Bacteroides GB-124 was very small (r = 0.05) whilst that between turbidity and suspended solids was high (r = 0.62). Variations in climate, animal and anthropogenic interferences were all, either directly or indirectly, related to faecal contamination. The findings show the importance of meteorological conditions, such as storm events, on microbial water quality, and suggest that any future increases in the frequency of storm events (associated with climate change) are likely to result in a greater incidence of FIO/pathogen loads. This low-cost approach could help to predict spatio-temporal 'hotspots' of elevated waterborne disease risk. The work also represents an important step towards integrating novel MST tools into river catchment modelling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Water-quality monitoring of Sweetwater Reservoir

    USGS Publications Warehouse

    Majewski, Michael

    2001-01-01

    Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.

  18. Assessment of water quality index of bore well water samples from some selected locations of South Gujarat, India.

    PubMed

    Tripathi, S; Patel, H M; Srivastava, P K; Bafna, A M

    2013-10-01

    The present study calculates the water quality index (WQI) of some selected sites from South Gujarat (India) and assesses the impact of industries, agriculture and human activities. Chemical parameters were monitored for the calculation of WQI of some selected bore well samples. The results revealed that the WQI of the some bore well samples exceeded acceptable levels due to the dumping of wastes from municipal, industrial and domestic sources and agricultural runoff as well. Inverse Distance Weighting (IDW) was implemented for interpolation of each water quality parameter (pH, EC, alkalinity, total hardness, chloride, nitrate and sulphate) for the entire sampled area. The bore water is unsuitable for drinking and if the present state of affairs continues for long, it may soon become an ecologically dead bore.

  19. [A case study regarding the technical and public health feasibility of collecting water from fog].

    PubMed

    García-Ubaque, César A; Vaca-Bohórquez, Martha L; García-Ubaque, Juan C

    2013-01-01

    Evaluating the collection of water for human consumption from fog nets in San Antonio (Cundinamarca department). Water was collected from fog using a prototype 6 m²sensor unit which was installed In the area for 53 days; this water was analysed to assess its quality regarding human consumption. The collection area's average daily volume was 43.26 L/day and the parameters evaluated met the minimum values established by local regulations for drinking water (RAS 2000), except for pH. This technique represents an alternative for obtaining water fit for human consumption and can be scaled-up to produce the quantity needed for communities living in low rainfall areas. It can thereby lead to improving such populations' health conditions. Its economic feasibility should thus be assessed regarding its implementation and sustainability.

  20. Five domains of environmental quality and birth outcomes

    EPA Science Inventory

    Human health is affected by simultaneous exposure to stressors and amenities, but research employs single exposure models. To address this, we constructed a county-level Environmental Quality Index (EQI) with data representing five environmental domains (air, water, land, built a...

  1. Modelling Regional Hotspots of Water Pollution Induced by Salinization

    NASA Astrophysics Data System (ADS)

    Malsy, M.; Floerke, M.

    2014-12-01

    Insufficient water quality is one of the main global topics causing risk to human health, biodiversity, and food security. At this, salinization of water and land resources is widely spread especially in arid to semi-arid climates, where salinization, often induced by irrigation agriculture, is a fundamental aspect of land degradation. High salinity is crucial to water use for drinking, irrigation, and industrial purposes, and therefore poses a risk to human health and ecosystem status. However, salinization is also an economic problem, in particular in those regions where agriculture makes a significant contribution to the economy and/or where agriculture is mainly based on irrigation. Agricultural production is exposed to high salinity of irrigation water resulting in lower yields. Hence, not only the quantity of irrigation water is of importance for growing cops but also its quality, which may further reduce the available resources. Thereby a major concern for food production and security persists, as irrigated agriculture accounts for over 30% of the total agricultural production. In this study, the large scale water quality model WorldQual was applied to simulate recent total dissolved solids (TDS) loadings and in-stream concentrations from point and diffuse sources to get an insight on potential environmental impacts as well as risks to food security. Regional focus in this study is on developing countries, as these are most threatened by water pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use were examined, indicating limitations to crop production. For this purpose, model simulations were conducted for the year 2010 to show the recent status of surface water quality and to identify hotspots and main causes of pollution. Our results show that salinity hotspots mainly occur in peak irrigation regions as irrigated agriculture is by far the dominant sector contributing to water abstractions as well as TDS loadings. Additionally, large urban areas are initially loading hotspots and pollution prevention becomes important as point sources are dependent on sewer connection rates. River discharge plays a crucial role due to the dilution potential, especially in semi-arid to arid regions and in terms of seasonal variability.

  2. Long-Term Effects of Changing Land Use Practices on Surface Water Quality in a Coastal River and Lagoonal Estuary

    NASA Astrophysics Data System (ADS)

    Rothenberger, Meghan B.; Burkholder, Joann M.; Brownie, Cavell

    2009-09-01

    The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992-2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.

  3. IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES

    EPA Science Inventory

    Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to several drinking water disinfection byproducts (DBPs), including DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks o...

  4. Fecal indicator bacteria and Salmonella in ponds managed as bird habitat, San Francisco Bay, California, USA

    USGS Publications Warehouse

    Shellenbarger, G.G.; Athearn, N.D.; Takekawa, John Y.; Boehm, A.B.

    2008-01-01

    Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.

  5. Evaluation of Military Field-Water Quality. Volume 2. Constituents of Military Concern from Natural and Anthropogenic Sources. Part 3. Inorganic Chemicals and Physical Properties

    DTIC Science & Technology

    1988-01-01

    essential for the nutrition of certain laboratory animals, this essentiality has not been substantiated for humans. 40 Considerable information...ingestion of canned fruit juice . Therefore, 1 g/d of lead consumed per day over a period of 35 days can be considered an adequate estimation of a lethal dose...Chemical Species and Physical Properties and Their Estimated MLC Values in Field Water Our review of the water-quality monitoring data revealed 40 common

  6. Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: estimation of bathing-associated disease risks.

    PubMed

    Betancourt, Walter Q; Duarte, Diana C; Vásquez, Rosa C; Gurian, Patrick L

    2014-08-15

    Sewage is a major contributor to pollution problems involving human pathogens in tropical coastal areas. This study investigated the occurrence of intestinal protozoan parasites (Giardia and Cryptosporidium) in tropical recreational marine waters contaminated with sewage. The potential risks of Cryptosporidium and Giardia infection from recreational water exposure were estimated from the levels of viable (oo) cysts (DIC+, DAPI+, PI-) found in near-shore swimming areas using an exponential dose response model. A Monte Carlo uncertainty analysis was performed in order to determine the probability distribution of risks. Microbial indicators of recreational water quality (enterococci, Clostridium perfringens) and genetic markers of sewage pollution (human-specific Bacteroidales marker [HF183] and Clostridium coccoides) were simultaneously evaluated in order to estimate the extent of water quality deterioration associated with human wastes. The study revealed the potential risk of parasite infections via primary contact with tropical marine waters contaminated with sewage; higher risk estimates for Giardia than for Cryptosporidium were found. Mean risks estimated by Monte Carlo were below the U.S. EPA upper bound on recreational risk of 0.036 for cryptosporidiosis and giardiasis for both children and adults. However, 95th percentile estimates for giardiasis for children exceeded the 0.036 level. Environmental surveillance of microbial pathogens is crucial in order to control and eradicate the effects that increasing anthropogenic impacts have on marine ecosystems and human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Using a Landscape Approach to Strengthen Resiliency in Coastal Watersheds

    EPA Science Inventory

    Healthy and resilient watersheds provide critical ecosystem service (ES) benefits such as water quality protection for human uses (e. g. drinking water, recreation). Intact wetlands, forests, and other vegetated areas filter pollutants from runoff and atmospheric deposition, supp...

  8. HARMFUL ALGAL BLOOMS AS INDICATORS OF ECOSYSTEM CONDITION

    EPA Science Inventory

    There are approximately 40 species of microalgae inhabiting coastal waters in the Gulf of Mexico that produce or potentially can produce biotoxins that negatively impact aquatic ecosystems, human health, and local economics. While nutrient enrichment and reduced water quality may...

  9. Protecting Surface Water Systems on Forest Sites Through Herbicide Use

    Treesearch

    J.L. Michael; H.L. Gibbs; J.B. Fischer; E.C. Webber

    2000-01-01

    Sediment, nutrients, and pesticides are universally accepted as the greatest threats to surface water quality world-wide. Sedimentation in surface waters is a natural phenomenon, but is magnified by human activities. Intensive forest management practices, particularly road building, harvesting and planting site preparation, result in the greatest increases in erosion...

  10. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  11. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    PubMed

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  12. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  13. Modeling groundwater flow and quality

    USGS Publications Warehouse

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  14. Tracking and forecasting the Nation’s water quality - Priorities and strategies for 2013-2023

    USGS Publications Warehouse

    Rowe, Gary L.; Gilliom, Robert J.; Woodside, Michael D.

    2013-01-01

    Water-quality issues facing the Nation are growing in number and complexity, and solutions are becoming more challenging and costly. Key factors that affect the quality of our drinking water supplies and ecosystem health include contaminants of human and natural origin in streams and groundwater; excess nutrients and sediment; alteration of natural streamflow; eutrophication of lakes, reservoirs, and coastal estuaries; and changes in surface and groundwater quality associated with changes in climate, land and water use, and management practices. Tracking and forecasting the Nation's water quality in the face of these and other pressing water-quality issues are important goals for 2013-2023, the third decade of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. In consultation with stakeholders and the National Research Council, a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing assessment of the Nation's freshwater quality and aquatic ecosystems. The plan continues strategies that have been central to the NAWQA program's long-term success, but it also makes adjustments to the monitoring and modeling approaches NAWQA will use to address critical data and science information needs identified by stakeholders. This fact sheet describes surface-water and groundwater monitoring and modeling activities that will start in fiscal year 2013. It also provides examples of the types of data and information products planned for the next decade, including (1) restored monitoring for reliable and timely status and trend assessments, (2) maps and models that show the distribution of selected contaminants (such as atrazine, nitrate, and arsenic) in streams and aquifers, and (3) Web-based modeling tools that allow managers to evaluate how water quality may change in response to different scenarios of population growth, climate change, or land-use management.

  15. Biology as an integrated component of the U.S. Geological Survey's National Water-Quality Assessment Program

    USGS Publications Warehouse

    Meador, Michael R.; Gurtz, Martin E.

    1994-01-01

    The U.S. Geological Survey?s (USGS) National Water-Quality Assessment (NAWQA) Program is designed to integrate chemical, physical, and biological data to assess the status of and trends in the Nation?s water quality at local, regional, and national levels. The Program consists of 60 study units (major river basins and large parts of aquifers) located throughout the Nation (fig. 1). Data are collected at stream, river, and ground-water sites that represent the Nation?s mix of major natural and human factors that influence water quality. Biological data are collected from streams and rivers, and include (1) fish and other aquatic organisms whose tissues are analyzed for a wide array of chemical contaminants; (2) characterizations of algal, benthic invertebrate, and fish communities; and (3) characterizations of vegetation growing in streams and along streambanks. These biological data are collected in conjunction with physical (streamflow, characterizations of instream, bank, and flood-plain habitats) and chemical data.

  16. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  17. Optimum operation of restoration techniques for eutrophic water bodies

    NASA Astrophysics Data System (ADS)

    Hagen, N. M.; Kleeberg, H.-B.

    1994-05-01

    Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.

  18. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at depths greater than a few hundred feet may be naturally too salty for human consumption. The leaking and spilling of fuel and chemical products and the disposal of industrial wastes has degraded the quality of ground water at numerous sites.

  19. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  20. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-01-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain‐fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ∼90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater‐fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain‐fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade‐offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  1. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  2. Reality check of socio-hydrological interactions in water quality and ecosystem management

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-04-01

    Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data from Swedish waters support this hypothesis, by showing that the first WFD management cycle 2009-2015 has led to only slight changes in measured nutrient concentrations, with moderate-to-bad status waters mostly undergoing concentration increases. These management results are in direct contrast to the WFD management goals that ecosystem status in all member-state waters must be improved to at least good level, and in any case not be allowed to further deteriorate. In general, the present results show that societal approaches to ecosystem status classification, monitoring and improvement may need a focus shift for improved identification and quantification of the human-driven components of nutrient inputs, concentrations and loads in water environments. Dominant hydro-climatic change drivers and effects must of course also be understood and accounted for. However, adaptation to hydro-climatic changes should be additional to and aligned with, rather than instead of, necessary mitigation of human-driven eutrophication. The present case results call for further science-based testing and evidence of societal water quality and ecosystem management actually targeting and following up the potential achievement of such mitigation.

  3. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    PubMed

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Water quality, health, and human occupations.

    PubMed

    Blakeney, Anne B; Marshall, Amy

    2009-01-01

    To introduce evidence of the critical link between water quality and human occupations. A participatory action research design was used to complete a three-phase project. Phase 1 included mapping the watershed of Letcher County, Kentucky. Phase 2 consisted of surveying 122 Letcher County health professionals. Phase 3, the primary focus of this article, consisted of interviews with Letcher County adults regarding their lived experiences with water. The Occupational Therapy Practice Framework: Domain and Process (American Occupational Therapy Association, 2002) was used to structure questions. The Model of Occupational Justice provided the theoretical framework for presentation of the results. The watershed in Letcher County, Kentucky, is polluted as a result of specific coal mining practices and a lack of adequate infrastructure. As a result, citizens experience occupational injustice in the forms of occupational imbalance, occupational deprivation, and occupational alienation.

  5. Soil agroecosystem health: current challenges and future opportunities

    USDA-ARS?s Scientific Manuscript database

    Soil health is a broad concept that emphasizes the ecological importance of soils, including sustained plant and animal productivity, human health, and environmental quality. In the United States, soil degradation and associated water quality problems have been widely documented. Improvement and mai...

  6. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that stream water in the study basins is affected by septic tank effluent. Fecal coliform bacteria concentrations were measured on a monthly basis; of 115 samples, 63 percent exceeded the State of Florida fecal coliform bacteria standard for Class III surface waters of 800 colonies per 100 milliliters of water on any 1 day. Fecal coliform bacteria concentrations ranged from less than 20 colonies per 100 milliliters of sample to greater than or equal to 160,000 colonies per 100 milliliters of sample. Antibiotic resistance patterns of fecal coliform bacteria were used to identify the sources of fecal coliform bacteria. Significant sources of fecal coliform bacteria included wild animals, dogs, and humans. A majority of the fecal coliform bacteria were classified to be from human sources. Because the primary source of fecal coliform bacteria is from human sources, and most likely septic tank effluent, management of human sources may substantially improve microbiological water quality in both the Fishing Creek and South Branch Big Fishweir Creek basins.

  7. Biogeosystem technique - the fundamental base of modern Water Policy and Management

    NASA Astrophysics Data System (ADS)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Minkina, Tatiana; Solntseva, Natalia; Skovpen, Andrey; Zarmaev, Ali; Jusupov, Vaha; Lohmanova, Olga

    2014-05-01

    Freshwater conservation is the problem of world water strategy. Water is intended not only for human consumption but also for functions of the biosphere - the only place where humanity can exist. To maintain the quality of biosphere is very relevant. An important property of biosphere is ability of soil to provide the synthesis of fresh living biological material by plants. There are few places in the world where exists a natural high level of biological production. Therefore, irrigation widely applies. Irrigation provides an increase of crops, but the imitating gravitational frontal isotropic-continual irrigation paradigm has the adverse effects on soils and landscapes. So irrigation in the past history of humanity was one of the causes for civilization's downfall, Sumer in particular, now irrigation causes a humanitarian catastrophe in Central Asia. Irrigation is the world main consumer of water. Leading cause of negative results of irrigation in biosphere is the irrigation paradigm defect. By artificial watering is imitated a natural hydrological regime of the land. The water flows down into soil through the soil surface. Or groundwater flows up through the soil bottom. In either case, a natural or standard artificial soil moisturizing amplifies the mass transfer in soil continuum. At initial soil stage the mass transfer in soil continuum plays positive role. Adverse substances are leached, in particular soluble salts. Fine material and organic particles determining soil fertility are accumulating. However, after a soil genesis initial stage the mass transfer through soil continuum plays negative role. Irrigation excess water flow into soil reduces the productivity of cultivated plants as compared to the optimum soil solution conditions. The excess soil moisture leads to excess transpiration, evaporation, infiltration, destroys the soil disperse system composition, forms inactive dead-end pores, leaches useful biological and other substances synthesized in soil out from active biosphere stage to vadose zone. These substances are entering the undesired stage of sedimentation and lithogenesis. Such adverse events are enhanced by irrigation. As a result, up to 80-90% of the fresh water taken for irrigation from lakes, rivers, storage reservoirs, desalinators are lost useless entailing economic losses. As a result of irrigation the quality of water is deteriorated as well as the quality of soil and landscape. A quality of human environment and a quality of biosphere as a whole is reduced. It is much more dangerous than economic losses. The irrigation paradigm shift is essential for successful water policy and water management in modern world. In a framework of Biogeosystem technics the new intrasoil pulse continuous-discrete paradigm of irrigation is developed. Water is supplied by small discrete portions into individual volumes of a soil continuum without excess soil mass transfer, transpiration, evaporation and seepage. New paradigm of irrigation optimizes plant growth, reduces consumption of water per unit of biological product, the yield increases. It provides the soil and landscape conservation, fresh water - the global deficit - saving up to 10-20 times, biological productivity and sustainability of biosphere. Intrasoil pulse continuous-discrete robotic irrigation technologies match the nowadays noosphere technological platform.

  8. Importance of return flow as a component of water use

    USGS Publications Warehouse

    Trotta, L.C.; Horn, M.S.

    1990-01-01

    Understanding the relation between the hydrologjc cycle and water use is important for effective water-resources management. The hydrologic cycle is the natural pathway of water from evaporation to precipitation to infiltration or runoff and to storage from which evaporation can again occur. The science of water use is the study of human influences on the hydrologic cycle. Human activities affect the hydrologic cycle by changing the quantity, distribution, and quality of available water. Quantifying return flow is useful to water managers in evaluating such changes. Return flow is often thought of as what runs down the drain, or what is leftover after the water's purpose has been served. As innocuous as that may sound, return flow plays a significant part in the overall water-use picture.

  9. Microbiological quality of ice and ice machines used in food establishments.

    PubMed

    Hampikyan, Hamparsun; Bingol, Enver Baris; Cetin, Omer; Colak, Hilal

    2017-06-01

    The ice used in the food industry has to be safe and the water used in ice production should have the quality of drinking water. The consumption of contaminated ice directly or indirectly may be a vehicle for transmission of pathogenic bacteria to humans producing outbreaks of gastrointestinal diseases. The objective of this study was to monitor the microbiological quality of ice, the water used in producing ice and the hygienic conditions of ice making machines in various food enterprises. Escherichia coli was detected in seven (6.7%) ice and 23 (21.9%) ice chest samples whereas E. coli was negative in all examined water samples. Psychrophilic bacteria were detected in 83 (79.0%) of 105 ice chest and in 68 (64.7%) of 105 ice samples, whereas Enterococci were detected only in 13 (12.4%) ice samples. Coliforms were detected in 13 (12.4%) water, 71 (67.6%) ice chest and 54 (51.4%) ice samples. In order to improve the microbiological quality of ice, the maintenance, cleaning and disinfecting of ice machines should be carried out effectively and periodically. Also, high quality water should be used for ice production.

  10. Taking the pulse of Colorado's Front Range: Developing regional indicators of environmental and quality of life condition

    USGS Publications Warehouse

    Baron, Jill S.

    2005-01-01

    Indicators are routinely used to report the status and trends of human health, economy, educational achievement, and quality of life. Some environmental indicators, such as for water and air quality, are routinely reported and used to inform personal, management, or policy decisions. Other environmental indicators, particularly those that do not relate directly to human well-being, have been harder to define, interpret, or use. These indicators may be just as useful and important in describing the ability to provide ecosystem good and services, or less tangible quality of life measures, but they may be suspect because of the quality of data or even the source of the information.

  11. Effectiveness of birds, butterflies, dragonflies, damselflies and invertebrates as indicators of freshwater ecological integrity

    NASA Astrophysics Data System (ADS)

    Chama, Lackson; Siachoono, Stanford

    2015-04-01

    Human activities such as mining and agriculture are among the major threats to biodiversity globally. Discharges from these activities have been shown to negatively affect ecological processes, leading to ecosystem degradation and species loss across biomes. Freshwater systems have been shown to be particularly vulnerable, as discharges tend to spread rapidly here than in other ecosystems. Hence, there is need to routinely monitor the quality of these systems if impacts of discharges from human activities are to be minimised. Besides the use of conventional laboratory techniques, several studies have recently shown that organisms such as birds, butterflies, dragonflies, damselflies and invertebrates are also good indicators of ecological integrity and should therefore be used as alternatives to monitoring the quality of various ecosystems. However, most of these studies have only studied one or two of these organisms against ecosystem health, and it remains unclear whether all of them respond similarly to changes in different drivers of environmental change. We investigated the response of the diversity of birds, butterflies, dragonflies, damselflies and invertebrates to changing water quality along the Kafue River in Zambia. Sampling was done at 13 different sampling points stretching over a distance of 60Km along the river. At each point, both the diversity of each organism and the water quality were assessed. Water quality was determined by testing its temperature, pH, redox, electrical conductivity, turbidity and copper parameters. We then tested how the diversity of each organism responded to changes in these water parameters. All water parameters varied significantly across sampling points. The diversity of birds and damselflies remained unaffected by any of the water parameters used. However, the diversity of butterflies reduced with increasing pH, turbidity and copper, albeit it remained unaffected by other water parameters. The diversity of dragonflies reduced with increasing redox, electrical conductivity and turbidity, but remained unaffected by other water parameters. The diversity of invertebrates reduced with increasing redox and copper, but remained unaffected by other water parameters. Generally, these results suggest that these organisms, especially butterflies, dragonflies and invertebrates can indeed be used as indicators of changing water quality and ecological integrity in particular. However, their use is limited to specific, rather than, all water parameters. Therefore, the decision as to which organisms to use should largely depend on which water quality parameters are to be tested. Key words: temperature; pH; redox; electrical conductivity; turbidity; copper

  12. Regional status assessment of stony corals in the U.S. Virgin Islands

    EPA Science Inventory

    States may protect coral reefs using biological water quality standards outlined by the Clean Water Act. This requires biological assessments with indicators sensitive to human disturbance and regional, probability based survey designs. Stony coral condition was characterized on ...

  13. [Water quality evaluation in rural areas of Lavras, Minas Gerais, Brazil, 1999-2000].

    PubMed

    Rocha, Christiane Maria Barcellos Magalhães da; Rodrigues, Luciano Dos Santos; Costa, Claudionor C; de Oliveira, Paulo Roberto; da Silva, Israel José; de Jesus, Eder Ferreira Moraes; Rolim, Renata G

    2006-09-01

    In addition to personal interviews, laboratory analyses were performed using 80 water samples from 45 rural areas that are crossed by the Agua Limpa and Santa Cruz streams close to the city of Lavras, southern Minas Gerais State. The results allowed comparing the quality of water used for agriculture and the identification of determinant factors. The Agua Limpa stream mostly crosses an area used primarily for housing and characterized by low schooling. Many houses are supplied by shallow water wells and have ordinary cesspits for human waste disposal. All springs are polluted. The Santa Cruz stream displays a different scenario. The land is used mostly for agricultural purposes. Most owners live in town, with widely varied levels of school, from none to university. The houses are supplied by surface water. Most of the springs are polluted. The perception by both home and land owners concerning quality of the drinking water is determined solely by the water's physical and organoleptic characteristics. Sanitary parameters are not taken into account. Moreover, there is no relationship between fecal contamination and the type of spring. Land use and anthropic activity are far more important than the type of spring for water quality.

  14. Climate change, water resources and child health.

    PubMed

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  15. Sensory politics: The tug-of-war between potability and palatability in municipal water production.

    PubMed

    Spackman, Christy; Burlingame, Gary A

    2018-06-01

    Sensory information signaled the acceptability of water for consumption for lay and professional people into the early twentieth century. Yet as the twentieth century progressed, professional efforts to standardize water-testing methods have increasingly excluded aesthetic information, preferring to rely on the objectivity of analytic information. Despite some highly publicized exceptions, consumer complaints remain peripheral to the making and regulating of drinking water. This exclusion is often attributed to the unreliability of the human senses in detecting danger. However, technical discussions among water professionals during the twentieth century suggest that this exclusion is actually due to sensory politics, the institutional and regulatory practices of inclusion or exclusion of sensory knowledge from systems of action. Water workers developed and turned to standardized analytical methods for detecting chemical and microbiological contaminants, and more recently sensory contaminants, a process that attempted to mitigate the unevenness of human sensing. In so doing, they created regimes of perception that categorized consumer sensory knowledge as aesthetic. By siloing consumers' sensory knowledge about water quality into the realm of the aesthetic instead of accommodating it in the analytic, the regimes of perception implemented during the twentieth century to preserve health have marginalized subjective experiences. Discounting the human experience with municipal water as irrelevant to its quality, control and regulation is out of touch with its intended use as an ingestible, and calls for new practices that engage consumers as valuable participants.

  16. Cytotoxicity and genotoxicity of Guaribas river water (Piauí, Brazil), influenced by anthropogenic action.

    PubMed

    de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva E Sousa, Louridânya; de Moura Holanda, Mércia; de Macedo Vieira Lima, Ataíde; de Oliveira, Vitor Alves; da Silva, Felipe Cavalcanti Carneiro; de Morais Lima, Leonardo Henrique Guedes; Matos, Leomá Albuquerque; de Moura Dantas, Sandra Maria Mendes; de Aguiar, Raí Pablo Sousa; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Junior, Horácio Ferreira Júlio

    2017-06-01

    In general, tropical rivers have a great impact on human activities. Bioaccumulation of toxins is a worldwide problem nowadays and has been, historically, overlooked by the supervisory authorities. This study evaluated cytogenotoxic effects of Guaribas river (a Brazilian river) water during dry and rainy seasons of 2014 by using the Allium cepa test system. The toxicogenetic variables, including root growth, mitotic index, and chromosomal aberrations, were analyzed in meristematic cells of A. cepa exposed to water samples taken from the up-, within, and downstream of the city Picos (state: Piauí). The physical-chemical parameters were also analyzed to explain water quality and possible anthropogenic action. Additionally, the presence of heavy metals was also analyzed to explain water quality and possible damaging effects on eukaryotic cells. The results suggest that the river water exerted cytotoxic, mutagenic, and genotoxic effects, regardless of the seasons. In addition, Guaribas river presented physico-chemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage, industrial, and local agriculture). The genetic damage was positively correlated with higher levels of heavy metals. The pollution of the Guaribas river water may link to the chemical contamination, including the action of heavy metals and their impacts on genetic instability in the aquatic ecosystem. In conclusion, necessary steps should be taken into account for further toxicogenetic studies of the Guaribas river water, as it has an influence in human health of the same region of Brazil.

  17. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  18. Cladophora in the Great Lakes: impacts on beach water quality and human health.

    PubMed

    Verhougstraete, M P; Byappanahalli, M N; Rose, J B; Whitman, R L

    2010-01-01

    Cladophora in the Great Lakes grows rapidly during the warm summer months, detaches, and becomes free-floating mats as a result of environmental conditions, eventually becoming stranded on recreational beaches. Cladophora provides protection and nutrients, which allow enteric bacteria such as Escherichia coli, enterococci, Shigella, Campylobacter, and Salmonella to persist and potentially regrow in the presence of the algae. As a result of wind and wave action, these microorganisms can detach and be released to surrounding waters and can influence water quality. Enteric bacterial pathogens have been detected in Cladophora mats; E. coli and enterococci may populate to become part of the naturalized microbiota in Cladophora; the high densities of these bacteria may affect water quality, resulting in unnecessary beach closures. The continued use of traditional fecal indicators at beaches with Cladophora presence is inadequate at accurately predicting the presence of fecal contamination. This paper offers a substantial review of available literature to improve the knowledge of Cladophora impacts on water quality, recreational water monitoring, fecal indicator bacteria and microorganisms, and public health and policy.

  19. Cladophora in the Great Lakes: Impacts on beach water quality and human health

    USGS Publications Warehouse

    Verhougstraete, M.P.; Byappanahalli, Muruleedhara N.; Rose, J.B.; Whitman, Richard L.

    2010-01-01

    Cladophora in the Great Lakes grows rapidly during the warm summer months, detaches, and becomes free-floating mats as a result of environmental conditions, eventually becoming stranded on recreational beaches. Cladophora provides protection and nutrients, which allow enteric bacteria such as Escherichia coli, enterococci, Shigella, Campylobacter, and Salmonella to persist and potentially regrow in the presence of the algae. As a result of wind and wave action, these microorganisms can detach and be released to surrounding waters and can influence water quality. Enteric bacterial pathogens have been detected in Cladophora mats; E. coli and enterococci may populate to become part of the naturalized microbiota in Cladophora; the high densities of these bacteria may affect water quality, resulting in unnecessary beach closures. The continued use of traditional fecal indicators at beaches with Cladophora presence is inadequate at accurately predicting the presence of fecal contamination. This paper offers a substantial review of available literature to improve the knowledge of Cladophora impacts on water quality, recreational water monitoring, fecal indicator bacteria and microorganisms, and public health and policy.

  20. [Pay attention to the human health risk of drinking low mineral water].

    PubMed

    Shu, Weiqun

    2015-10-01

    The consumption of low mineral drinking water has been increasing around the world with the shortage of water resources and the development of advanced water treatment technologies. Evidences from systematic document reviews, ecological epidemiological observations, and experimental drinking water intervention studies indicate that lack of minerals in drinking water may cause direct or indirect harm to human health, among which, the associations of magnesium in water with cardiovascular disease, as well as calcium in water with osteoporosis, are well proved by sufficient evidence. This article points out that it is urgent to pay more attention to the issues about establishment of health risk evaluation system on susceptible consuming population, establishment of lab evaluation system on water quality and health effect for non-traditional drinking water, and program of safety mineralization for demineralized or desalinated water and so on.

  1. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  2. Targeted Water Quality Assessment in Small Reservoirs in Brazil, Zimbabwe, Morocco and Burkina Faso

    NASA Astrophysics Data System (ADS)

    Boelee, Eline; Rodrigues, Lineu; Senzanje, Aidan; Laamrani, Hammou; Cecchi, Philippe

    2010-05-01

    Background Physical and chemical parameters of water in reservoirs can be affected by natural and manmade pollutants, causing damage to the aquatic life and water quality. However, the exact water quality considerations depend on what the water will be used for. Brick making, livestock watering, fisheries, irrigation and domestic uses all have their own specific water quality requirements. In turn, these uses impact on water quality. Methodology Water quality was assessed with a variety of methods in small multipurpose reservoirs in the São Francisco Basin in Brazil, Limpopo in Zimbabwe, Souss Massa in Morocco and Nakambé in Burkina Faso. In each case the first step was to select the reservoirs for which the water quality was to be monitored, then identify the main water uses, followed by a determination of key relevant water quality parameters. In addition, a survey was done in some cases to identify quality perceptions of the users. Samples were taken from the reservoir itself and related water bodies such as canals and wells where relevant. Results Accordingly in the four basins different methods gave different locally relevant results. In the Preto River in the Sao Francisco in Brazil small reservoirs are mainly used for irrigated agriculture. Chemical analysis of various small reservoirs showed that water quality was mainly influenced by geological origins. In addition there was nutrient inflow from surrounding areas of intensive agriculture with high fertilizer use. In the Limpopo basin in Zimbabwe small reservoirs are used for almost all community water needs. Plankton was selected as indicator and sampling was carried out in reservoirs in communal areas and in a national park. Park reservoirs were significantly more diversified in phytoplankton taxa compared to those in the communal lands, but not for zooplankton, though communal lands had the highest zooplankton abundance. In Souss Massa in Morocco a combination of perceptions and scientific water quality analyses was applied to a small reservoir. High levels of fecal coliform bacteria were found in the reservoir, which made it unfit for human and animal consumption but suitable for most other purposes. In Burkina Faso, the Nakambé basin has been targeted because of its elevated densities of both population and (small) reservoirs that are used for irrigation, livestock, fishing and other purposes. While a large diversity of phytoplankton was found, the massive dominance of aquatic cyanobacteria was the most significant result. Two lakes exhibited significant cyanotoxins concentrations, which had never been documented before. The presence of the involved bacteria in a large number of sites indicated that such contamination with toxins could potentially affect large populations. Classical limnological descriptors failed to explain the observed situations. Conversely, the cyanobacterial abundances were positively correlated with population densities and land-use. This is probably associated with agricultural intensification and particularly horticulture around most reservoirs, because of the high use of pesticides and their selective impacts on plankton communities that tend to favor cynaobacteria. Still, the scientific hypotheses linking human activities to water quality remain to be formally assessed. Discussion and conclusion Both financial difficulties and the frequent absence of specific and academic local competences limit the implementation of relevant water quality monitoring programs. However, on the basis of our findings in four basins we postulate that while the mobilization of water resources has been an emergency priority for a long time, now the time has come to explicitly target the preservation and protection of aquatic ecosystems. This urgent need should dominate the debate on sustainable multipurpose exploitation of small reservoirs whose several benefits (especially fisheries) appear clearly linked to their quality.

  3. Hydrologic and water-quality data related to the occurrence of arsenic for areas along the Madison and Upper Missouri Rivers, southwestern and west-central Montana

    USGS Publications Warehouse

    Tuck, L.K.; Dutton, D.M.; Nimick, D.A.

    1997-01-01

    Geothermal waters in Yellowstone National Park contribute large quantities of arsenic to the headwaters of the Madison River. Water in some Quaternary and Tertiary valley-fill deposits along the Madison and upper Missouri Rivers also is locally enriched in arsenic. Arsenic in surface and ground water in these valleys is an important public- health concern because arsenic concentrations frequently exceed the State of Montana water- quality human health standard of 18 micrograms per liter as well as the U.S. Environmental Protection Agency Maximum Contaminant Level of 50 micrograms per liter. This report presents hydrologic and water-quality data for the Madison and upper Missouri Rivers and selected tributaries, irrigation supply canals or ditches, drains, springs and seeps, for Lake Helena, and for ground water in adjacent areas. Hydrologic and water-quality data were collected and compiled to provide information to more fully understand the extent, magnitude, and source of arsenic in surface and ground water along the Madison and upper Missouri Rivers; to assess, to the extent possible, the mechanisms that control arsenic concentrations; and to assess the effect of irrigation on arsenic concentrations. Hydrologic and arsenic- concentration data were collected by the U.S. Geological Survey and other agencies for 104 surface-water sites and 273 ground-water sites during this and previous studies. The quality of analytical results for arsenic concentrations was evaluated by quality-control samples that were submitted from the field and analyzed in the laboratory with routing samples. Quality-control samples consisted of replicates, standard reference samples, interlaboratory comparison samples, and field blanks.

  4. Environmental Engineering in the Slovak Republic

    NASA Astrophysics Data System (ADS)

    Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.

    2017-10-01

    The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.

  5. County-level environmental quality and associations with individual - and county-level preterm birth

    EPA Science Inventory

    Human health is influenced by simultaneous exposure to stressors and amenities, but research usually considers single exposures. We constructed a county-level Environmental Quality Index (EQI) using principal components analysis with data from five domains (air, water, land, buil...

  6. Urban-rural differences in environmental quality and associations with adverse birth outcomes

    EPA Science Inventory

    Exposures affecting human health differ across environmental media and level of urbanicity. To address this, we constructed an Environmental Quality Index (EQI) with data representing five domains (air, water, land, built, sociodemographic) for each United States (U.S.) county. F...

  7. National Water-Quality Assessment program: The Trinity River Basin

    USGS Publications Warehouse

    Land, Larry F.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the national, State, and local levels. A major design feature of the NAWQA program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which comprise the principal building blocks of the program on which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Trinity River basin study was among the first 20 NAWQA study units selected for study under the full-scale implementation plan.

  8. National Water-Quality Assessment Program: The Sacramento River Basin

    USGS Publications Warehouse

    Domagalski, Joseph L.; Brown, Larry R.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of those resources. In addressing these goals, the program will provide a wealth of water- quality information that will be useful to policy makers and managers at the national, State, and local levels. A major asset of the NAWQA program is that it will allow for the integration of water-quality information collected at several scales. A major component of the program is the study-unit investigation-the foundation of national- level assessment. The 60 study units of the NAWQA program are hydrologic systems that include parts of most major river basins and aquifer systems of the conterminous United States. These study units cover areas of 1,000 to more than 60,000 square miles and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Investigations of the first 20 study units began in 1991. In 1994, the Sacramento River Basin was among the second set of 20 NAWQA study units selected for investigation.

  9. Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and NO3-, NH4+, and COD contamination: a case study of the Liujiang River Basin, Hebei Province, P.R. China.

    PubMed

    Peng, Cong; He, Jiang-Tao; Wang, Man-Li; Zhang, Zhen-Guo; Wang, Lei

    2018-02-01

    In the face of rapid economic development and increasing human activity, the deterioration of groundwater quality has seriously affected the safety of the groundwater supply in eastern China. Identifying and assessing the impact of human activities is key to finding solutions to this problem. This study is an effort to scientifically and systematically identify and assess the influence of human activities on groundwater based on irregularities in hydrochemical properties and water contamination, which are considered to directly result from anthropogenic activity. The combination of the hydrochemical anomaly identification (HAI) and the contaminant identification (CI) was proposed to identify the influence of human activities on groundwater quality. And the degree of abnormality was quantified by the background threshold value. The principal component analysis (PCA) and land use map were used to verify the reliability of the identification result. The final result show that the strong influence areas mainly distributed in the south of the basin and the affected indicators contained the major elements and NO 3 - , NH 4 + , COD. Impacts from anthropogenic activities can be divided into two types: mine drainage that disrupts natural water-rock interaction processes, agricultural cultivation, and sewage emissions that contribute to nitrate pollution.

  10. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important implications for water management and sustaining water quality.

  11. Canadian ENGOs in governance of water resources: information needs and monitoring practices.

    PubMed

    Kebo, Sasha; Bunch, Martin J

    2013-11-01

    Water quality monitoring involves a complex set of steps and a variety of approaches. Its goals include understanding of aquatic habitats, informing management and facilitating decision making, and educating citizens. Environmental nongovernmental organizations (ENGOs) are increasingly engaged in water quality monitoring and act as environmental watchdogs and stewards of water resources. These organizations exhibit different monitoring mandates. As government involvement in water quality monitoring continues to decline, it becomes essential that we understand their modi operandi. By doing so, we can enhance efficacy and encourage data sharing and communication. This research examined Canadian ENGOs that collect their own data on water quality with respect to water quality monitoring activities and information needs. This work had a twofold purpose: (1) to enhance knowledge about the Canadian ENGOs operating in the realm of water quality monitoring and (2) to guide and inform development of web-based geographic information systems (GIS) to support water quality monitoring, particularly using benthic macroinvertebrate protocols. A structured telephone survey was administered across 10 Canadian provinces to 21 ENGOs that undertake water quality monitoring. This generated information about barriers and challenges of data sharing, commonly collected metrics, human resources, and perceptions of volunteer-collected data. Results are presented on an aggregate level and among different groups of respondents. Use of geomatics technology was not consistent among respondents, and we found no noteworthy differences between organizations that did and did not use GIS tools. About one third of respondents did not employ computerized systems (including databases and spreadsheets) to support data management, analysis, and sharing. Despite their advantage as a holistic water quality indicator, benthic macroinvertebrates (BMIs) were not widely employed in stream monitoring. Although BMIs are particularly suitable for the purpose of citizen education, few organizations collected this metric, despite having public education and awareness as part of their mandate.

  12. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  13. Effect of Season on the Persistence of Bacterial Pathogens in Runoff from Agricultural Plots

    EPA Science Inventory

    Runoff from agricultural fields undergoing manure applications may carry a variety of chemical and microbial contaminants that compromise water quality and increase the possibility of human exposure to pathogenic microorganisms when recreational waters are impacted. A series of r...

  14. A VISION FOR A BEACH FORECASTING TOOL

    EPA Science Inventory

    The societal value of safe access to swimmable water is intuitive and in many countries it is a legal right. Threats to water quality reduce these recreational opportunities. The risk comes from exposure to waterborne pathogens from a myriad of sources, both human and animal. ...

  15. Use of Hyperspectral Remote Sensing to Evaluate Efficacy of Aquatic Plant Management

    USDA-ARS?s Scientific Manuscript database

    Invasive aquatic weeds negatively affect biodiversity, fluvial dynamics, water quality, and water storage and conveyance for a variety of human resource demands. In California’s Sacramento-San Joaquin River Delta one submersed species - Brazilian waterweed (Egeria densa) - and one floating species ...

  16. [Drinking water regulations in Ukraine and infectious morbidity rate with water pathway of transmission of causative agents].

    PubMed

    Surmasheva, E V; Korchak, G I; Mikhienkova, A I; Nikonova, N A; Rosada, M A

    2013-01-01

    These are presented drinking water regulations in Ukraine on microbiological indices in the new state document "Hygienic Drinking water regulations intended for human consumption" (State sanitary regulations and standards (GsanPiN) 2.2.4-171-10). There is reported an analysis of both the open waterbodies water quality and water for centralized water supply in 2007-2011 and 1992-1996 also on sanitary-bacteriological indices for performance of comparative retrospective analysis. There has been shown water quality degradation for open waterbodies, the main sources of water supply for population. Against this background, a marked improvement of drinking water quality has been noted, the number of non-standard samples decreased to 3.6 % compared with 8.8% in the preceding 15 years. This index correlates with a decrease in the number of outbreaks of infections transmitted by water. There was noted unsatisfactory registration of viral infections with water pathway of transmission and the increase in morbidity rate of gastroenterocolitides of unknown etiology that may include acute viral intestinal infections. Expediency to keep "fermentation of glucose" test in bacteriological examination of water in the identification scheme of general coliforms has been substantiated.

  17. River water quality analysis via headspace detection of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Tang, Johnny Jock Lee; Nishi, Phyllis Jacqueline; Chong, Gabriel Eng Wee; Wong, Martin Gideon; Chua, Hong Siang; Persaud, Krishna; Ng, Sing Muk

    2017-03-01

    Human civilization has intensified the interaction between the community and the environment. This increases the threat on the environm ent for being over exploited and contaminated with m anmade products and synthetic chemicals. Of all, clean water is one of the resources that can be easily contaminated since it is a universal solvent and of high mobility. This work reports the development and optimization of a water quality monitoring system based on metal oxide sensors. The system is intended to a ssist the detection of volatile organic compounds (VOCs) present in water sources online and onsite. The sampling mechanism was based on contactless mode, where headspace partial pressure of the VOCs formed above the water body in a close chamber was drawn for detection at the sensor platform. Pure toluene was used as standard to represent the broad spectrum of VOCs, and the sensor dynamic range was achieved from 1-1000 ppb. Several sensing parameters such as sampling time, headspace volume, and sensor recovery were s tudied and optimized. Besides direct detection of VOC contaminants in the water, the work has also been extended to detect VOCs produced by microbial communities and to c orrelate the size of the communities with the reading of V OCs recorded. This can serve to give b etter indication of water quality, not only on the conce ntration of VOCs c ontamination from chemicals, but also the content of microbes, which some can have severe effect on human health.

  18. Complex interactions among climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana

    NASA Astrophysics Data System (ADS)

    McGill, B. M.; Altchenko, Y.; Kenabatho, P. K.; Sylvester, S. R.; Villholth, K. G.

    2017-12-01

    With population growth, rapid urbanization, and climate change, groundwater is becoming an increasingly important source of drinking water around the world, including southern Africa. This is an investigation into the coupled human and natural system linking climate change, droughts, sanitation, and groundwater quality in Ramotswa, a town in the semi-arid southeastern Botswana. During the recent drought from 2013-2016, water shortages from reservoirs that supply the larger city of Gaborone resulted in curtailed water supply to Ramotswa, forcing people with flush toilets to use pit latrines. Pit latrines have been suspected as the cause of elevated nitrate in the Ramotswa groundwater, which also contributes to the town's drinking water supply. The groundwater pollution paradoxically makes Ramotswa dependent on Gaborone's water, supplied in large part by surface reservoirs, which are vulnerable to drought. Analysis of long-term rainfall records indicates that droughts like the one in 2013-2016 are increasing in likelihood due to climate change. Because of the drought, many more people used pit latrines than under normal conditions. Analysis of the groundwater for nitrate and using caffeine as an indicator, human waste leaching from pit latrines is implicated as the major culprit for the nitrate pollution. The results indicate a critical indirect linkage between climate change, sanitation, groundwater quality and water security in this area of rapid urbanization and population growth. Recommendations are offered for how Ramotswa's water security could be made less vulnerable to climate change.

  19. Urban rivers as hotspots of regional nitrogen pollution.

    PubMed

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-10-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3-5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Troch, P. A. A.

    2016-12-01

    Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.

  1. Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources.

    PubMed

    Davies, John-Mark; Mazumder, Asit

    2003-07-01

    Sustaining clean and safe drinking water sources is increasingly becoming a priority because of global pollution. The means of attaining and maintaining clean drinking water sources requires effective policies that identify, document, and reduce watershed risks. These risks are defined by their potential impact to human health. Health and risk are, therefore, indelibly linked because they are in part defined by each other. Understanding pathogen ecology and identifying watershed sources remains a priority because of the associated acute risks. Surface water quality changes resulting from inputs of human waste, nutrients and chemicals are associated with higher drinking water risks. Nutrient input can increase primary production and the resulting increase of organic matter results in greater disinfection by-product formation or requires greater treatment intensity. Many drinking water disease outbreaks have resulted from breaches in treatment facilities, therefore, even with greater treatment intensity poor source water quality intrinsically has greater associated health risks. Government and international agencies play a critical role in developing policy. The goal of maintaining water supplies whose availability is maximized and risks are minimized (i.e. sustainable) should be a vital part of such policy. Health risks are discussed in the context of a multi-barrier perspective and it is concluded that both passive (protection) and active (prescriptive management) management is necessary for sustainability. Canadian aboriginal water systems, British Columbian water policy and US EPA policies are given as examples. The basis for developing effective policies includes a strong reliance on sound science and effective instrumentation with careful consideration of stakeholders' interests. Only with such directed policies can the future availability of clean drinking water sources be ensured.

  2. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    USGS Publications Warehouse

    Buszka, Paul M.

    1987-01-01

    In general, the quality of ground water in the freshwater parts of the aquifer (north of the "bad-water" line) is suitable for all uses including human consumption. Two areas that are exceptions are: (1) Northeast of Garner Field in Uvalde, Texas, where PCE (tetrachloroethylene) has been detected in groundwater samples, and (2) north-central Bexar County near the former West Avenue landfill where PCE and benzene have been detected in ground-water samples. Concentrations of these organic compounds in water from many wells in the two areas exceed the maximum contaminant level for human consumption set by the U.S. Environmental Protection Agency.

  3. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    PubMed

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  4. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity. Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

  5. Sustaining Waters: From Hydrology to Drinking Water

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a basis for the maintenance and protection of our valuable watersheds.

  6. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.

    PubMed

    Abia, Akebe Luther King; Alisoltani, Arghavan; Keshri, Jitendra; Ubomba-Jaswa, Eunice

    2018-03-01

    Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Health-Based Screening Levels and their Application to Water-Quality Data

    USGS Publications Warehouse

    Toccalino, Patricia L.; Zogorski, John S.; Norman, Julia E.

    2005-01-01

    To supplement existing Federal drinking-water standards and guidelines, thereby providing a basis for a more comprehensive evaluation of contaminant-occurrence data in a human-health context, USGS began a collaborative project in 1998 with USEPA, the New Jersey Department of Environmental Protection, and the Oregon Health & Science University to calculate non-enforceable health-based screening levels. Screening levels were calculated for contaminants that do not have Maximum Contaminant Level values using a consensus approach that entailed (1) standard USEPA Office of Water methodologies (equations) for establishing Lifetime Health Advisory (LHA) and Risk-Specific Dose (RSD) values for the protection of human health, and (2) existing USEPA human-health toxicity information.

  8. Isotope studies in large river basins: A new global research focus

    NASA Astrophysics Data System (ADS)

    Gibson, John J.; Aggarwal, Pradeep; Hogan, James; Kendall, Carol; Martinelli, Luiz A.; Stichler, Willi; Rank, Dieter; Goni, Ibrahim; Choudhry, Manzoor; Gat, Joel; Bhattacharya, Sourendra; Sugimoto, Atsuko; Fekete, Balazs; Pietroniro, Alain; Maurer, Thomas; Panarello, Hector; Stone, David; Seyler, Patrick; Maurice-Bourgoin, Laurence; Herczeg, Andrew

    Rivers are an important linkage in the global hydrological cycle, returning about 35%of continental precipitation to the oceans. Rivers are also the most important source of water for human use. Much of the world's population lives along large rivers, relying on them for trade, transportation, industry, agriculture, and domestic water supplies. The resulting pressure has led to the extreme regulation of some river systems, and often a degradation of water quantity and quality For sustainable management of water supply agriculture, flood-drought cycles, and ecosystem and human health, there is a basic need for improving the scientific understanding of water cycling processes in river basins, and the ability to detect and predict impacts of climate change and water resources development.

  9. Microbial source tracking in shellfish harvesting waters in the Gulf of Nicoya, Costa Rica.

    PubMed

    Symonds, E M; Young, S; Verbyla, M E; McQuaig-Ulrich, S M; Ross, E; Jiménez, J A; Harwood, V J; Breitbart, M

    2017-03-15

    Current microbial water quality monitoring is generally limited to culture-based measurements of fecal indicator bacteria (FIB). Given the many possible sources of fecal pollution within a watershed and extra-intestinal FIB reservoirs, it is important to determine source(s) of fecal pollution as a means to improve water quality and protect public health. The principal objective of this investigation was to characterize the microbial water quality of shellfish harvesting areas in the Gulf of Nicoya, Costa Rica during 2015. In order to achieve this objective, the specificity and sensitivity of 11 existing microbial source tracking (MST) PCR assays, associated with cows (BacCow), dogs (BacCan, DogBac), domestic wastewater (PMMoV), general avian (GFD), gulls (Gull2), horses (HorseBac, HoF), humans (HF183, HPyV), and pigs (PF), were evaluated using domestic wastewater and animal fecal samples collected from the region. The sensitivity of animal-associated assays ranged from 13 to 100%, while assay specificity ranged from 38 to 100%. The specificity of pepper mild mottle virus (PMMoV) and human polyomavirus (HPyV) was 100% for domestic wastewater, as compared to 94% specificity of the HF183 Bacteroidales marker. PMMoV was identified as a useful domestic wastewater-associated marker, with concentrations as high as 1.1 × 10 5 copies/ml and 100% sensitivity and specificity. Monthly surface water samples collected from four shellfish harvesting areas were analyzed using culture-based methods for Escherichia coli as well as molecular methods for FIB and a suite of MST markers, which were selected for their specificity in the region. While culturable E. coli results suggested possible fecal pollution during the monitoring period, the absence of human/domestic wastewater-associated markers and low FIB concentrations determined using molecular methods indicated sufficient microbial water quality for shellfish harvesting. This is the first study to our knowledge to test the performance of MST markers in Costa Rica as well as in Central America. Given the lack of wastewater treatment and the presence of secondary sources of FIB, this study highlights the importance of an MST toolbox approach to characterize water quality in tropical regions. Furthermore, it confirms and extends the geographic range of PMMoV as an effective tool for monitoring domestic wastewater pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport, and lake water quality. The integrated model will be validated using a comprehensive observational database that includes soil moisture, evapotranspiration, stomatal conductance, streamflow, stream and lake water quality, and crop yields and productivity. Integrated scenarios will be developed to synthesize decision-maker perspectives, alternative approaches to resource governance, plausible trends in demographic and economic drivers, and model projections under alternate climate and land use regimes to understand future conditions of the watershed and its ecosystem services. The quantitative data and integrated scenarios will then be linked to evaluate governance of water and land use.

  11. The science behind One Health: at the interface of humans, animals, and the environment.

    PubMed

    Murtaugh, Michael P; Steer, Clifford J; Sreevatsan, Srinand; Patterson, Ned; Kennedy, Shaun; Sriramarao, P

    2017-05-01

    Humans face a grand quality-of-life challenge as growing demands for resources for an ever-expanding population threaten the existence of wildlife populations, degrade land, and pollute air and water. Public investment and policy decisions that will shape future interactions of humans, animals, and the environment need scientific input to help find common ground for durable and sustainable success. The Second International Conference on One Medicine One Science brought together a broad range of scientists, trainees, regulatory authorities, and health experts from 34 countries to inform and discuss the human impacts of air quality; the complexities of water quality, access, and conflicts; the opportunities and uncertainties in precision medicine; and the role of science communication in health policy formulation. Workshops focused on the roles and development of physician-scientists and multidisciplinary teams in complex problem solving, Big Data tools for analysis and visualization, international policy development processes, and health models that benefit animals and humans. Key realizations were that local and regional health challenges at the interface of humans, animals, and the environment are variations of the same overarching conflicts and that international gatherings provide new opportunities for investigation and policy development that are broadly applicable. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  12. A human fecal contamination index for ranking impaired ...

    EPA Pesticide Factsheets

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk management. The transition from a research subject to a management tool requires the integration of standardized water sampling, laboratory, and data analysis procedures. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and Bayesian data algorithm to establish a human fecal contamination index that can be used to rank impaired recreational water sites polluted with human waste. Stability and bias of index predictions were investigated under various parameters including siteswith different pollution levels, sampling period time range (1-15 weeks), and number of qPCR replicates per sample (2-14 replicates). Sensitivity analyses were conducted with simulated data sets (100 iterations) seeded with HF183/BacR287 qPCR laboratory measurements from water samples collected from three Southern California sites (588 qPCR measurements). Findings suggest that site ranking is feasible and that all parameters tested influence stability and bias in human fecal contamination indexscoring. Trends identified by sensitivity analyses will provide managers with the information needed to design and conduct field studies to rank impaired recreational water sites based

  13. High School Environmental Science Course Guide.

    ERIC Educational Resources Information Center

    Donovan, Edward P.; Korman, Barbara

    A course in environmental science was developed to increase course options for students of all abilities and interest levels. Major topic areas of the course include: introduction to ecological principles and ecosystems; extinction of species; human population dynamics; agricultural systems and pest control; air quality; water quality; solid…

  14. Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands

    PubMed Central

    Roche, Leslie M.; Kromschroeder, Lea; Atwill, Edward R.; Dahlgren, Randy A.; Tate, Kenneth W.

    2013-01-01

    There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1) quantify fecal indicator bacteria (FIB; fecal coliform and E. coli), total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2) compare results to a) water quality regulatory benchmarks, b) recommended maximum nutrient concentrations, and c) estimates of nutrient background concentrations; and 3) examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA) estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA’s national E. coli FIB benchmarks–the most contemporary and relevant standards for this study–over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and nutrient concentrations between key grazing areas and non-concentrated use areas. Our results suggest cattle grazing, recreation, and provisioning of clean water can be compatible goals across these national forest lands. PMID:23826370

  15. Determination of toxic inorganic elements pollution in ground waters of Kahuta Industrial Triangle Islamabad, Pakistan using inductively coupled plasma mass spectrometry.

    PubMed

    Kausar, Rubina; Ahmad, Zulfiqar

    2009-10-01

    The present study deals with the ground water quality assessment in Kahuta Industrial Triangle Islamabad, Pakistan. The objective of the study was to assess ground water quality against the drinking water standards for various toxic inorganic elements. Representative groundwater samples were collected and analyzed in the Water Quality Laboratory of Pakistan Council of Research in Water Resources (PCRWR) at Islamabad, Pakistan. The samples were run on ICP-MS (Inductively coupled plasma mass spectrometry), which has the capability to separate and quantify 70 elements at a time. One of the finding of study is that ICP-MS is a very good tool to analyze broad range of toxic inorganic elements to the level of parts per billion (ppb). World Health Organization drinking water standards shows that these toxic inorganic elements such as heavy metals even at this concentration level (ppb) are injurious to human health. This analysis indicated pollution of various toxic elements including Selenium. Vertical leachate through industrial waste septic tanks is identified as major cause of groundwater pollution in the Industrial Triangle. Monitoring of the septic tanks and groundwater quality in study area is suggested along with remedial measures.

  16. Evaluation of physico-chemical characteristics of groundwater of Company Bagh pumping station and its six distribution points in old Jammu City, India.

    PubMed

    Khajuria, Meenakshi; Dutta, S P S

    2011-10-01

    To assess water quality of Company Bagh pumping station and its six distribution points, viz. Parade Ground, Mohalla Paharian, Purani Mandi, Malhotrian Street, Raghunathpura and Hari Market in old Jammu city of India, water parameters viz. temperature, turbidity, pH, electrical conductivity, free carbon dioxide, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, bicarbonate, chloride, calcium, magnesium, total hardness, sodium, potassium, sulphate, silicate, nitrate, phosphate, iron, copper, zinc, lead and chromium were analyzed during the years 2000-2001/2001-2002. There was alteration in water quality parameters in the distribution system caused by entry of sewage, soil, etc. through dislocation, cracks, valve regulators/turncock, defective joints, breakage, etc. in the pipes through crossing and deposits of biofilms inside the pipes, dead ends and their degradation through microbes. Comparison of water quality with National and International Standards revealed that all the parameters were within permissible limits of drinking water standards. Water Quality Index (WQI) of various physico-chemical parameters revealed that the water of Company Bagh pumping station and its six distribution points was fit for human consumption as it was found under the category of good (WQI < 50).

  17. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  18. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    PubMed

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Primer on Water Quality

    MedlinePlus

    ... the existing standards and guidelines established to protect human health. Some pesticides have not been used for 20 to 30 years, but they are still detected in fish and streambed sediment at levels that pose a potential risk to human health, aquatic life, and fish-eating wildlife. There are ...

  20. EVALUATION OF WASTEWATER CHEMICALS AS INDICATORS OF HUMAN FECAL CONTAMINATION

    EPA Science Inventory

    The quality of drinking and recreational water is currently ascertained using indicator bacteria. The traditional tests that analyze for these bacteria require approximately 24 hours to complete, and do not discriminate between human and animal sources. One solution is to use hum...

  1. Differential Decay of Bacterial and Viral Fecal Indicators in Common Human Pollution Sources

    EPA Science Inventory

    Understanding the decomposition of different human fecal pollution sources is necessary for proper implementation of many water quality management practices, as well as predicting associated public health risks. Here, the decay of select cultivated and molecular indicators of fe...

  2. LANDSCAPE INFLUENCES ON LAKE CHEMISTRY OF SMALL DIMICTIC LAKES IN THE HUMAN DOMINATED SOUTHERN WISCONSIN LANDSCAPE

    EPA Science Inventory

    Changes in landscape heterogeneity, historic landcover change, and human disturbance regimes are governed by complex interrelated landscape processes that modify lake water quality through the addition of nutrients, sediment, anthropogenic chemicals, and changes in major ion conc...

  3. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  4. Assessment of microbiological water quality and its relation to human health in Gaza Governorate, Gaza Strip.

    PubMed

    Yassin, Maged Mohammed; Amr, Salem S Abu; Al-Najar, Husam M

    2006-12-01

    To assess the contamination level of total and faecal coliforms in water wells and distribution networks, and their association with human health in Gaza Governorate, Gaza Strip. Data were obtained from the Palestinian Ministry of Health on contamination of total and faecal coliforms in water wells and distribution networks, and on the incidence of water-related diseases in Gaza Governorate. An interview questionnaire was conducted with 150 residents of Gaza. The contamination level of total and faecal coliforms exceeded that of the World Health Organization (WHO) limit for water wells and networks. However, the contamination percentages in networks were higher than that in wells. Giardiasis was strongly correlated with faecal coliform contamination in water networks (r=0.7) compared with diarrhoeal diseases and hepatitis A (r=0.3 and 0.1, respectively). Diarrhoeal diseases were the highest self-reported diseases among interviewees in Gaza city. Such diseases were more prevalent among people using municipal water than people using desalinated water and water filtered at home for drinking (OR=1.6). Intermittent water supply and sewage flooding seemed to contribute largely to self-reported diseases. People in Gaza Strip have good knowledge on drinking water contamination, and this is reflected in good practice. Water quality has deteriorated in Gaza Strip. This may contribute to the prevalence of water-related diseases. Self-reported diseases among interviewees in Gaza City were associated with source of drinking water, intermittent water supply, sewage flooding and age of water, and wastewater networks.

  5. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  6. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  7. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  8. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of unintended pollutant impacts when evaluating the effectiveness of mitigation options, and showed that high-frequency water quality datasets can be applied to robustly calibrate water quality models, creating DSTs that are more effective and reliable. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Toxicity assessment of the water used for human consumption from the Cameron/Tuba City abandoned uranium mining area prior/after the combined electrochemical treatment/advanced oxidation.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Lovrenčić Mikelić, Ivanka; Garaj-Vrhovac, Vera

    2015-01-01

    The purpose of this work was detailed physicochemical, radiological, and toxicological characterization of the composite sample of water intended for human consumption in the Cameron/Tuba City abandoned uranium mining area before and after a combined electrochemical/advanced oxidation treatment. Toxicological characterization was conducted on human lymphocytes using a battery of bioassays. On the bases of the tested parameters, it could be concluded that water used for drinking from the tested water sources must be strictly forbidden for human and/or animal consumption since it is extremely cytogenotoxic, with high oxidative stress potential. A combined electrochemical treatment and posttreatment with ozone and UV light decreased the level of all physicochemical and radiological parameters below the regulated values. Consequently, the purified sample was neither cytotoxic nor genotoxic, indicating that the presented method could be used for the improvement of water quality from the sites highly contaminated with the mixture of heavy metals and radionuclides.

  10. Drinking water for dairy cattle: always a benefit or a microbiological risk?

    PubMed

    Van Eenige, M J E M; Counotte, G H M; Noordhuizen, J P T M

    2013-02-01

    Drinking water can be considered an essential nutrient for dairy cattle. However, because it comes from different sources, its chemical and microbiological quality does not always reach accepted standards. Moreover, water quality is not routinely assessed on dairy farms. The microecology of drinking water sources and distribution systems is rather complex and still not fully understood. Water quality is adversely affected by the formation of biofilms in distribution systems, which form a persistent reservoir for potentially pathogenic bacteria. Saprophytic microorganisms associated with such biofilms interact with organic and inorganic matter in water, with pathogens, and even with each other. In addition, the presence of biofilms in water distribution systems makes cleaning and disinfection difficult and sometimes impossible. This article describes the complex dynamics of microorganisms in water distribution systems. Water quality is diminished primarily as a result of faecal contamination and rarely as a result of putrefaction in water distribution systems. The design of such systems (with/ without anti-backflow valves and pressure) and the materials used (polyethylene enhances biofilm; stainless steel does not) affect the quality of water they provide. The best option is an open, funnel-shaped galvanized drinking trough, possibly with a pressure system, air inlet, and anti-backflow valves. A poor microbiological quality of drinking water may adversely affect feed intake, and herd health and productivity. In turn, public health may be affected because cattle can become a reservoir of microorganisms hazardous to humans, such as some strains of E. coli, Yersinia enterocolitica, and Campylobacter jejuni. A better understanding of the biological processes in water sources and distribution systems and of the viability of microorganisms in these systems may contribute to better advice on herd health and productivity at a farm level. Certain on-farm risk factors for water quality have been identified. A practical approach will facilitate the control and management of these risks, and thereby improve herd health and productivity.

  11. Toward understanding mechanisms controlling urea delivery in a coastal plain watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver ...

  12. Relationships and trends of E. Coli, human-associated Bacteroides, and pathogens in the Proctor Creek Watershed

    EPA Science Inventory

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sanitary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water quality, however, little...

  13. ENVIRONMENTAL RESTORATION AND PROTECTION STRATEGIES AT MULTIPLE SCALES IN RHODE ISLAND WATERSHEDS

    EPA Science Inventory

    Public concerns for the environment are often the basis for environmental regulations. The Clean Water Act seeks to ensure that water quality and quantity fully support aquatic life and human health. The legislative requirements help focus limited resources on areas where problem...

  14. Effects of land use on quality of water in stratified-drift aquifers in Connecticut

    USGS Publications Warehouse

    Grady, Stephen J.

    1994-01-01

    Human activities associated with agricultural, residential, commercial, and industrial land uses have affected the quality of water in the four stratified-drift aquifers examined in Connecticut. A study to evaluate quantitatively the effects of human activities, expressed as land use, on regional ground-water quality was initiated in 1984 as part of the U.S. Geological Survey's Toxic Waste-round-Water Contamination Program. Water-quality data were collected from 116 shallow stainless-steel wells installed beneath or immediately downgradient from seven types of land use areas within the Pootatuck, Pomperaug, Farmington, and Hockanum River valleys in Connecticut. Analysis of variance on the ranked concentrations of 21 largely uncensored or slightly censored constituents, and contingency-table analysis of the frequency of detection of 49 moderately to highly censored constituents indicate that 27 water-quality variables differ at the 0.05 level of significance for samples from at least one land use area. For most constituents, concentrations or detection frequencies are lowest in samples from the undeveloped areas, which characterize background water-quality conditions. The effect of agricultural land use on groundwater quality reflects tillage practices; tilled areas affect the water quality to a greater degree than do untilled areas. Twenty percent of the wells in the tilled agricultural areas yielded water with concentrations of nitrate plus nitrite-nitrogen exceeding 10 milligrams per liter. Atrazine detections in one-third of the wells in areas of tilled agricultural land use were significantly more common than in the undeveloped areas. Ground-water quality beneath sewered residential areas is more severely affected by inorganic and organic nonpoint-source contaminants than is water quality beneath unsewered residential areas. Median concentrations or detection frequencies of most physical properties and inorganic constituents of ground water are higher in sewered than in unsewered residential areas. Generally low concentrations (less than 1.0 microgram per liter) of one or more of 17 volatile organic compounds were detected in samples from 62 percent of the wells in the unsewered residential areas. Most of these compounds were detected in less than 10 percent of the ground-water samples from the unsewered residential areas, however, and consequently, their frequency of detections was not significantly different than in samples from other land use areas. The detection of chloroform in ground-water samples from 47 percent of the wells in the sewered residential areas is significantly higher than the frequency of detection of chloroform in samples from the undeveloped, tilled agricultural, and unsewered residential areas. The quality of ground water is adversely affected beneath commercial areas more so than beneath all other land use areas. Median concentrations of sodium (22.5 milligrams per liter), chloride (36 milligrams per liter), and dissolved solids (286 milligrams per liter) are highest in ground-water samples in commercial areas. Detections of tetrachloroethylene, trichloroethylene, and 1,2-transdichloroethylene were significantly more common in ground-water samples from the commercial areas than in samples from one or more of the other land use areas. Tetrachloroethylene was detected in water samples from 50 percent of the observation wells in the commercial areas at concentrations of up to 1,300 micrograms per liter. Trichloroethylene and 1,2-transdichloroethylene were found at concentrations of up to 20 and 55 micrograms per liter, respectively, in samples from more than 40 percent of the wells in the commercial areas. Although industrial areas occupy only a small part of each of the study areas, they have a disproportionately large effect on ground-water quality. One or more of 12 volatile organic compounds were detected in water samples from 91 percent of the observation wells in the industrial areas

  15. Rio Grande valley Colorado new Mexico and Texas

    USGS Publications Warehouse

    Ellis, Sherman R.; Levings, Gary W.; Carter, Lisa F.; Richey, Steven F.; Radell, Mary Jo

    1993-01-01

    Two structural settings are found in the study unit: alluvial basins and bedrock basins. The alluvial basins can have through-flowing surface water or be closed basins. The discussion of streamflow and water quality for the surface-water system is based on four river reaches for the 750 miles of the main stem. the quality of the ground water is affected by both natural process and human activities and by nonpoint and point sources. Nonpoint sources for surface water include agriculture, hydromodification, and mining operations; point sources are mainly discharge from wastewater treatment plants. Nonpoint sources for ground water include agriculture and septic tanks and cesspools; point sources include leaking underground storage tanks, unlined or manure-lined holding ponds used for disposal of dairy wastes, landfills, and mining operations.

  16. Are Industrial Towns Safe for Human Dwelling?

    NASA Astrophysics Data System (ADS)

    Singla, C.; Garg, S.; Aggarwal, R.; Jutla, A. S.

    2012-12-01

    Water resources in the developing countries are under severe stress with multiple stakeholders claiming rights to it. Regional industries, in absence to strict regulations, are responsible for dumping toxic wastes to rivers, ponds and other waterway which have devastating effects on water habitat as well as population that derives water for its daily needs. Key methodological challenges remain in connecting environment to levels of pollution and its relationship with diseases that affect humans. We present a case study from one of the highly industrialized town of South Asia. Ludhiana is the largest city and the largest urban settlement in Punjab, India. With the development of industry, agriculture and the growth of urban population, its water pollution has become a serious problem. Here, we will show how the distribution of heavy metals for groundwater affects its quality and role of regional hydrology on it. We will start with one of the major waterways in the Ludhiana district. Groundwater water samples including sewage water sample were collected within its vicinity of 2.0 km along the waterway (Buddha Nala). The concentration of nickel(Ni) and iron(Fe) in sewage water as well as in groundwater samples was much higher than the maximum permissible limits at a distance of 1.0 Km away from Buddha Nala. In general, all the groundwater samples collected beyond 1.0 Km away from Buddha Nala were found to be having normal concentrations of arsenic and Fe. We will also demonstrate regional health problems resulting from poor groundwater quality. Role of regional hydrology in modulating water quality will be discussed.

  17. Building infrastructure to prevent disasters like Hurricane Maria

    NASA Astrophysics Data System (ADS)

    Bandaragoda, C.; Phuong, J.; Mooney, S.; Stephens, K.; Istanbulluoglu, E.; Pieper, K.; Rhoads, W.; Edwards, M.; Pruden, A.; Bales, J.; Clark, E.; Brazil, L.; Leon, M.; McDowell, W. G.; Horsburgh, J. S.; Tarboton, D. G.; Jones, A. S.; Hutton, E.; Tucker, G. E.; McCready, L.; Peckham, S. D.; Lenhardt, W. C.; Idaszak, R.

    2017-12-01

    2000 words Recovery efforts from natural disasters can be more efficient with data-driven information on current needs and future risks. We aim to advance open-source software infrastructure to support scientific investigation and data-driven decision making with a prototype system using a water quality assessment developed to investigate post-Hurricane Maria drinking water contamination in Puerto Rico. The widespread disruption of water treatment processes and uncertain drinking water quality within distribution systems in Puerto Rico poses risk to human health. However, there is no existing digital infrastructure to scientifically determine the impacts of the hurricane. After every natural disaster, it is difficult to answer elementary questions on how to provide high quality water supplies and health services. This project will archive and make accessible data on environmental variables unique to Puerto Rico, damage caused by Hurricane Maria, and will begin to address time sensitive needs of citizens. The initial focus is to work directly with public utilities to collect and archive samples of biological and inorganic drinking water quality. Our goal is to advance understanding of how the severity of a hazard to human health (e.g., no access to safe culinary water) is related to the sophistication, connectivity, and operations of the physical and related digital infrastructure systems. By rapidly collecting data in the early stages of recovery, we will test the design of an integrated cyberinfrastructure system to for usability of environmental and health data to understand the impacts from natural disasters. We will test and stress the CUAHSI HydroShare data publication mechanisms and capabilities to (1) assess the spatial and temporal presence of waterborne pathogens in public water systems impacted by a natural disaster, (2) demonstrate usability of HydroShare as a clearinghouse to centralize selected datasets related to Hurricane Maria, and (3) develop a prototype cyberinfrastructure to assess environmental conditions and public health impacted by natural disasters. The project thus serves to not only document post-disaster conditions, but develops a process to track the impact of recovery over time, as monitored through health, power availability and water quality.

  18. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil).

    PubMed

    Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E

    2018-05-01

    Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Wildfire and the future of water supply.

    PubMed

    Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal

    2014-08-19

    In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.

  20. Summary of available state ambient stream-water-quality data, 1990-98, and limitations for national assessment

    USGS Publications Warehouse

    Pope, Larry M.; Rosner, Stacy M.; Hoffman, Darren C.; Ziegler, Andrew C.

    2004-01-01

    The investigation described in this report summarized data from State ambient stream-water-quality monitoring sites for 10 water-quality constituents or measurements (suspended solids, fecal coliform bacteria, ammonia as nitrogen, nitrite plus nitrate as nitrogen, total phosphorus, total arsenic, dissolved solids, chloride, sulfate, and pH). These 10 water-quality constituents or measurements commonly are listed nationally as major contributors to degradation of surface water. Water-quality data were limited to that electronically accessible from the U.S. Environmental Protection Agency Storage and Retrieval System (STORET), the U.S. Geological Survey National Water Information System (NWIS), or individual State databases. Forty-two States had ambient stream-water-quality data electronically accessible for some or all of the constituents or measurements summarized during this investigation. Ambient in this report refers to data collected for the purpose of evaluating stream ecosystems in relation to human health, environmental and ecological conditions, and designated uses. Generally, data were from monitoring sites assessed for State 305(b) reports. Comparisons of monitoring data among States are problematic for several reasons, including differences in the basic spatial design of monitoring networks; water-quality constituents for which samples are analyzed; water-quality criteria to which constituent concentrations are compared; quantity and comprehensiveness of water-quality data; sample collection, processing, and handling; analytical methods; temporal variability in sample collection; and quality-assurance practices. Large differences among the States in number of monitoring sites precluded a general assumption that statewide water-quality conditions were represented by data from these sites. Furthermore, data from individual monitoring sites may not represent water-quality conditions at the sites because sampling conditions and protocols are unknown. Because of these factors, a high level of uncertainty exists in a national assessment of water quality. The purpose of this report is to present a summary of electronically available State ambient stream-water-quality data for 10 selected constituents and measurements from monitoring sites with nine or more analyses for 199098 and to discuss limitations for use of the data for national assessment. These analyses were statistiscally summarized by monitoring site and State, and the results presented in tabular format. Most of the selected constituents or measurements have U.S. Environmental Protection Agency criteria or guidelines for aquatic-life or drinking-water purposes. A significant finding of this investigation is that for a large percentage of monitoring sites in the Nation, there are insufficient data to meet U.S. Environmental Protection Agency recommendations for determining if water-quality conditions are degraded and for making informed decisions regarding total maximum daily loads.

  1. An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS Satellite Data Record.

    PubMed

    Schaeffer, Blake A; Hagy, James D; Conmy, Robyn N; Lehrter, John C; Stumpf, Richard P

    2012-01-17

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida's waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida's coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (Chl(RS)-a, mg m(-3)) were resolved across Florida's coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of Chl(RS)-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters.

  2. An Approach to Developing Numeric Water Quality Criteria for Coastal Waters Using the SeaWiFS Satellite Data Record

    PubMed Central

    2011-01-01

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and associated ecological impacts. Numeric nutrient water quality standards are needed to protect coastal waters from eutrophication impacts. The Environmental Protection Agency determined that numeric nutrient criteria were necessary to protect designated uses of Florida’s waters. The objective of this study was to evaluate a reference condition approach for developing numeric water quality criteria for coastal waters, using data from Florida. Florida’s coastal waters have not been monitored comprehensively via field sampling to support numeric criteria development. However, satellite remote sensing had the potential to provide adequate data. Spatial and temporal measures of SeaWiFS OC4 chlorophyll-a (ChlRS-a, mg m–3) were resolved across Florida’s coastal waters between 1997 and 2010 and compared with in situ measurements. Statistical distributions of ChlRS-a were evaluated to determine a quantitative reference baseline. A binomial approach was implemented to consider how new data could be assessed against the criteria. The proposed satellite remote sensing approach to derive numeric criteria may be generally applicable to other coastal waters. PMID:22192062

  3. An Integrated Risk Management Model for Source Water Protection Areas

    PubMed Central

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans. PMID:23202770

  4. Optimizing fish and stream-water mercury metrics for calculation of fish bioaccumulation factors

    Treesearch

    Paul Bradley; Karen Riva Murray; Barbara C. Scudder Elkenberry; Christopher D. Knightes; Celeste A. Journey; Mark A. Brigham

    2016-01-01

    Mercury (Hg) bioaccumulation factors (BAFs; ratios of Hg in fish [Hgfish] and water[Hgwater]) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Protection of wildlife and human health depends directly on the accuracy of site-specific estimates of Hgfish and Hgwater and the predictability of the relation between these...

  5. Strategy of Water Pollution Control Base On Social Economic Activitiy, in Karang Mumus River, Samarinda East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramaningsih, Vita; Suprayogi, Slamet; Purnama, Setyawan

    2018-02-01

    Water Pollution in Karang Mumus River caused society behavior along the river. Daily activity such as bath, washing and defecate at the river. Garbage, sediment, domestic waste and flood are river problems should be solved. Purpose this research is make strategy of water pollution control in the Karang Mumus River. Method used observation in the field, interview to the society, industry, public activity along the river and government of environment department. Further create data using tool of Analysis Hierarchy Process (AHP) to get the strategy to control water pollution in the river. Actors have contribute pollution control are government, industry and society. Criteria to pollution control are society participation, low, human resources and sustainable. Alternative of pollution control are unit garbage storage; license loyalty for industry and waste; communal waste water installation; monitoring of water quality. Result for actor priority are government (0.4); Industry (0.4); Society (0.2). Result for priority criteria are society participation (0.338), low (0.288), human resources (0.205) and sustainable (0.169). Result for priority alternative are unit garbage storage (0.433); license loyalty for industry and waste (0.238); communal waste water installation (0.169); monitoring of water quality (0.161).

  6. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.

  7. A decision support system for drinking water production integrating health risks assessment.

    PubMed

    Delpla, Ianis; Monteith, Donald T; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2014-07-18

    The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation.

  8. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  9. Environmental quality impact on human mortality and its spatial variations in the contiguous United States 2000-2005

    EPA Science Inventory

    Assessing the cumulative effects of multiple environmental factors that influence mortality remains a challenging task. This study used the Environmental Quality Index (EQI), and its five domain indices (air, water, land, built and sociodemographic) as a measure of cumulative env...

  10. Domains of environmental quality are differentially associated with adverse birth outcomes by levels of urban-rural status

    EPA Science Inventory

    Human health is affected by exposures operating from multiple domains across level of urbanicity. To accommodate this, we constructed an environmental quality index(EQI) using data from five domains (air, water, land, built, sociodemographic) for each United States (U.S.) county;...

  11. 77 FR 12818 - Intent To Prepare a Draft Supplemental Environmental Impact Statement for the Proposed Rio Grande...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ..., floodplain development, water quality, ecological resources, endangered species, wildlife refuge objectives, social welfare, human safety, cultural resources, and aesthetic qualities. Development and implementation... risk management study along the Rio Grande from San Acacia downstream to San Marcial in Socorro County...

  12. 30 CFR 282.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality of the human environment requiring preparation of an Environmental Impact Statement (EIS) pursuant... quality of the marine ecosystem, including the waters of the high seas, the contiguous zone, transitional... found on or below the surface of the seabed but does not include oil, gas, or sulphur; salt or sand and...

  13. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells

    USGS Publications Warehouse

    Ayotte, J.D.; Szabo, Z.; Focazio, M.J.; Eberts, S.M.

    2011-01-01

    The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in geochemistry and associated trace element mobilization as well as enhancing advective transport processes.

  14. Associations between fecal indicator bacteria prevalence and demographic data in private water supplies in Virginia.

    PubMed

    Smith, Tamara; Krometis, Leigh-Anne H; Hagedorn, Charles; Lawrence, Annie H; Benham, Brian; Ling, Erin; Ziegler, Peter; Marmagas, Susan West

    2014-12-01

    Over 1.7 million Virginians rely on private water sources to provide household water. The heaviest reliance on these systems occurs in rural areas, which are often underserved with respect to available financial resources and access to environmental health education. This study aimed to identify potential associations between concentrations of fecal indicator bacteria (FIB) (coliforms, Escherichia coli) in over 800 samples collected at the point-of-use from homes with private water supply systems and homeowner-provided demographic data (household income and education). Of the 828 samples tested, 349 (42%) of samples tested positive for total coliform and 55 (6.6%) tested positive for E. coli. Source tracking efforts targeting optical brightener concentrations via fluorometry and the presence of a human-specific Bacteroides marker via quantitative real-time polymerase chain reaction (qPCR) suggest possible contamination from human septage in over 20 samples. Statistical methods implied that household income has an association with the proportion of samples positive for total coliform, though the relationship between education level and FIB is less clear. Further exploration of links between demographic data and private water quality will be helpful in building effective strategies to improve rural drinking water quality.

  15. Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: a pilot study of technological performance and human health benefits.

    PubMed

    Abebe, Lydia Shawel; Smith, James A; Narkiewicz, Sophia; Oyanedel-Craver, Vinka; Conaway, Mark; Singo, Alukhethi; Amidou, Samie; Mojapelo, Paul; Brant, Julia; Dillingham, Rebecca

    2014-06-01

    Waterborne pathogens present a significant threat to people living with the human immunodeficiency virus (PLWH). This study presents a randomized, controlled trial that evaluates whether a household-level ceramic water filter (CWF) intervention can improve drinking water quality and decrease days of diarrhea in PLWH in rural South Africa. Seventy-four participants were randomized in an intervention group with CWFs and a control group without filters. Participants in the CWF arm received CWFs impregnated with silver nanoparticles and associated safe-storage containers. Water and stool samples were collected at baseline and 12 months. Diarrhea incidence was self-reported weekly for 12 months. The average diarrhea rate in the control group was 0.064 days/week compared to 0.015 days/week in the intervention group (p < 0.001, Mann-Whitney). Median reduction of total coliform bacteria was 100% at enrollment and final collection. CWFs are an acceptable technology that can significantly improve the quality of household water and decrease days of diarrhea for PLWH in rural South Africa.

  16. Cyto- and genotoxic profile of groundwater used as drinking water supply before and after disinfection.

    PubMed

    Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A

    2016-12-01

    The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.

  17. Harvested rainwater quality before and after treatment in six ...

    EPA Pesticide Factsheets

    Rainwater harvesting (RWH) is an alternative method of providing water for indoor domestic use, but the water quality after treatment and distribution at individual residences is not well documented. In this study, water quality parameters were measured at the cistern and indoor cold-water taps of six residential RWH systems that use various treatment processes. Potential human pathogens (Mycobacterium avium, Mycobacterium intracellulare, Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger) were found frequently in cisterns and in treated rainwater delivered at the tap; Legionella pneumophila was not detected as frequently, but it persisted in a system after its first detection. The observed decreases in bacterial concentrations from the cistern to the tap after filtration/ ultraviolet (UV) treatment and distribution were less than expected; this suggests deficiencies in the effectiveness of the filtration/UV processes employed and/or degradation in water quality in the distribution system due to the absence of a disinfectant residual. Determination of the disinfection efficiency occuring in home treatment processes. Molecular analysis of rainwater before and after treatment. First study to include the monitoring of opportunistic fungal pathogens.

  18. Geospatial Modeling of Watershed Quality as an Indicator for Environmental Health

    NASA Astrophysics Data System (ADS)

    Archer, R.

    2016-12-01

    The impact of urbanization of rural Tennessee counties on environmental quality and human health and wellbeing has not been well studied, especially in the context of water quality. Between 2015 and 2025, Williamson County, TN is projected to see the strongest rate of population growth in the region, expanding by 33.7 percent. Water quality directly affects the condition of soils, vegetation, and other life forms that depend on water for survival, and therefore is a valid indicator of environmental health. Current reliable data is available on less than half (47%) of waterways in Tennessee. GIS is applied to model the impact of urbanization on rural communities within the Mill Creek watershed in Williamson County, Tennessee. Water quality measurements are integrated with data identifying urbanization and other land development influences assessed over a previous decades in order to identify influences of environmental change impacts on the watershed. The study examines the threat of urbanization to soils, vegetation and other related natural resources as well as the distance of farm areas, pasture grazing, cattle access and manure runoff, construction and landscaping to collection systems leading into the watershed. Combining spatial analysis with water quality interpretation helped to identify and display potential causes and sources of Mill Creek Watershed pollution as well as vulnerable locations susceptible to risk of declining environmental health.

  19. Human Dimensions of Water Quality: Aligning Human Use and Perceptions with Biophysical Measurements

    EPA Science Inventory

    Nutrient overenrichment is a significant problem in coastal waterbodies, particularly estuaries, across the United States. At the Atlantic Ecology Division of the U.S. EPA, we are working on an interdisciplinary project to understand the impacts of nutrient overenrichment on Cape...

  20. Human health and groundwater

    USDA-ARS?s Scientific Manuscript database

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  1. 77 FR 59594 - Marine Mammals; File No. 16163

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... that issuance of the permit amendment would not significantly impact the quality of the human... conduct research on cetacean species in U.S. and international waters in the Pacific Ocean, including... of the permitted activities on the human environment was prepared in compliance with the National...

  2. Fragmentation of forest, grassland, and shrubland

    Treesearch

    Kurt H. Riitters

    2013-01-01

    As humans introduce competing land uses into natural landscapes, the public concerns regarding landcover patterns are expressed through headline issues such as urban sprawl, forest fragmentation, water quality, and wilderness preservation. The spatial arrangement of an environment affects all human perceptions and ecological processes within that environment, but this...

  3. Beach Sand Analysis for Indicators of Microbial Contamination

    EPA Science Inventory

    Traditional beach monitoring has focused on water quality, with little attention paid to health risks associated with beach sand. Recent research has reported that fecal indicator bacteria, as well as human pathogens can be found in beach sand and may constitute a risk to human h...

  4. Great Salt Lake basins study unit

    USGS Publications Warehouse

    Waddell, Kidd M.; Baskin, Robert L.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment (NAWQA) Program.The long-term goals of the NAWQA Program are to describe the status and trends in the quality of a large, representative part of the Nation’s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors that affect the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at Federal, State, and local levels.A major design feature of the NAWQA Program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which ae the principal building blocks of the program upon which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include principal river basins and aquifer systems throughout the Nation. These study units cover areas from less than 1.000 to greater than 60,000 mi2 and incorporate from about 60 to 70 percent of the Nation’s water use and population served by public water supply. In 1993, assessment activities began in the Great Salt Lake Basins NAWQA study unit.

  5. Predicting non-stationary algal dynamics following changes in hydrometeorological conditions using data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Kim, S.; Seo, D. J.

    2017-12-01

    When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.

  6. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.

    PubMed

    de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale

    2015-04-01

    A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  8. Promoting the management and protection of private water wells.

    PubMed

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  9. Evaluation of the U.S. Geological Survey Ground-Water Data-Collection Program in Hawaii, 1992

    USGS Publications Warehouse

    Anthony, Stephen S.

    1997-01-01

    In 1992, the U.S. Geological Survey ground-water data-collection program in the State of Hawaii consisted of 188 wells distributed among the islands of Oahu, Kauai, Maui, Molokai, and Hawaii. Water-level and water-quality (temperature, specific conductance, and chloride concentration) data were collected from observation wells, deep monitoring wells that penetrate the zone of transition between freshwater and saltwater, free-flowing wells, and pumped wells. The objective of the program was to collect sufficient spatial and temporal data to define seasonal and long-term changes in ground-water levels and chloride concentrations induced by natural and human-made stresses for different climatic and hydrogeologic settings. Wells needed to meet this objective can be divided into two types of networks: (1) a water-management network to determine the response of ground-water flow systems to human-induced stresses, such as pumpage, and (2) a baseline network to determine the response of ground-water flow systems to natural stresses for different climatic and hydrogeologic settings. Maps showing the distribution and magnitude of pumpage and the distribution of proposed pumped wells are presented to identify areas in need of water-management networks. Wells in the 1992 U.S. Geological Survey ground-water data-collection program were classified as either water-management or baseline network wells. In addition, locations where additional water-management network wells are needed for water-level and water-quality data were identified.

  10. Water-quality monitoring and process understanding in support of environmental policy and management

    USGS Publications Warehouse

    Peters, N.E.

    2008-01-01

    The quantity and quality of freshwater at any point on the landscape reflect the combined effects of many processes operating along hydrological pathways within a drainage basin/watershed/catchment. Primary drivers for the availability of water are landscape changes and patterns, and the processes affecting the timing, magnitude, and intensity of precipitation, including global climate change. The degradation of air, land, and water in one part of a drainage basin can have negative effects on users downstream; the time and space scales of the effects are determined by the residence time along the various hydrological pathways. Hydrology affects transport, deposition, and recycling of inorganic materials and sediment. These components affect biota and associated ecosystem processes, which rely on sustainable flows throughout a drainage basin. Human activities on all spatial scales affect both water quantity and quality, and some human activities can have a disproportionate effect on an entire drainage basin. Aquatic systems have been continuously modified by agriculture, through land-use change, irrigation and navigation, disposal of urban, mining, and industrial wastes, and engineering modifications to the environment. Interdisciplinary integrated basin studies within the last several decades have provided a more comprehensive understanding of the linkages among air, land, and water resources. This understanding, coupled with environmental monitoring, has evolved a more multidisciplinary integrated approach to resource management, particularly within drainage basins.

  11. Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids.

    PubMed

    Valsecchi, Sara; Conti, Daniela; Crebelli, Riccardo; Polesello, Stefano; Rusconi, Marianna; Mazzoni, Michela; Preziosi, Elisabetta; Carere, Mario; Lucentini, Luca; Ferretti, Emanuele; Balzamo, Stefania; Simeone, Maria Gabriella; Aste, Fiorella

    2017-02-05

    The evidence that in Northern Italy significant sources of perfluoroalkylacids (PFAA) are present induced the Italian government to establish a Working Group on Environmental Quality Standard (EQS) for PFAA in order to include some of them in the list of national specific pollutants for surface water monitoring according to the Water Framework Directive (2000/60/EC). The list of substances included perfluorooctanoate (PFOA) and related short chain PFAA such as perfluorobutanoate (PFBA), perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA) and perfluorobutanesulfonate (PFBS), which is a substitute of perfluorooctanesulfonate. For each of them a dossier collects available data on regulation, physico-chemical properties, emission and sources, occurrence, acute and chronic toxicity on aquatic species and mammals, including humans. Quality standards (QS) were derived for the different protection objectives (pelagic and benthic communities, predators by secondary poisoning, human health via consumption of fishery products and water) according to the European guideline. The lowest QS is finally chosen as the relevant EQS. For PFOA a QS for biota was derived for protection from secondary poisoning and the corresponding QS for water was back-calculated, obtaining a freshwater EQS of 0.1μgL -1 . For PFBA, PFPeA, PFHxA and PFBS threshold limits proposed for drinking waters were adopted as EQS. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. World Health Organization increases its drinking-water guideline for uranium.

    PubMed

    Frisbie, Seth H; Mitchell, Erika J; Sarkar, Bibudhendra

    2013-10-01

    The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-water Quality in July, 2011. In this edition, the drinking-water guideline for uranium (U) was increased to 30 μg L(-1) despite the conclusion that "deriving a guideline value for uranium in drinking-water is complex, because the data [from exposures to humans] do not provide a clear no-effect concentration" and "Although some minor biochemical changes associated with kidney function have been reported to be correlated with uranium exposure at concentrations below 30 μg L(-1), these findings are not consistent between studies" (WHO, Uranium in Drinking-water, Background document for development of WHO Guidelines for Drinking-water Quality, available: , accessed 13 October 2011). This paper reviews the WHO drinking-water guideline for U, from its introduction as a 2 μg L(-1) health-based guideline in 1998 through its increase to a 30 μg L(-1) health-based guideline in 2011. The current 30 μg L(-1) WHO health-based drinking-water guideline was calculated using a "no-effect group" with "no evidence of renal damage [in humans] from 10 renal toxicity indicators". However, this nominal "no-effect group" was associated with increased diastolic blood pressure, systolic blood pressure, and glucose excretion in urine. In addition, the current 30 μg L(-1) guideline may not protect children, people with predispositions to hypertension or osteoporosis, pre-existing chronic kidney disease, and anyone with a long exposure. The toxic effects of U in drinking water on laboratory animals and humans justify a re-evaluation by the WHO of its decision to increase its U drinking-water guideline.

  13. Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin

    NASA Astrophysics Data System (ADS)

    Kraft, M.; Null, S. E.

    2016-12-01

    Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.

  14. High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo.

    PubMed

    Kayembe, John M; Thevenon, Florian; Laffite, Amandine; Sivalingam, Periyasamy; Ngelinkoto, Patience; Mulaji, Crispin K; Otamonga, Jean-Paul; Mubedi, Josué I; Poté, John

    2018-04-01

    In many urban and peri-urban areas of developing countries, shallow wells and untreated water from urban rivers are used for domestic purposes, including drinking water supply, population bathing and irrigation for urban agriculture. The evaluation and monitoring of water quality are therefore necessary for preventing potential human risk associated with the exposure to contaminated water. In this study, physicochemical and bacteriological parameters were assessed in an urban river (named Kokolo Canal/Jerusalem River) draining the municipality of Lingwala (City of Kinshasa, Democratic Republic of the Congo) and in two shallow wells used as drinking water supplies, during the wet and dry seasons in order to estimate the seasonal variation of contamination. The faecal indicator bacteria (FIB) isolated strains (Escherichia coli (E. coli) and Enterococcus (ENT)) from water and surface sediment, were characterized for human-specific bacteroides by molecular approach. The results revealed very high faecal contamination of water from the shallow wells, and of water and sediments from the river, during both wet and dry seasons. During the wet season, E. coli reached the values of 18.6 × 10 5 and 4.9 × 10 5  CFU 100 mL -1 in Kokolo Canal and shallow wells, respectively; and Enterococcus reached the values of 7.4 × 10 4 and 2.7 × 10 4  CFU 100 mL -1 . Strong mutually positive correlation was observed between E. coli and ENT, with the range of R-value being 0.93 < r < 0.97 (p-value < 0.001, n = 15). The PCR assays for human-specific Bacteroides indicated that more than 98% of 500 isolated FIB strains were of human origin, pointing out the effect of poor household sanitation practices on surface water but also on groundwater contamination. The water samples from the shallow wells and Kokolo Canal were highly polluted with faecal matter in both seasons. However, the pollution level was significantly higher during the wet season compared to the dry season. Physicochemical analysis revealed also very high water electrical conductivity, with values much higher than the recommended limits of the World Health Organization guideline for drinking water. These results highlight the potential human health risk associated with the exposure to water contamination from shallow wells and Kokolo Canal, due to the very high level of human FIB. Rapid, unplanned and uncontrolled population growth in the city of Kinshasa is increasing considerably the water demand, whereas there is a dramatic lack of appropriate sanitation and wastewater facilities, as well as of faecal sludge (and solid waste) management and treatment. The lack of hygiene and the practice of open defecation is leading to the degradation of water quality, consequently the persistence of waterborne diseases in the neighbourhoods of sub-rural municipalities, and there is a growing threat to the sustainability to water resources and water quality. The results of this study should encourage municipality policy and strategy on increasing the access to safely managed sanitation services; in order to better protect surface water and groundwater sources, and limit the proliferation of epidemics touching regularly the city. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Water-quality data for Navajo National Monument, northeastern Arizona--2001-02

    USGS Publications Warehouse

    Thomas, Blakemore E.

    2003-01-01

    Water-quality data are provided for six sites in Navajo National Monument in northeastern Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from six sites near three ancient Indian ruins during September 2001 to August 2002. Two springs and one well near Betatakin Ruin, one spring is near Keet Seel Ruin, and one spring and one stream are near Inspection House Ruin. Water from all the sites is from the N aquifer, a regional sandstone aquifer that is the source of drinking water for most members of the Navajo Nation and Hopi Tribe in northeastern Arizona. Concentrations of dissolved solids, major ions, trace elements, and uranium were low at the six sites. Dissolved-solids concentration ranged from 94 to 221 milligrams per liter. Concentrations of dissolved nitrate (as nitrogen) were generally low (less than 0.05 to 0.92 milligrams per liter) and were within the range of concentrations at other N-aquifer sites within 20 miles of the study area. Water samples from Inscription House Spring, Navajo Creek Tributary (near Inscription House Ruin), and Keet Seel Ruin Spring contained indicators of human or animal wastes--fecal coliform and Escherichia coli bacteria.

  16. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    PubMed

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  17. Sensitivity analysis for the total nitrogen pollution of the Danjiangkou Reservoir based on a 3-D water quality model

    NASA Astrophysics Data System (ADS)

    Chen, Libin; Yang, Zhifeng; Liu, Haifei

    2017-12-01

    Inter-basin water transfers containing a great deal of nitrogen are great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the significance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.

  18. Satellite water quality monitoring in coastal and estuarine waters: a look at SeaWiFS, MODIS, MERIS, and HICO

    EPA Science Inventory

    The United States Environmental Protection Agency’s charge to protect human health and the environment requires a long-term commitment to creating sustainable solutions to environmental problems. The most direct way to ensure that management practices are achieving sustainability...

  19. Make a Splash Day

    ERIC Educational Resources Information Center

    Coverdale, Greg; Rust, April; Jensen, Belinda

    2004-01-01

    At the annual, all-day events-sponsored by Project WET (Water Education for Teachers) and held in nearly every state across the country each September--students participate in interactive activities and exhibits to learn about water resources and explore how human behaviors, such as development and recreation, can affect the quality of the…

  20. Relationships and trends of E. Coli, human-associated bacteroides, and pathogens in the Proctor Creek watershed (GWRC 2017)

    EPA Science Inventory

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sani-tary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water qual-ity, however, litt...

Top