Sample records for water quality implications

  1. Public perception and economic implications of bottled water consumption in underprivileged urban areas.

    PubMed

    Massoud, M A; Maroun, R; Abdelnabi, H; Jamali, I I; El-Fadel, M

    2013-04-01

    This paper presents a comparative assessment of public perception of drinking water quality in two underprivileged urban areas in Lebanon and Jordan with nearly similar cultural and demographic characteristics. It compares the quality of bottled water to the quality of the drinking water supplied through the public network and examines the economic implications of bottled water consumption in the two study areas. Participants' perception of the quality of drinking water provided via the public network was generally negative, and bottled water was perceived to be of better quality in both areas, thus affecting drinking water preferences and consumption patterns. The results reveal that the quality of bottled water is questionable in areas that lack enforcement of water quality standards, thus adding to the burden of an already disadvantaged community. Both areas demonstrated a considerable cost incurred for purchasing bottled water in low income communities reaching up to 26 % of total income.

  2. Sensitivity of stream water age to climatic variability and land use change: implications for water quality

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Birkel, Christian; Geris, Josie; Tetzlaff, Doerthe

    2016-04-01

    Advances in the use of hydrological tracers and their integration into rainfall runoff models is facilitating improved quantification of stream water age distributions. This is of fundamental importance to understanding water quality dynamics over both short- and long-time scales, particularly as water quality parameters are often associated with water sources of markedly different ages. For example, legacy nitrate pollution may reflect deeper waters that have resided in catchments for decades, whilst more dynamics parameters from anthropogenic sources (e.g. P, pathogens etc) are mobilised by very young (<1 day) near-surface water sources. It is increasingly recognised that water age distributions of stream water is non-stationary in both the short (i.e. event dynamics) and longer-term (i.e. in relation to hydroclimatic variability). This provides a crucial context for interpreting water quality time series. Here, we will use longer-term (>5 year), high resolution (daily) isotope time series in modelling studies for different catchments to show how variable stream water age distributions can be a result of hydroclimatic variability and the implications for understanding water quality. We will also use examples from catchments undergoing rapid urbanisation, how the resulting age distributions of stream water change in a predictable way as a result of modified flow paths. The implication for the management of water quality in urban catchments will be discussed.

  3. The European water framework directive: water quality classification and implications to engineering planning.

    PubMed

    Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang

    2005-04-01

    The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.

  4. IMPACT OF BEST MANAGEMENT PRACTICES ON WATER QUALITY OF TWO SMALL WATERSHEDS IN INDIANA: ROLE OF SPATIAL SCALE

    EPA Science Inventory

    Transport and fate of sediments and nutrients within watersheds have important implications for water quality and water resources. Water quality issues often arise because sediments serve as carriers for various pollutants such as nutrients, pathogens, and toxic substances. The C...

  5. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  6. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  7. Environmental setting of the upper Illinois River basin and implications for water quality

    USGS Publications Warehouse

    Arnold, Terri L.; Sullivan, Daniel J.; Harris, Mitchell A.; Fitzpatrick, Faith A.; Scudder, Barbara C.; Ruhl, Peter M.; Hanchar, Dorothea W.; Stewart, Jana S.

    1999-01-01

    The upper Illinois River Basin (UIRB) is the 10,949 square mile drainage area upstream from Ottawa, Illinois, on the Illinois River. The UIRB is one of 13 studies that began in 1996 as part of the U.S. Geological Survey?s National Water- Quality Assessment program. A compilation of environmental data from Federal, State, and local agencies provides a description of the environmental setting of the UIRB. Environmental data include natural factors such as bedrock geology, physiography and surficial geology, soils, vegetation, climate, and ecoregions; and human factors such as land use, urbanization trends, and population change. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the UIRB and the possible implications of that environmental setting for water quality. Some of the possible implications identified include depletion of dissolved oxygen because of high concentrations of organic matter in wastewater, increased flooding because of suburbanization, elevated arsenic concentrations in ground water because of weathering of shale bedrock, and decreasing ground-water levels because of heavy pumping of water from the bedrock aquifers.

  8. Biofilm-induced changes in microbial quality of irrigation water: Indicator bacteria and antibiotic-resistance

    USDA-ARS?s Scientific Manuscript database

    Irrigation waters are implicated in the transmission of pathogens to fresh produce, and microbial release and retention from biofilms that form on inner surfaces of irrigation lines may impact the quality of delivered water. Biofilms in water distribution systems have been suggested as a reservoir ...

  9. Public Policy on Ground-Water Quality Protection. Proceedings of a National Conference (Virginia Polytechnic Inst. and State University, Blacksburg, Virginia, April 13-16, 1977).

    ERIC Educational Resources Information Center

    Kerns, Waldon R., Ed.

    This publication contains the papers presented at a National Conference on Ground Water Quality Protection Policy held in April of 1977. Paper titles include: (1) Magnitude of the Ground-Water Contamination Problem; (2) Limited Degredation as a Ground-Water Quality Policy; (3) Surface and Subsurface Mining: Policy Implications; (4) Oil Well…

  10. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    EPA Science Inventory

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  11. Characterizing light attenuation within Northwest Florida Estuaries: Implications for RESTORE Act water quality monitoring

    EPA Science Inventory

    Water Quality (WQ) condition is based on ecosystem stressor indicators (e.g. water clarity) which are biogeochemically important and critical when considering the Deepwater Horizon oil spill restoration efforts under the 2012 RESTORE Act. Nearly all of the proposed RESTORE proj...

  12. WATER IMPLICATIONS OF BIOFUELS PRODUCTION

    EPA Science Inventory

    Presentation requested by the National Academy of Science (NAS) for a Colloquium on Water Quality Implications of Biofuels Production, to be held at the NAS in Washington, D.C. on July 12, 2007. This presentation will address the influence of ethanol on hydrocarbon plumes and th...

  13. Drainage water management effects on tile discharge and water quality

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  14. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications of the adaptive implementation for setting of water quality standards, for design of watershed monitoring programs and for the regulatory rules governing the TMDL program implementation.

  15. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for "source water supply and protection" strategies.

    PubMed

    Emelko, Monica B; Silins, Uldis; Bladon, Kevin D; Stone, Micheal

    2011-01-01

    Forests form the critical source water areas for downstream drinking water supplies in many parts of the world, including the Rocky Mountain regions of North America. Large scale natural disturbances from wildfire and severe insect infestation are more likely because of warming climate and can significantly impact water quality downstream of forested headwaters regions. To investigate potential implications of changing climate and wildfire on drinking water treatment, the 2003 Lost Creek Wildfire in Alberta, Canada was studied. Four years of comprehensive hydrology and water quality data from seven watersheds were evaluated and synthesized to assess the implications of wildfire and post-fire intervention (salvage-logging) on downstream drinking water treatment. The 95th percentile turbidity and DOC remained low in streams draining unburned watersheds (5.1 NTU, 3.8 mg/L), even during periods of potential treatment challenge (e.g., stormflows, spring freshet); in contrast, they were elevated in streams draining burned (15.3 NTU, 4.6 mg/L) and salvage-logged (18.8 NTU, 9.9 mg/L) watersheds. Persistent increases in these parameters and observed increases in other contaminants such as nutrients, heavy metals, and chlorophyll-a in discharge from burned and salvage-logged watersheds present important economic and operational challenges for water treatment; most notably, a potential increased dependence on solids and DOC removal processes. Many traditional source water protection strategies would fail to adequately identify and evaluate many of the significant wildfire- and post-fire management-associated implications to drinking water "treatability"; accordingly, it is proposed that "source water supply and protection strategies" should be developed to consider a suppliers' ability to provide adequate quantities of potable water to meet demand by addressing all aspects of drinking water "supply" (i.e., quantity, timing of availability, and quality) and their relationship to "treatability" in response to land disturbance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. On the complex non-linear interaction between bacteria and redox dynamics in sediments and its effects on water quality

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Rubol, S.; Fernandez-Garcia, D.

    2011-12-01

    Despite the fact that the prognoses on the availability of resources related to different climate scenarios have been already formulated, the complex hydrological and biogeochemical reactions taking place in different compartments in natural environmental media are poorly understood, especially regarding the interactions between water bodies, and the reactions taking place at soil-water interfaces. Amongst them, the inter-relationship between hydrology, chemistry and biology has important implications in natural (rivers, lakes) and man-made water facilities (lagoons, artificial recharge pounds, reservoirs, slow infiltration systems, etc). The consequences involve environment, economic, social and health-risk aspects. At the current stage, only limited explanations are available to understand the implications of these relationships on ecosystem services, water quality and water quantity. Therefore, there is an urgent need to seek a full understanding of these physical-biogeochemical processes in water-bodies, sediments and biota and its implications in ecological and health risk. We present a soil column experiment and a mathematical model which aim to study the mutual interplay between water and bacteria activity in porous media, the corresponding dynamics and the feedback on nutrient cycling by using a multidisciplinary approach.

  17. DEVELOPMENT OF NEAR-SHORE HYDRODYNAMIC MODELS FOR BEACH CLOSURE FORECASTING IN THE GREAT LAKES

    EPA Science Inventory

    Water quality managers and other planning and decision entities are increasingly calling for up-to-the-minute data on present water quality conditions or forecasts of these data that can be used to adjust or respond to quickly developing activities with environmental implications...

  18. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  19. Precipitation and runoff water quality from an urban parking lot and implications for tree growth

    Treesearch

    C. H. Pham; H. G. Halverson; G. M. Heisler

    1978-01-01

    The water quality of precipitation and runoff from a large parking lot in New Brunswick, New Jersey was studied during the early growing season, from March to June 1976. Precipitation and runoff from 10 storms were analyzed. The runoff was higher in all constituents considered except for P, Pb, and Cu. Compared with published values for natural waters, sewage effluent...

  20. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 3. Responses of Stream Base-Flow Chemistry to Hydrogeologic Factors and Nonpoint-Sources of Contamination

    USGS Publications Warehouse

    Heisig, Paul M.; Phillips, Patrick J.

    2004-01-01

    The implications of this study are that seasonal and more frequent base-flow surveys of water chemistry from small stream basins can help refine the understanding of local hydrogeologic systems and define the effects of nonpointsource contamination on base-flow water quality. The concentration of most nonpoint sources in valley-bottom or lower-hillside areas helped indicate the relative contributions of water from hillside and valley-bottom areas at different times of year. The positive correlations between the intensity of nonpoint-source activities and nonpoint-source constituents in base flow underscores the link between land use (nonpoint sources), ground-water quality, and surface-water quality.

  1. Evaluation of Water Quality Trends in Goodwater Creek Experimental Watershed, Missouri: Implications for Monitoring Strategies and Objective Setting

    USDA-ARS?s Scientific Manuscript database

    Continued public support for U.S. tax-payer funded programs aimed at reducing agricultural non-point source pollutants depends on clear demonstrations of water quality improvements. Effectiveness of structural BMPs, as well as watershed monitoring networks is an important information need to make f...

  2. Raw Water Ammonia: Implications on Water Quality, Regulatory Compliance, and Management Strategies

    EPA Science Inventory

    The objective of the talk will be to present engineering design considerations associated with the biological reduction of ammonia from source water. Also, the application of ion exchange softening to address elevated ammonia is presented.

  3. EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL

    EPA Science Inventory

    The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...

  4. Using Omics to Study Microbial Water Quality

    EPA Science Inventory

    Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...

  5. Using Omics to Study Microbial Water Quality - abstract

    EPA Science Inventory

    Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...

  6. Water quality in the St. Louis River Area of Concern, Lake Superior: Historical and current conditions and delisting implications

    EPA Science Inventory

    Water quality in the lower St. Louis River Area of Concern (AOC) from two stations over a 60 year period (19532013) and system-wide (20122013) was examined to determine if the AOC beneficial use impairment of excessive loading of sediment and nutrients could be considered for rem...

  7. Predicting the Effect of Changing Precipitation Extremes and Land Cover Change on Urban Water Quality

    NASA Astrophysics Data System (ADS)

    SUN, N.; Yearsley, J. R.; Lettenmaier, D. P.

    2013-12-01

    Recent research shows that precipitation extremes in many of the largest U.S. urban areas have increased over the last 60 years. These changes have important implications for stormwater runoff and water quality, which in urban areas are dominated by the most extreme precipitation events. We assess the potential implications of changes in extreme precipitation and changing land cover in urban and urbanizing watersheds at the regional scale using a combination of hydrology and water quality models. Specifically, we describe the integration of a spatially distributed hydrological model - the Distributed Hydrology Soil Vegetation Model (DHSVM), the urban water quality model in EPA's Storm Water Management Model (SWMM), the semi-Lagrangian stream temperature model RBM10, and dynamical and statistical downscaling methods applied to global climate predictions. Key output water quality parameters include total suspended solids (TSS), toal nitrogen, total phosphorous, fecal coliform bacteria and stream temperature. We have evaluated the performance of the modeling system in the highly urbanized Mercer Creek watershed in the rapidly growing Bellevue urban area in WA, USA. The results suggest that the model is able to (1) produce reasonable streamflow predictions at fine temporal and spatial scales; (2) provide spatially distributed water temperature predictions that mostly agree with observations throughout a complex stream network, and characterize impacts of climate, landscape, near-stream vegetation change on stream temperature at local and regional scales; and (3) capture plausibly the response of water quality constituents to varying magnitude of precipitation events in urban environments. Next we will extend the scope of the study from the Mercer Creek watershed to include the entire Puget Sound Basin, WA, USA.

  8. Synthesis of U.S. Geological Survey science for the Chesapeake Bay ecosystem and implications for environmental management

    USGS Publications Warehouse

    Ator, Scott W.; Blazer, Vicki S.; Brakebill, John W.; Cahoon, Donald R.; Claggett, Peter; Cronin, Thomas M.; Denver, Judith M.; Densmore, Christine L.; Gellis, Allen C.; Hupp, Cliff R.; Landwehr, Jurate M.; Langland, Michael J.; Ottinger, Christopher A.; Pavich, Milan J.; Perry, Matthew C.; Phillips, Scott W.; Preston, Stephen D.; Raffensperger, Jeff P.; Rattner, Barnett A.; Rybicki, Nancy B.; Willard, Debra A.; Phillips, Scott W.

    2007-01-01

    The purpose of this report is to present a synthesis of the USGS Chesapeake Bay science related to the 2001-06 goals and provide implications for environmental management. The report provides USGS findings that address the science needs of the Chesapeake Bay Program (CBP) restoration goals and includes summaries of 1. land-use change; 2. water quality in the watershed, including nutrients, sediment, and contaminants; 3. long-term changes in climate and estuarine water quality; 4. estuary habitats, focusing on submerged aquatic vegetation (SAV) and tidal wetlands; and 5. factors affecting fish and waterbird populations.

  9. Geophysical characterisation of the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  10. INVESTIGATIONS INTO THE EFFECTS OF SEASON AND WATER QUALITY ON OYSTERS (CRASSOSTREA VIRGINICA) AND ASSOCIATED FISH ASSEMBLAGES IN THE CALOOSAHATCHEE RIVER ESTUARY, FLORIDA: IMPLICATIONS OF ALTERED FRESHWATER INFLOW

    EPA Science Inventory

    A suite of biological and ecological responses of a Valued Ecosystem Component species, Crassostrea virginica, was used to investigate ecosystem-wide health effects of watershed alterations in the Caloosahatchee River estuary, Florida. The influence of water quality and season on...

  11. Spatial and temporal assessment of surface water quality in the Arka River, Akkar, Lebanon.

    PubMed

    Daou, Claude; Nabbout, Rony; Kassouf, Amine

    2016-12-01

    Surface water quality monitoring constitutes a crucial and important step in any water quality management system. Twenty-three physicochemical and microbiological parameters were assessed in surface water samples collected from the Arka River located in the Akkar District, north of Lebanon. Eight sampling locations were considered along the river and seven sampling campaigns were performed in order to evaluate spatial and temporal influences. The extraction of relevant information from this relatively large data set was done using principal component analysis (PCA), being a very well established chemometric tool in this field. In a first step, extracted PCA loadings revealed the implication of several physicochemical parameters in the discriminations and trends highlighted by PCA scores, mainly due to soil leaching and seawater intrusion. However, further investigations showed the implication of organic and bacterial parameters in the discrimination of stations in the Akkar flatland. These discriminations probably refer to anthropogenic pollution coming from the agricultural area and the surrounding villages. Specific ultraviolet absorption (SUVA) indices confirmed these findings since values decreased for samples collected across the villages and the flatland, indicating an increase in anthropogenic dissolved organic matter. This study will hopefully help the national and local authorities to ameliorate the surface water quality management, enabling its proper use for irrigation purposes.

  12. The economics of water reuse and implications for joint water quality-quantity management

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  13. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    EPA Science Inventory

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  14. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    PubMed

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.

  15. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region.

    PubMed

    Li, Yangfan; Li, Yi; Wu, Wei

    2016-01-01

    The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 3D Chlorine and Monochloramine Penetration and Nitrifying Biofilm Activity and Viability: Periodic Chlorine Switch Implications

    EPA Science Inventory

    Biofilm formation in drinking water distribution systems has been associated with water quality degradation and may result in non-compliance with existing regulations. United States water utilities report biofilm survival and regrowth despite disinfectant presence, and systems t...

  17. Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  18. Link Climate Effects to Surface Water Quality and Drinking Water Plant Adaptation - A Update on Hydroclimatic Province and WTP-ccam Model

    EPA Science Inventory

    Key points in this presentation are: (1) How and why hydroclimatic province can help precipitation projection for water program engineering and management, (2) Implications of initial research results and planned further monitoring / research activities, (3) Five adaptation t...

  19. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  20. Modeling and testing of reactive contaminant transport in drinking water pipes: Chlorine response and implications for online contaminant detection

    EPA Science Inventory

    Reactive contaminants introduced to chlorinated drinking water can cause water quality change directly related to their reactivity and other physiochemical properties. This general principle is further developed and utilized in a proposed real-time event adaptive detection, iden...

  1. Soil and water quality implications of production of herbaceous and woody energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  2. Questions and Answers About the Effects of Septic Systems on Water Quality in the La Pine Area, Oregon

    USGS Publications Warehouse

    Williams, John S.; Morgan, David S.; Hinkle, Stephen R.

    2007-01-01

    Nitrate levels in the ground-water aquifer underlying the central Oregon city of La Pine and the surrounding area are increasing due to contamination from residential septic systems. This contamination has public health implications because ground water is the sole source of drinking water for area residents. The U.S. Geological Survey, in cooperation with Deschutes County and the Oregon Department of Environmental Quality, studied the movement and chemistry of nitrate in the aquifer and developed computer models that can be used to predict future nitrate levels and to evaluate alternatives for protecting water quality. This fact sheet summarizes the results of that study in the form of questions and answers.

  3. Water assessment for the Lower Colorado River region-emerging energy technology development

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Water supply availability for two hypothetical levels of emerging energy technology development are assessed. The water and related land resources implications of such hypothetical developments are evaluated. Water requirement, the effects on water quality, costs of water supplies, costs of disposal of wastewaters, and the environmental, economic and social impacts are determined, providing information for the development of non-nuclear energy research.

  4. What's a stream without water? Disproportionality in headwater regions impacting water quality.

    PubMed

    Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J

    2012-11-01

    Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.

  5. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    EPA Science Inventory

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  6. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  7. Long-term implications of forest harvesting on nutrient cycling in central hardwood forests

    Treesearch

    J.A. Lynch; E.S. Corbett

    1991-01-01

    Fourteen years of streamflow and water quality data from the Leading Ridge Experimental Watersheds in central Pennsylvania were analyzed to determine the long-term impacts of a commercial forest harvest on stream water chemistry and nutrient loss.

  8. The effect of lake water quality and wind turbines on Rhode Island property sales price

    NASA Astrophysics Data System (ADS)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  9. The Value of clean water: The public's willingness to pay for boatable, fishable, and swimmable quality water

    NASA Astrophysics Data System (ADS)

    Carson, Richard T.; Mitchell, Robert Cameron

    1993-07-01

    This paper presents the findings of a study designed to determine the national benefits of freshwater pollution control. By using data from a national contingent valuation survey, we estimate the aggregate benefits of meeting the goals of the Clean Water Act. A valuation function is estimated which depicts willingness to pay as a function of water quality, income, and other variables. Several validation checks and tests for specific biases are performed, and the benefit estimates are corrected for missing and invalid responses. The two major policy implications from our work are that the benefits and costs of water pollution control efforts are roughly equal and that many of the new policy actions necessary to ensure that all water bodies reach at least a swimmable quality level will not have positive net benefits.

  10. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Hydrology in a peaty high marsh: hysteretic flow and biogeochemical implications

    EPA Science Inventory

    Terrestrial nutrient input to coastal waters is a critical water quality problem worldwide, and salt marshes may provide a valuable nutrient buffer (either by removal or by smoothing out pulse inputs) between terrestrial sources and sensitive estuarine habitats. One of the major...

  12. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    NASA Technical Reports Server (NTRS)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  13. Regional medicine use in the Rhine basin and its implication on water quality

    NASA Astrophysics Data System (ADS)

    Hut, R. W.; Houtman, C. J.; van de Giesen, N. C.; de Jong, S. A. P.

    2012-04-01

    Do Germans use more painkillers than the French? Pharmaceuticals used in our Western society form an important group of contaminants found in the river Rhine. As this river is the drinking water source for millions of Europeans, methods to investigate relations between drug use and their penetration in the watercycle are of great importance. An analysis is presented relating medicine residue in the river Rhine to the number of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population was analyzed. Results show regional differences in drug use as well as implications for (down)stream water quality concerning contamination with pharmaceuticals.

  14. Relevance of Regional Hydro-Climatic Projection Data for Hydrodynamics and Water Quality Modelling of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.

    2017-12-01

    The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological conditions and their future evolution.

  15. Microbial water quality communication: public and practitioner insights from British Columbia, Canada.

    PubMed

    Dunn, G; Henrich, N; Holmes, B; Harris, L; Prystajecky, N

    2014-09-01

    This work examines the communication interactions of water suppliers and health authorities with the general public regarding microbial source water quality for recreational and drinking water. We compare current approaches to risk communication observable in British Columbia (BC), Canada, with best practices derived from the communications literature, finding significant gaps between theory and practice. By considering public views and government practices together, we identify key disconnects, leading to the conclusion that at present, neither the public's needs nor public health officials' goals are being met. We find: (1) there is a general lack of awareness and poor understanding by the public of microbial threats to water and the associated health implications; (2) the public often does not know where to find water quality information; (3) public information needs are not identified or met; (4) information sharing by authorities is predominantly one-way and reactive (crisis-oriented); and (5) the effectiveness of communications is not evaluated. There is a need for both improved public understanding of water quality-related risks, and new approaches to ensure information related to water quality reaches audiences. Overall, greater attention should be given to planning and goal setting related to microbial water risk communication.

  16. Perceptions of drinking water quality and risk and its effect on behaviour: a cross-national study.

    PubMed

    Doria, Miguel de França; Pidgeon, Nick; Hunter, Paul R

    2009-10-15

    There is a growing effort to provide drinking water that has the trust of consumers, but the processes underlying the perception of drinking water quality and risks are still not fully understood. This paper intends to explore the factors involved in public perception of the quality and risks of drinking water. This purpose was addressed with a cross-national mixed-method approach, based on quantitative (survey) and qualitative (focus groups) data collected in the UK and Portugal. The data were analysed using several methods, including structural equation models and generalised linear models. Results suggest that perceptions of water quality and risk result from a complex interaction of diverse factors. The estimation of water quality is mostly influenced by satisfaction with organoleptic properties (especially flavour), risk perception, contextual cues, and perceptions of chemicals (lead, chlorine, and hardness). Risk perception is influenced by organoleptics, perceived water chemicals, external information, past health problems, and trust in water suppliers, among other factors. The use of tap and bottled water to drink was relatively well explained by regression analysis. Several cross-national differences were found and the implications are discussed. Suggestions for future research are provided.

  17. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    USDA-ARS?s Scientific Manuscript database

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

  18. 40 CFR 143.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). These regulations control contaminants in drinking water that primarily affect the aesthetic qualities... contaminants, health implications may also exist as well as aesthetic degradation. The regulations are not...

  19. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  20. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    EPA Science Inventory

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  1. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  2. Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge

    2007-03-01

    SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.

  3. Baseline requirements can hinder trades in water quality trading programs: Evidence from the Conestoga watershed.

    PubMed

    Ghosh, Gaurav; Ribaudo, Marc; Shortle, James

    2011-08-01

    The U.S. Environmental Protection Agency (USEPA) and the U.S. Department of Agriculture (USDA) are promoting point/nonpoint trading as a way of reducing the costs of meeting water quality goals. Farms can create offsets by implementing management practices such as conservation tillage, nutrient management and buffer strips. To be eligible to sell offsets or credits, farmers must first comply with baseline requirements. USEPA guidance recommends that the baseline for nonpoint sources be management practices that are consistent with the water quality goal. A farmer would not be able to create offsets until the minimum practice standards are met. An alternative baseline is those practices being implemented at the time the trading program starts, or when the farmer enters the program. The selection of the baseline affects the efficiency and equity of the trading program. It has major implications for which farmers benefit from trading, the cost of nonpoint source offsets, and ultimately the number of offsets that nonpoint sources can sell to regulated point sources. We use a simple model of the average profit-maximizing dairy farmer operating in the Conestoga watershed in Pennsylvania to evaluate the implications of baseline requirements on the cost and quantity of offsets that can be produced for sale in a water quality trading market, and which farmers benefit most from trading. Published by Elsevier Ltd.

  4. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    USGS Publications Warehouse

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  5. Water quality status of dugouts from five districts in Northern Ghana: implications for sustainable water resources management in a water stressed tropical savannah environment.

    PubMed

    Cobbina, Samuel J; Anyidoho, Louis Y; Nyame, Frank; Hodgson, I O A

    2010-08-01

    This study was primarily aimed at investigating the physicochemical and microbial quality of water in 14 such dugouts from five districts in the northern region of Ghana. Results obtained suggest that except for colour, turbidity, total iron and manganese, many physicochemical parameters were either within or close to the World Health Organisation's acceptable limits for drinking water. Generally, colour ranged from 5 to 750 Hz (mean 175 Hz), turbidity from 0.65 to 568 nephelometric turbidity units (NTU; mean 87.9 NTU), total iron from 0.07 to 7.85 mg/L (mean 1.0 mg/L) and manganese from 0.03 to 1.59 mg/L (mean 0.50 mg/L). Coliform counts in water from all the dugouts in both wet and dry seasons were, however, above the recommended limits for drinking water. Total and faecal coliforms ranged from 125 to 68,000 colony forming units (cfu)/100 mL (mean 10,623 cfu/100 mL) and <1 to 19,000 cfu/100 mL (mean 1,310 cfu /100 mL), respectively. The poor microbial quality, as indicated by the analytically significant presence of coliform bacteria in all samples of dugout water, strongly suggests susceptibility and exposure to waterborne diseases of, and consequent health implications on, the many people who continuously patronise these vital water resources throughout the year. In particular, more proactive sustainable water management options, such as introduction to communities of simple but cost-effective purification techniques for water drawn from dugouts for drinking purposes, education and information dissemination to the water users to ensure environmentally hygienic practices around dugouts, may be needed.

  6. Impact of poultry litter application and land use on E. coli runoff from small agricultural watersheds

    USDA-ARS?s Scientific Manuscript database

    Fecal bacteria contamination of surface waters continues to be a critical water quality concern with serious human health implications, but relatively few land use specific data sets are available to guide management, restoration, policy, and regulatory decisions. In regions with substantial poultr...

  7. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  8. A model for predicting daily peak visitation and implications for recreation management and water quality: evidence from two rivers in Puerto Rico.

    PubMed

    Santiago, Luis E; Gonzalez-Caban, Armando; Loomis, John

    2008-06-01

    Visitor use surveys and water quality data indicates that high visitor use levels of two rivers in Puerto Rico does not appear to adversely affect several water quality parameters. Optimum visitor use to maximize visitor defined satisfaction is a more constraining limit on visitor use than water quality. Our multiple regression analysis suggests that visitor use of about 150 visitors per day yields the highest level of visitor reported satisfaction, a level that does not appear to affect turbidity of the river. This high level of visitor use may be related to the gregarious nature of Puerto Ricans and their tolerance for crowding on this densely populated island. The daily peak visitation model indicates that regulating the number of parking spaces may be the most effective way to keep visitor use within the social carrying capacity.

  9. Flow Contribution and Water Quality with Depth in a Test Hole and Public-Supply Wells: Implications for Arsenic Remediation Through Well Modification, Norman, OK 2003-2006.

    EPA Science Inventory

    The City of Norman, Oklahoma, is one municipality affected by a change in the Environmental Protection Agency’s National Primary Drinking Water Regulation for arsenic. In 2006, the maximum contaminant level for arsenic in drinking-water was lowered from 50 to 10 micrograms per li...

  10. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    PubMed

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: Case of Grombalia shallow aquifer, NE Tunisia

    NASA Astrophysics Data System (ADS)

    Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar

    2016-12-01

    Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.

  12. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  13. Urban Wastewater Impacts on the Spatial Distribution of Solutes and Microbial Constituents in the Musi River, India

    NASA Astrophysics Data System (ADS)

    Ensink, J.; Scott, C. A.; Cairncross, S.

    2006-05-01

    Wastewater discharge from expanding urban centers deteriorates the quality of receiving waters, a trend that has management and investment implications for cities around the world. This paper presents the results of a 14-month water quality evaluation over a 40-km longitudinal profile downstream of the city of Hyderabad, India (population 7 million) on the Musi River, a tributary to the Krishna River. Upstream to downstream improvements in Musi water quality for microbial constituents (nematode egg, faecal coliform), dissolved oxygen, and nitrate are attributed to natural attenuation processes (dilution, die-off, sedimentation and biological processes) coupled with the effects of in-stream hydraulic infrastructure (weirs and reservoirs). Conversely, upstream to downstream increases in total dissolved solids concentrations are caused by off- stream infrastructure and agricultural water use resulting in crop evapotranspiration and increased solute concentration in the return flow of irrigation diverted upstream in the wastewater system. Future water quality management challenges resulting from rampant urban growth, particularly in developing countries, are discussed.

  14. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  15. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of surface waters is a critical water quality concern with serious human health implications. Many states use Escherichia coli (E. coli) as an indicator organism for fecal contamination and apply watershed models to develop and support bacterial Total Maximum Daily Loads; howeve...

  17. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...

  18. Trends in Streamflow Characteristics in Hawaii, 1913-2002

    USGS Publications Warehouse

    Oki, Delwyn S.

    2004-01-01

    The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.

  19. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  20. The role of the water tankers market in water stressed semi-arid urban areas:Implications on water quality and economic burden.

    PubMed

    Constantine, Kinda; Massoud, May; Alameddine, Ibrahim; El-Fadel, Mutasem

    2017-03-01

    Population growth and development are associated with increased water demand that often exceeds the capacity of existing resources, resulting in water shortages, particularly in urban areas, where more than 60% of the world's population resides. In many developing communities, shortages often force households to depend on water tankers amongst other potential sources for the delivery of water for domestic and/or potable use. While water tankers have become an integral part of the water supply system in many countries, the sector is often unregulated and operates with little governmental supervision. Users are invariably unaware of the origin or the quality of purchased water. In an effort to better assess this sector, a field survey of water vending wells and tankers coupled with a water quality sampling and analysis program was implemented in a pilot semi-arid urban area (Beirut, Lebanon) to shed light on the environmental and socio-economic impacts of the water tanker sector. Total dissolved solids (TDS), chloride (Cl - ), and microbial loads exceeded drinking water quality standards. While TDS and Cl - levels were mostly due to saltwater intrusion in coastal wells, tankers were found to be a significant source of total coliforms. Delivered water costs varied depending on the tanker size, the quality of the distributed water, and pre-treatment used, with a markup of nearly 8-24 folds of the public water supply and an equivalent economic burden of 16% of the average household income excluding environmental externalities of water quality. The study concludes with a management framework towards consumer protection under integrated supply and demand side measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  2. Wildfire effects on source-water quality--Lessons from Fourmile Canyon fire, Colorado, and implications for drinking-water treatment

    USGS Publications Warehouse

    Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.

  3. Water availability and quality in the Gulf Cooperation Council countries: implications for public health.

    PubMed

    Sherif, Mohsen

    2010-07-01

    Environmental problems and their potential impacts on public health vary in scale and time depending on the level and nature of pollutants. Although water is regarded as the source of all kinds of life on earth, it also acts as an efficient carrier of pollutants. Contamination of drinking water, agricultural water, or recreational water by infectious pathogens, chemical pollutants, or others can have significant impacts on public health. During the past few decades, waterborne diseases continued to spread and the health risks continued to increase. The correlation between water resources and public health is more evident in arid regions. This article discusses the availability of water resources in the Gulf Cooperation Council countries and elaborates on the possible impacts of water resources on public health. It emphasizes the importance of preservation of water quality and prevention of waterborne diseases, which could be achieved through a coordinated effort from diverse groups and disciplines.

  4. Wildfire and the future of water supply.

    PubMed

    Bladon, Kevin D; Emelko, Monica B; Silins, Uldis; Stone, Micheal

    2014-08-19

    In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity-a trend predicted to continue. Thus, the implications of wildfire for many downstream water uses are increasingly concerning, particularly the provision of safe drinking water, which may require additional treatment infrastructure and increased operations and maintenance costs in communities downstream of impacted landscapes. A better understanding of the effects of wildfire on water is needed to develop effective adaptation and mitigation strategies to protect globally critical water supplies originating in forested environments.

  5. Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Roy, Kushal; Karim, Md. Rezaul; Akter, Farjana; Islam, Md. Safiqul; Ahmed, Kousik; Rahman, Masudur; Datta, Dilip Kumar; Khan, M. Shah Alam

    2018-05-01

    Despite its complexity and importance in managing water resources in populous deltas, especially in tidal areas, literatures on tidal rivers and their land use linkage in connection to water quality and pollution are rare. Such information is of prior need for Integrated Water Resource Management in water scarce and climate change vulnerable regions, such as the southwestern coast of Bangladesh. Using water quality indices and multivariate analysis, we present here the land use signatures of a dying tidal river due to anthropogenic perturbation. Correlation matrix, hierarchical cluster analysis, factor analysis, and bio-geo-chemical fingerprints were used to quantify the hydro-chemical and anthropogenic processes and identify factors influencing the ionic concentrations. The results show remarkable spatial and temporal variations ( p < 0.05) in water quality parameters. The lowest solute concentrations are observed at the mid reach of the stream where the agricultural and urban wastewater mix. Agricultural sites show higher concentration of DO, Na+ and K+ reflecting the effects of tidal spill-over and shrimp wastewater effluents nearby. Higher level of Salinity, EC, Cl-, HCO3 -, NO3 -, PO4 3- and TSS characterize the urban sites indicating a signature of land use dominated by direct discharge of household organic waste into the waters. The spatial variation in overall water quality suggests a periodic enhancement of quality especially for irrigation and non-drinking purposes during monsoon and post-monsoon, indicating significant influence of amount of rainfall in the basin. We recommend that, given the recent trend of increasing precipitation and ground water table decrease, such dying tidal river basins may serve as excellent surface water reservoir to supplement quality water supply to the region.

  6. Influence of natural factors on the quality of midwestern streams and rivers

    USGS Publications Warehouse

    Porter, Stephen D.; Harris, Mitchell A.; Kalkhoff, Stephen J.

    2001-01-01

    Streams flowing through cropland in the Midwestern Corn Belt differ considerably in their chemical and ecological characteristics, even though agricultural land use is highly intensive throughout the entire region. These differences likely are attributable to differences in riparian vegetation, soil properties, and hydrology. This conclusion is based on results from a study of the upper Midwest region conducted during seasonally low-flow conditions in August 1997 by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Program. This report summarizes significant results from the study and presents some implications for the design and interpretation of water-quality monitoring and assessment studies based on these results.

  7. A bird’s-eye view: Land-use planning and assessments in Oregon and Washington

    Treesearch

    Marie Oliver; Andrew Gray

    2015-01-01

    Developing forest lands and agricultural lands for other uses has wide-ranging implications. Land development can affect production from forest and agricultural lands, wildlife habitat quality, the spread of invasive species, water quality, wildfire control, and infrastructure costs. In its attempts to mitigate these effects, Oregon implemented statewide land-use...

  8. Afloat in a Boat: Linking Land Use / Land Cover to the Spatial Evolution of Water Quality along a Blackwater Stream

    NASA Astrophysics Data System (ADS)

    Neville, J.; Vose, J. M.; Nichols, E. G.; Jass, T. L.; Emanuel, R. E.; McRae, J.

    2016-12-01

    Water quality and land use/land cover (LULC) are linked intimately in many watersheds, although exact relationships are often nonlinear and sometimes complex. Together with watershed topography, LULC can affect water quality in various ways. As such, attributing water quality characteristics to LULC variations (either in space or time) can be difficult. Many studies seek to understand these relationships from a Eulerian reference frame, which typically involves many samples or observations through time at a fixed location. Here we explore an alternative approach to understanding relationships between LULC and water quality that relies on a Lagrangian, or moving, reference frame, in which the effects of LULC and watershed topography on water quality can be observed through a different lens. We studied three reaches of the Lumber River, a blackwater stream in North Carolina's Coastal Plain, to assess relationships between LULC and water quality in a watershed that is a patchwork of agriculture, forests, wetlands and developed land. Our study combines spatially intensive water quality measurements (temperature, specific conductance, dissolved oxygen, pH and nitrate concentration), collected by boat, with geospatial analyses of LULC to understand influences on the spatial evolution of reach-scale water quality. In particular, we investigate relationships between spatial patterns in nitrate and the changing spatial characteristics of the watershed integrated at sampling points along each reach. We also assess relationships between nitrate and other water quality variables, such as pH, temperature, and dissolved oxygen to better understand the potential role of in-stream nutrient processing in observed spatial patterns. This work has implications for the regulation and management of agriculture, wetlands, and forests in a region that has long struggled to balance agriculture, a major economic driver, with water quality, a major concern for recreation and cultural practices locally and for nutrient sensitive coastal environments downstream.

  9. Hampton roads regional Water-Quality Monitoring Program

    USGS Publications Warehouse

    Porter, Aaron J.; Jastram, John D.

    2016-12-02

    IntroductionHow much nitrogen, phosphorus, and suspended solids are contributed by the highly urbanized areas of the Hampton Roads region in Virginia to Chesapeake Bay? The answer to this complex question has major implications for policy decisions, resource allocations, and efforts aimed at restoring clean waters to Chesapeake Bay and its tributaries. To quantify the amount of nitrogen, phosphorus, and suspended solids delivered to the bay from this region, the U.S. Geological Survey has partnered with the Hampton Roads Sanitation District (HRSD), in cooperation with the Hampton Roads Planning District Commission (HRPDC), to conduct a water-quality monitoring program throughout the Hampton Roads region.

  10. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  11. Farmer Perceptions of Soil and Water Conservation Issues: Implications to Agricultural and Extension Education.

    ERIC Educational Resources Information Center

    Bruening, Thomas; Martin, Robert A.

    1992-01-01

    A survey of 731 Iowa farmers received 432 responses indicating that (1) groundwater and water quality were of greater concern than soil conservation; (2) field demonstrations and county meetings were useful information sources on these issues; and (3) government agencies such as cooperative extension and state universities were useful sources of…

  12. Mapping Ecosystem Services in the Jordan Valley, Jordan

    NASA Astrophysics Data System (ADS)

    Luz, Ana; Marques, Ana; Ribeiro, Inês; Alho, Maria; Catarina Afonso, Ana; Almeida, Erika; Branquinho, Cristina; Talozi, Samer; Pinho, Pedro

    2016-04-01

    In the last decade researchers started using ecosystem services as a new framework to understand the relationships between environment and society. Habitat quality and water quality are related with ecosystem services regulation and maintenance, or even provision. According to the Common International Classification of Ecosystem Services (CICES) both habitat quality and water quality are associated with lifecycle maintenance, habitat and gene pool protection, and water conditions, among others. As there is increased pressure on habitats and rivers especially for agricultural development, mapping and evaluating habitat and water quality has important implications for resource management and conservation, as well as for rural development. Here, we model and map habitat and water quality in the Jordan Valley, Jordan. In this study, we aim to identify and analyse ecosystem services both through 1) habitat quality and 2) water quality modelling using InVest, an integrated valuation of ecosystem services and tradeoffs. The data used in this study mainly includes the LULC, Jordan River watershed and main threats and pollutants in the study area, such as agriculture, industry, fish farms and urbanization. Results suggest a higher pressure on natural habitats in the Northern region of the Jordan Valley, where industry is dominant. Agriculture is present along the Jordan Valley and limits the few natural forested areas. Further, water pollution is mainly concentrated in disposal sites due to the low flow of the Jordan River. Our results can help to identify areas where natural resources and water resource management is most needed in the Jordan Valley. Acknowledgements: Transbasin FP7 project

  13. Anthropogenic activities and coastal environmental quality: a regional quantitative analysis in southeast China with management implications.

    PubMed

    Chen, Kai; Liu, Yan; Huang, Dongren; Ke, Hongwei; Chen, Huorong; Zhang, Songbin; Yang, Shengyun; Cai, Minggang

    2018-02-01

    Regional analysis of environmental issues has always been a hot topic in the field of sustainable development. Because the different levels of economic growth, urbanization, resource endowments, etc. in different regions generate apparently different ecological responses, a better description and comparison across different regions will provide more valuable implications for ecological improvement and policymaking. In this study, seven typical bays in southeast China that are a rapid developing area were selected to quantitatively analyze the relationship between socioeconomic development and coastal environmental quality. Based on the water quality data from 2007 to 2015, the multivariate statistical method was applied to analyze the potential environmental risks and to classify the seven bays based on their environmental quality status. The possible variation trends of environmental indices were predicted based on the cross-regional panel data by Environmental Kuznets Curve. The results showed that there were significant regional differences among the seven bays, especially Quanzhou, Xiamen, and Luoyuan Bays, suffered from severer artificial disturbances than other bays, despite their different development patterns. Socioeconomic development level was significantly associated with some water quality indices (pH, DIN, PO 4 -P); the association was roughly positive: the areas with higher GDP per capita have some worse water quality indices. In addition, the decreasing trend of pH values and the increasing trend of nutrient concentration in the seven bays will continue in the foreseeable future. In consideration of the variation trends, the limiting nutrient strategy should be implemented to mitigate the deterioration of the coastal environments.

  14. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.

    PubMed

    Whitehead, P G; Barbour, E; Futter, M N; Sarkar, S; Rodda, H; Caesar, J; Butterfield, D; Jin, L; Sinha, R; Nicholls, R; Salehin, M

    2015-06-01

    The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest. The Ganges-Brahmaputra-Meghna (GBM) is one of the largest river basins in the world serving a population of over 650 million, and is of vital concern to India and Bangladesh as it provides fresh water for people, agriculture, industry, conservation and for the delta system downstream. This paper seeks to assess future changes in flow and water quality utilising a modelling approach as a means of assessment in a very complex system. The INCA-N model has been applied to the Ganges, Brahmaputra and Meghna river systems to simulate flow and water quality along the rivers under a range of future climate conditions. Three model realisations of the Met Office Hadley Centre global and regional climate models were selected from 17 perturbed model runs to evaluate a range of potential futures in climate. In addition, the models have also been evaluated using socio-economic scenarios, comprising (1) a business as usual future, (2) a more sustainable future, and (3) a less sustainable future. Model results for the 2050s and the 2090s indicate a significant increase in monsoon flows under the future climates, with enhanced flood potential. Low flows are predicted to fall with extended drought periods, which could have impacts on water and sediment supply, irrigated agriculture and saline intrusion. In contrast, the socio-economic changes had relatively little impact on flows, except under the low flow regimes where increased irrigation could further reduce water availability. However, should large scale water transfers upstream of Bangladesh be constructed, these have the potential to reduce flows and divert water away from the delta region depending on the volume and timing of the transfers. This could have significant implications for the delta in terms of saline intrusion, water supply, agriculture and maintaining crucial ecosystems such as the mangrove forests, with serious implications for people's livelihoods in the area. The socio-economic scenarios have a significant impact on water quality, altering nutrient fluxes being transported into the delta region.

  15. Soil properties evolution after irrigation with reclaimed water

    NASA Astrophysics Data System (ADS)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after one year of irrigation, no significant differences have been found among the soil properties of the two parcels. The results show in one hand, a slightly decrease in phosphorus, nitrates and electrical conductivity and on the other hand, an increase of organic matter. These trends should be contrasted by new soil quality measurements. The implications on vegetation growth, oil production and nutrients assimilation derived from the irrigation with reclaimed water should be also evaluated over time.

  16. Using ESRI Online Mapping Tools to Support STEM Learning through Analysis of the Impact of Land Use/Land Cover Change on Water Quality

    NASA Astrophysics Data System (ADS)

    Powley, C.; Alian, S.; Mayer, A.

    2017-12-01

    In the 2004 National Water Quality Report to the Congress, the US EPA states that about 44% of the streams, 64% of lakes and 30% of estuaries that were assessed were not suitable for basic use like fishing and swimming. Pollutants from nonpoint sources are most likely the cause. The needs of landowners to use their land for other uses is enormous and most are likely willing to forgo the potential damage to achieve monetary gains. These are difficult decisions as there are many positive gains in commercialized development, although this comes with a cost. So it is imperative for all entities to work together in developing an awareness that benefits all stakeholders. We used this water quality management context to prepare lessons for high school students to map water quality problem areas in Rifle River and the West Branch in Ogemaw County, Michigan based on field samples and by using ESRI online data entry and mapping tools. The students also used Long Term Hydrologic Impact Analysis (L-THIA) to evaluate the impacts of different land use/cover types, developing an understanding of the implication of land management on surface water quality.

  17. Quantifying Impact of Biofeedstock Production on Hydrology/Water Quality in Midwest USA

    NASA Astrophysics Data System (ADS)

    Chaubey, Indrajeet; Engel, Bernard; Thomas, Mark; Raj, Cibin; Saraswat, Dharmendra

    2010-05-01

    The production of biofeedstocks for biofuels is likely to impact the hydrology and water quality of watersheds. Communities potentially impacted are increasingly concerned, and at present, little is known regarding the magnitude of impacts of biofeedstock production on hydrology and water quality. We have initiated a national facilitation project to answer the following questions: What are the unintended environmental consequences of increased corn production to meet biofuel demands? What are the environmental impacts of various second generation biofeedstock production systems to meet cellulosic ethanol demands? Would the management of cropping systems involving corn silage meet cellulosic ethanol demands with minimal environmental impact? What are the broad-scale water quality implications of energy crops, such as switchgrass, grown for bioenergy production on highly erodible soils? This presentation will discuss development of multi-regional agricultural land management practices that can be implemented to mitigate potential negative environmental impacts associated with biofeedstock production while meeting the biofuel production demand. Specifically, we will discuss how watershed scale modeling can be utilized to evaluate the environmental impacts of various biofeedstock production strategies. We will also discuss regional differences in alternative biofeedstock production and associated hydrologic/water quality impacts.

  18. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  19. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  20. Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving

    NASA Astrophysics Data System (ADS)

    McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.

    2012-06-01

    Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.

  1. Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving

    NASA Astrophysics Data System (ADS)

    McClain, M. E.; Chícharo, L.; Fohrer, N.; Gaviño Novillo, M.; Windhorst, W.; Zalewski, M.

    2012-02-01

    Ecohydrology is a relatively new and rapidly growing subject area in the hydrology curriculum. It is a trans-disciplinary science derived from the larger earth systems science movement and examining mutual interactions of the hydrological cycle and ecosystems. It is also an applied science focused on problem solving and providing sound guidance to catchment-scale integrated land and water resources management. The principle spheres of ecohydrology include (i) climate-soil-vegetation-groundwater interactions at the land surface with special implications for land use, food production and climate change; (ii) riparian runoff, flooding, and flow regime dynamics in river corridors with special implications for water supply, water quality, and inland fisheries; and (iii) fluvial and groundwater inputs to lakes/reservoirs, estuaries, and coastal zones with special implications for water quality and fisheries. We propose an educational vision focused on the development of professional and personal competencies to impart a depth of scientific knowledge in the theory and practice of ecohydrology and a breadth of cross-cutting knowledge and skills to enable ecohydrologists to effectively collaborate with associated scientists and communicate results to resource managers, policy-makers, and other stakeholders. In-depth knowledge in hydrology, ecology, and biogeochemistry is emphasized, as well as technical skills in data collection, modeling, and statistical analysis. Cross-cutting knowledge is framed in the context of integrated water resources management. Personal competencies to be fostered in educational programs include creative thinking, cooperation, communication, and leadership. We consider a life-long learning context but highlight the importance of master's level training in the professional formation of ecohydrologists.

  2. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/R-98/058)

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...

  3. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/SR-98/058)

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...

  4. Regional medicine use in the Rhine basin and its implication on water quality

    NASA Astrophysics Data System (ADS)

    Hut, R.; Van De Giesen, N.; de Jong, S.

    2011-12-01

    Do Germans use more painkillers than the French? An analysis is presented relating medicine residue in the river Rhine to the amount of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population is analyzed. Results show regional differences in drug use as well as implications for (downstream) use of river water for drinking purposes.

  5. Simulations of groundwater flow and particle-tracking analysis in the zone of contribution to a public-supply well in San Antonio, Texas

    USGS Publications Warehouse

    Lindgren, Richard L.; Houston, Natalie A.; Musgrove, MaryLynn; Fahlquist, Lynne S.; Kauffman, Leon J.

    2011-01-01

    The effect of short-circuit pathways, for example karst conduits, in the flow system on the movement of young water to the selected public-supply well could greatly alter contaminant arrival times compared to what might be expected from advection in a system without short circuiting. In a forecasting exercise, the simulated concentrations showed rapid initial response at the beginning and end of chemical input, followed by more gradual response as older water moved through the system. The nature of karst groundwater flow, where flow predominantly occurs via conduit flow paths, could lead to relatively rapid water quality responses to land-use changes. Results from the forecasting exercise indicate that timescales for change in the quality of water from the selected public-supply well could be on the order of a few years to decades for land-use changes that occur over days to decades, which has implications for source-water protection strategies that rely on land-use change to achieve water-quality objectives.

  6. A Hybrid Interval-Robust Optimization Model for Water Quality Management.

    PubMed

    Xu, Jieyu; Li, Yongping; Huang, Guohe

    2013-05-01

    In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.

  7. The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water

    PubMed Central

    Walker, Alan W.; Thompson, Corinne N.; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C.; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen

    2016-01-01

    One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley. PMID:26735696

  8. The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water.

    PubMed

    Karkey, Abhilasha; Jombart, Thibaut; Walker, Alan W; Thompson, Corinne N; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen

    2016-01-01

    One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.

  9. Lessons learned from post-wildfire monitoring and implications for land management and regional drinking water treatability in Southern Rockies of Alberta

    NASA Astrophysics Data System (ADS)

    Diiwu, J.; Silins, U.; Kevin, B.; Anderson, A.

    2008-12-01

    Like many areas of the Rocky Mountains, Alberta's forests on the eastern slopes of the Rockies have been shaped by decades of successful fire suppression. These forests are at high risk to fire and large scale insect infestation, and climate change will continue to increase these risks. These headwaters forests provide the vast majority of usable surface water supplies to large region of the province, and large scale natural disasters can have dramatic effects on water quality and water availability. The population in the region has steadily increased and now this area is the main source water for many Alberta municipalities, including the City of Calgary, which has a population of over one million. In 2003 a fire burned 21,000 ha in the southern foothills area. The government land managers were concerned about the downstream implications of the fire and salvage operations, however there was very limited scientific information to guide the decision making. This led to establishment of the Southern Rockies Watershed Project, which is a partnership between Alberta Sustainable Resource Development, the provincial government department responsible for land management and the University of Alberta. After five years of data collection, the project has produced quantitative information that was not previously available about the effects of fire and management interventions such as salvage logging on headwaters and regional water quality. This information can be used to make decisions on forest operations, fire suppression, and post-fire salvage operations. In the past few years this project has captured the interest of large municipalities and water treatment researchers who are keen to investigate the potential implications of large natural disturbances to large and small drinking water treatment facilities. Examples from this project will be used to highlight the challenges and successes encountered while bridging the gap between science and land management policy.

  10. Implications of facultative catadromy in Anguilla anguilla. Does individual migratory behaviour influence eel spawner quality?

    NASA Astrophysics Data System (ADS)

    Marohn, Lasse; Jakob, Eva; Hanel, Reinhold

    2013-03-01

    European eel (Anguilla anguilla) recruitment is declining dramatically since the 1980s. Causes for this decline are explained by a combination of environmental changes basically affecting oceanic larval stages and a variety of anthropogenic impacts during the continental phase. Today, evidence is growing that poor silver eel quality has a major impact on reproductive success, implying that habitat quality plays a key role in stock decline. Since eels are frequently moving through a variety of different habitats during their life cycle, a better understanding of the implications of individual diadromous behaviour and habitat choice on spawner quality are crucial for management considerations for a stock recovery. The present study tested whether individual migratory behaviour and habitat choice of European eels affect spawner quality. Therefore, the migratory behaviour of 287 European eels from marine, brackish and freshwater stations in the North Sea, the Baltic Sea and from Northern German inland waters was examined by otolith strontium/calcium analysis. All individuals were classified either as freshwater residents, coastal residents, downstream shifters, upstream shifters or interhabitat shifters. As indicators for eel quality, muscle fat content, infection with the introduced swimbladder nematode Anguillicoloides crassus and body length at onset of spawning migration were assessed. Results indicate that individuals that exclusively inhabited freshwaters had significantly lower muscle fat contents and were more seriously infected with A. crassus than eels that never entered freshwaters. Since high fat contents are considered as prerequisites for a successful transoceanic spawning migration and high A. crassus loads have a negative impact on condition, this study outlines the importance of brackish waters as eel habitats in temperate latitudes. Furthermore, it questions the net benefit of stocking programs for the European eel population, since they include the translocation of eels from coastal waters into freshwaters.

  11. Simulated response of water quality in public supply wells to land use change

    USGS Publications Warehouse

    McMahon, P.B.; Burow, K.R.; Kauffman, L.J.; Eberts, S.M.; Böhlke, J.K.; Gurdak, J.J.

    2008-01-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short‐circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.Citing Literature

  12. Simulated response of water quality in public supply wells to land use change

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  13. Learning in and about rural places: Connections and tensions between students' everyday experiences and environmental quality issues in their community

    NASA Astrophysics Data System (ADS)

    Zimmerman, Heather Toomey; Weible, Jennifer L.

    2017-03-01

    Guided by sociocultural perspectives on the importance of place as a resource for learning, we investigated 14- and 15-year old students' understandings of their community and water quality during a school-based watershed unit. Methods included a theory-driven thematic analysis of field notes and video transcripts from four biology classrooms, a qualitative and quantitative analysis of 67 pairs of matched pre- and post-intervention mindmaps, and a content analysis of 73 student reflections. As they learned about water quality, learners recognized the relevance of the watershed's health to the health of their community. Students acknowledged the impacts of local economically driven activities (e.g., natural gas wells, application of agrichemicals) and leisure activities (e.g., boating, fishing) on the watershed's environmental health. As students learned in and about their watershed, they experienced both connections and tensions between their everyday experiences and the environmental problems in their community. The students suggested individual sustainability actions needed to address water quality issues; however, the students struggled to understand how to act collectively. Implications of rural experiences as assets to future environmental sciences learning are discussed as well as the implications of educational experiences that do not include an advocacy component when students uncover environmental health issues. We suggest further consideration is needed on how to help young people develop action-oriented science knowledge, not just inert knowledge of environmental problems, during place-based education units.

  14. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  15. Rainfall effects on inflow and infiltration in wastewater treatment systems in a coastal plain region.

    PubMed

    Cahoon, Lawrence B; Hanke, Marc H

    2017-04-01

    Aging wastewater collection and treatment systems have not received as much attention as other forms of infrastructure, even though they are vital to public health, economic growth, and environmental quality. Inflow and infiltration (I&I) are among potentially widespread problems facing central sewage collection and treatment systems, posing risks of sanitary system overflows (SSOs), system degradation, and water quality impairment, but remain poorly quantified. Whole-system analyses of I&I were conducted by regression analyses of system flow responses to rainfall and temperature for 93 wastewater treatment plants in 23 counties in eastern North Carolina, USA, a coastal plain region with high water tables and generally higher rainfalls than the continental interior. Statistically significant flow responses to rainfall were found in 92% of these systems, with 2-year average I&I values exceeding 10% of rainless system flow in over 40% of them. The effects of rainfall, which can be intense in this coastal region, have region-wide implications for sewer system performance and environmental management. The positive association between rainfall and excessive I&I parallels the effects of storm water runoff on water quality, in that excessive I&I can also drive SSOs, thus confounding water quality protection efforts.

  16. Wet-weather urban discharges: implications from adopting the revised European Directive concerning the quality of bathing water.

    PubMed

    David, L M; Matos, J S

    2005-01-01

    Wet weather urban discharges are responsible for bathing water contamination. The proposal for a revised EU Directive concerning the quality of bathing water imposes significantly more stringent requirements for the management of bathing water quality, with particularly important repercussions on beaches subjected to short-term pollution incidents. The paper reviews the aspects from EU legislation most directly related to the problem of wet-weather discharges, placing special emphasis on the recent revision process of the Directive on bathing water quality, and evaluates the benefits of some potential solutions based on continuous modelling of a combined sewer system. Increasing the sewer system storage capacity or the STP hydraulic capacity may substantially reduce the untreated discharge volumes, but spill frequency reductions under 2 to 3 spill days per bathing season will hardly be achieved. Results show the severe strains that local rainfall patterns would place on compliance with the Commission's proposal for a revised Directive and highlight the importance of the changes introduced in the amended proposal recently approved by the Council, making it less prescriptive if adequate measures are adopted to prevent bathers' exposure to short-term pollution incidents.

  17. Impacts of beach wrack removal via grooming on surf zone water quality.

    PubMed

    Russell, Todd L; Sassoubre, Lauren M; Zhou, Christina; French-Owen, Darien; Hassaballah, Abdulrahman; Boehm, Alexandria B

    2014-02-18

    Fecal indicator bacteria (FIB) are used to assess the microbial water quality of recreational waters. Increasingly, nonfecal sources of FIB have been implicated as causes of poor microbial water quality in the coastal environment. These sources are challenging to quantify and difficult to remediate. The present study investigates one nonfecal FIB source, beach wrack (decaying aquatic plants), and its impacts on water quality along the Central California coast. The prevalence of FIB on wrack was studied using a multibeach survey, collecting wrack throughout Central California. The impacts of beach grooming, to remove wrack, were investigated at Cowell Beach in Santa Cruz, California using a long-term survey (two summers, one with and one without grooming) and a 48 h survey during the first ever intensive grooming event. FIB were prevalent on wrack but highly variable spatially and temporally along the nine beaches sampled in Central California. Beach grooming was generally associated with either no change or a slight increase in coastal FIB concentrations and increases in surf zone turbidity and silicate, phosphate, and dissolved inorganic nitrogen concentrations. The findings suggest that beach grooming for wrack removal is not justified as a microbial pollution remediation strategy.

  18. Water quality risks of 'improved' water sources: evidence from Cambodia.

    PubMed

    Shaheed, A; Orgill, J; Ratana, C; Montgomery, M A; Jeuland, M A; Brown, J

    2014-02-01

    The objective of this study was to investigate the quality of on-plot piped water and rainwater at the point of consumption in an area with rapidly expanding coverage of 'improved' water sources. Cross-sectional study of 914 peri-urban households in Kandal Province, Cambodia, between July-August 2011. We collected data from all households on water management, drinking water quality and factors potentially related to post-collection water contamination. Drinking water samples were taken directly from a subsample of household taps (n = 143), stored tap water (n = 124), other stored water (n = 92) and treated stored water (n = 79) for basic water quality analysis for Escherichia coli and other parameters. Household drinking water management was complex, with different sources used at any given time and across seasons. Rainwater was the most commonly used drinking water source. Households mixed different water sources in storage containers, including 'improved' with 'unimproved' sources. Piped water from taps deteriorated during storage (P < 0.0005), from 520 cfu/100 ml (coefficient of variation, CV: 5.7) E. coli to 1100 cfu/100 ml (CV: 3.4). Stored non-piped water (primarily rainwater) had a mean E. coli count of 1500 cfu/100 ml (CV: 4.1), not significantly different from stored piped water (P = 0.20). Microbial contamination of stored water was significantly associated with observed storage and handling practices, including dipping hands or receptacles in water (P < 0.005), and having an uncovered storage container (P = 0.052). The microbial quality of 'improved' water sources in our study area was not maintained at the point of consumption, possibly due to a combination of mixing water sources at the household level, unsafe storage and handling practices, and inadequately treated piped-to-plot water. These results have implications for refining international targets for safe drinking water access as well as the assumptions underlying global burden of disease estimates, which posit that 'improved' sources pose minimal risks of diarrhoeal diseases. © 2013 John Wiley & Sons Ltd.

  19. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  20. Water quality implications of culvert repair options : cementitious and polyurea spray-on liners.

    DOT National Transportation Integrated Search

    2012-11-01

    Many commonly used culvert rehabilitation technologies entail the use of a resin or coating that cures to form a rigid : liner within the damaged culvert. However, the potential environmental impacts of leaching or release of contaminants during : no...

  1. Routine screening of harmful microorganisms in beach sands: implications to public health

    USGS Publications Warehouse

    Sabino, Raquel; Rodrigues, R.; Costa, I.; Carneiro, Carlos; Cunha, M.; Duarte, A.; Faria, N.; Ferriera, F.C.; Gargate, M.J.; Julio, C.; Martins, M.L.; Nevers, Meredith; Oleastro, M.; Solo-Gabriele, H.; Verissimo, C.; Viegas, C.; Whitman, Richard L.; Brandao, J.

    2014-01-01

    Beaches worldwide provide recreational opportunities to hundreds of millions of people and serve as important components of coastal economies. Beach water is often monitored for microbiological quality to detect the presence of indicators of human sewage contamination so as to prevent public health outbreaks associated with water contact. However, growing evidence suggests that beach sand can harbor microbes harmful to human health, often in concentrations greater than the beach water. Currently, there are no standards for monitoring, sampling, analyzing, or managing beach sand quality. In addition to indicator microbes, growing evidence has identified pathogenic bacteria, viruses, and fungi in a variety of beach sands worldwide. The public health threat associated with these populations through direct and indirect contact is unknown because so little research has been conducted relating to health outcomes associated with sand quality. In this manuscript, we present the consensus findings of a workshop of experts convened in Lisbon, Portugal to discuss the current state of knowledge on beach sand microbiological quality and to develop suggestions for standardizing the evaluation of sand at coastal beaches. The expert group at the “Microareias 2012” workshop recommends that 1) beach sand should be screened for a variety of pathogens harmful to human health, and sand monitoring should then be initiated alongside regular water monitoring; 2) sampling and analysis protocols should be standardized to allow proper comparisons among beach locations; and 3) further studies are needed to estimate human health risk with exposure to contaminated beach sand. Much of the manuscript is focused on research specific to Portugal, but similar results have been found elsewhere, and the findings have worldwide implications.

  2. Comparison of Erosion Rates Estimated by Sediment Budget Techniques and Suspended Sediment Monitoring and Regulatory Implications

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; Eads, R.

    2007-12-01

    Watersheds in the northern California Coast Range have been designated as "impaired" with respect to water quality because of excessive sediment loads and/or high water temperature. Sediment budget techniques have typically been used by regulatory authorities to estimate current erosion rates and to develop targets for future desired erosion rates. This study examines erosion rates estimated by various methods for portions of the Gualala River watershed, designated as having water quality impaired by sediment under provisions of the Clean Water Act Section 303(d), located in northwest Sonoma County (~90 miles north of San Francisco). The watershed is underlain by Jurassic age sedimentary and meta-sedimentary rocks of the Franciscan formation. The San Andreas Fault passes through the western edge of watershed, and other active faults are present. A substantial portion of the watershed is mantled by rock slides and earth flows, many of which are considered dormant. The Coast Range is geologically young, and rapid rates of uplift are believed to have contributed to high erosion rates. This study compares quantitative erosion rate estimates developed at different spatial and temporal scales. It is motivated by a proposed vineyard development project in the watershed, and the need to document conditions in the project area, assess project environmental impacts and meet regulatory requirements pertaining to water quality. Erosion rate estimates were previously developed using sediment budget techniques for relatively large drainage areas (~100 to 1,000 km2) by the North Coast Regional Water Quality Control Board and US EPA and by the California Geological Survey. In this study, similar sediment budget techniques were used for smaller watersheds (~3 to 8 km2), and were supplemented by a suspended sediment monitoring program utilizing Turbidity Threshold Sampling techniques (as described in a companion study in this session). The duration of the monitoring program to date spanned the winter runoff seasons of Water Years 2006 and 2007. These were unusually wet and dry years, respectively, providing perspective on the range of measured sediment yield in relation to sediment budget estimates. The measured suspended sediment yields were substantially lower than predicted by sediment budget methods. Variation in geomorphic processes over time and space and methodological problems of sediment budgets may be responsible for these apparent discrepancies. The implications for water quality policy are discussed.

  3. When environmental action does not activate concern: the case of impaired water quality in two rural watersheds.

    PubMed

    Stough-Hunter, Anjel; Lekies, Kristi S; Donnermeyer, Joseph F

    2014-12-01

    Little research has considered how residents' perceptions of their local environment may interact with efforts to increase environmental concern, particularly in areas in need of remediation. This study examined the process by which local environmental action may affect environmental concern. A model was presented for exploring the effects of community-based watershed organizations (CWOs) on environmental concern that also incorporates existing perceptions of the local environment. Survey data were collected from area residents in two watersheds in southwestern Pennsylvania, USA, an area affected by abandoned mine drainage. The findings suggest that residents' perceptions of local water quality and importance of improving water quality are important predictors of level of environmental concern and desire for action; however, in this case, having an active or inactive CWO did not influence these perceptions. The implications of these findings raise important questions concerning strategies and policy making around environmental remediation at the local level.

  4. Management-focused approach to investigating coastal water-quality drivers and impacts in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Vigouroux, G.; Destouni, G.; Chen, Y.; Bring, A.; Jönsson, A.; Cvetkovic, V.

    2017-12-01

    Coastal areas link human-driven conditions on land with open sea conditions, and include crucial and vulnerable ecosystems that provide a variety of ecosystem services. Eutrophication is a common problem that is not least observed in the Baltic Sea, where coastal water quality is influenced both by land-based nutrient loading and by partly eutrophic open sea conditions. Robust and adaptive management of coastal systems is essential and necessitates integration of large scale catchment-coastal-marine systems as well as consideration of anthropogenic drivers and impacts, and climate change. To address this coastal challenge, relevant methodological approaches are required for characterization of coupled land, local coastal, and open sea conditions under an adaptive management framework for water quality. In this paper we present a new general and scalable dynamic characterization approach, developed for and applied to the Baltic Sea and its coastal areas. A simple carbon-based water quality model is implemented, dividing the Baltic Sea into main management basins that are linked to corresponding hydrological catchments on land, as well as to each other though aggregated three-dimensional marine hydrodynamics. Relevant hydrodynamic variables and associated water quality results have been validated on the Baltic Sea scale and show good accordance with available observation data and other modelling approaches. Based on its scalability, this methodology is further used on coastal zone scale to investigate the effects of hydrodynamic, hydro-climatic and nutrient load drivers on water quality and management implications for coastal areas in the Baltic Sea.

  5. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    DOE PAGES

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; ...

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100 th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implicationsmore » remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  6. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reclaimed water as an alternative source of water for the city of Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Taigbenu, Akpofure E.; Ncube, Mthokozisi

    Perennial water problems, precipitated by increased water demand in Bulawayo, the second largest city in Zimbabwe, has prompted the consideration of a wide array of strategies from demand management and water conservation measures to exploitation of alternative water sources. One of such strategies in the latter category includes recycling of blue water for both potable and non-potable purposes. This paper examines the existing reclaimed water system with a view at revamping the existing infrastructure to maximise reclaimed water use for purposes that are amenable to water of lower quality. It is a generally accepted practice to avoid the use of water of high quality for purposes that can tolerate a lower grade, unless it is in excess in amount [ Okun, D.A., 1973. Planning for water reuse. Journal of AWWA 65(10)]. The reclaimed water is assessed in terms of its quality and quantity vis-à-vis possible uses. Perceptions and expectations of both current and identified prospective consumers are examined and discussed, in addition to the feasibility of accommodating these identified prospective consumers in an expanded network. Apart from enhancement of the existing infrastructure, the paper highlights the need for social marketing and education in order to realise the optimum benefits of this alternative water source. The cost implications of implementing the proposed project are evaluated, including suggestions on suitable tariff structure and an allocation distribution that achieves equity.

  8. Seasonal-Spatial Distribution and Long-Term Variation of Transparency in Xin'anjiang Reservoir: Implications for Reservoir Management.

    PubMed

    Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming

    2015-08-12

    Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin'anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin'anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin'anjiang Reservoir.

  9. Water-quality assessment of south-central Texas: Occurrence and distribution of volatile organic compounds in surface water and ground water, 1983-94, and implications for future monitoring

    USGS Publications Warehouse

    Ging, P.B.; Judd, L.J.; Wynn, K.H.

    1997-01-01

    The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.

  10. Quality of Water from Public-Supply Wells in the United States, 1993-2007Overview of Major Findings

    USGS Publications Warehouse

    Toccalino, Patricia L.; Hopple, Jessica A.

    2010-01-01

    Summary of Major Findings and Implications About 105 million people in the United States-more than one-third of the Nation's population-receive their drinking water from about 140,000 public water systems that use groundwater as their source. Although the quality of finished drinking water (after treatment and before distribution) from these public water systems is regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA), long-term protection and management of groundwater, a vital source of drinking water, requires an understanding of the occurrence of contaminants in untreated source water. Sources of drinking water are potentially vulnerable to a wide range of man-made and naturally occurring contaminants, including many that are not regulated in drinking water under the SDWA. In this study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS), chemical water-quality conditions were assessed in source (untreated) groundwater from 932 public-supply wells, hereafter referred to as public wells, and in source and finished water from a subset of 94 wells. The public wells are located in selected parts of 41 states and withdraw water from parts of 30 regionally extensive water-supply aquifers, which constitute about one-half of the principal aquifers in the United States. Although the wells sampled in this study represent less than 1 percent of all groundwater-supplied public water systems in the United States, they are widely distributed nationally and were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. All source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations. As a result, the sampled groundwater represents the quality of the source water and not necessarily the quality of finished water ingested by the people served by these public wells. A greater number of chemical contaminants-as many as 337-both naturally occurring and man-made, were assessed in this study than in any previous national study of public wells (Appendixes 1 and 2). Consistent with the terminology used in the SDWA, all constituents analyzed in water samples in this study are referred to as 'contaminants,' regardless of their source, concentration, or potential for health effects (see sidebar on page 3). Eighty-three percent (279) of the contaminants analyzed in this study are not regulated in drinking water under the SDWA. The USEPA uses USGS data on the occurrence of unregulated contaminants to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. By focusing primarily on source-water quality, and by analyzing many contaminants that are not regulated in drinking water by USEPA, this study complements the extensive sampling of public water systems that is routinely conducted for the purposes of regulatory compliance monitoring by federal, state, and local drinking-water programs. The objectives of this study were to evaluate (1) the occurrence of contaminants in source water from public wells and their potential significance to human health, (2) whether contaminants that occur in source water also occur in finished water after treatment, and (3) the occurrence and characteristics of contaminant mixtures. To evaluate the potential significance of contaminant occurrence to human health, contaminant concentrations were compared to regulatory Maximum Contaminant Levels (MCLs) or non-regulatory Health-Based Screening Levels (HBSLs)-collectively referred to as human-health benchmarks in this study (see sidebars on pages 4 and 19). The major findings and implications of this study are summarized below and the results are described in greater detail in the remainder of the report. These findings build upon water-quality data from previous public-well studies and

  11. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  12. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    PubMed

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  13. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control.

    PubMed

    Zhao, Changsen; Yang, Shengtian; Liu, Junguo; Liu, Changming; Hao, Fanghua; Wang, Zhonggen; Zhang, Huitong; Song, Jinxi; Mitrovic, Simon M; Lim, Richard P

    2018-05-15

    The survival of aquatic biota in stream ecosystems depends on both water quantity and quality, and is particularly susceptible to degraded water quality in regulated rivers. Maintenance of environmental flows (e-flows) for aquatic biota with optimum water quantity and quality is essential for sustainable ecosystem services, especially in developing regions with insufficient stream monitoring of hydrology, water quality and aquatic biota. Few e-flow methods are available that closely link aquatic biota tolerances to pollutant concentrations in a simple and practical manner. In this paper a new method was proposed to assess e-flows that aimed to satisfy the requirements of aquatic biota for both the quantity and quality of the streamflow by linking fish tolerances to water quality criteria, or the allowable concentration of pollutants. For better operation of water projects and control of pollutants discharged into streams, this paper presented two coefficients for streamflow adjustment and pollutant control. Assessment of e-flows in the Wei River, the largest tributary of the Yellow River, shows that streamflow in dry seasons failed to meet e-flow requirements. Pollutant influx exerted a large pressure on the aquatic ecosystem, with pollutant concentrations much higher than that of the fish tolerance thresholds. We found that both flow velocity and water temperature exerted great influences on the pollutant degradation rate. Flow velocity had a much greater influence on pollutant degradation than did the standard deviation of flow velocity. This study provides new methods to closely link the tolerance of aquatic biota to water quality criteria for e-flow assessment. The recommended coefficients for streamflow adjustment and pollutant control, to dynamically regulate streamflow and control pollutant discharge, are helpful for river management and ecosystems rehabilitation. The relatively low data requirement also makes the method easy to use efficiently in developing regions, and thus this study has significant implications for managing flows in polluted and regulated rivers worldwide. Copyright © 2018. Published by Elsevier Ltd.

  14. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization Along the Red River, New Mexico: Implications for Ground- and Surface-Water Quality

    USGS Publications Warehouse

    Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul

    2005-01-01

    This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.

  15. Managing Water-Food-Energy Futures in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  16. Time-Frequency Analysis of Beach Bacteria Variations and its Implication for Recreational Water Quality Modeling

    EPA Science Inventory

    This paper explores the potential of time-frequency wavelet analysis in resolving beach bacteria concentration and possible explanatory variables across multiple time scales with temporal information still preserved. The wavelet scalograms of E. coli concentrations and the explan...

  17. Water quality implications of culvert repair options : vinyl ester based and ultraviolet cured-in-place pipe liners.

    DOT National Transportation Integrated Search

    2012-11-01

    Specifications of the Virginia Department of Transportation (VDOT) allow for the use of several trenchless pipe or : culvert repair technologies whereby existing underground culverts are repaired in place rather than by the use of the conventio...

  18. Global access to safe water: accounting for water quality and the resulting impact on MDG progress.

    PubMed

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-03-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as "improved" or "unimproved" as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF "Rapid Assessment of Drinking Water Quality". A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator "use of an improved source" suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  19. The secure base script and the task of caring for elderly parents: implications for attachment theory and clinical practice.

    PubMed

    Chen, Cory K; Waters, Harriet Salatas; Hartman, Marilyn; Zimmerman, Sheryl; Miklowitz, David J; Waters, Everett

    2013-01-01

    This study explores links between adults' attachment representations and the task of caring for elderly parents with dementia. Participants were 87 adults serving as primary caregivers of a parent or parent-in-law with dementia. Waters and Waters' ( 2006 ) Attachment Script Assessment was adapted to assess script-like attachment representation in the context of caring for their elderly parent. The quality of adult-elderly parent interactions was assessed using the Level of Expressed Emotions Scale (Cole & Kazarian, 1988 ) and self-report measures of caregivers' perception of caregiving as difficult. Caregivers' secure base script knowledge predicted lower levels of negative expressed emotion. This effect was moderated by the extent to which participants experienced caring for elderly parents as difficult. Attachment representations played a greater role in caregiving when caregiving tasks were perceived as more difficult. These results support the hypothesis that attachment representations influence the quality of care that adults provide their elderly parents. Clinical implications are discussed.

  20. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    NASA Astrophysics Data System (ADS)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity changes from 3800 to 5100 μScm-1 in the deepest layers are found with a similar daily water inflow. On the other hand, when reservoir water level is low, salinity increases around 1000 μScm-1 are found with a 2 m water level falling. In view of the influence of water level in the reservoir dynamics, this factor should be considered when dam operation decisions are taken by managers in terms of satisfying the water demand. The results will be implemented in a Decision Support System that is being displayed in the Guadalhorce River and which includes prediction of water quantity and quality in the reservoir in terms of salinity, involving water level and water inflow forecasting as the main factors to control the state of the reservoir and therefore with implications in water management. This methodology could be implemented in other reservoirs with high salinity and be adapted to other substances (such as nutrients and heavy metals) associated to water inflow in water bodies where water quality and quantity are driven by human decisions factors besides natural factors such as floods and dynamics of flows in the reservoir.

  1. A Hybrid Interval–Robust Optimization Model for Water Quality Management

    PubMed Central

    Xu, Jieyu; Li, Yongping; Huang, Guohe

    2013-01-01

    Abstract In water quality management problems, uncertainties may exist in many system components and pollution-related processes (i.e., random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval–robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements. PMID:23922495

  2. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment

    USGS Publications Warehouse

    Lester, Yaal; Ferrer, Imma; Thurman, E. Michael; Sitterley, Kurban A.; Korak, Julie A.; Aiken, George R.; Linden, Karl G.

    2015-01-01

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver–Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS = 22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC = 590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach.

  3. Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry.

    PubMed

    Angles, Mark L; Chandy, Joseph P; Cox, Peter T; Fisher, Ian H; Warnecke, Malcolm R

    2007-08-01

    Waterborne Cryptosporidium has been responsible for drinking water-associated disease outbreaks in a number of developed countries. As a result of the resistance of Cryptosporidium to chlorine, which is typically applied as a final barrier to protect the quality of distributed drinking water, current management practices are focused on source-water management and water treatment as ways of preventing Cryptosporidium from entering drinking-water supplies. In the event that treatment barriers fail, surprisingly little is known of the fate of oocysts once they enter a distribution system. To assess properly the risks of waterborne Cryptosporidium, a more thorough understanding of the fate of oocysts in water distribution systems, with emphasis on Cryptosporidium-biofilm interactions, is required.

  4. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  5. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  6. Dealing with uncertainty in modeling intermittent water supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Rycroft, C.; Wilkening, J.

    2015-12-01

    Intermittency in urban water supply affects hundreds of millions of people in cities around the world, impacting water quality and infrastructure. Building on previous work to dynamically model the transient flows in water distribution networks undergoing frequent filling and emptying, we now consider the hydraulic implications of uncertain input data. Water distribution networks undergoing intermittent supply are often poorly mapped, and household metering frequently ranges from patchy to nonexistent. In the face of uncertain pipe material, pipe slope, network connectivity, and outflow, we investigate how uncertainty affects dynamical modeling results. We furthermore identify which parameters exert the greatest influence on uncertainty, helping to prioritize data collection.

  7. An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem

    ERIC Educational Resources Information Center

    Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.

    2016-01-01

    Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…

  8. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    EPA Science Inventory

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as for...

  9. WATER QUALITY TRENDS AND MANAGEMENT IMPLICATIONS FROM A FIVE-YEAR STUDY OF A EUTROPHIC ESTUARY. (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Seasonal-Spatial Distribution and Long-Term Variation of Transparency in Xin’anjiang Reservoir: Implications for Reservoir Management

    PubMed Central

    Wu, Zhixu; Zhang, Yunlin; Zhou, Yongqiang; Liu, Mingliang; Shi, Kun; Yu, Zuoming

    2015-01-01

    Water transparency is a useful indicator of water quality or productivity and is widely used to detect long-term changes in the water quality and eutrophication of lake ecosystems. Based on short-term spatial observations in the spring, summer, and winter and on long-term site-specific observation from 1988 to 2013, the spatial, seasonal, long-term variations, and the factors affecting transparency are presented for Xin’anjiang Reservoir (China). Spatially, transparency was high in the open water but low in the bays and the inflowing river mouths, reflecting the effect of river runoff. The seasonal effects were distinct, with lower values in the summer than in the winter, most likely due to river runoff and phytoplankton biomass increases. The transparency decreased significantly with a linear slope of 0.079 m/year, indicating a 2.05 m decrease and a marked decrease in water quality. A marked increase occurred in chlorophyll a (Chla) concentration, and a significant correlation was found between the transparency and Chla concentration, indicating that phytoplankton biomass can partially explain the long-term trend of transparency in Xin’anjiang Reservoir. The river input and phytoplankton biomass increase were associated with soil erosion and nutrient loss in the catchment. Our study will support future management of water quality in Xin’anjiang Reservoir. PMID:26274970

  11. Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal)

    NASA Astrophysics Data System (ADS)

    Neves, O.; Matias, M. J.

    2008-02-01

    The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5 5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50 120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.

  12. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India.

    PubMed

    Jin, Li; Whitehead, Paul G; Rodda, Harvey; Macadam, Ian; Sarkar, Sananda

    2018-10-01

    Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Microbiological Implications of Periurban Agriculture and Water Reuse in Mexico City

    PubMed Central

    Mazari-Hiriart, Marisa; Ponce-de-León, Sergio; López-Vidal, Yolanda; Islas-Macías, Pilar; Amieva-Fernández, Rosa Isabel; Quiñones-Falconi, Francisco

    2008-01-01

    Background Recycled treated or untreated wastewater represents an important health challenge in developing countries due to potential water related microbiological exposure. Our aim was to assess water quality and health implications in a Mexico City periurban agricultural area. Methodology/Principal Findings A longitudinal study in the Xochimilco wetland area was conducted, and 42 sites were randomly selected from 211, including irrigation water canals and effluents of treatment plants. Sample collection took place during rainy and dry seasons (2000–2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci/enterococci, and bacteria other than Vibrio grown on TCBS), Helicobacter pylori, and physicochemical parameters including trihalomethanes (THM) were determined. Fecal coliforms and fecal streptococci are appropriate indicators of human or animal fecal contamination. Fecal coliform counts surpass Mexican and World Health Organization irrigation water guidelines. Identified microorganisms associated with various pathologies in humans and domestic animals comprise Escherichia coli, Klebsiella spp., Salmonella spp., Enterobacter spp., Enterococcus spp., and Pseudomonas spp; H. pylori was also present in the water. An environmental characteristic of the canal system showed high Total Organic Carbon content and relatively low dissolved oxygen concentration; residual chlorine as a disinfection control is not efficient, but THMs do not represent a problem. During the rainy season, temperature and conductivity were higher; in contrast, pH, dissolved oxygen, ammonia, and residual chlorine were lower. This is related with the continuous load of feces from human and animal sources, and to the aquatic systems, which vary seasonally and exhibit evidence of lower water quality in effluents from treatment plants. Conclusions/Significance There is a need for improvement of wastewater treatment systems, as well as more efficient monitoring, regulation, and enforcement procedures for wastewater disposal into bodies of water. PMID:18509453

  14. Microbiological implications of periurban agriculture and water reuse in Mexico City.

    PubMed

    Mazari-Hiriart, Marisa; Ponce-de-León, Sergio; López-Vidal, Yolanda; Islas-Macías, Pilar; Amieva-Fernández, Rosa Isabel; Quiñones-Falconi, Francisco

    2008-05-28

    Recycled treated or untreated wastewater represents an important health challenge in developing countries due to potential water related microbiological exposure. Our aim was to assess water quality and health implications in a Mexico City periurban agricultural area. A longitudinal study in the Xochimilco wetland area was conducted, and 42 sites were randomly selected from 211, including irrigation water canals and effluents of treatment plants. Sample collection took place during rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci/enterococci, and bacteria other than Vibrio grown on TCBS), Helicobacter pylori, and physicochemical parameters including trihalomethanes (THM) were determined. Fecal coliforms and fecal streptococci are appropriate indicators of human or animal fecal contamination. Fecal coliform counts surpass Mexican and World Health Organization irrigation water guidelines. Identified microorganisms associated with various pathologies in humans and domestic animals comprise Escherichia coli, Klebsiella spp., Salmonella spp., Enterobacter spp., Enterococcus spp., and Pseudomonas spp; H. pylori was also present in the water. An environmental characteristic of the canal system showed high Total Organic Carbon content and relatively low dissolved oxygen concentration; residual chlorine as a disinfection control is not efficient, but THMs do not represent a problem. During the rainy season, temperature and conductivity were higher; in contrast, pH, dissolved oxygen, ammonia, and residual chlorine were lower. This is related with the continuous load of feces from human and animal sources, and to the aquatic systems, which vary seasonally and exhibit evidence of lower water quality in effluents from treatment plants. There is a need for improvement of wastewater treatment systems, as well as more efficient monitoring, regulation, and enforcement procedures for wastewater disposal into bodies of water.

  15. Physico-Chemical and Bacterial Evaluation of Packaged Drinking Water Marketed in Delhi - Potential Public Health Implications

    PubMed Central

    Singla, Ashish; Kundu, Hansa; P., Basavaraj; Singh, Shilpi; Singh, Khushboo; Jain, Swati

    2014-01-01

    Introduction: Quality of drinking water is a powerful environmental determinant of health. The main objective of introduction of bottled water in the society was its better safety, taste and convenience over tap water. The present study was conducted to assess physicochemical and bacterial qualities of bottled water and sachet water which were available in various markets of Delhi. Materials and Methods: Sixteen water bottles and four water sachets were selected through stratified random sampling from various public places in Delhi and their analysis was done at National Test House, Ghaziabad. Results were then compared with national (IS10500, IS14543) and international (WHO, FDA, USEPA) standards. Results: Bottled water showed better quality than sachet water. The mean value of copper (0.0746mg/l) in bottles exceeded the standard values of IS10500 and IS14543(0.05), while the mean value of lead (0.008mg/l) exceeded the FDA standard value (0.005). When the results of sachets were compared with those of standards, the mean values of selenium (0.1195mg/l) and lead (0.862mg/l) were found to exceed values of both Indian and International standards. For the biological parameter i.e. coliform count, the mean value for bottles was 0 (nil), whereas the mean value for sachets was 16.75, which showed the unhealthy nature of sachets. Conclusion: The parameters which were tested in the present study showed excess of various chemical and bacterial parameters in drinking water, which could pose serious threats to consumers. Thus, these results suggest a more stringent standardization of bottled water market with special attention to quality, identity and licensing by concerned authorities, to safeguard health of consumers. PMID:24783149

  16. Spatiotemporal Variation and the Role of Wildlife in Seasonal Water Quality Declines in the Chobe River, Botswana

    PubMed Central

    Fox, J. Tyler; Alexander, Kathleen A.

    2015-01-01

    Sustainable management of dryland river systems is often complicated by extreme variability of precipitation in time and space, especially across large catchment areas. Understanding regional water quality changes in southern African dryland rivers and wetland systems is especially important because of their high subsistence value and provision of ecosystem services essential to both public and animal health. We quantified seasonal variation of Escherichia coli (E. coli) and Total Suspended Solids (TSS) in the Chobe River using spatiotemporal and geostatistical modeling of water quality time series data collected along a transect spanning a mosaic of protected, urban, and developing urban land use. We found significant relationships in the dry season between E. coli concentrations and protected land use (p = 0.0009), floodplain habitat (p = 0.016), and fecal counts from elephant (p = 0.017) and other wildlife (p = 0.001). Dry season fecal loading by both elephant (p = 0.029) and other wildlife (p = 0.006) was also an important predictor of early wet season E. coli concentrations. Locations of high E. coli concentrations likewise showed close spatial agreement with estimates of wildlife biomass derived from aerial survey data. In contrast to the dry season, wet season bacterial water quality patterns were associated only with TSS (p<0.0001), suggesting storm water and sediment runoff significantly influence E. coli loads. Our data suggest that wildlife populations, and elephants in particular, can significantly modify river water quality patterns. Loss of habitat and limitation of wildlife access to perennial rivers and floodplains in water-restricted regions may increase the impact of species on surface water resources. Our findings have important implications to land use planning in southern Africa’s dryland river ecosystems. PMID:26460613

  17. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    PubMed

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The 1975 Ride Quality Symposium

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of papers reported at the 1975 Ride Quality Symposium held in Williamsburg, Virginia, August 11-12, 1975. The symposium, jointly sponsored by NASA and the United States Department of Transportation, was held to provide a forum for determining the current state of the art relative to the technology base of ride quality information applicable to current and proposed transportation systems. Emphasis focused on passenger reactions to ride environment and on implications of these reactions to the design and operation of air, land, and water transportation systems acceptable to the traveling public. Papers are grouped in the following five categories: needs and uses for ride quality technology, vehicle environments and dynamics, investigative approaches and testing procedures, experimental ride quality studies, and ride quality modeling and criteria.

  19. Precipitation Effects on Microbial Pollution in a River: Lag Structures and Seasonal Effect Modification

    PubMed Central

    Tornevi, Andreas; Bergstedt, Olof; Forsberg, Bertil

    2014-01-01

    Background The river Göta Älv is a source of freshwater for 0.7 million swedes. The river is subject to contamination from sewer systems discharge and runoff from agricultural lands. Climate models projects an increase in precipitation and heavy rainfall in this region. This study aimed to determine how daily rainfall causes variation in indicators of pathogen loads, to increase knowledge of variations in river water quality and discuss implications for risk management. Methods Data covering 7 years of daily monitoring of river water turbidity and concentrations of E. coli, Clostridium and coliforms were obtained, and their short-term variations in relation with precipitation were analyzed with time series regression and non-linear distributed lag models. We studied how precipitation effects varied with season and compared different weather stations for predictive ability. Results Generally, the lowest raw water quality occurs 2 days after rainfall, with poor raw water quality continuing for several more days. A rainfall event of >15 mm/24-h (local 95 percentile) was associated with a three-fold higher concentration of E. coli and 30% higher turbidity levels (lag 2). Rainfall was associated with exponential increases in concentrations of indicator bacteria while the effect on turbidity attenuated with very heavy rainfall. Clear associations were also observed between consecutive days of wet weather and decreased water quality. The precipitation effect on increased levels of indicator bacteria was significant in all seasons. Conclusions Rainfall elevates microbial risks year-round in this river and freshwater source and acts as the main driver of varying water quality. Heavy rainfall appears to be a better predictor of fecal pollution than water turbidity. An increase of wet weather and extreme events with climate change will lower river water quality even more, indicating greater challenges for drinking water producers, and suggesting better control of sources of pollution. PMID:24874010

  20. How Science, Technology and Society Issues Are Presented in Science Textbooks.

    ERIC Educational Resources Information Center

    Hamm, Mary; Adams, Dennis

    1988-01-01

    Ten science textbooks (4,393 pages) for grades 6 and 7 were examined for their treatment of five top-ranked global problem issues (population growth, war technology, world hunger and food resources, air quality and atmosphere, and water resources). Implications for science education curricula from this content analysis are discussed. (SLD)

  1. Effects of forest harvest on biogeochemical processes in the Caspar Creek watershed

    Treesearch

    Randy A. Dahlgren

    1998-01-01

    Water quality and long-term sustainability are major components addressed within the ecosystem approach to forest management. Forest harvest practices are often implicated as having adverse impacts on sensitive aquatic communities and on the long-term sustainability of forest ecosystems. While careless harvest practices can certainly cause adverse impacts, proper...

  2. Effect of management on nitrogen budgets and implications for air, soil, and water quality

    USDA-ARS?s Scientific Manuscript database

    Nitrogen is a key nutrient for both national and global food security, and nitrogen inputs from organic and/or inorganic sources are essential to maintain sustainable and economically viable agricultural systems. The challenge with nitrogen is that it is very dynamic and mobile, and some forms are s...

  3. Macroscopic and microscopic variation in recovered magnesium phosphate materials: Implications for phosphorus removal processes and product re-use

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates re...

  4. Effects of peatland burning on hydrology, water quality and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, L. E.; Holden, J.; Palmer, S. M.

    2009-04-01

    Controlled burning is used worldwide for the management of vegetation, yet there is serious concern about the environmental implications of such practices. Across the UK many peatlands are burned to encourage and maintain heather growth. However, detailed evaluations of the costs, benefits and sustainability of burning are hampered by a lack of basic scientific data. This paper will present the outline of a new three year NERC-funded project called EMBER which provides the first co-ordinated evaluation of vegetation burning on peatland hydrological and ecological processes. Case study sites influenced by prescribed burns will be established in internationally important sites in the Peak District and North Pennines, UK. EMBER will increase understanding of the processes linking prescribed peat vegetation fires, hydrology, water quality and stream invertebrate communities in upland peat dominated catchments. Four work packages will aim to: 1) increase understanding of the effects of moorland patch burning on the hydrology and physicochemistry of peat, through examination of changes in soil hydrology and water quality; 2) provide a better understanding of the effects of moorland patch burning on basin runoff quantity and quality, through examination of river flow regimes, suspended sediment concentration and water chemistry; 3) assess the influence of changes in stream hydrology, water quality and sediment fluxes on stream ecosystems through examination of stream invertebrate community biodiversity and fish abundance and 4) gain a more fundamental understanding of some environmental drivers of upland aquatic community response to burning by experimentally manipulating fine sediment flux under controlled conditions using a series of streamside mesocosms. Taken together these packages will provide a holistic patch- to basin-scale evaluation of burning from the perspective of peat hydrology, chemistry, river water quantity and quality, and stream ecosystems, thus providing the balanced knowledge base which is currently lacking for peatlands.

  5. Differential recovery of water quality parameters eight years after severe wildfire and salvage logging in Alberta's southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.

    2012-12-01

    Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total dissolved, particulate, and total P) has been evident. Incremental impacts of management intervention by salvage logging over wildfire alone were observed for most water quality parameters. Sedimentary geology, glacial history of this region, along with predominance of fine fluvial sediments are likely implicated in both the strong sediment-P coupling and longevity of wildfire impacts observed in this region.

  6. Nutrients in the Nation?s streams and groundwater: National Findings and Implications

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Hamilton, Pixie A.

    2010-01-01

    A comprehensive national analysis of the distribution and trends of nutrient concentrations in streams and groundwater from 1992 through 2004 is provided by the National Water-Quality Assessment (NAWQA) Program of the United States Geological Survey (USGS). Findings describe the distribution and causes of varying nutrient concentrations in streams and groundwater throughout the Nation and examine the primary sources that contribute to elevated concentrations. Results show that excessive nutrient enrichment is a widespread cause of ecological degradation in streams and that nitrate contamination of groundwater used for drinking water, particularly shallow domestic wells in agricultural areas, is a continuing human-health concern. Finally, despite major Federal, State and local nonpoint-source nutrient control efforts for streams and watersheds across the Nation, USGS trend analyses for 1993?2003 suggest limited national progress to reduce the impacts of nonpoint sources of nutrients during this period. Instead, concentrations have remained the same or increased in many streams and aquifers across the Nation, and continue to pose risks to aquatic life and human health. This Fact Sheet highlights selected national findings and their implications, and serves as a companion product to the complete analysis reported in the USGS Circular titled ?The Quality of Our Nation?s Waters?Nutrients in the Nation?s Streams and Groundwater, 1992?2004.?

  7. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: implications for managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Alazard, M.; Boisson, A.; Maréchal, J.-C.; Perrin, J.; Dewandel, B.; Schwarz, T.; Pettenati, M.; Picot-Colbeaux, G.; Kloppman, W.; Ahmed, S.

    2016-02-01

    The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.

  8. Ecohydrology of a Tropical Landscape: Hydrological Regimes and Implications for Water Resources and Ecological Dynamics in the Talgua Watershed, Honduras

    NASA Astrophysics Data System (ADS)

    Reyes, W. M.; Jass, T. L.; Emanuel, R. E.

    2016-12-01

    The tropics play a central role in regulating Earth's environmental systems, not only cycling more water than any other region in the world but also influencing global biogeochemical and energy balances. Increasing and widespread deforestation, climate change, and other disturbances are rapidly altering Earth system processes in the tropics, yet our understanding of these processes and their implications is limited for certain locations. Honduras, located within the Mesoamerican region, is one such location. A combination of rapid land use change (including deforestation at 3% y-1), hurricanes, droughts, poor access to drinking water, and poverty place Honduras among the most environmentally vulnerable countries in the world. However, these factors also create an ideal scenario for understanding complex human-environment interactions and their effects on tropical eco-hydrological systems. To this end, we collected and analyzed hydrological and meteorological data from the upper Talgua River, a forested, montane catchment in the headwaters of Honduras' Patuca River, during 2015 and 2016. We characterized the water balance and basic water quality relationships for the Talgua River, an important accomplishment for such a data-sparse region. We place our results in the context of coupled human-water dynamics in this region of Mesoamerica and discuss implications for water resources and other environmental services. Our analyses, embedded research infrastructure, and long-term partnerships with local institutions help provide valuable insights that narrow the existing knowledge gap in tropical ecohydrology and related socio-environmental dynamics. Our work also helps local communities and governments plan and make well-informed decisions about water and related resources.

  9. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Global Access to Safe Water: Accounting for Water Quality and the Resulting Impact on MDG Progress

    PubMed Central

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-01-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as “improved” or “unimproved” as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF “Rapid Assessment of Drinking Water Quality”. A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator “use of an improved source” suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety. PMID:22690170

  11. Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future

    PubMed Central

    Weeks, John R.; Fink, Günther

    2013-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481

  12. Sachet drinking water in Ghana's Accra-Tema metropolitan area: past, present, and future.

    PubMed

    Stoler, Justin; Weeks, John R; Fink, Günther

    2012-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana's Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision.

  13. An innovative approach for Predicting Farmers' Adaptive Behavior at the Large Watershed Scale: Implications for Water Quality and Crop Yields

    NASA Astrophysics Data System (ADS)

    Valcu-Lisman, A. M.; Gassman, P. W.; Arritt, R. W.; Kling, C.; Arbuckle, J. G.; Roesch-McNally, G. E.; Panagopoulos, Y.

    2017-12-01

    Projected changes in the climatic patterns (higher temperatures, changes in extreme precipitation events, and higher levels of humidity) will affect agricultural cropping and management systems in major agricultural production areas. The concept of adaption to new climatic or economic conditions is an important aspect of the agricultural decision-making process. Adopting cover crops, reduced tillage, extending the drainage systems and adjusting crop management are only a few examples of adaptive actions. These actions can be easily implemented as long as they have private benefits (increased profits, reduced risk). However, each adaptive action has a different impact on water quality. Cover crops and no till usually have a positive impact on water quality, but increased tile drainage typically results in more degraded water quality due primarily to increased export of soluble nitrogen and phosphorus. The goal of this research is to determine the changes in water quality as well in crop yields as farmers undertake these adaptive measures. To answer this research question, we need to estimate the likelihood that these actions will occur, identify the agricultural areas where these actions are most likely to be implemented, and simulate the water quality impacts associated with each of these scenarios. We apply our modeling efforts to the whole Upper-Mississippi River Basin Basin (UMRB) and the Ohio-Tennessee River Basin (OTRB). These two areas are critical source regions for the re-occurring hypoxic zone in the gulf of Mexico. The likelihood of each adaptive agricultural action is estimated using data from a survey conducted in 2012. A large, representative sample of farmers in the Corn Belt was used in the survey to elicit behavioral intentions regarding three of the most important agricultural adaptation strategies (no-till, cover crops and tile drainage). We use these data to study the relationship between intent to adapt, farmer characteristics, farm characteristics, and weather characteristics, and to predict the probability of adoption for each action. Next, we use these estimated probabilities to create different scenarios for the two large scale-watersheds. Finally, we simulate the impact of these scenarios on water quality using calibrated UMRB and OTRB SWAT water quality models.

  14. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program.

    PubMed

    Zheng, Hua; Robinson, Brian E; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C

    2013-10-08

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers' livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China's capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit-cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants.

  15. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    PubMed

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  16. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program

    PubMed Central

    Zheng, Hua; Robinson, Brian E.; Liang, Yi-Cheng; Polasky, Stephen; Ma, Dong-Chun; Wang, Feng-Chun; Ruckelshaus, Mary; Ouyang, Zhi-Yun; Daily, Gretchen C.

    2013-01-01

    Despite broad interest in using payment for ecosystem services to promote changes in the use of natural capital, there are few expost assessments of impacts of payment for ecosystem services programs on ecosystem service provision, program cost, and changes in livelihoods resulting from program participation. In this paper, we evaluate the Paddy Land-to-Dry Land (PLDL) program in Beijing, China, and associated changes in service providers’ livelihood activities. The PLDL is a land use conversion program that aims to protect water quality and quantity for the only surface water reservoir that serves Beijing, China’s capital city with nearly 20 million residents. Our analysis integrates hydrologic data with household survey data and shows that the PLDL generates benefits of improved water quantity and quality that exceed the costs of reduced agricultural output. The PLDL has an overall benefit–cost ratio of 1.5, and both downstream beneficiaries and upstream providers gain from the program. Household data show that changes in livelihood activities may offset some of the desired effects of the program through increased expenditures on agricultural fertilizers. Overall, however, reductions in fertilizer leaching from land use change dominate so that the program still has a positive net impact on water quality. This program is a successful example of water users paying upstream landholders to improve water quantity and quality through land use change. Program evaluation also highlights the importance of considering behavioral changes by program participants. PMID:24003160

  17. Evaluation of spatial and temporal water quality in the Akkaya dam watershed (Niğde, Turkey) and management implications

    NASA Astrophysics Data System (ADS)

    Yaşar Korkanç, Selma; Kayıkçı, Sedef; Korkanç, Mustafa

    2017-05-01

    The aim of this study is to investigate the water pollution in the Akkaya Dam watershed spatially and temporally and put forward management suggestions in a watershed scale. For this purpose, monthly water sampling was performed from 11 sampling stations on streams that fed the dam. According to land surveys they have a potential to inflict pollution to the dam. Thus the physical and chemical parameters (i.e. pH, dissolved oxygen, electrical conductivity, temperature, chemical oxygen demand, turbidity and suspended solids) were monitored monthly for 1-year period. Chloride, sulfate, total nitrogen, ammonium, nitrite, nitrate were monitored for a 6-month period, and the results were evaluated in accordance with the Turkish Regulation of Surface Water Quality Management. Results of the study show that the most important reasons for the pollution in the dam are caused by domestic and industrial wastewaters, which were released to the system without being treated, or without being sufficiently treated, and also of agricultural activities. It was determined that electrical conductivity, dissolved oxygen, turbidity, chemical oxygen demand, suspended solids, nitrite, nitrate, total nitrogen, sulfate, and chloride parameters which were high at the sampling stations where domestic and industrial wastewaters discharge were present. pH and temperature demonstrate a difference at a significant level by seasons. As a result of the study, it was determined that the water was of IVth quality in terms of nitrate, chemical oxygen demand, and total nitrogen, and it was of IIIrd quality water with respect to ammonium, electrical conductivity, and dissolved oxygen. It was observed that the dam outflow water was of IVth quality with respect to nitrate, chemical oxygen demand, and total nitrogen, and of IIIrd quality with respect to dissolved oxygen and electrical conductivity. It is considered that the pollution problem in the Akkaya Dam can only be resolved with prevention studies on a watershed scale. Therefore, coordination between the institutions is necessary. The preparation for the integrated water management plan of the watershed will provide a significant contribution to the solution of the water quality problem.

  18. Economic analysis of municipal wastewater utilization for thermoelectric power production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, I.; Walker, M.; Abbasian, J.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of freshwater. The large water demand is increasingly a problem, especially for new power plant development, as availability of freshwater for new uses diminishes in the United States. Reusing non-traditional water sources, such as treated municipal wastewater, provides one option to mitigate freshwater usage in the thermoelectric power industry. The amount of freshwater withdrawal that can be displaced with non-traditional water sources at a particular location requires evaluation of the water management and treatment requirements, considering the quality and abundance of the non-traditional water sources. This paper presents themore » development of an integrated costing model to assess the impact of degraded water treatment, as well as the implications of increased tube scaling in the main condenser. The model developed herein is used to perform case studies of various treatment, condenser cleaning and condenser configurations to provide insight into the ramifications of degraded water use in the cooling loops of thermoelectric power plants. Further, this paper lays the groundwork for the integration of relationships between degraded water quality, scaling characteristics and volatile emission within a recirculating cooling loop model.« less

  19. Irrigation efficiency and water-policy implications for river basin resilience

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2014-04-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  20. The role of pesticide fate modelling in a prevention-led approach to potable water quality management

    NASA Astrophysics Data System (ADS)

    Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David

    2013-04-01

    Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management intervention scenarios were explored (including changes to land use and pesticide usage) with the aim of providing a useful input to the debate between water companies, their regulators and pesticide users over the scale of catchment management required to support both DWD and WFD Article 7 compliance.

  1. Management and land use implications of continuous nitrogen and phosphorus monitoring in a small non-karst catchment in southeastern PA

    USDA-ARS?s Scientific Manuscript database

    Long-term climate and water quality monitoring data provide some of the most essential and informative information to the scientific community. These datasets however, are often incomplete and do not have frequent enough sampling to provide full explanations of trends. With the advent of continuous ...

  2. Water quality assessment for groundwater around a municipal waste dumpsite.

    PubMed

    Kayode, Olusola T; Okagbue, Hilary I; Achuka, Justina A

    2018-04-01

    The dataset for this article contains geostatistical analysis of the level to which groundwater quality around a municipal waste dumpsite located in Oke-Afa, Oshodi/Isolo area of Lagos state, southwestern has been compromised for drinking. Groundwater samples were collected from eight hand-dug wells and two borehole wells around or near the dumpsite. The pH, turbidity, salinity, conductivity, total hydrocarbon, total dissolved solids (TDS), dissolved oxygen, chloride, Sulphate (SO 4 ), Nitrate (NO 3 ) and Phosphate (PO 4 ) were determined for the water samples and compared with World Health Organization (WHO) drinking water standard. Notably, the turbidity, TDS, chloride and conductivity of some of the samples were above the WHO acceptable limits. Also, high quantities of heavy metals such as Aluminum and Barium were also present as shown from the data. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the contaminants are above the recommended WHO drinking water standard.

  3. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    PubMed

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  4. Irrigation efficiency and water-policy implications for river-basin resilience

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Vicuña, S.; Blanco-Gutiérrez, I.; Meza, F.; Varela-Ortega, C.

    2013-07-01

    Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions - central Chile, southwestern US, and south-central Spain - where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  5. Research in thermal biology: Burning questions for coldwater stream fishes

    USGS Publications Warehouse

    McCullough, D.A.; Bartholow, J.M.; Jager, H.I.; Beschta, R.L.; Cheslak, E.F.; Deas, M.L.; Ebersole, J.L.; Foott, J.S.; Johnson, S.L.; Marine, K.R.; Mesa, M.G.; Petersen, J.H.; Souchon, Y.; Tiffan, K.F.; Wurtsbaugh, W.A.

    2009-01-01

    With the increasing appreciation of global warming impacts on ecological systems, in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied, and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implications would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem. ?? Taylor and Francis Group, LLC.

  6. Relations of changes in wastewater-treatment practices to changes in stream-water quality during 1978-88 in the Chicago area, Illinois, and implications for regional and national water-quality assessments

    USGS Publications Warehouse

    Terrio, P.J.

    1994-01-01

    A study in the upper Illinois River Basin defined relations between changes in wastewater-treatment practices and changes in stream-water quality on the basis of available information. These relations were examined for five large wastewater-treatment plants in the Chicago area, Illinois. At the three largest treatment plants, two major changes in wastewater-treatment practices were identified--the cessation of chlorination and the implementation of Chicago's Tunnel and Reservoir Plan (TARP). Other changes, such as improved aeration and expansion of the facilities, also were made at some of the treatment plants. At the Calumet Water Reclamation Plant, median densities of fecal coliform bacteria in the effluent increased from 3,100 to 1,200,000 colonies per 100 milliliters after the cessation of chlorination. Median densities at the nearest downstream monitoring site increased from 9,500 to 250,000 colonies per 100 milliliters. Similar changes in bacteria densities were indicated for other treatment plants and stream-monitoring sites, but increases in densities of fecal coliform bacteria were not indicated at distances greater than 7 miles downstream. Substantial changes in effluent and stream-water quality, primarily improvements, were identified after the implemen- of TARP and improvements in aeration. Decreases in some of the largest concentrations of ammonia were particularly notable and were likely results of the cape and treatment of combined sewer overflows by TARP. Improvements in water quality were commonly related to climatic season, with greater changes taking place during warm periods. Substantial decreases in concentrations were identified for many constituents, including oxygen demand, ammonia, bacteria, and cyanide. The water-quality data available for this study were considered to be more accurate and were more comprehensive than data from most other monitoring programs. The results of this study, however, identified some needed enhancements to increase the usefulness of the data for additional purposes and analyses.

  7. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    PubMed

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  8. Seasonal variations in the water quality of a tropical wetland dominated by floating meadows and its implication for conservation of Ramsar wetlands

    NASA Astrophysics Data System (ADS)

    Tuboi, Chongpi; Irengbam, Michelle; Hussain, Syed Ainul

    2018-02-01

    The Loktak Lake is a palustrine wetland located in the Barak-Chindwin river basin of Northeast India. The Lake is characterized by floating meadows of various thickness which support severely depleted endangered Eld's deer (Rucervus eldii) and sympatric hog deer (Axis porcinus). The southern part of the Lake is protected as Keibul Lamjao National Park as the last remaining habitat of the Eld's deer in India. The Loktak Lake has been included in the Montreux record as it is changing its ecological character due to anthropogenic pressures especially due to water pollution. We examined the seasonal pattern of water quality of Loktak Lake and compared it with the Keibul Lamjao National Park with a view to suggest measures for removal of this wetland from the Montreux record and for improved conservation. The evaluation of spatio-temporal variations in the water quality parameters over two years was carried out using multivariate statistical analysis. Hierarchical cluster analysis grouped the 11 sampling sites into four groups, less polluted, medium polluted, highly polluted and most polluted and the 12 months into three time periods. Principal Component Analysis identified three factors in the data structure which explained 92.9% of the total variance of the data set which was used to group the selected parameters according to common features and to evaluate the influence of each group on the overall variation in water quality. Significant difference in terms of water quality parameters were observed across different parts of the lake and seasons (ANOVA, p < 0.05). Our study revealed that the Loktak Lake is hypereutrophic leading to decreased water quality that has adverse impacts on ecosystem level processes. Restoration of the Lake requires an integrated approach in reduction of nutrient inputs, enhanced flushing mechanism and restoration of environmental flow which has been disrupted due to damming.

  9. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; Nkhuwa, D. C. W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M. E.; Tijani, M. N.; Wright, J.

    2017-06-01

    Groundwater resources are important sources of drinking water in Africa, and they are hugely important in sustaining urban livelihoods and supporting a diverse range of commercial and agricultural activities. Groundwater has an important role in improving health in sub-Saharan Africa (SSA). An estimated 250 million people (40% of the total) live in urban centres across SSA. SSA has experienced a rapid expansion in urban populations since the 1950s, with increased population densities as well as expanding geographical coverage. Estimates suggest that the urban population in SSA will double between 2000 and 2030. The quality status of shallow urban groundwater resources is often very poor due to inadequate waste management and source protection, and poses a significant health risk to users, while deeper borehole sources often provide an important source of good quality drinking water. Given the growth in future demand from this finite resource, as well as potential changes in future climate in this region, a detailed understanding of both water quantity and quality is required to use this resource sustainably. This paper provides a comprehensive assessment of the water quality status, both microbial and chemical, of urban groundwater in SSA across a range of hydrogeological terrains and different groundwater point types. Lower storage basement terrains, which underlie a significant proportion of urban centres in SSA, are particularly vulnerable to contamination. The relationship between mean nitrate concentration and intrinsic aquifer pollution risk is assessed for urban centres across SSA. Current knowledge gaps are identified and future research needs highlighted.

  10. Chesapeake Bay Climate Study Partnership: Undergraduate Student Experiential Learning on Microclimates at the University of Hawai'i, Hilo

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.; Adolf, J.

    2015-12-01

    Undergraduate student experiential learning activities focused on microclimates of Hawai'i Island, Hawai'i. Six students from Virginia State University, three students from Delaware State University and faculty advisors were hosted by the University of Hawai'i at Hilo (UHH) Department of Marine Science. This partnership provided integrated, cohesive, and innovative education and research capabilities to minority students on climate change science. Activities included a summer course, instrumentation training, field and laboratory research training, sampling, data collection, logging, analysis, interpretation, report preparation, and research presentation. Most training activities used samples collected during students' field sampling in Hilo Bay. Water quality and phytoplankton data were collected along a 220 degree line transect from the mouth of the Wailuku River to the pelagic zone outside of Hilo Bay into the Pacific Ocean to a distance of 15.5 km. Water clarity, turbidity, chlorophyll, physical water quality parameters, and atmospheric CO2 levels were measured along the transect. Phytoplankton samples were collected for analysis by Scanning Electron Microscopy and Flow Cytometry. Data showed the extent of anthropogenic activity on water quality, with implications for food web dynamics. In addition, atmospheric CO2 concentration, island vegetation, and GPS points were recorded throughout the island of Hawai'i to investigate how variations in microclimate, elevation, and land development affect the amount of CO2 in the atmosphere, vegetation, and water quality. Water quality results at locations near rivers were completely different from other study sites, requiring students' critical thinking skills to find possible reasons for the difference. Our data show a correlation between population density and CO2 concentrations. Anthropogenic activities affecting CO2 and ocean conditions in Hawaiian microclimates can potentially have deleterious effects on the life that call these areas home.

  11. Physicochemical quality and health implications of bottled water brands sold in Ethiopia.

    PubMed

    Amogne, Wossen T; Gizaw, Melaku; Abera, Daniel

    2015-06-01

    Water bottling companies often assert that their products are of the highest quality and are conforming to the standards. The objective of the study was to assess the physicochemical quality of bottled waters consumed in Ethiopia and to compare the findings with the national and international water quality standards. Eleven domestic and two imported bottled water brands were randomly purchased in Addis Ababa, Ethiopia at three different occasions from July 2013 to May 2014. A total of 39 composite samples were examined for aggregate parameters, major anions, and common cations in accordance with the procedures described in the standard methods. We found that 7.7% of the samples were containing higher levels of alkalinity, hardness, total dissolved solids, pH, HCO3-, Na+, and Ca2+ than the national standards and the WHO guidelines. However, the deviations from standards for all the above parameters were not statistically significant (one-sample t-test, P>0.05). Conversely, in some of the brands, some of the essential elements like Ca2+, K+, Mg2+, and F- were found at very low concentrations. The rest of the parameters, including CO3(2-), SO4(2-), PO4(3-) (orthophosphates), Cl-, F-, NO3-, NO2-, K+, Mg2+, Fe, Mn, Cr, Cd, Cu, Ni, and Pb were within the acceptable ranges in all the brands. Bottled water brands containing very high concentrations of dissolved substances may pose health risks for individuals living with heart and kidney related problems. On the other hand, brands having chemicals lower than the optimum level may also harm the health of consumers who choose those brands as a sole source of drinking water. Thus, we suggest those responsible authorities to ensure regular monitoring and testing for chemical compositions of bottled water.

  12. Water and poverty: Implications for water planning

    NASA Astrophysics Data System (ADS)

    Fass, S. M.

    1993-07-01

    Although it recognizes the tangible economic benefits to health and income that may derive from greater safety of supply and improved time savings in procurement, planning for improvements of urban water systems in developing countries has overlooked other ways in which water may influence health and income among the poor. In these populations the price of water may further affect health and labor productivity, both directly through its impact on nutrition and indirectly through its impact on housing size and quality and on residential density. What at first might seem a straightforward equity issue in planning may thus be an issue of economic efficiency as well. Failure to account for the fuller range of tangible benefits associated with improvements in water supply may lead to underestimation of returns to investment and therefore to economically inefficient investment.

  13. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    PubMed

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. The Languages Spoken in the Water Body (or the Biological Role of Cyanobacterial Toxins)

    PubMed Central

    Kaplan, Aaron; Harel, Moshe; Kaplan-Levy, Ruth N.; Hadas, Ora; Sukenik, Assaf; Dittmann, Elke

    2012-01-01

    Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body. PMID:22529842

  15. Bark-beetle infestation affects water quality in the Rocky Mountains of Colorado

    NASA Astrophysics Data System (ADS)

    Mikkelson, K.; Dickenson, E.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.

    2012-12-01

    In the previous decade, millions of acres in the Rocky Mountains of Colorado have been infested by the mountain pine beetle (MPB) leading to large-scale tree mortality. These vegetation changes can impact hydrological and biogeochemical processes, possibly altering the leaching of natural organic matter to surrounding waters and increasing the potential for harmful disinfection byproducts (DBP) during water treatments. To investigate these adverse outcomes, we have collected water quality data sets from local water treatment facilities in the Rocky Mountains of Colorado that have either been infested with MPB or remain a control. Results demonstrate significantly more total organic carbon (TOC) and DBPs in water treatment facilities receiving their source water from infested watersheds as compared to the control sites. Temporal DBP concentrations in MPB-watersheds also have increased significantly in conjunction with the bark-beetle infestation. Interestingly, only modest increases in TOC concentrations were observed in infested watersheds despite more pronounced increases in DBP concentrations. Total trihalomethanes, a heavily regulated DBP, was found to approach the regulatory limit in two out of four reporting quarters at facilities receiving their water from infested forests. These findings indicate that bark-beetle infestation alters TOC composition and loading in impacted watersheds and that this large-scale phenomenon has implications on the municipal water supply in the region.

  16. A Survey of Recreation Behavior and Attitude Patterns of High School Juniors and Seniors: Implications for Environmental Education and Resource Management.

    ERIC Educational Resources Information Center

    Ditton, Robert B.; Johnsen, Per K.

    In this study, the behavior and attitude patterns of high school juniors and seniors in northeastern Wisconsin have been examined with respect to recreational activities and water quality conditions. Most popular activities were identified in order as swimming, boating, fishing, waterskiing, sailing, and duck hunting. Location of participation in…

  17. Assessing impacts of payments for watershed services on sustainability in coupled human and natural systems

    Treesearch

    Heidi Asbjornsen; Alex S. Mayer; Kelly W. Jones; Theresa Selfa; Leonardo Saenz; Randall K. Kolka; Kathleen E. Halvorsen

    2015-01-01

    Payments for watershed services (PWS) as a policy tool for enhancing water quality and supply have gained momentum in recent years, but their ability to lead to sustainable watershed outcomes is uncertain. Consequently, the demand for effective monitoring and evaluation (M&E) of PWS impacts on coupled human and natural systems (CHANS) and their implications for...

  18. A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin

    NASA Astrophysics Data System (ADS)

    Carstens, D.; Amer, R. M.

    2017-12-01

    The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that decrease in dissolved oxygen and phosphorus, and the increase in specific conductance, nitrogen and pH from 1985 to 2015 are consistent with the rate of urban sprawl that occurred during this time period. Future work will include analysis of changes in agricultural and industrial activities and correlation with changes of water quality parameters.

  19. Factors affecting long-term trends in surface-water quality in the Gwynns Falls watershed, Baltimore City and County, Maryland, 1998–2016

    USGS Publications Warehouse

    Majcher, Emily H.; Woytowitz, Ellen L.; Reisinger, Alexander J.; Groffman, Peter M.

    2018-03-30

    Factors affecting water-quality trends in urban streams are not well understood, despite current regulatory requirements and considerable ongoing investments in gray and green infrastructure. To address this gap, long-term water-quality trends and factors affecting these trends were examined in the Gwynns Falls, Maryland, watershed during 1998–2016 in cooperation with Blue Water Baltimore. Data on water-quality constituents and potential factors of influence were obtained from multiple sources and compiled for analysis, with a focus on data collected as part of the National Science Foundation funded Long-Term Ecological Research project, the Baltimore Ecosystem Study.Variability in climate (specifically, precipitation) and land cover can overwhelm actions taken to improve water quality and can present challenges for meeting regulatory goals. Analysis of land cover during 2001–11 in the Gwynns Falls watershed indicated minimal change during the study time frame; therefore, land-cover change is likely not a factor affecting trends in water quality. However, a modest increase in annual precipitation and a significant increase in winter precipitation were apparent in the region. A higher proportion of runoff producing storms was observed in the winter and a lower proportion in the summer, indicating that climate change may affect water quality in the watershed. The increase in precipitation was not reflected in annual or seasonal trends of streamflow in the watershed. Nonetheless, these precipitation changes may exacerbate the inflow and infiltration of water to gray infrastructure and reduce the effectiveness of green infrastructure. For streamflow and most water-quality constituents examined, no discernable trends were noted over the timeframe examined. Despite the increases in precipitation, no trends were observed for annual or seasonal discharge at the various sites within the study area. In some locations, nitrate, phosphate, and total nitrogen show downward trends, and total phosphorus and chloride show upward trends.Sanitary sewer overflows (gray infrastructure) and best management practices (green infrastructure) were identified as factors affecting water-quality change. The duration of sanitary sewer overflows was positively correlated with annual loads of nutrients and bacteria, and the drainage area of best management practices was negatively correlated with annual loads of phosphate and sulfate. Results of the study indicate that continued investments in gray and green infrastructure are necessary for urban water-quality improvement. Although this outcome is not unexpected, long-term datasets such as the one used in this study, allow the effects of gray and green infrastructures to be quantified.Results of this study have implications for the Gwynns Falls watershed and its residents and Baltimore City and County managers. Moreover, outcomes are relevant to other watersheds in the metropolitan region that do not have the same long-term dataset. Further, this study has established a framework for ongoing statistical analysis of primary factors affecting urban water-quality trends as regulatory programs mature.

  20. Per- and Polyfluoroalkyl Substances in Swedish Groundwater and Surface Water: Implications for Environmental Quality Standards and Drinking Water Guidelines.

    PubMed

    Gobelius, Laura; Hedlund, Johanna; Dürig, Wiebke; Tröger, Rikard; Lilja, Karl; Wiberg, Karin; Ahrens, Lutz

    2018-04-03

    The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑ 26 PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑ 26 PFAS concentrations were detected in surface water (13 000 ng L -1 ) and groundwater (6400 ng L -1 ). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑ 26 PFASs), with high contributions from C 4 -C 8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L -1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L -1 for ∑ 11 PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.

  1. Complex interactions among climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana

    NASA Astrophysics Data System (ADS)

    McGill, B. M.; Altchenko, Y.; Kenabatho, P. K.; Sylvester, S. R.; Villholth, K. G.

    2017-12-01

    With population growth, rapid urbanization, and climate change, groundwater is becoming an increasingly important source of drinking water around the world, including southern Africa. This is an investigation into the coupled human and natural system linking climate change, droughts, sanitation, and groundwater quality in Ramotswa, a town in the semi-arid southeastern Botswana. During the recent drought from 2013-2016, water shortages from reservoirs that supply the larger city of Gaborone resulted in curtailed water supply to Ramotswa, forcing people with flush toilets to use pit latrines. Pit latrines have been suspected as the cause of elevated nitrate in the Ramotswa groundwater, which also contributes to the town's drinking water supply. The groundwater pollution paradoxically makes Ramotswa dependent on Gaborone's water, supplied in large part by surface reservoirs, which are vulnerable to drought. Analysis of long-term rainfall records indicates that droughts like the one in 2013-2016 are increasing in likelihood due to climate change. Because of the drought, many more people used pit latrines than under normal conditions. Analysis of the groundwater for nitrate and using caffeine as an indicator, human waste leaching from pit latrines is implicated as the major culprit for the nitrate pollution. The results indicate a critical indirect linkage between climate change, sanitation, groundwater quality and water security in this area of rapid urbanization and population growth. Recommendations are offered for how Ramotswa's water security could be made less vulnerable to climate change.

  2. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    USGS Publications Warehouse

    Gassman, Philip W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment load decreases to occur; (4) long-term monitoring on the order of decades can be required to detect meaningful changes in water quality in response to BMP implementation; and (5) all consequences of specific BMPs need to be considered when considering strategies for watershed protection.

  3. Optimizing household survey methods to monitor the Sustainable Development Goals targets 6.1 and 6.2 on drinking water, sanitation and hygiene: A mixed-methods field-test in Belize.

    PubMed

    Khan, Shane M; Bain, Robert E S; Lunze, Karsten; Unalan, Turgay; Beshanski-Pedersen, Bo; Slaymaker, Tom; Johnston, Richard; Hancioglu, Attila

    2017-01-01

    The Sustainable Development Goals (SDGs) require household survey programmes such as the UNICEF-supported Multiple Indicator Cluster Surveys (MICS) to enhance data collection to cover new indicators. This study aims to evaluated methods for assessing water quality, water availability, emptying of sanitation facilities, menstrual hygiene management and the acceptability of water quality testing in households which are key to monitoring SDG targets 6.1 and 6.2 on drinking Water, Sanitation and Hygiene (WASH) and emerging issues. As part of a MICS field test, we interviewed 429 households and 267 women age 15-49 in Stann Creek, Belize in a split-sample experiment. In a concurrent qualitative component, we conducted focus groups with interviewers and cognitive interviews with respondents during and immediately following questionnaire administration in the field to explore their question comprehension and response processes. About 88% of respondents agreed to water quality testing but also desired test results, given the potential implications for their own health. Escherichia coli was present in 36% of drinking water collected at the source, and in 47% of samples consumed in the household. Both questions on water availability necessitated probing by interviewers. About one quarter of households reported emptying of pit latrines and septic tanks, though one-quarter could not provide an answer to the question. Asking questions on menstrual hygiene was acceptable to respondents, but required some clarification and probing. In the context of Belize, this study confirmed the feasibility of collecting information on the availability and quality of drinking water, emptying of sanitation facilities and menstrual hygiene in a multi-purpose household survey, indicating specific areas to improve question formulation and field protocols. Improvements have been incorporated into the latest round of MICS surveys which will be a major source of national data for monitoring of SDG targets for drinking water, sanitation and hygiene and emerging issues for WASH sector programming.

  4. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important implications for water management and sustaining water quality.

  5. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    USGS Publications Warehouse

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin, and results for copper exceeded the U.S. Environmental Protection Agency Office of Pesticide Programs' aquatic-life chronic and acute benchmarks for invertebrates. One sediment sample contained detections of pyrethroid pesticides bifenthrin, lambda-cyhalothrin, and total permethrin at concentrations above published chronic toxicity thresholds.

  6. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  7. Intradaily variability of water quality in a shallow tidal lagoon: Mechanisms and implications

    USGS Publications Warehouse

    Lucas, L.V.; Sereno, D.M.; Burau, J.R.; Schraga, T.S.; Lopez, C.B.; Stacey, M.T.; Parchevsky, K.V.; Parchevsky, V.P.

    2006-01-01

    Although surface water quality and its underlying processes vary over time scales ranging from seconds to decades, they have historically been studied at the lower (weekly to interannual) frequencies. The aim of this study was to investigate intradaily variability of three water quality parameters in a small freshwater tidal lagoon (Mildred Island, California). High frequency time series of specific conductivity, water temperature, and chlorophyll a at two locations within the habitat were analyzed in conjunction with supporting hydrodynamic, meteorological, biological, and spatial mapping data. All three constituents exhibited large amplitude intradaily (e.g., semidiurnal tidal and diurnal) oscillations, and periodicity varied across constituents, space, and time. Like other tidal embayments, this habitat is influenced by several processes with distinct periodicities including physical controls, such as tides, solar radiation, and wind, and biological controls, such as photosynthesis, growth, and grazing. A scaling approach was developed to estimate individual process contributions to the observed variability. Scaling results were generally consistent with observations and together with detailed examination of time series and time derivatives, revealed specific mechanisms underlying the observed periodicities, including interactions between the tidal variability, heating, wind, and biology. The implications for monitoring were illustrated through subsampling of the data set. This exercise demonstrated how quantities needed by scientists and managers (e.g., mean or extreme concentrations) may be misrepresented by low frequency data and how short-duration high frequency measurements can aid in the design and interpretation of temporally coarser sampling programs. The dispersive export of chlorophyll a from the habitat exhibited a fortnightly variability corresponding to the modulation of semidiurnal tidal currents with the diurnal cycle of phytoplankton variability, demonstrating how high frequency interactions can govern long-term trends. Process identification, as through the scaling analysis here, can help us anticipate changes in system behavior and adapt our own interactions with the system. ?? 2006 Estuarine Research Federation.

  8. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally, large metropolitan regions are initially loading hotspots and pollution, too, and prevention becomes important as point sources are dependent on sewer connection rates and treatment levels. In conclusion, this study provides a detailed picture of the spatial and temporal distribution of salinity pollution and identifies hotspot areas as well as the dominant sources. Furthermore, impacts of water quality degradation on agricultural production and food security are quantified, which aim for a better understanding of the risks for food security caused by water quality impairment.

  9. Disentangling the Effects of Water Stress on Carbon Acquisition, Vegetative Growth, and Fruit Quality of Peach Trees by Means of the QualiTree Model.

    PubMed

    Rahmati, Mitra; Mirás-Avalos, José M; Valsesia, Pierre; Lescourret, Françoise; Génard, Michel; Davarynejad, Gholam H; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles

    2018-01-01

    Climate change projections predict warmer and drier conditions. In general, moderate to severe water stress reduce plant vegetative growth and leaf photosynthesis. However, vegetative and reproductive growths show different sensitivities to water deficit. In fruit trees, water restrictions may have serious implications not only on tree growth and yield, but also on fruit quality, which might be improved. Therefore, it is of paramount importance to understand the complex interrelations among the physiological processes involved in within-tree carbon acquisition and allocation, water uptake and transpiration, organ growth, and fruit composition when affected by water stress. This can be studied using process-based models of plant functioning, which allow assessing the sensitivity of various physiological processes to water deficit and their relative impact on vegetative growth and fruit quality. In the current study, an existing fruit-tree model (QualiTree) was adapted for describing the water stress effects on peach ( Prunus persica L. Batsch) vegetative growth, fruit size and composition. First, an energy balance calculation at the fruit-bearing shoot level and a water transfer formalization within the plant were integrated into the model. Next, a reduction function of vegetative growth according to tree water status was added to QualiTree. Then, the model was parameterized and calibrated for a late-maturing peach cultivar ("Elberta") under semi-arid conditions, and for three different irrigation practices. Simulated vegetative and fruit growth variability over time was consistent with observed data. Sugar concentrations in fruit flesh were well simulated. Finally, QualiTree allowed for determining the relative importance of photosynthesis and vegetative growth reduction on carbon acquisition, plant growth and fruit quality under water constrains. According to simulations, water deficit impacted vegetative growth first through a direct effect on its sink strength, and; secondly, through an indirect reducing effect on photosynthesis. Fruit composition was moderately affected by water stress. The enhancements performed in the model broadened its predictive capabilities and proved that QualiTree allows for a better understanding of the water stress effects on fruit-tree functioning and might be useful for designing innovative horticultural practices in a changing climate scenario.

  10. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  11. Survival potential of Escherichia coli and Enterococci in subtropical beach sand: implications for water quality managers.

    PubMed

    Hartz, A; Cuvelier, M; Nowosielski, K; Bonilla, T D; Green, M; Esiobu, N; McCorquodale, D S; Rogerson, A

    2008-01-01

    Fecal bacteria have traditionally been used as indicator organisms to monitor the quality of recreational waters. Recent work has questioned the robustness of traditional indicators, particularly at seawater bathing beaches. For example, a study of Florida beaches found unexpectedly high abundances of Escherichia coli, fecal coliforms, and enterococci in beach sand. The aim of the present study was to explain these abundances by assessing the survival of E. coli and enterococci in beach sand relative to seawater. We used a combination of quantitative laboratory mesocosm experiments and field observations. Results suggested that E. coli and enterococci exhibited increased survivability and growth in sand relative to seawater. Because fecal bacteria are capable of replicating in sand, at least under controlled laboratory conditions, the results suggest that sand may be an important reservoir of metabolically active fecal organisms. Experiments with "natural" mesocosms (i.e., unsterilized sand or water rich in micropredators and native bacteria) failed to show the same increases in fecal indicators as was found in sterile sand. It is postulated that this was due to predation and competition with indigenous bacteria in these "natural" systems. Nonetheless, high populations of indicators were maintained and recovered from sand over the duration of the experiment as opposed to the die-off noted in water. Indicator bacteria may wash out of sand into shoreline waters during weather and tidal events, thereby decreasing the effectiveness of these indicators as predictors of health risk and complicating the interpretations for water quality managers.

  12. An air pollution modeling study using three surface coverings near the New International Airport of Mexico City.

    PubMed

    Jazcilevich, Arón D; García, Agustín R; Ruiz-Suárez, Luis-Gerardo

    2003-10-01

    The dry lakebed of what once was the lake of Texcoco is the location selected for the New International Airport of Mexico City. This project will generate an important urban development near the airport with regional implications on air quality. Using a prognostic air quality model, the consequences of photochemical air pollution in the metropolitan area of Mexico City resulting from three possible coverings for the areas of the lakebed that are not occupied by the runway and terminal building are investigated. These coverings are desert, grassland, and water and occupy an area of 63 km2. This study is based on a representative high pollution episode. In addition to reducing the emission of primary natural particles, the water covering generates a land-water breeze capable of maintaining enough ventilation to reduce pollutant concentrations over a localized region of the metropolitan area and may enhance the wind speed on the coasts of the proposed lake.

  13. Research gaps related to forest management and stream sediment in the United States.

    PubMed

    Anderson, Christopher J; Lockaby, B Graeme

    2011-02-01

    Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.

  14. Examination of Land Use, Hydrology, and Perceptions of Use and Management of the Colombian Paramo with Implications for Water Quality and Availability Concerns for Affected Watersheds

    NASA Astrophysics Data System (ADS)

    Tyson, A. F.; Covino, T.; Riveros-Iregui, D. A.; Gonzalez-Pinzon, R.

    2015-12-01

    The Northern and Central Andes have experienced greater anthropogenic land use/land-cover (LULC) change than nearly any other high mountain system on Earth. In particular, páramo ecosystems, high elevation grasslands of the tropical Andes of Colombia, are undergoing rapid conversion to cropland and pasture. These systems have strong hydrologic buffering capacity and have historically provided consistent freshwater flows to downstream communities. Therefore, loss of these systems could threaten the viability of freshwater resources in the region. While this region has some of the highest runoff ratios, precipitation, and largest river flows in the world, the resiliency of these hydrologic systems and the influence LULC change may have on them remains poorly understood. Here we seek to develop a deeper understanding of these relationships through quantitative analyses of LULC change and impacts on the quantity and quality of water exported from páramo landscapes of Colombia. Our results indicate the intensity and spatial distribution of LULC change, build upon past remote sensing studies of the region, and aid in prioritizing areas of concern for hydrologic research on the ground. This information provides an initial framework for characterizing the degree of modification and impact to water quantity/quality, as well as the long-term sustainability of water resources in the region. We highlight the complexities of watershed management practices in the Colombian páramo and the need to account for the impact of human activity on changes in water quantity and quality in the region.

  15. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  16. Living Shorelines: Assessing Geomorphic Change and Water Quality in an Urban Waterway

    NASA Astrophysics Data System (ADS)

    Huggins, A.; Schwartz, M. C.; Schmutz, P. P.

    2017-12-01

    In recent years, alternative strategies for shoreline armoring have become increasingly popular with coastal property owners. In Northwest Florida, local agencies implemented plans to attenuate wave action and reduce landward shore recession in an urban bayou by installing living shorelines. Living shorelines are constructed in the inter-tidal zones and incorporate both hard and soft structured stabilization. Generally, the hard component is fossilized oyster shells and the soft component is planted intertidal vegetation, such as Spartina alterniflora (Smooth cordgrass) and Juncus roemererianus (Black needlerush). Living shorelines were intended to comprise both ecological and societal implications by significantly slowing erosion processes for property owners, by utilizing oyster beds to improve water quality, and by fostering new ecological habitats in the marsh grasses. The issue presented with living shoreline management is long-term studies have not been carried out on these engineered systems. For this study, geospatial technology was utilized to create 3D images of terrain by interpolation of data points using a TotalStation to compute geomorphic change. Additionally, water samples were analyzed using traditional wet chemistry laboratory methods to determine total oxidized nitrogen (TON), ammonium, and orthophosphate content in water. Over a short three-month preliminary study, sediment accretion was observed primarily within the vegetation with the bulk of the erosion occurring around the oyster beds. TON was detected at levels between 10 µM and 30 µM, ammonium up to 5 µM, and orthophosphate was only detected in very low levels, consistently < 2 µM. The project is in its infancy, as the topographic profiles and water quality data will be used to establish baseline data for future research to determine volumetric geomorphic change,and to set a standard for water quality trends, surrounding oyster beds and vegetation in response to climatic events.

  17. From microbes to water districts: Linking observations across scales to uncover the implications of riparian and channel management on water quality in an irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Webster, A.; Cadenasso, M. L.

    2016-12-01

    Interactions among runoff, riparian and stream ecosystems, and water quality remain uncertain in many settings, particularly those heavily impacted by human activities. For example, waterways in the irrigated agricultural landscape of California's Central Valley are seasonally disconnected from groundwater tables and are extensively modified by infrastructure and management. These conditions make the impact of riparian and channel management difficult to predict across scales, which hinders efforts to promote best management practices to improve water quality. We seek to link observations across catchment, reach, and patch scales to understand patterns of nitrate and turbidity in waterways draining irrigated cropland. Data was collected on 80 reaches spanning two water management districts. At the catchment scale, water districts implemented waterway and riparian management differently: one water district had a decentralized approach, allowing individual land owners to manage their waterway channels and banks, while the other had a centralized approach, in which land owners defer management to a district-run program. At the reach scale, riparian and waterway vegetation, geomorphic complexity, and flow conditions were quantified. Reach-scale management such as riparian planting projects and channel dredging frequency were also considered. At the patch scale, denitrification potential and organic matter were measured in riparian toe-slope soils and channel sediments, along with associated vegetation and geomorphic features. All factors were tested for their ability to predict water quality using generalized linear mixed effects models and the consistency of predictors within and across scales was evaluated. A hierarchy of predictors emerges: catchment-scale management regimes predict reach-scale geomorphic and vegetation complexity, which in turn predicts sediment denitrification potential - the patch-scale factor most associated with low nitrate. Similarly, turbidity conveyance was most associated with reach-scale factors. These findings suggest that, in the absence of other regulations, a decentralized management approach to riparian zones and waterways allows reach-scale complexity to arise, which in turn promotes ecosystem function and improved water quality.

  18. Classifying the health of Connecticut streams using benthic macroinvertebrates with implications for water management.

    PubMed

    Bellucci, Christopher J; Becker, Mary E; Beauchene, Mike; Dunbar, Lee

    2013-06-01

    Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R (2) = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.

  19. Factors affecting the water holding capacity of red meat products: a review of recent research advances.

    PubMed

    Cheng, Qiaofen; Sun, Da-Wen

    2008-02-01

    The water holding capacity of meat products is a very important quality attribute which has an influence on product yield, which in turn has economic implications, but is also important in terms of eating quality. A number of pre-and post-mortem factors influence the water holding capacity (WHC) of meat. During the growth and development of meat animals, genotype and animal diet are important due to their direct influence on muscle characteristics. In the immediate pre-slaughter period, stresses on the animal such as fasting, and different stunning methods are likely to influence meat WHC. In the post-slaughter period chilling, ageing, injecting non-meat ingredients, as well as tumbling have important influences on WHC. Furthermore, cooking and cooling procedures for the final meat products can also affect the WHC of the product, in particular the cooking and the cooling methods, the heating and the cooling rate, the cooking temperature, and the endpoint temperature. This paper provides an overview of recent research on important intrinsic and extrinsic factors that affect the WHC of beef, pork, and lamb products, and reveals explanations and solutions to some of the critical problems related to WHC and product quality.

  20. Geomorphology and its implication in urban groundwater environment: case study from Mumbai, India

    NASA Astrophysics Data System (ADS)

    Rani, V. R.; Pandalai, H. S.; Sajinkumar, K. S.; Pradeepkumar, A. P.

    2015-06-01

    Landforms of Mumbai Island have been largely modified by the urban sprawl and the demand for groundwater will increase exponentially in the future. Quality and quantity of groundwater occurrence in island are highly influenced by the geomorphic units. As this metropolis receives heavy rainfall, the area rarely faces the issue of water scarcity, nevertheless, quality always remains a question. The landforms of Mumbai Island have been shaped by a combination of fluvial, denudational and marine processes. These landforms are categorized into two broad zones on the basis of its influence in groundwater occurrence. Denudational landforms are categorized as runoff zones whereas the other two are categorized as storage zones. This classification is on the basis of occurrence and storage of groundwater. Mumbai Island is exposed to frequent sea water incursion and groundwater quality has deteriorated. The varied hydrogeological conditions prevalent in this area prevent rapid infiltration. This combined with the overextraction of groundwater resources for agriculture and industry has caused serious concern about the continued availability of potable water. This study aims at validating the geomorphic classification of the landforms with hydrogeochemistry and borehole data and it proved that geomorphology corroborates with groundwater chemistry and subsurface geology.

  1. Citizen science for water quality monitoring: Data implications of citizen perspectives.

    PubMed

    Jollymore, Ashlee; Haines, Morgan J; Satterfield, Terre; Johnson, Mark S

    2017-09-15

    Citizen science, where citizens play an active role in the scientific process, is increasingly used to expand the reach and scope of scientific research while also achieving engagement and educational goals. Despite the emergence of studies exploring data outcomes of citizen science, the process and experience of engaging with citizens and citizen-lead groups through participatory science is less explored. This includes how citizen perspectives alter data outcomes, a critical upshot given prevalent mistrust of citizen versus scientist data. This study uses a citizen science campaign investigating watershed impacts on water quality to interrogate the nature and implications of citizen involvement in producing scientifically and societally relevant data. Data representing scientific outcomes are presented alongside a series of vignettes that offer context regarding how, why, and where citizens engaged with the project. From these vignettes, six specific lessons are examined towards understanding how integration of citizen participation alters data outcomes relative to 'professional' science. In particular, elements of participant social identity (e.g., their motivation for participation), and contextual knowledge (e.g., of the research program itself) can shape participation and resulting data outcomes. Such scientific outcomes are particularly relevant given continued concerns regarding the quality of citizen data, which could hinder scientific acceptance of citizen sciences. Importantly, the potential for meaningful engagement with citizen and participants within citizen groups - given significant capacity within the community - represents a substantial and under-realized opportunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements.

    PubMed

    Chaffin, Justin D; Kane, Douglas D; Stanislawczyk, Keara; Parker, Eric M

    2018-06-25

    Microcystin (MCY)-producing harmful cyanobacterial blooms (cHABs) are an annual occurrence in Lake Erie, and buoys equipped with water quality sondes have been deployed to help researchers and resource managers track cHABs. The objective of this study was to determine how well water quality sondes attached to buoys measure total algae and cyanobacterial biomass and water turbidity. Water samples were collected next to two data buoys in western Lake Erie (near Gibraltar Island and in the Sandusky subbasin) throughout summers 2015, 2016, and 2017 to determine correlations between buoy sonde data and water sample data. MCY and nutrient concentrations were also measured. Significant (P < 0.001) linear relationships (R 2  > 0.75) occurred between cyanobacteria buoy and water sample data at the Gibraltar buoy, but not at the Sandusky buoy; however, the coefficients at the Gibraltar buoy differed significantly across years. There was a significant correlation between buoy and water sample total chlorophyll data at both buoys, but the coefficient varied considerably between buoys and among years. Total MCY concentrations at the Gibraltar buoy followed similar temporal patterns as buoy and water sample cyanobacterial biomass data, and the ratio of MCY to cyanobacteria-chlorophyll decreased with decreased ambient nitrate concentrations. These results suggest that buoy data are difficult to compare across time and space. Additionally, the inclusion of nitrate concentration data can lead to more robust predictions on the relative toxicity of blooms. Overall, deployed buoys with sondes that are routinely cleaned and calibrated can track relative cyanobacteria abundance and be used as an early warning system for potentially toxic blooms.

  3. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  4. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  5. GEE-WIS Anchored Problem Solving Using Real-Time Authentic Water Quality Data

    NASA Astrophysics Data System (ADS)

    Young, M.; Wlodarczyk, M. S.; Branco, B.; Torgersen, T.

    2002-05-01

    GEE-WIS scientific problem solving consists of observing, hypothesizing, synthesis, argument building and reasoning, in the context of analysis, representation, modeling and sense-making of real-time authentic water quality data. Geoscience Environmental Education - Web-accessible Instrumented Systems, or GEE-WIS, an NSF Geoscience Education grant, has established a set of companion websites that stream real-time data from two campus retention ponds for research and use in secondary and undergraduate water quality lessons. We have targeted scientific problem solving skills because of the nature of the GEE-WIS environment, but further because they are central to state and federal efforts to establish science education curriculum standards and are at the core of performance-based testing. We have used a design experiment process to create and test two Anchored Instruction scenario problems. Customization such as that done through a design process, is acknowledged to be a fundamental component of educational research from an ecological psychology perspective. Our efforts have shared core design elements with other NSF water quality projects. Our method involves the analysis of student written scenario responses for level of scientific problem solving using a qualitative scoring rubric designed from participation in a related NSF project, SCALE (Synergy Communities: Aggregating Learning about Education). Student solutions of GEE-WIS anchor problems from Fall 2001 and Spring 2002 will be summarized. Implications are drawn for those interested in making secondary and high education geoscience more realistic and more motivating for students through the use of real-time authentic data via Internet.

  6. Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications.

    PubMed

    Jiang, Chong; Wang, Fei

    2016-01-28

    Chengde city is located in the agro-pastoral transitional zone in northern China near the capital city of Beijing, which has experienced large-scale ecological construction in the past three decades. This study quantitatively assessed the environmental changes in Chengde through observation records of water resources, water environment, atmospheric environment, and vegetation activity and investigated the possible causes. From the late 1950s to 2002, the streamflow presented a downward trend induced by climate variability and human activities, with contribution ratios of 33.2% and 66.8%, respectively. During 2001-2012, the days of levels I and II air quality presented clear upward trends. Moreover, the air pollutant concentration was relatively low compared with that in the adjacent areas, which means the air quality has improved more than that in the neighboring areas. The water quality, which deteriorated during 1993-2000, began to improve in 2002. The air and water quality changes were closely related to pollutant emissions induced by anthropogenic activities. During 1982-2012, the vegetation in the southeastern and central regions presented restoration trends, whereas that in the northwestern area showed degradation trends. The pixels with obvious degradation trends correlated significantly with annual mean temperature and annual precipitation. Ecological engineering also played a positive role in vegetation restoration. This analysis can be beneficial to environment managers in the active response and adaptation to the possible effects of future climate change, population growth, and industrial development and can be used to ensure sustainable development and environmental safety.

  7. Variable infiltration and river flooding resulting in changing groundwater quality - A case study from Central Europe

    NASA Astrophysics Data System (ADS)

    Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej

    2012-01-01

    SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.

  8. Water Quality and Quantity Implications of Biofuel Intercropping at a Regional Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J.

    2010-12-01

    Because of a strong national interest in greater energy independence and concern for the role of fossil fuels in global climate change, the importance of biofuels as an alternative renewable energy source has developed rapidly. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, which compromises 15 % of U.S. liquid transportation fuels. Large-scale production of corn-based ethanol often requires irrigation and is associated with erosion, excess sediment export, and leaching of nitrogen and phosphorus. Production of cellulosic biomass offers a promising alternative to corn-based systems. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern US. While ongoing research is determining efficient operational techniques, information needed to evaluate the effects of these practices on water resources, such as field-scale evapotranspiration rates, nutrient cycling, and soil erosion rates are being examined in a large watershed study. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data, with forest-based biofuel treatments to be installed in 2011 and 2012. These watershed studies will give us detailed information to understand processes and guide management decisions. However, environmental implications of these systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine various scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The current results are based on early indicators from operational trials, but will be refined as the watershed studies progress. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels while sustaining water quality and quantity.

  9. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part B, Effect on biota in Stillwater and Fernley Wildlife Management Areas and other nearby wetlands

    USGS Publications Warehouse

    Hallock, Robert J.; Hallock, Linda L.

    1993-01-01

    A water-quality reconnaissance study during 1986-87 found high concentrations of several potentially toxic elements in water, bottom sediment, and biota in and near Stillwater Wildlife Management Area (WMA). This study prompted the U.S. Department of the Interior to initiate a more detailed study to determine the hydrogeochemical processes that control water quality in the Stillwater WMA, and other nearby wetlands, and the resulting effects on biota, especially migratory birds. Present wetland size is about 10% of historical size; the dissolved- solids load in the water in these now-isolated wetlands has increased only moderately, but the dissolved-solids concentration has increased more than seven-fold. Wetland vegetation has diminished and species composition in flow water has shifted to predominant salt-tolerant species in many areas. Decreased vegetative cover for nesting is implicated in declining waterfowl production. Decreases in numbers or virtual absence of several wildlife species are attributed to degraded water quality. Results of toxicity tests indicate that water in some drains and wetland areas is acutely toxic to some fish and invertebrates. Toxicity is attributed to the combined presence of arsenic, boron, lithium, and molybdenum. Biological pathways are involved in the transport of mercury and selenium from agricultural drains to wetlands. Hatch success of both artificially incubated and field-reared duck eggs was greater than/= 90 percent; no teratogenesis was observed. Mercury in muscle tissue of waterfowl harvested from Carson Lake in October 1987 exceeded the human health criterion six-fold.

  10. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    NASA Astrophysics Data System (ADS)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  11. Investigation of Water Quality and Aquatic-Community Structure in Village and Valley Creeks, City of Birmingham, Jefferson County, Alabama 2000-01

    NASA Astrophysics Data System (ADS)

    McPherson, A. K.

    2002-12-01

    The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham, Fivemile Creek and Little Cahaba River, that drain less urbanized areas. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. Aquatic-community structure, physical condition of fish, and analysis of fish tissue provided an indication of the cumulative effects of the water quality on the aquatic biota. Degraded water quality was seen at the more urbanized sites on Village and Valley Creeks. Elevated concentrations of nutrients, bacteria, trace elements, and organic contaminants were detected in the water column. Trace-element priority pollutants, pesticides, and other organic compounds were detected in higher concentrations in bed sediment and fish tissue at the Village and Valley Creek sites than at the reference site. The richness and density of the fish and benthic-invertebrate communities indicate that the integrity of the aquatic communities in Village and Valley Creeks is poor in comparison to that observed at the two reference sites. Correlations between land use and aquatic-community structure, water quality, bed sediment, and fish tissue were observed. The abundance of mayflies and the number of EPT (ephemeroptera, plecoptera, tricoptera) taxa were negatively correlated with industrial land use. The abundance of midges (an indicator of poor water quality) was positively correlated with industrial land use; the percentage of mosquitofishes (a tolerant species) was positively correlated with commercial land use. In contrast, the numbers of fish species, fish families, and the percentage of sunfishes (intolerant species) were positively correlated with forested land use, indicating that the more diverse fish communities were found in basins with a higher percentage of forested land. The concentrations of 12 water-quality constituents and 18 organic compounds detected in bed sediment were positively correlated with industrial land use. Mercury and molybdenum concentrations detected in fish-liver tissue also were positively correlated with industrial land use. The water quality and aquatic-community structure in Village and Valley Creeks are degraded in comparison to streams flowing through less urbanized areas. Decreased diversity and elevated concentrations of trace elements and organic contaminants in the water column, bed sediment, and fish tissues at Village and Valley Creeks are indicative of the effects of urbanization. Industrial land use, in particular, was significantly correlated to elevated contaminant levels in the water column, bed sediment, fish tissues, and to the declining health of the benthic-invertebrate communities. The results of this 16-month study have long-range watershed management implications, demonstrating the association between urban development and stream degradation. These data can serve as a baseline from which to determine the effectiveness of stream-restoration programs.

  12. "Upstream Thinking": the catchment management approach of a water provider

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not directly held within the company, and second because it shows how local communities and groups are considered and valued by the company. Monitoring changes and providing a solid scientific base is also undertaken to prove the concept and justify any investment. The work carried out so far has highlighted that SWW's collaborative approach to catchment management is changing the relationship between private water suppliers in the UK and stakeholders or groups having an impact on water quality. This results in a progressive move from a situation where the polluter has to pay, to rewarding providers of clean water instead. The value of ecosystem payments of this kind is being discussed with the appropriate authorities (i.e. Natural England, and the Department for Environment, Food and Rural Affairs) so that it can form part of ensuring sustainable water supplies in future, with all the environmental and ecological benefits of clear raw waters in rivers, lakes and streams.

  13. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution

  14. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and C3 spatially varied with land cover among the 19 lakes. Our results indicated that the spatial distributions of Fmax for CDOM fluorescent components and their correlations with water quality can be evaluated by EEM-PARAFAC and multivariate analysis among the 19 lakes across semiarid regions of Northeast China, which has potential implication for lakes with similar genesis.

  15. Abandoned mines, mountain sports, and climate variability: Implications for the Colorado tourism economy

    NASA Astrophysics Data System (ADS)

    Todd, Andrew; McKnight, Diane; Wyatt, Lane

    Until recently, the allure of the mountains in the American West was primarily extractive, for commodities like timber, water, and precious metals [Baron et. al., 2000]. Now, the effective marketing and management of the regions “white gold” by the ski industry has stimulated significant recreation-related growth and development in the last several decades. Under an uncertain climatic future, however, these burgeoning industries, and the communities that have grown up in relation to them, are facing water quality constraints inherited from historical mining practices, causing mountain water to become a limited resource more valuable than the precious metals of the past. Further, the current lack of proven, in-situ approaches for addressing distributed, mining waste pollution of fresh water complicates potential remediation efforts.

  16. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

    PubMed Central

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-01-01

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality. PMID:28295001

  17. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries.

    PubMed

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-03-15

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.

  18. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996-2006

    USGS Publications Warehouse

    Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.

    2010-01-01

    As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L

  20. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.

    PubMed

    Rymszewicz, A; O'Sullivan, J J; Bruen, M; Turner, J N; Lawler, D M; Conroy, E; Kelly-Quinn, M

    2017-09-01

    The use of turbidity for indicating environmentally detrimental levels of suspended and colloidal matter in freshwater systems, and for defining acceptable water quality standards in national and European drinking water regulations, is well established. Turbidity is therefore frequently adopted as a surrogate for suspended sediment concentrations (SSC), or as a relative and objective measure of water clarity in monitoring programmes. Through systematic, controlled experimentation, we tested the response of 12 commercially available turbidity sensors, of various designs, to gauge their measurement consistency when benchmarked against pre-prepared sediment suspensions of known SSC. Results showed that despite calibration to a Formazin standard, sensor responses to identical SSC solutions (in the range of 20-1000 mg L -1 ) varied considerably. For a given SSC, up to five-fold differences in recorded turbidity were recorded across the tested instruments. Furthermore, inconsistent measurements were identified across instruments, regardless of whether they operated using backscatter or side-scatter optical principles. While the findings may have implications for compliance with turbidity-based water quality standards, they are less likely to be an issue when turbidity is being used as a surrogate for SSC, provided that instrument use remains constant and that instrument drift is not an issue. In this study, a field comparison of a subset of four study sensors showed that despite very different absolute turbidity readings for a given SSC, well correlated and reliable turbidity - SSC ratings were established (as evidenced by r 2 coefficients from 0.92 to 0.98). This led to reasonably consistent suspended sediment load estimates of between 64.7 and 70.8 tonnes for a rainfall event analysed. This study highlights the potential for issues to arise when interpreting water turbidity datasets that are often assumed to be comparable, in that measurement inconsistency of the type reported here may remain unknown to water resource decision-makers and practitioners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Subterranean Groundwater Nutrient Input to Coastal Oceans and Coral Reef Sustainability

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Street, J. H.

    2003-12-01

    Coral reefs are often referred to as the tropical rain forests of the oceans because of their high productivity and biodiversity. Recent observations in coral reefs worldwide have shown clear degradation in water quality and coral reef health and diversity. The implications of this are severe, including tremendous economic losses mostly though fishing and tourism. Nutrient loading has been implicated as one possible cause for the ecosystem decline. A previously unappreciated potential source of nutrient loading is submarine ground water discharge (SGW). Ground water in many cases has high nutrient content from sewage pollution and fertilizer application for agriculture and landscaping. To better understand the effect of this potential source of nutrient input and degrading water quality, we are exploring the contribution of SGW to the nutrient levels in coral reefs. A key to this approach is determining the amount and source of SGW that flows into the coast as well as its nutrient concentrations. The SGW flux and associated input of chemical dissolved load (nutrient, DOC, trace elements and other contaminants) is quantified using naturally occurring Ra isotopes. Radium isotopes have been shown to be excellent tracers for SGW inputs into estuaries and coastal areas (Moore, 1996; Hussain et al., 1999; Kerst et al., 2000). Measurements of Ra activity within the coral reef, the lagoons and the open waters adjacent to the reef provide valuable information regarding the input of Ra as well as nutrients and possibly pollutant from groundwater discharge. Through this analysis the effect of SGD on the delicate carbon and nutrient balance of the fragile coral reef ecosystem could be evaluated. In addition to quantifying the contribution of freshwater to the nutrient mass balance in the reef, information regarding the length of time a water parcel has remained in the near-shore region over the reef can be estimated using the Ra isotope quartet.

  2. Building Adaptive Capacity with the Delphi Method and Mediated Modeling for Water Quality and Climate Change Adaptation in Lake Champlain Basin

    NASA Astrophysics Data System (ADS)

    Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.

    2014-12-01

    Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors and be simulated in adaptation scenarios within integrated models. Comparing interventions and scenarios to existing and planned policy and governance systems in Lake Champlain Basin allows for new feedback to build adaptive capacity to identify key leverage points in the coupled natural and human system.

  3. Developing a Framework of Innovative Trials to Support Water Companies Strategic Response to WFD

    NASA Astrophysics Data System (ADS)

    Whitehead, Jodie; Cherry, Katherine; Revens, Neasa; O'Hanlon, Thomas

    2014-05-01

    Slug control in high risk fields and catchments can have serious implications for water companies, threatening compliance with drinking water standards and challenging the Water Framework Directive's requirement that additional water treatment is avoided. Severn Trent Water has established a framework of innovative trails at a range of scales and locations to help shape the company's strategic, sustainable response to elevated metaldehyde concentrations at drinking water abstractions. Currently four contrasting trials are underway, two at the catchment scale, one at the field scale and one at the 'operational site' scale at locations across the English Midlands. This presentation provides an overview of the different approaches, their effectiveness to date and lessons learnt to aid strategy development. The first trial entitled Farmer's as Producers of Clean Water adopts a 'results orientated' approach, rewarding farmers for improvements in water quality at the catchment scale and allowing farmers to decide how best to manage the issue on their land with no prescribed measures. It acknowledges that co-ordinated action is needed across the catchment to see improvements in water quality, and that by incentivising outcomes rather than actions, land owners and farmers may take greater ownership of water quality issues. The second project explores the potential for a 'zero metaldehyde' catchment with all farmers throughout the catchment being financial supported to use a water friendly alternative to metaldehyde. This project is being compared to more voluntary approaches adopted elsewhere. The third project is a field scale trial to test the efficacy of alternative products to metaldehyde and different pellet formulations. Field drains are being sampled following heavy rain and crop damaged assessed to review the benefits to water quality and crops. The final project considers what Severn Trent Water can do from an operational perspective, investigating the size and shape of metaldehyde peaks in relation to 'real time' pesticide usage data to assess the potential to switch abstractions off during high risk periods. To date results have been encouraging with water quality benefits observed in all three catchment/ field scale trials. Although still ongoing, the projects have highlighted the importance of strong farmer engagement and the need to get agronomist involved at an early stage. Farmers need reassurance of the efficacy of alternatives, support which is straightforward to understand and access, and localised evidence of the issues and subsequent improvements. Adopting a framework of projects is providing Severn Trent Water with tangible, results based results which can be used to develop practical, sustainable solutions that fit with both the agricultural and water industries alike.

  4. Advancing methods for research on household water insecurity: Studying entitlements and capabilities, socio-cultural dynamics, and political processes, institutions and governance.

    PubMed

    Wutich, Amber; Budds, Jessica; Eichelberger, Laura; Geere, Jo; Harris, Leila; Horney, Jennifer; Jepson, Wendy; Norman, Emma; O'Reilly, Kathleen; Pearson, Amber; Shah, Sameer; Shinn, Jamie; Simpson, Karen; Staddon, Chad; Stoler, Justin; Teodoro, Manuel P; Young, Sera

    2017-11-01

    Household water insecurity has serious implications for the health, livelihoods and wellbeing of people around the world. Existing methods to assess the state of household water insecurity focus largely on water quality, quantity or adequacy, source or reliability, and affordability. These methods have significant advantages in terms of their simplicity and comparability, but are widely recognized to oversimplify and underestimate the global burden of household water insecurity. In contrast, a broader definition of household water insecurity should include entitlements and human capabilities, sociocultural dynamics, and political institutions and processes. This paper proposes a mix of qualitative and quantitative methods that can be widely adopted across cultural, geographic, and demographic contexts to assess hard-to-measure dimensions of household water insecurity. In doing so, it critically evaluates existing methods for assessing household water insecurity and suggests ways in which methodological innovations advance a broader definition of household water insecurity.

  5. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  6. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and dissemination of sustainable irrigation guidelines. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  7. Hydrogeology and water quality of the Shell Valley Aquifer, Rolette County, North Dakota

    USGS Publications Warehouse

    Strobel, M.L.

    1997-01-01

    The Shell Valley aquifer is the sole source of water for the city of Belcourt and the primary source of water for most of the Turtle Mountain Indian Reservation. The Turtle Mountain Band of Chippewa Indians is concerned about the quantity and quality of water in the Shell Valley aquifer, which underlies about 56 square miles in central Rolette County and has an average saturated thickness of about 35 feet. Water levels across most of the Shell Valley aquifer fluctuate with variations in precipitation but generally are stable. Withdrawals from the north well field decreased slightly during 1976-95, but withdrawals from the south well field increased during 1983-95. Water levels in the south well field declined as withdrawals increased. The average decline during the last 8 years was about 1.75 feet per year. The water level has reached the well screen in at least one of the production wells. Most of the water in the aquifer is a bicarbonate type and has dissolved-solids concentrations ranging from 479 to 1,510 milligrams per liter. None of the samples analyzed had detectable concentrations of pesticides, but hydrocarbons were detected in both ground- and surfacewater samples. Polycyclic aromatic hydrocarbons (PAH) were the most frequently detected hydrocarbons. Benzene, toluene, ethylbenzene, and xylene (BTEX), polychlorinated biphenyls (PCB), and pentachlorophenol (PCP) also were detected.Generally, the Shell Valley aquifer is an adequate source of water for current needs, but evaluation of withdrawals in relation to a knowledge of aquifer hydrology would be important in quantifying sustainable water supplies. Water quality in the aquifer generally is good; the Turtle Mountain Band of Chippewa Indians filters the water to reduce concentrations of dissolved constituents. Hydrocarbons, although present in the aquifer, have not been quantified and may not pose a general health risk. Further analysis of the quantity and distribution of the hydrocarbons would be useful to understand their sources and implications for water use.

  8. Integrating air quality, water and climate concerns into China's energy strategy

    NASA Astrophysics Data System (ADS)

    Peng, Wei

    As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an increasing priority on air pollution control would favor a larger amount of electricity transmission into eastern population centers, while an increasing priority on water conservation would favor using locally produced renewable power or imported electricity to displace fossil generation in northern water-stressed regions.

  9. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and agroforests, streams draining oil palm show greater biological activity, as indicated by elevated pH and reduced dissolved oxygen levels. Moreover, turbidity is elevated in young oil palm plantations watersheds compared to forest, agroforest, and old oil palm land covers. We discuss the implications of these findings for communities and ecosystems.

  10. Combining Water Quality and Cost-Benefit Analysis to Examine the Implications of Agricultural Best Management Practices

    NASA Astrophysics Data System (ADS)

    Rao, N. S.; Easton, Z. M.; Lee, D. R.; Steenhuis, T. S.

    2007-12-01

    Nutrient runoff from agricultural fields threatens water quality and can impair habitats in many watersheds. Agencies consider these potential risks as they determine acceptable levels of nutrient loading. For example, in the New York City (NYC) watershed, the Environmental Protection Agency's Total Maximum Daily Load (TMDL) for phosphorus (P) has been set at 15μg P L-1 to protect against eutrophication and bacterial outbreaks. In the NYC watersheds agricultural Best Management Practices (BMPs) are the primary means to control nonpoint source P loading. BMPs include riparian buffers, filter strips, manure storage facilities, crop rotation, stripcropping, tree planting and nutrient management plans (NMPs). Water quality research on BMPs to date has included studies on site-specificity of different BMPs, short and long term BMP efficacy, and placement of BMPs with respect to critical source areas. A necessary complement to studies addressing water quality aspects of different BMPs are studies examining the cost-benefit aspects of BMPs. In general, there are installment, maintenance and opportunity costs associated with each BMP, and there are benefits, including cost share agreements between farmers and farm agencies, and increased efficiency of farm production and maintenance. Combining water quality studies and related cost-benefit analyses would help planners and watershed managers determine how best improve water quality. Our research examines the costs-benefit structure associated with BMP scenarios on a one-farm headwater watershed in the Catskill Mountains of NY. The different scenarios include "with and without" BMPs, combinations of BMPs, and different BMP placements across agricultural fields. The costs associated with each BMP scenarios are determined using information from farm agencies and watershed planning agencies. With these data we perform a cost-benefit analysis for the different BMP scenarios and couple the water quality modeling using the Variable Source Loading Function (VSLF) model (Schneiderman et al., 2007) with the cost-benefit analysis to look at the specific water quality and economic consequences of different watershed management scenarios. The results of our study will be useful for planners and watershed managers in determining how best to reduce nonpoint source pollution in a cost-effective manner. References Schneiderman, E.M., T.S. Steenhuis, D.J. Thongs, Z.M. Easton, M.S. Zion, G.F. Mendoza, M.T. Walter, and A.C. Neal. 2007. Incorporating variable source area hydrology into curve number based watershed loading functions. Hydrol. Proc. (In Press).

  11. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  12. Water hyacinth Eichhornia crassipes (Mart.) Solms-Laubach dynamics and succession in the Nyanza Gulf of Lake Victoria (east Africa): implications for water quality and biodiversity conservation.

    PubMed

    Gichuki, John; Omondi, Reuben; Boera, Priscillar; Okorut, Tom; Matano, Ally Said; Jembe, Tsuma; Ofulla, Ayub

    2012-01-01

    This study, conducted in Nyanza Gulf of Lake Victoria, assessed ecological succession and dynamic status of water hyacinth. Results show that water hyacinth is the genesis of macrophyte succession. On establishment, water hyacinth mats are first invaded by native emergent macrophytes, Ipomoea aquatica Forsk., and Enydra fluctuans Lour., during early stages of succession. This is followed by hippo grass Vossia cuspidata (Roxb.) Griff. in mid- and late stages whose population peaks during climax stages of succession with concomitant decrease in water hyacinth biomass. Hippo grass depends on water hyacinth for buoyancy, anchorage, and nutrients. The study concludes that macrophyte succession alters aquatic biodiversity and that, since water hyacinth infestation and attendant succession are a symptom of broader watershed management and pollution problems, aquatic macrophyte control should include reduction of nutrient loads and implementing multifaceted approach that incorporates biological agents, mechanical/manual control with utilization of harvested weed for cottage industry by local communities.

  13. Environmental and economic aspects of water kiosks: Case study of a medium-sized Italian town

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it

    2013-05-15

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impactmore » evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO{sub 2} emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer’s point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people’s habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water.« less

  14. Environmental and economic aspects of water kiosks: case study of a medium-sized Italian town.

    PubMed

    Torretta, Vincenzo

    2013-05-01

    The consumption of bottled water in Italy began in the 1970s. Since then, this usage has grown considerably, also as a result of changes in habits. The environmental impact as a result of the water production chain is very significant; it would be considered, for example, the use of plastic bottles, the consumption of oil in the production of the bottles, the emission of air from the vehicles that transport the bottles, non-recycled plastic packaging, etc. In this study, considering the comparison between two situations, use of bottled water and use of water kiosk (WK), an environmental and economic impact evaluation has been done. The study considered the production of a WK in a town with 9000 inhabitants, which supplies controlled, still and sparkling water, with an organoleptic quality higher than tap water coming from the aqueduct. In particular, taking into consideration the environmental aspects, specific attention was paid both to CO2 emissions and PET bottle waste reduction. The economic impact evaluation was carried out from the consumer's point of view. In order to provide a supply service that was economically sustainable, a calculation was done with the aim of determining a specific fee for the supplied water. Moreover, a comparison has been made between quality parameters achieved with the analysis of water from aqueducts with the limits established in the Italian legislation and the parameters of several Italian water brands. The study has the aim at considering the opportunity to follow a different people's habits, closer to the concept of sustainability, reducing the environmental charge related to the realization, transport and consumption of plastic water bottles without significant reduction of the quality of the service and with convenient and interesting economic implications. In fact the results of the study show that the alternative of WKs is more efficient in economic and environmental terms respect to the use of bottled water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme

    NASA Astrophysics Data System (ADS)

    Smith, David; Grand-Clement, Emile; Brazier, Richard

    2014-05-01

    Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme Smith, D., Grand-Clement, E., Anderson, K., Luscombe, D., G, N., Bratis, Brazier, R.E Peatlands in the South West of the British Isles have been extensively drained for agricultural reclamation and peat cutting. The improvement in food production resulting from this management practice has never clearly been observed. Instead, we are now faced with several detrimental consequences on a whole suite of ecosystem services, such as the delivery of water, water quality, biodiversity and carbon storage. Alongside the direct environmental implications, poor water quality is increasing water treatment costs and will drive significant future investment. As a result, water companies now need to find appropriate solutions to varying water levels and decreasing water quality through catchment management. The Mires Project, the catchment management programme used by South West Water (SWW) is working with a wide range of stakeholders to restore the hydrological functioning of peatlands, and the ecosystem services they provide. This programme is driven by overarching legal requirements (i.e. the water framework directive, Natura 2000), future climate change predictions, corporate responsibility and commercial needs. Post-restoration scientific monitoring is at the heart of the project improving of our understanding of the eco-hydrological and chemical process driving changes in management practice. The challenges faced from the involvement of a wide range of stakeholders will be explored, focusing on the benefits from stakeholder involvement in catchment management and hydrological research, but also considering the difficulties to be overcome. SWW is working with private land-owners, government agencies, local and national park Authorities, community and single interest groups and research institutions to achieve its catchment management objectives. To achieve this it has replaced the traditional water company approach of hard engineering solutions with a mixture of softer natural and social engineering.

  16. Fecal-indicator bacteria in streams alonga gradient of residential development

    USGS Publications Warehouse

    Frenzel, Steven A.; Couvillion, Charles S.

    2002-01-01

    Fecal-indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal-coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal-indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal-indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal-indicator bacteria concentrations were highly variable over a two-day period of stable streamflow, which may have implications for testing of compliance to water-quality standards.

  17. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  18. Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well.

    PubMed

    Rosenblum, James; Nelson, Andrew W; Ruyle, Bridger; Schultz, Michael K; Ryan, Joseph N; Linden, Karl G

    2017-10-15

    This study examined water quality, naturally-occurring radioactive materials (NORM), major ions, trace metals, and well flow data for water used and produced from start-up to operation of an oil and gas producing hydraulically-fractured well (horizontal) in the Denver-Julesburg (DJ) Basin in northeastern Colorado. Analysis was conducted on the groundwater used to make the fracturing fluid, the fracturing fluid itself, and nine flowback/produced water samples over 220days of operation. The chemical oxygen demand of the wastewater produced during operation decreased from 8200 to 2500mg/L, while the total dissolved solids (TDS) increased in this same period from 14,200 to roughly 19,000mg/L. NORM, trace metals, and major ion levels were generally correlated with TDS, and were lower than other shale basins (e.g. Marcellus and Bakken). Although at lower levels, the salinity and its origin appear to be the result of a similar mechanism to that of other shale basins when comparing Cl/Br, Na/Br, and Mg/Br ratios. Volumes of returned wastewater were low, with only 3% of the volume injected (11millionliters) returning as flowback by day 15 and 30% returning by day 220. Low levels of TDS indicate a potentially treatment-amenable wastewater, but low volumes of flowback could limit onsite reuse in the DJ Basin. These results offer insight into the temporal water quality changes in the days and months following flowback, along with considerations and implications for water reuse in future hydraulic fracturing or for environmental discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part C, Summary of irrigation-drainage effects on water quality, bottom sediment, and biota

    USGS Publications Warehouse

    Hoffman, Ray J.

    1993-01-01

    This report presents a summary of the detailed scientific study of Stillwater Wildlife Management Area and other nearby wetlands in west-central Nevada during 1987-90. The work was funded by the National Irrigation Water Quality Program of the U.S. Department of the Interior with the overall objectives of determining (1) the extent, magnitude, and effects of selected water-quality constituents associated with irrigation drainage on fish, wildlife, and human health, and (2) the sources and exposure pathways that cause contamination where adverse effects are documented. Much of the information in this report was summarized from two previously published interpretive reports that were completed to fulfill study objectives. Where applicable, data for the study area from other published sources also were utilized. The results of these studies indicate that the aquatic biota in natural wetlands of the Carson Desert are adversely affected by hydrological and geochemical sources and processes in the Newlands Irrigation Project area. Reactions between water and naturally occurring minerals in the shallow alluvial aquifer increase concentrations of potentially toxic constituents in ground water that eventually enters the wetlands. Once in the wetlands, these constituents are furhter concentrated by evaporation and transpiration. Water from some agricultural drains that enter Stillwater WMA was acutely toxic to aquatic organisms. The drains in the agricultural areas, which eventually discharge to the wetlands, were also implicated as sites of uptake of selenium and mercury by aquatic organisms.

  20. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources.

    PubMed

    Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H

    2013-01-15

    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Assessment of some potential harmful trace elements (PHTEs) in the borehole water of Greater Giyani, Limpopo Province, South Africa: possible implications for human health.

    PubMed

    Munyangane, Portia; Mouri, Hassina; Kramers, Jan

    2017-10-01

    The present investigation was conducted in order to evaluate the occurrence and distribution patterns of some potentially harmful trace elements in the borehole water of the Greater Giyani area, Limpopo, South Africa, and their possible implications on human health. Twenty-nine borehole water samples were collected in the dry season (July/August 2012) and another 27 samples from the same localities in the wet season (March 2013) from the study area. The samples were analysed for trace elements arsenic (As), cadmium (Cd), chromium (Cr), selenium (Se), and lead (Pb) using the inductively coupled plasma mass spectrometry technique. The average concentrations of As, Cd, Cr, Se, and Pb were 11.3, 0.3, 33.1, 7.1, and 6.0 µg/L in the dry season and 11.0, 0.3, 28.3, 4.2, and 6.6 µg/L in the wet season, respectively. There was evidence of seasonal fluctuations in concentrations of all analysed elements except for As, though Cd and Pb displayed low concentrations (<0.2 and <6.0 µg/L, respectively) in almost all sampled boreholes. Se and Cr concentrations slightly exceed the South African National Standard permissible limits for safe drinking water in few boreholes. A total of four boreholes exceeded the water quality guideline for As with two of these boreholes containing five times more As than the prescribed limit. The spatial distribution patterns of elevated As closely correlate with the underlying geology. The findings of this investigation have important implications for human health of the communities drinking from the affected boreholes.

  2. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  3. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    USGS Publications Warehouse

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  4. Optimizing household survey methods to monitor the Sustainable Development Goals targets 6.1 and 6.2 on drinking water, sanitation and hygiene: A mixed-methods field-test in Belize

    PubMed Central

    Bain, Robert E. S.; Lunze, Karsten; Unalan, Turgay; Beshanski-Pedersen, Bo; Slaymaker, Tom; Johnston, Richard; Hancioglu, Attila

    2017-01-01

    Background The Sustainable Development Goals (SDGs) require household survey programmes such as the UNICEF-supported Multiple Indicator Cluster Surveys (MICS) to enhance data collection to cover new indicators. This study aims to evaluated methods for assessing water quality, water availability, emptying of sanitation facilities, menstrual hygiene management and the acceptability of water quality testing in households which are key to monitoring SDG targets 6.1 and 6.2 on drinking Water, Sanitation and Hygiene (WASH) and emerging issues. Methods As part of a MICS field test, we interviewed 429 households and 267 women age 15–49 in Stann Creek, Belize in a split-sample experiment. In a concurrent qualitative component, we conducted focus groups with interviewers and cognitive interviews with respondents during and immediately following questionnaire administration in the field to explore their question comprehension and response processes. Findings About 88% of respondents agreed to water quality testing but also desired test results, given the potential implications for their own health. Escherichia coli was present in 36% of drinking water collected at the source, and in 47% of samples consumed in the household. Both questions on water availability necessitated probing by interviewers. About one quarter of households reported emptying of pit latrines and septic tanks, though one-quarter could not provide an answer to the question. Asking questions on menstrual hygiene was acceptable to respondents, but required some clarification and probing. Conclusions In the context of Belize, this study confirmed the feasibility of collecting information on the availability and quality of drinking water, emptying of sanitation facilities and menstrual hygiene in a multi-purpose household survey, indicating specific areas to improve question formulation and field protocols. Improvements have been incorporated into the latest round of MICS surveys which will be a major source of national data for monitoring of SDG targets for drinking water, sanitation and hygiene and emerging issues for WASH sector programming. PMID:29216244

  5. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    USGS Publications Warehouse

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  6. Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications

    PubMed Central

    Jiang, Chong; Wang, Fei

    2016-01-01

    Chengde city is located in the agro–pastoral transitional zone in northern China near the capital city of Beijing, which has experienced large-scale ecological construction in the past three decades. This study quantitatively assessed the environmental changes in Chengde through observation records of water resources, water environment, atmospheric environment, and vegetation activity and investigated the possible causes. From the late 1950s to 2002, the streamflow presented a downward trend induced by climate variability and human activities, with contribution ratios of 33.2% and 66.8%, respectively. During 2001–2012, the days of levels I and II air quality presented clear upward trends. Moreover, the air pollutant concentration was relatively low compared with that in the adjacent areas, which means the air quality has improved more than that in the neighboring areas. The water quality, which deteriorated during 1993–2000, began to improve in 2002. The air and water quality changes were closely related to pollutant emissions induced by anthropogenic activities. During 1982–2012, the vegetation in the southeastern and central regions presented restoration trends, whereas that in the northwestern area showed degradation trends. The pixels with obvious degradation trends correlated significantly with annual mean temperature and annual precipitation. Ecological engineering also played a positive role in vegetation restoration. This analysis can be beneficial to environment managers in the active response and adaptation to the possible effects of future climate change, population growth, and industrial development and can be used to ensure sustainable development and environmental safety. PMID:26828508

  7. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  8. Man-made organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    USGS Publications Warehouse

    Kingsbury, James A.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Initial findings from a national study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) characterize the occurrence of about 250 anthropogenic organic compounds in source water (defined as water collected at a surface-water intake prior to water treatment) at nine community water systems in nine States in the Nation. The organic compounds analyzed in this study are primarily man-made and include pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. The study also describes and compares the occurrence of selected compounds detected in source water with their occurrence in finished water, which is defined as water that has passed through treatment processes but prior to distribution. This fact sheet summarizes major findings and implications of the study and serves as a companion product to two USGS reports that present more detailed and technical information for the nine systems studied during 2002-05 (Carter and others, 2007; Kingsbury and others, 2008).

  9. European Union policy on pesticides: implications for agriculture in Ireland.

    PubMed

    Jess, Stephen; Kildea, Steven; Moody, Aidan; Rennick, Gordon; Murchie, Archie K; Cooke, Louise R

    2014-11-01

    European Community (EC) legislation has limited the availability of pesticide active substances used in effective plant protection products. The Pesticide Authorisation Directive 91/414/EEC introduced the principle of risk assessment for approval of pesticide active substances. This principle was modified by the introduction of Regulation (EC) 1107/2009, which applies hazard, the intrinsic toxicity of the active substance, rather than risk, the potential for hazard to occur, as the approval criterion. Potential impacts of EC pesticide legislation on agriculture in Ireland are summarised. While these will significantly impact on pesticide availability in the medium to long term, regulations associated with water quality (Water Framework Directive 2000/60/EC and Drinking Water Directive 1998/83/EC) have the potential to restrict pesticide use more immediately, as concerns regarding public health and economic costs associated with removing pesticides from water increase. This rationale will further reduce the availability of effective pesticide active substances, directly affecting crop protection and increasing pesticide resistance within pest and disease populations. In addition, water quality requirements may also impact on important active substances used in plant protection in Ireland. The future challenge for agriculture in Ireland is to sustain production and profitability using reduced pesticide inputs within a framework of integrated pest management. © 2014 Society of Chemical Industry.

  10. Methods for assessing long-term mean pathogen count in drinking water and risk management implications.

    PubMed

    Englehardt, James D; Ashbolt, Nicholas J; Loewenstine, Chad; Gadzinski, Erik R; Ayenu-Prah, Albert Y

    2012-06-01

    Recently pathogen counts in drinking and source waters were shown theoretically to have the discrete Weibull (DW) or closely related discrete growth distribution (DGD). The result was demonstrated versus nine short-term and three simulated long-term water quality datasets. These distributions are highly skewed such that available datasets seldom represent the rare but important high-count events, making estimation of the long-term mean difficult. In the current work the methods, and data record length, required to assess long-term mean microbial count were evaluated by simulation of representative DW and DGD waterborne pathogen count distributions. Also, microbial count data were analyzed spectrally for correlation and cycles. In general, longer data records were required for more highly skewed distributions, conceptually associated with more highly treated water. In particular, 500-1,000 random samples were required for reliable assessment of the population mean ±10%, though 50-100 samples produced an estimate within one log (45%) below. A simple correlated first order model was shown to produce count series with 1/f signal, and such periodicity over many scales was shown in empirical microbial count data, for consideration in sampling. A tiered management strategy is recommended, including a plan for rapid response to unusual levels of routinely-monitored water quality indicators.

  11. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and irrigation activities except in some cases. For example, the high hardness in both water samples specifies the active hydraulic relation between surface and groundwater. Moreover, the statistical application and interpretation exhibit a good positive correlation among most of the water constituents which might be the indicator of having tightly grouped, precise homogeneous good-quality water resources around the mining industry. Finally from the environmental degradation point of view, it can be implied that there are no significant parameters or factors observed which are much badly effective on environment except very few cases. Thus, this research strongly recommends for monitoring the water quality in every 6 months or annually around this industry which might be positive for keeping the safe environment and healthy production of the coal mine.

  12. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in the reservoir water for the first time in a decade. However, a relatively pronounced temporal variability in concentrations was observed for many of the substances, implying that the reservoir could contain low-risk waters temporarily. Health risk factors related to lead and chromium concentrations in groundwater were up to 200 times higher than for river water. The identified major divergence in health risk between groundwater and surface water illuminates the risk of using groundwater for drinking water supply during recurrent surface water deficits in the study area. However, the severe water scarcity and lack of financial resources in the region makes the choices of alternative water supply sources limited. Due to the presence of multiple contaminants, it appears reasonable that the aggregated toxicity of contaminant mixtures should be in focus in surface and groundwater water monitoring and management in the region. Key words: Aral Sea, Drinking water, Groundwater, Health Risk, Surface Water

  13. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  14. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    USGS Publications Warehouse

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  15. Review: the environmental status and implications of the nitrate time lag in Europe and North America

    NASA Astrophysics Data System (ADS)

    Vero, Sara E.; Basu, Nandita B.; Van Meter, Kimberly; Richards, Karl G.; Mellander, Per-Erik; Healy, Mark G.; Fenton, Owen

    2018-02-01

    The efficacy of water quality policies aiming to reduce or prevent nitrate contamination of waterbodies may be constrained by the inherent delay or "time lag" of water and solute transport through unsaturated (soil) and saturated (groundwater) pathways. These delays must be quantified in order to establish realistic deadlines, thresholds and policy expectations, and to design effective best management practices. The objective of this review is to synthesise the current state of research on nitrate-related time lags in both the European and North American environmental and legislative contexts. The durations of time lags have been found to differ according to climatic, pedological, landscape and management scenarios. Elucidation of these driving factors at a watershed scale is essential where water quality is impaired or at risk. Finally, the existence of time lags is increasingly being acknowledged at a policy level and incorporated into the development of environmental legislation. However, the full impact of these time lags is not yet fully understood or appreciated, and continued outreach and education in scientific, public and policy venues is still required.

  16. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  17. Unraveling the nexus between water and food security in Latin America and the Caribbean: regional and global implications

    NASA Astrophysics Data System (ADS)

    Willaarts, Barbara; Garrido, Alberto; Soriano, Barbara; De Stefano, Lucia; López Gunn, Elena; Aldaya, Maite; Martínez-Santos, Pedro; Llamas, Ramon

    2014-05-01

    Latin American and the Caribbean (LAC) is a water and land abundant region, and plays a key role in meeting global food and water security. During the last decade, LAC has experience a rapid socio-economic growth, largely sustained by its competitive advantage in the production and exports of agricultural and mining products and by the high commodity prices in the global market. This study seeks to quantify the contribution of LAC's agriculture to global food and water security, i.e. virtual water trade, and evaluate the environmental and societal implications for regional development. Results show that between 2000 and 2011, LAC has increase its agricultural production 27%, and it now accounts for nearly 18% of the global agricultural market. As a result, the agricultural water footprint (WF) of LAC was augmented 65%; and yet, nearly 19% to 44% of the actual agricultural WF - depending on the countries - is virtual water exported to third countries. In fact, almost 50% of the increase in global virtual water trade during the last decade, corresponds to LAC. Such global contribution has significant implications for regional water and food security. From an environmental perspective, crop expansion (mostly rain-fed) resulted in the deforestation of nearly 1 million km2, turning this region into the second most important deforestation hotspots worldwide. This land clearing is having large impacts of ecosystem services, e.g. carbon sequestration, water quality or biodiversity conservation. From a socio-economic perspective, increasing agricultural production has improved regional food security indicators, although one every seven children is still stunted in LAC and nearly 10% of the population remains undernourished. Dietary shifts and socio-cultural factors also lag behind the growing problem of malnutrition in the region, i.e. overweight and obesity. Improvements of water access and sanitation, have had a positive impact on food security indicators, especially among the high-income LAC countries. We conclude that despite the large contribution of LAC's agriculture to global water and food security, this goal is at present intensively tapping into LAC's natural capital. Also, regional improvements in water security have improved, but important goals remain and new challenges are emerging. Water governance in LAC is evolving to address the challenges posed by rapid socio-economic changes, however, as is often the case, the implementation of reforms lags behind.

  18. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.

  19. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own treatment system for sewage and sullage and the untreated wastes are discharged into these old sewer pipes and ultimately the wastes reach the water bodies. In this context, decentralized treatment of sewage, sullage, and garbage by individual houses/establishments/hotels/hospitals is a better option for the developing countries. With the rapid developmental activities, and due to the variation of precipitation due to climate change, it is highly essential to provide proper waste treatment/augmentation facilities in urban lake system because a slight variation in the weather pattern can result in serious implications in the already polluted water bodies.

  20. Water, sanitation, and hygiene in schools: Status and implications of low coverage in Ethiopia, Kenya, Mozambique, Rwanda, Uganda, and Zambia.

    PubMed

    Morgan, Camille; Bowling, Michael; Bartram, Jamie; Lyn Kayser, Georgia

    2017-08-01

    Adequate access to water, sanitation, and hygiene (WaSH) in schools impacts health, educational outcomes, and gender disparities. Little multi-country research has been published on WaSH in rural schools in Sub-Saharan Africa. In this multi-national cross-sectional WaSH study, we document WaSH access, continuity, quality, quantity, and reliability in 2270 schools that were randomly sampled in rural regions of six Sub-Saharan African countries: Ethiopia, Kenya, Mozambique, Rwanda, Uganda, and Zambia. Data collection included: school WaSH surveys containing internationally established WaSH indicators, direct observation, and field- and laboratory-based microbiological water quality testing. We found 1% of rural schools in Ethiopia and Mozambique to 23% of rural schools in Rwanda had improved water sources on premises, improved sanitation, and water and soap for handwashing. Fewer than 23% of rural schools in the six countries studied met the World Health Organization's recommended student-to-latrine ratios for boys and for girls. Fewer than 20% were observed to have at least four of five recommended menstrual hygiene services (separate-sex latrines with doors and locks, water for use, waste bin). The low access to safe and adequate WaSH services in rural schools suggest opportunities for WaSH interventions that could have substantive impact on health, education, and gender disparities. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks

    PubMed Central

    Rowan, Neil J.

    2011-01-01

    This timely review primarily addresses important but presently undefined microbial risks to public health and to the natural environment. It specifically focuses on current knowledge, future outlooks and offers some potential alleviation strategies that may reduce or eliminate the risk of problematic microbes in their viable but nonculturable (VBNC) state and Cryptosporidium oocysts in the aquatic environment. As emphasis is placed on water quality, particularly surrounding efficacy of decontamination at the wastewater treatment plant level, this review also touches upon other related emerging issues, namely, the fate and potential ecotoxicological impact of untreated antibiotics and other pharmaceutically active compounds in water. Deciphering best published data has elucidated gaps between science and policy that will help stakeholders work towards the European Union's Water Framework Directive (2000/60/EC), which provides an ambitious legislative framework for water quality improvements within its region and seeks to restore all water bodies to “good ecological status” by 2015. Future effective risk-based assessment and management, post definition of the plethora of dynamic inter-related factors governing the occurrence, persistence and/or control of these presently undefined hazards in water will also demand exploiting and harnessing tangential advances in allied disciplines such as mathematical and computer modeling that will permit efficient data generation and transparent reporting to be undertaken by well-balanced consortia of stakeholders. PMID:20976256

  2. Street dust: implications for stormwater and air quality, and environmental through street sweeping.

    PubMed

    Calvillo, Steven J; Williams, E Spencer; Brooks, Bryan W

    2015-01-01

    Street dust represents a source of dual potential risk to stormwater and air quality. It has been well documented that street dust washes into local watersheds and can degrade water quality. Research has also demonstrated that ambient particulate matter (PM10) , which is associated with adverse health outcomes, can arise from resuspension of accumulated street dust. Furthermore, many contaminants, including metals, are present at higher concentrations in the smallest available particles, which are more likely to be resuspended in air and stormwater runoff. Although street cleaning is listed as a best management practice for storm water quality by the EPA, data are limited on the critical parameters (technology, environment, usage), which determine the effectiveness of any street cleaning program, particularly in the peer-reviewed literature. The purpose of the present study was to develop a comprehensive understanding of the efficacy of various street cleaning technologies and practices to protect both water quality and public health. Few studies have compared the effectiveness of street sweeping technologies to remove street dust. Unfortunately, the dearth of comprehensive data on exposure, contaminant concentrations, and efficacy of various sweeping technologies and strategies precludes developing quantitative estimates for potential risk to humans and the environment. Based on the few studies available, regenerative air street sweepers appear to provide the most benefit with regard to collection of small particles and prevention of re-entrainment. It is also clear from the available data that local conditions, climate, and specific needs are critical determinants of the ideal street sweeping strategy (technology, frequency, speed, targeted areas, etc.). Given the critical need for protection of water and air quality in rapidly expanding urban regions (e.g., megacities), further research is necessary to develop best practices for street dust management. Herein, we provide a framework for future experimental studies to support risk-based assessments of street cleaning technologies.

  3. Understanding the impact of molds on indoor air quality and ...

    EPA Pesticide Factsheets

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  4. Disturbance of Soil Organic Matter and Nitrogen Dynamics: Implications for Soil and Water Quality

    DTIC Science & Technology

    2004-06-30

    Although we were unable to provide a precise chemical analysis of refractory soil carbon, it does appear to have the same chemical properties as... chemical analysis of this refractory carbon, but it has chemical properties similar to charcoal (Garten et al., 2003) and probably originates from...vegetation and forests at Fort Benning includes ≈10% refractory C that is chemically similar to charcoal (Garten and Ashwood, 2004) and probably has

  5. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds

    USGS Publications Warehouse

    Goetz, Daniel B.; Kroger, Robert; Miranda, Leandro E.

    2014-01-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (< 1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  6. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  7. Identifying Societal Preferences for River Restoration in a Densely Populated Urban Environment: Evidence from a Discrete Choice Experiment in Central Brussels

    NASA Astrophysics Data System (ADS)

    Chen, Wendy Y.; Liekens, Inge; Broekx, Steven

    2017-08-01

    One of the major challenges facing river restoration in densely populated urban areas has been the disparity between the expectations of policy-makers and societal preferences. This study aimed to elicit public preferences and elucidate underlying sources of preference heterogeneity, using the Zenne River in central Brussels, Belgium, as a case study. A discrete choice experiment was administered to a representative sample of the Brussels population. Five attributes were specified, including water quality, ecological status, hydromorphological features of channels, recreational opportunities, and monetary cost. Our econometric analysis based on mixed logit models revealed that overall public would like to have a more natural river (open and naturalized channel, good water quality, and with rich species diversity), while achieving good water quality was the most preferred attribute. Respondents categorized as male, non-Belgian citizen, or not being a member of an environmental organization constituted an inclination to prefer the status quo. Belgian citizens showed a pronounced preference for good biodiversity, and being a member of an environmental organization could moderate the strong preference for good water quality. This study provided insights into the relative attractiveness of key attributes pertaining to river restoration, in general, and served as a useful input to the ongoing discussion concerning the future plan for the Zenne River in Brussels, specifically. Possible implications also exist for other urban river restorations in the rest of Europe, where the Water Framework Directive has become a major impetus for the expansion of freshwater ecosystem restoration from rural and peri-urban areas to densely populated urban areas. Particularly, the cultural heterogeneity of societal preferences should be tested and accounted for to compare the welfare impacts of river restoration and to facilitate benefit transfer, within and between river basins, in the Water Framework Directive implementation.

  8. Identifying Societal Preferences for River Restoration in a Densely Populated Urban Environment: Evidence from a Discrete Choice Experiment in Central Brussels.

    PubMed

    Chen, Wendy Y; Liekens, Inge; Broekx, Steven

    2017-08-01

    One of the major challenges facing river restoration in densely populated urban areas has been the disparity between the expectations of policy-makers and societal preferences. This study aimed to elicit public preferences and elucidate underlying sources of preference heterogeneity, using the Zenne River in central Brussels, Belgium, as a case study. A discrete choice experiment was administered to a representative sample of the Brussels population. Five attributes were specified, including water quality, ecological status, hydromorphological features of channels, recreational opportunities, and monetary cost. Our econometric analysis based on mixed logit models revealed that overall public would like to have a more natural river (open and naturalized channel, good water quality, and with rich species diversity), while achieving good water quality was the most preferred attribute. Respondents categorized as male, non-Belgian citizen, or not being a member of an environmental organization constituted an inclination to prefer the status quo. Belgian citizens showed a pronounced preference for good biodiversity, and being a member of an environmental organization could moderate the strong preference for good water quality. This study provided insights into the relative attractiveness of key attributes pertaining to river restoration, in general, and served as a useful input to the ongoing discussion concerning the future plan for the Zenne River in Brussels, specifically. Possible implications also exist for other urban river restorations in the rest of Europe, where the Water Framework Directive has become a major impetus for the expansion of freshwater ecosystem restoration from rural and peri-urban areas to densely populated urban areas. Particularly, the cultural heterogeneity of societal preferences should be tested and accounted for to compare the welfare impacts of river restoration and to facilitate benefit transfer, within and between river basins, in the Water Framework Directive implementation.

  9. A dynamic simulation based water resources education tool.

    PubMed

    Williams, Alison; Lansey, Kevin; Washburne, James

    2009-01-01

    Educational tools to assist the public in recognizing impacts of water policy in a realistic context are not generally available. This project developed systems with modeling-based educational decision support simulation tools to satisfy this need. The goal of this model is to teach undergraduate students and the general public about the implications of common water management alternatives so that they can better understand or become involved in water policy and make more knowledgeable personal or community decisions. The model is based on Powersim, a dynamic simulation software package capable of producing web-accessible, intuitive, graphic, user-friendly interfaces. Modules are included to represent residential, agricultural, industrial, and turf uses, as well as non-market values, water quality, reservoir, flow, and climate conditions. Supplementary materials emphasize important concepts and lead learners through the model, culminating in an open-ended water management project. The model is used in a University of Arizona undergraduate class and within the Arizona Master Watershed Stewards Program. Evaluation results demonstrated improved understanding of concepts and system interactions, fulfilling the project's objectives.

  10. Decline in Soluble Phosphorus Mobility from Land-Applied Dairy Manure - Modeling and Practical Applications

    NASA Astrophysics Data System (ADS)

    Archibald, J. A.; Walter, M. T.; Peterson, M.; Richards, B. K.; Giri, S. K.

    2014-12-01

    Non-point source transport of soluble-reactive phosphorus (SRP) from agricultural systems to freshwater ecosystems is a significant water quality concern. Although farmers are encouraged to avoid manure or fertilizer application before runoff events, the implications of these management choices remain largely unquantified. We conducted soil box experiments to test how manure application timing and temperature or moisture conditions impact SRP concentration in runoff. We found that SRP concentrations dropped off exponentially over time, and that higher temperatures accelerated the decline in SRP in overland runoff over time. During the first runoff events after manure application, infiltration depth prior to runoff was not a primary driver of SRP concentrations. This research has implications for incorporating manure spreading timing into watershed models.

  11. Life cycle environmental and economic implications of small drinking water system upgrades to reduce disinfection byproducts.

    PubMed

    Mo, Weiwei; Cornejo, Pablo K; Malley, James P; Kane, Tyler E; Collins, M Robin

    2018-06-20

    Many of the small drinking water systems in the US that utilize simple filtration and chlorine disinfection or chlorine disinfection alone are facing disinfection byproduct (DBP) noncompliance issues, which need immediate upgrades. In this study, four potential upgrade scenarios, namely the GAC, ozone, UV30, and UV186 scenarios, were designed for a typical small drinking water systems and compared in terms of embodied energy, carbon footprint, and life cycle cost. These scenarios are designed to either reduce the amount of DBP precursors using granular activated carbon filtration (the GAC scenario) or ozonation (the ozone scenario), or replace the chlorine disinfection with the UV disinfection at different intensities followed by chloramination (the UV30 and UV186 scenarios). The UV30 scenario was found to have the lowest embodied energy (417 GJ/year) and life cycle cost ($0.25 million US dollars), while the GAC scenario has the lowest carbon footprint (21 Mg CO 2 e/year). The UV186 scenario consistently presents the highest environmental and economic impacts. The major contributors of the economic and environmental impacts of individual scenarios also differ. Energy and/or material consumptions during the operation phase dominate the environmental impacts of the four scenarios, while the infrastructure investments have a noticeable contribution to the economic costs. The results are sensitive to changes in water quality. An increase of raw water quality, i.e., an increase in organic precursor content, could potentially result in the ozone scenario being the least energy intensive scenario, while a decrease of water quality could greatly reduce the overall competitiveness of the GAC scenario. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Waterborne Disease Case Investigation: Public Health Nursing Simulation.

    PubMed

    Alexander, Gina K; Canclini, Sharon B; Fripp, Jon; Fripp, William

    2017-01-01

    The lack of safe drinking water is a significant public health threat worldwide. Registered nurses assess the physical environment, including the quality of the water supply, and apply environmental health knowledge to reduce environmental exposures. The purpose of this research brief is to describe a waterborne disease simulation for students enrolled in a public health nursing (PHN) course. A total of 157 undergraduate students completed the simulation in teams, using the SBAR (Situation-Background-Assessment-Recommendation) reporting tool. Simulation evaluation consisted of content analysis of the SBAR tools and debriefing notes. Student teams completed the simulation and articulated the implications for PHN practice. Student teams discussed assessment findings and primarily recommended four nursing interventions: health teaching focused on water, sanitation, and hygiene; community organizing; collaboration; and advocacy to ensure a safe water supply. With advanced planning and collaboration with partners, waterborne disease simulation may enhance PHN education. [J Nurs Educ. 2017;56(1):39-42.]. Copyright 2017, SLACK Incorporated.

  13. Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals

    USGS Publications Warehouse

    Nelson, S. M.; Mueller, G.; Hemphill, D. C.

    1994-01-01

    Cover is an important component of aquatic habitat and fisheries management. Fisheries biologists often try to improve habitats through the addition of natural and artificial material to improve cover diversity and complexity. Habitat-improvement programs range from submerging used Christmas trees to more complex programs using sophisticated artificial habitat modules. Used automobile tires have been employed in the large scale construction of reefs and fish attractors in marine environments (D'Itri 1985) and to a lesser extent in freshwater (Johnson and Stein 1979) and have been recognized as a durable, inexpensive and long-lasting material which benefits fishery communities. Recent studies by the U.S. Bureau of Reclamation (Mueller and Liston 1991) have quantified the importance of tire reeds to enhancing freshwater canal fisheries in the southwestern United States. These studies have demonstrated that fisheries and aquatic macroinvertebrates are attracted to these structures, increasing species diversity, densities and biomass where reefs are places in canals. Potential benefits to fishermen are great in the form of recreational fishing. However, the use of tire reefs in aquatic environments which have relatively small volumes compared to marine or reservoir environments has raised water quality concerns. Effects of tires on water quality have not typically been studied in the part because of the obvious presence of fishes and other aquatic organisms that make use of tire reefs; the implication being that tires are intert and non-toxic. Little information on effects of tires on water quality is contained in the literature. Stone et al. (1975) demonstrated that tire exposure had no detrimental effects on two species of marine fish while results of Kellough's (1991) freshwater tests were inconclusive, but suggested that some factor in tire leachate was toxic to rainbow trout (Oncorhynchus mykiss). Nozaka et al. (1973) found no harmful substances leached from tire material soaked in fresh water. Because there are few data on toxicity associated with tires, this became the focus of our study. Toxicity Identification Evaluation (TUE) procedures developed by the EPA (1991) were used to evaluate water quality impacted by tires.

  14. Increasing water productivity on Vertisols: implications for environmental sustainability.

    PubMed

    Jiru, Mintesinot; Van Ranst, Eric

    2010-10-01

    The availability and quality of irrigation water have become a serious concern because of global climate change and an increased competition for water by industry, domestic users and the environment. Therefore, exploring environmentally friendly water-saving irrigation strategies is essential for achieving food and environmental security. In northern Ethiopia, where traditional furrow irrigation is widely practiced, water mismanagement and its undesirable environmental impact are rampant. A 2-year field study was undertaken to compare the traditional irrigation management with surge and deficit irrigation practices on a Vertisol plot. Results have shown that surge and deficit irrigation practices increase water productivity by 62% and 58%, respectively, when compared to traditional management. The study also found out that these practices reduce the adverse environmental impacts (waterlogging and salinity) of traditional management by minimizing deep percolation and tail water losses. Total irrigation depth was reduced by 12% (for surge) and 27% (for deficit) when compared to traditional management. Based on the results, the study concluded that surge and deficit irrigation technologies not only improve water productivity but also enhance environmental sustainability. Copyright © 2010 Society of Chemical Industry.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Michal; Capece, John; Hanlon, Edward

    Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources,more » advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total energy needs. Still, bioethanol (primarily cellulosic) produced in Florida has a potential to meet a significant portion of the State’s transportation needs. Assuming no change in food production and consumption habits in Florida, the likely result of biofuels sector expansion would be the conversion of natural lands or low-intensity agricultural lands into high-intensity biomass production and the associated increased water consumption and water quality implications.« less

  16. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    USGS Publications Warehouse

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant loads that appear to exceed the river?s assimilative capacity. Annual contaminant loads from stormwater discharges directly to the lower Charles River are large, but most dry-weather and stormwater contaminant loads measured in this study originate from upstream of the Watertown Dam and are delivered to the lower Charles River in mainstem flows. An exception is fecal coliform bacteria. Stony Brook, a large tributary influenced by combined sewer overflow, contributed almost half of the annual fecal coliform load to the lower Charles River for Water Year 2000. Much of this fecal coliform bacteria load is discharged from Stony Brook to the lower Charles River during rain-storms. Estimated stormwater loads for future conditions suggest that sewer separation in the Stony Brook Subbasin might reduce loads of constituents associated with sewage but increase loads of constituents associated with street runoff. The unique environment offered by the lower Charles River must be considered when the environmental implications of large contaminant loads are interpreted. In particular, the lower Charles River has low hydraulic gradients, a lack of tidal flushing, a lack of natural uncontaminated sediment from erosion of upstream uncontaminated soils, and an anoxic, sulfide-rich bottom layer that forms a non-tidal salt wedge in the downstream part of the lower Charles River. Individually and in combination, these characteristics may increase the likelihood of adverse effects of some contaminants on the water, biota, and sediment of the lower Charles River.

  17. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    USGS Publications Warehouse

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  18. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples.

    PubMed

    van der Hoeven-Hangoor, E; Rademaker, C J; Paton, N D; Verstegen, M W A; Hendriks, W H

    2014-07-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation. © 2014 Poultry Science Association Inc.

  19. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: Implications for understanding dispersal mechanisms and impacts of climate change

    USGS Publications Warehouse

    Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.

    2014-01-01

    Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in water quality suggests that conditions favorable for toxic blooms pre-date the 2001 expansion. These observations are consistent with a climate change-independent scenario of past GA dispersals in Texas reservoirs driven by novel introductions into pre-existing favorable habitat. Reports of latent GA populations in certain nonimpacted reservoirs, however, provide a plausible scenario of future dispersals characterized by prolonged periods between colonization and toxic bloom development and driven by changes in water quality, natural, or anthropogenic.

  20. Escherichia coli sampling reliability at a frequently closed Chicago beach: monitoring and management implications

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.

    2004-01-01

    Monitoring beaches for recreational water quality is becoming more common, but few sampling designs or policy approaches have evaluated the efficacy of monitoring programs. The authors intensively sampled water for E. coli (N=1770) at 63rd Street Beach, Chicago for 6 months in 2000 in order to (1) characterize spatial-temporal trends, (2) determine between and within transect variation, and (3) estimate sample size requirements and determine sampling reliability.E. coli counts were highly variable within and between sampling sites but spatially and diurnally autocorrelated. Variation in counts decreased with water depth and time of day. Required number of samples was high for 70% precision around the critical closure level (i.e., 6 within or 24 between transect replicates). Since spatial replication may be cost prohibitive, composite sampling is an alternative once sources of error have been well defined. The results suggest that beach monitoring programs may be requiring too few samples to fulfill management objectives desired. As the recreational water quality national database is developed, it is important that sampling strategies are empirically derived from a thorough understanding of the sources of variation and the reliability of collected data. Greater monitoring efficacy will yield better policy decisions, risk assessments, programmatic goals, and future usefulness of the information.

  1. Hydration during intense exercise training.

    PubMed

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  2. Coastal dynamics vs beach users attitudes and perceptions to enhance environmental conservation and management effectiveness.

    PubMed

    Aretano, Roberta; Parlagreco, Luca; Semeraro, Teodoro; Zurlini, Giovanni; Petrosillo, Irene

    2017-10-15

    This work carries out a landscape analysis for the last 60years to compare the degree of preservation of two areas on the same Italian coastline characterized by different environmental protection levels: a National designated protected areas and a highly tourist coastal destination. The conversion of natural land-covers into human land uses were detected for protected and unprotected coastal stretches highlighting that the only establishment of a protected area is not enough to stem undesirable land-use outcomes. A survey analysis was also conducted to assess attitudes of beach users and to evaluate their perception of natural habitats, beach and coastal water quality, and coastal dynamic over time. The results of 2071 questionnaires showed that there is similarity between subjective and objective data. However, several beach users perceived a bad quality of coastal water in the legally unprotected coastal area. The implications from a planning and management perspective are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Saving the Baltic Sea, the inland waters of its drainage basin, or both? spatial perspectives on reducing P-loads in eastern Sweden.

    PubMed

    Andersson, Ingela; Jarsjö, Jerker; Petersson, Mona

    2014-11-01

    Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Hill; Kenneth Nemeth; Gary Garrett

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts tomore » Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.« less

  5. Effects of smallmouth buffalo, Ictiobus bubalus biomass on water transparency, nutrients, and productivity in shallow experimental ponds.

    PubMed

    Goetz, D; Kröger, R; Miranda, L E

    2014-05-01

    The smallmouth buffalo Ictiobus bubalus is a native benthivore to floodplain lakes in the Yazoo River Basin, USA. Based on evidence from other benthivorous fish studies we hypothesized high biomasses of I. bubalus contribute to poor water quality conditions. We tested this hypothesis in shallow (<1.5 m) 0.05 ha earthen ponds at three stocking biomasses over a 10-week period during the summer of 2012. The most notable results from the permutational multivariate analysis of variance suggest I. bubalus at high and moderate biomasses significantly (p < 0.05) enhanced turbidity and suspended solid levels while decreasing Secchi depth. Our results suggest that effects of I. bubalus on water clarity may have considerable ecological implications in natural habitats such as shallow floodplain lakes.

  6. Water-quality assessment of the lower Illinois River Basin; environmental setting

    USGS Publications Warehouse

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water contribution from runoff and storage. More than half of the drinking water, including domestic and public-supply use, in the LIRB is from ground water. Fifty-two percent of the public-supply water is from surface water. Ground-water withdrawals mostly are from glacial sand and gravel aquifers. Structural features, such as monoclines, synclines, and anticlines, in the buried bedrock affect the water quality of the aquifers. There are five natural environmental divisions in the LIRB. The Grand Prairie covers most of the northeastern half of the basin, and the Western Forest-Prairie covers most of the southwestern half. Implications of environmental setting for water quality in the LIRB are related primarily to land use. The balanced fish community indicates that the lower Illinois River is affected less from urban and industrial waste than the upper Illinois River. A decrease in dissolved oxygen concentrations and turbidity in the lower reaches of the basin in 1993 have resulted from the recent influx of European zebra mussels to the LIRB. Many factors affect water quality in the LIRB. Bedrock and surface topography, type of glacial material, and land use most directly affect water quality in the basin.

  7. Persistence and Growth of the Fecal Indicator Bacteria Enterococci in Detritus and Natural Estuarine Plankton Communities

    PubMed Central

    Mote, Beth L.; Turner, Jeffrey W.

    2012-01-01

    Enterococci are used to evaluate recreational-water quality and health risks in marine environments. In addition to their occurrence in feces of warm blooded animals, they are also common epiphytes. We investigated the contribution of plankton- or particle-associated enterococci in estuarine and coastal water. Seven water and size-fractionated plankton samples were collected monthly between April 2008 and January 2009 in the tidal reaches of the Skidaway River (Georgia, USA). Each size fraction, along with filtered (<30 μm) and bulk estuarine water, was processed according to U.S. Environmental Protection Agency method 1600. Presumptive enterococci were selected and species were identified using carbon substrate utilization patterns. The highest average densities occurred within the 30-, 63-, 105-, and 150-μm size fractions, which also represented the majority (>99%) of the particles within the sampled water. Particle-associated enterococci accounted for as little as 1% of enterococci in bulk water in April to as much as 95% in July. Enterococcus faecalis was the most commonly isolated species from both water and plankton and represented 31% (16/51) and 35% (6/17) of the identified Enterococcus species from water and plankton, respectively. Enterococcus casseliflavus represented 29% of the selected isolates from plankton and 16% from water. Both E. faecalis and E. casseliflavus were able to survive and grow in plankton suspensions significantly longer than in artificial seawater. Enterococcus spp. may be highly concentrated in plankton and associated particles, especially during summer and fall months. These findings could have implications for the effectiveness of enterococci as an indicator of coastal water quality, especially in particle-rich environments. PMID:22327586

  8. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    PubMed

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this might have on drinking water quality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Ultraviolet (UV) disinfection of grey water: particle size effects.

    PubMed

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from < 1 to > or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  10. Vibrio Species in Wastewater Final Effluents and Receiving Watershed in South Africa: Implications for Public Health.

    PubMed

    Okeyo, Allisen N; Nontongana, Nolonwabo; Fadare, Taiwo O; Okoh, Anthony I

    2018-06-15

    Wastewater treatment facilities in South Africa are obliged to make provision for wastewater effluent quality management, with the aim of securing the integrity of the surrounding watersheds and environments. The Department of Water Affairs has documented regulatory parameters that have, over the years, served as a guideline for quality monitoring/management purposes. However, these guidelines have not been regularly updated and this may have contributed to some of the water quality anomalies. Studies have shown that promoting the monitoring of the current routinely monitored parameters (both microbial and physicochemical) may not be sufficient. Organisms causing illnesses or even outbreaks, such as Vibrio pathogens with their characteristic environmental resilience, are not included in the guidelines. In South Africa, studies that have been conducted on the occurrence of Vibrio pathogens in domestic and wastewater effluent have made it apparent that these pathogens should also be monitored. The importance of effective wastewater management as one of the key aspects towards protecting surrounding environments and receiving watersheds, as well as protecting public health, is highlighted in this review. Emphasis on the significance of the Vibrio pathogen in wastewater is a particular focus.

  11. Year-Long Metagenomic Study of River Microbiomes Across Land Use and Water Quality

    PubMed Central

    Van Rossum, Thea; Peabody, Michael A.; Uyaguari-Diaz, Miguel I.; Cronin, Kirby I.; Chan, Michael; Slobodan, Jared R.; Nesbitt, Matthew J.; Suttle, Curtis A.; Hsiao, William W. L.; Tang, Patrick K. C.; Prystajecky, Natalie A.; Brinkman, Fiona S. L.

    2015-01-01

    Select bacteria, such as Escherichia coli or coliforms, have been widely used as sentinels of low water quality; however, there are concerns regarding their predictive accuracy for the protection of human and environmental health. To develop improved monitoring systems, a greater understanding of bacterial community structure, function, and variability across time is required in the context of different pollution types, such as agricultural and urban contamination. Here, we present a year-long survey of free-living bacterial DNA collected from seven sites along rivers in three watersheds with varying land use in Southwestern Canada. This is the first study to examine the bacterial metagenome in flowing freshwater (lotic) environments over such a time span, providing an opportunity to describe bacterial community variability as a function of land use and environmental conditions. Characteristics of the metagenomic data, such as sequence composition and average genome size (AGS), vary with sampling site, environmental conditions, and water chemistry. For example, AGS was correlated with hours of daylight in the agricultural watershed and, across the agriculturally and urban-affected sites, k-mer composition clustering corresponded to nutrient concentrations. In addition to indicating a community shift, this change in AGS has implications in terms of the normalization strategies required, and considerations surrounding such strategies in general are discussed. When comparing abundances of gene functional groups between high- and low-quality water samples collected from an agricultural area, the latter had a higher abundance of nutrient metabolism and bacteriophage groups, possibly reflecting an increase in agricultural runoff. This work presents a valuable dataset representing a year of monthly sampling across watersheds and an analysis targeted at establishing a foundational understanding of how bacterial lotic communities vary across time and land use. The results provide important context for future studies, including further analyses of watershed ecosystem health, and the identification and development of biomarkers for improved water quality monitoring systems. PMID:26733955

  12. Effect of beach management policies on recreational water quality.

    PubMed

    Kelly, Elizabeth A; Feng, Zhixuan; Gidley, Maribeth L; Sinigalliano, Christopher D; Kumar, Naresh; Donahue, Allison G; Reniers, Adrianus J H M; Solo-Gabriele, Helena M

    2018-04-15

    When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management.

    PubMed

    Mwedzi, Tongayi; Bere, Taurai; Mangadze, Tinotenda

    2016-06-01

    The study evaluated the response of macroinvertebrate assemblages to changes in water quality in different land-use settings in Manyame catchment, Zimbabwe. Four land-use categories were identified: forested commercial farming, communal farming, Great Dyke mining (GDM) and urban areas. Macroinvertebrate community structure and physicochemical variables data were collected in two seasons from 41 sites following standard methods. Although not environmentally threatening, urban and GDM areas were characterised by higher conductivity, total dissolved solids, salinity, magnesium and hardness. Chlorides, total phosphates, total nitrogen, calcium, potassium and sodium were significantly highest in urban sites whilst dissolved oxygen (DO) was significantly higher in the forested commercial faming and GDM sites. Macroinvertebrate communities followed the observed changes in water quality. Macroinvertebrates in urban sites indicated severe pollution (e.g. Chironomidae) whilst those in forested commercial farming sites and GDM sites indicated relatively clean water (e.g. Notonemouridae). Forested watersheds together with good farm management practices are important in mitigating impacts of urbanisation and agriculture. Strategies that reduce oxygen-depleting substances must be devised to protect the health of Zimbabwean streams. The study affirms the wider applicability of the South African Scoring System in different land uses.

  14. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  15. Land cover controls on depression-focused recharge: an example from southern Ontario

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Greenwood, W. J.

    2015-12-01

    The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.

  16. The hydrological function of upland swamps in eastern Australia: The role of geomorphic condition in regulating water storage and discharge

    NASA Astrophysics Data System (ADS)

    Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.

    2018-06-01

    Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing climate.

  17. Viruses in the environment - presence and diversity of bacteriophage and enteric virus populations in the Umhlangane River, Durban, South Africa.

    PubMed

    Marie, Veronna; Lin, Johnson

    2017-10-01

    Due to the continued persistence of waterborne viral-associated infections, the presence of enteric viruses is a concern. Notwithstanding the health implications, viral diversity and abundance is an indicator of water quality declination in the environment. The aim of this study was to evaluate the presence of viruses (bacteriophage and enteric viruses) in a highly polluted, anthropogenic-influenced river system over a 6-month period at five sampling points. Cytopathic-based tissue culture assays revealed that the isolated viruses were infectious when tested on Hep-G2, HEK293 and Vero cells. While transmission electron microscopy (TEM) revealed that the majority of the viruses were bacteriophages, a number of presumptive enteric virus families were visualized, some of which include Picornaviridae, Adenoviridae, Polyomaviridae and Reoviridae. Finally, primer specific nested polymerase chain reaction (nested-PCR)/reverse transcription-polymerase chain reaction (RT-PCR) coupled with BLAST analysis identified human adenovirus, polyomavirus and hepatitis A and C virus genomes in river water samples. Taken together, the complexity of both bacteriophage and enteric virus populations in the river has potential health implications. Finally, a systematic integrated risk assessment and management plan to identify and minimize sources of faecal contamination is the most effective way of ensuring water safety and should be established in all future guidelines.

  18. Final Project Memorandum: Ecological implications of mangrove forest migration in the southeastern U.S.

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Larriviere, Jack C.; Hester, Mark W.; Yando, Erik S.; Willis, Jonathan A

    2014-01-01

    Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern United States. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better evaluate the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological impacts of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial-nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought; habitat loss; coastal protection) to biogeochemical processes (e.g., carbon storage; water quality). This research specifically investigated the impact of mangrove forest migration on coastal wetland soil processes and the consequent implications for coastal wetland responses to sea level rise and carbon storage.

  19. Wildfires and water chemistry: effect of metals associated with wood ash.

    PubMed

    Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J

    2016-08-10

    The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.

  20. Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters.

    PubMed

    Wanjugi, Pauline; Sivaganesan, Mano; Korajkic, Asja; McMinn, Brian; Kelty, Catherine A; Rhodes, Eric; Cyterski, Mike; Zepp, Richard; Oshima, Kevin; Stachler, Elyse; Kinzelman, Julie; Kurdas, Stephan R; Citriglia, Mark; Hsu, Fu-Chih; Shanks, Orin C

    2018-04-25

    There is a growing interest for the use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect Escherichia coli and are considered as potential surrogates to infer the likely presence of enteric viral pathogens. We report the use of a dead-end hollow fiber ultrafiltration single agar layer method to enumerate F+ and somatic coliphage from surface waters collected from three Great Lake areas. At each location, three sites (two beaches; one river) were sampled five days a week over the 2015 beach season (n = 609 total samples). In addition, culturable E. coli and enterococci concentrations, as well as 16 water quality and recreational area parameters were assessed such as rainfall, turbidity, dissolved oxygen, pH, and ultra violet absorbance. Overall, somatic coliphage levels ranged from non-detectable to 4.39 log 10 plaque forming units per liter and were consistently higher compared to F+ (non-detectable to 3.15 log 10  PFU/L), regardless of sampling site. Coliphage concentrations weakly correlated with cultivated fecal indicator bacteria levels (E. coli and enterococci) at 75% of beach sites tested in study (r = 0.28 to 0.40). In addition, ultraviolet light absorption and water temperature were closely associated with coliphage concentrations, but not fecal indicator bacteria levels suggesting different persistence trends in Great Lake waters between indicator types (bacteria versus virus). Finally, implications for coliphage water quality management and future research directions are discussed. Copyright © 2018. Published by Elsevier Ltd.

  1. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    NASA Astrophysics Data System (ADS)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  2. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.

    PubMed

    Groendahl, Sophie; Fink, Patrick

    2017-05-18

    Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.

  3. Simulated effects of hydrologic, water quality, and land-use changes of the Lake Maumelle watershed, Arkansas, 2004–10

    USGS Publications Warehouse

    Hart, Rheannon M.; Green, W. Reed; Westerman, Drew A.; Petersen, James C.; DeLanois, Jeanne L.

    2012-01-01

    Lake Maumelle, located in central Arkansas northwest of the cities of Little Rock and North Little Rock, is one of two principal drinking-water supplies for the Little Rock, and North Little Rock, Arkansas, metropolitan areas. Lake Maumelle and the Maumelle River (its primary tributary) are more pristine than most other reservoirs and streams in the region with 80 percent of the land area in the entire watershed being forested. However, as the Lake Maumelle watershed becomes increasingly more urbanized and timber harvesting becomes more extensive, concerns about the sustainability of the quality of the water supply also have increased. Two hydrodynamic and water-quality models were developed to examine the hydrology and water quality in the Lake Maumelle watershed and changes that might occur as the watershed becomes more urbanized and timber harvesting becomes more extensive. A Hydrologic Simulation Program–FORTRAN watershed model was developed using continuous streamflow and discreet suspended-sediment and water-quality data collected from January 2004 through 2010. A CE–QUAL–W2 model was developed to simulate reservoir hydrodynamics and selected water-quality characteristics using the simulated output from the Hydrologic Simulation Program–FORTRAN model from January 2004 through 2010. The calibrated Hydrologic Simulation Program–FORTRAN model and the calibrated CE–QUAL–W2 model were developed to simulate three land-use scenarios and to examine the potential effects of these land-use changes, as defined in the model, on the water quality of Lake Maumelle during the 2004 through 2010 simulation period. These scenarios included a scenario that simulated conversion of most land in the watershed to forest (scenario 1), a scenario that simulated conversion of potentially developable land to low-intensity urban land use in part of the watershed (scenario 2), and a scenario that simulated timber harvest in part of the watershed (scenario 3). Simulated land-use changes for scenarios 1 and 3 resulted in little (generally less than 10 percent) overall effect on the simulated water quality in the Hydrologic Simulation Program–FORTRAN model. The land-use change of scenario 2 affected subwatersheds that include Bringle, Reece, and Yount Creek tributaries and most other subwatersheds that drain into the northern side of Lake Maumelle; large percent increases in loading rates (generally between 10 and 25 percent) included dissolved nitrite plus nitrate nitrogen, dissolved orthophosphate, total phosphorus, suspended sediment, dissolved ammonia nitrogen, total organic carbon, and fecal coliform bacteria. For scenario 1, the simulated changes in nutrient, suspended sediment, and total organic carbon loads from the Hydrologic Simulation Program–FORTRAN model resulted in very slight (generally less than 10 percent) changes in simulated water quality for Lake Maumelle, relative to the baseline condition. Following lake mixing in the falls of 2006 and 2007, phosphorus and nitrogen concentrations were higher than the baseline condition and chlorophyll a responded accordingly. The increased nutrient and chlorophyll a concentrations in late October and into 2007 were enough to increase concentrations, on average, for the entire simulation period (2004–10). For scenario 2, the simulated changes in nutrient, suspended sediment, total organic carbon, and fecal coliform bacteria loads from the Lake Maumelle watershed resulted in slight changes in simulated water quality for Lake Maumelle, relative to the baseline condition (total nitrogen decreased by 0.01 milligram per liter; dissolved orthophosphate increased by 0.001 milligram per liter; chlorophyll a decreased by 0.1 microgram per liter). The differences in these concentrations are approximately an order of magnitude less than the error between measured and simulated concentrations in the baseline model. During the driest summer in the simulation period (2006), phosphorus and nitrogen concentrations were lower than the baseline condition and chlorophyll a concentrations decreased during the same summer season. The decrease in nitrogen and chlorophyll a concentrations during the dry summer in 2006 was enough to decrease concentrations of these constituents very slightly, on average, for the entire simulation period (2004–10). For scenario 3, the changes in simulated nutrient, suspended sediment, total organic carbon, and fecal coliform bacteria loads from Lake Maumelle watershed resulted in very slight changes in simulated water quality within Lake Maumelle, relative to the baseline condition, for most of the reservoir. Among the implications of the results of the modeling described in this report are those related to scale in both space and time. Spatial scales include limited size and location of land-use changes, their effects on loading rates, and resultant effects on water quality of Lake Maumelle. Temporally, the magnitude of the water-quality changes simulated by the land-use change scenarios over the 7-year period (2004–10) are not necessarily indicative of the changes that could be expected to occur with similar land-use changes persisting over a 20-, 30-, or 40- year period, for example. These implications should be tempered by realization of the described model limitations. The Hydrologic Simulation Program–FORTRAN watershed model was calibrated to streamflow and water-quality data from five streamflow-gaging stations, and in general, these stations characterize a range of subwatershed areas with varying land-use types. The CE–QUAL–W2 reservoir model was calibrated to water-quality data collected during January 2004 through December 2010 at three reservoir stations, representing the upper, middle, and lower sections of the reservoir. In general, the baseline simulation for the Hydrologic Simulation Program–FORTRAN and the CE–QUAL–W2 models matched reasonably well to the measured data. Simulated and measured suspended-sediment concentrations during periods of base flow (streamflows not substantially influenced by runoff) agree reasonably well for Maumelle River at Williams Junction, the station representing the upper end of the watershed (with differences—simulated minus measured value—generally ranging from -15 to 41 milligrams per liter, and percent difference—relative to the measured value—ranging from -99 to 182 percent) and Maumelle River near Wye, the station just above the reservoir at the lower end (differences generally ranging from -20 to 22 milligrams per liter, and percent difference ranging from -100 to 194 percent). In general, water temperature and dissolved-oxygen concentration simulations followed measured seasonal trends for all stations with the largest differences occurring during periods of lowest temperatures or during the periods of lowest measured dissolved-oxygen concentrations. For the CE–QUAL–W2 model, simulated vertical distributions of water temperatures and dissolved-oxygen concentrations agreed with measured vertical distributions over time, even for the most complex water-temperature profiles. Considering the oligotrophic-mesotrophic (low to intermediate primary productivity and associated low nutrient concentrations) condition of Lake Maumelle, simulated algae, phosphorus, and nitrogen concentrations compared well with generally low measured concentrations.

  4. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  5. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  6. A Regional Water Resource Planning Model to Explore the Water-Energy Nexus in the American Southwest

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Yates, D.; Purkey, D.; Huber-lee, A. T.

    2011-12-01

    The power sector withdraws substantial cooling water for electric generation in the United States and is thus heavily dependent on available water resources. Changes in water supplies and water quality may impact the reliability of power generation. This research intends to guide energy policy and decision making, leading to reduced greenhouse gas emission and avoiding unintended consequences related to water management in the context of future decisions around type and location of energy generation. It is recognized that different energy management strategies will have different water management implications that extend from the local, to the regional, and ultimately to the national scale. Further, the importance of these impacts will be defined by the characteristics of individual water systems within which energy management strategies are implemented. The Water Evaluation and Planning (WEAP) system was employed to represent the water resource systems of the American Southwest, where various energy management strategies could be represented within a broad water management context, but with regional specificity. A point of convergence for the American Southwest is Southern California, which relies on water transfers from both the Sacramento/San Joaquin system and the Colorado River systems. The reality is that the water systems of the Los Angeles/San Diego system are connected to those of the San Francisco Bay Area, the Central Valley of California, Central Arizona, Metropolitan Las Vegas, the Salt Lake Valley, the Rio Grande Valley, the Front Range of the Rockies, and in fact, to the borders of Kansas, Nebraska, Texas, and Mexico through Interstate and International Compacts. The Southwest WEAP application was developed to represent the water management implications of different energy and water management strategies and development pathways under current and future conditions. The energy assumptions are derived from the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) analysis that is being conducted independently, and for the entire United States. In addition to different energy development strategies, other development pathways can and will be explored, such as changes in municipal water demand use and patterns, and/or changes in irrigation demand.

  7. Water resources in the twenty-first century; a study of the implications of climate uncertainty

    USGS Publications Warehouse

    Moss, Marshall E.; Lins, Harry F.

    1989-01-01

    The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.

  8. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in this study. The effects of contamination may not be seen for several years after a contaminant is introduced into the ground-water system. Many contaminants could make the water unsuitable for drinking for many years, even in concentrations too low to detect without expensive chemical tests. The travel time of a chemically conservative substance depends primarily on the velocity of ground water through the aquifer, which in turn depends on the hydrologic characteristics of the aquifer system.

  9. Perceptions on the use of bottled water in restaurants in Harare's Central Business District (CBD)

    NASA Astrophysics Data System (ADS)

    Juba, Olivia Sakhile; Tanyanyiwa, Vincent Itai

    2018-06-01

    Bottled water use continues to expand worldwide and in the last two decades, a significant number of consumers have shifted from tap water to bottled water due to Cryptosporidium outbreaks. Bottled water consumption has increased in Harare due to erratic tap water supplies. Since 2011, forty bottled water brands have been banned because of failure to meet safety and quality standards due to contamination, unsuitable packaging, and wrong labelling. Nevertheless, the bottled water industry continues to thrive as local authorities fail to adequately purify municipal water. The study assessed the perceptions on drinking bottled water in restaurants within Harare's CBD. Demographic and social factors associated with bottled water users were established and the role and influence of stakeholders in bottling and distribution of water documented. A field survey through the administration of questionnaires to fifty restaurant users was carried out to assess the perceptions of people on the use of bottled water in terms of its safety and potential health benefits. Key informant interviews were conducted using a semi-structured interview with ten local water bottling companies as well as representatives from the Environmental Management Agency (EMA) and Standards Association of Zimbabwe (SAZ). Data were analysed using descriptive statistics and logistic regression analysis. Standard descriptive statistics were generated, with 95% confidence intervals (95% CIs). Consumers used bottled water as their primary drinking water source when they perceived that tap water was not safe. Perceptions of purity of water, bottled water convenience, and tap water unavailability seemed to determine consumption patterns among users. Females in the 18-48 age groups were more likely to think that bottled water was cleaner, safer, tasted better and was more convenient than tap water. Consumers regularly purchased bottled water for drinking and used bottled water as their primary drinking water source regardless of cost implications. Government and local authorities need to ensure that pure and clean water is availed in Harare. In addition, the public must be engaged in recognizing the relationships that exist between water quality and the capacity of local authorities to maintain taste and safety standards.

  10. Middle-term metropolitan water availability index assessment based on synergistic potentials of multi-sensor data

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Yang, Y. Jeffrey; Daranpob, Ammarin

    2010-03-01

    The impact of recent drought and water pollution episodes results in an acute need to project future water availability to assist water managers in water utility infrastructure management within many metropolitan regions. Separate drought and water quality indices previously developed might not be sufficient for the purpose of such an assessment. This paper describes the development of the "Metropolitan Water Availability Index (MWAI)" and its potential applications in assessing the middle-term water availability at the watershed scale in a fast growing metropolitan region - the Manatee County near Tampa Bay, Florida, U.S.A. The MWAI framework is based on a statistical approach that seeks to reflect the continuous spatial and temporal variations of both water quantity and quality using a simple numerical index. Such a trend analysis will surely result in the final MWAI values for regional water management systems within a specified range. By using remote sensing technologies and data processing techniques, continuous monitoring of spatial and temporal distributions of key water availability variables, such as evapotranspiration (ET) and precipitation, is made achievable. These remote sensing technologies can be ground-based (e.g., radar estimates of rainfall), or based on remote sensing data gathered by aircraft or satellites. Using a middle term historical record, the MWAI was applied to the Manatee County water supplies. The findings clearly indicate that only eight out of twelve months in 2008 had positive MWAI values during the year. Such numerical findings are consistent with the observational evidence of statewide drought events in 2006-2008, which implies the time delay between the ending of severe drought period and the recovery of water availability in MWAI. It is expected that this forward-looking novel water availability forecasting platform will help provide a linkage in methodology between strategic planning, master planning, and the plant operation and adaptations in response to the MWAI implications.

  11. Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey.

    PubMed

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika

    2010-12-15

    An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

  12. Occurrence and implications of methyl tert-butyl ether and gasoline hydrocarbons in ground water and source water in the United States and in drinking water in 12 Northeast and Mid-Atlantic States, 1993-2002

    USGS Publications Warehouse

    Moran, Michael J.; Zogorski, John S.; Squillace, Paul J.

    2004-01-01

    The occurrence and implications of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons were examined in three surveys of water quality conducted by the U.S. Geological Survey?one national-scale survey of ground water, one national-scale survey of source water from ground water, and one regional-scale survey of drinking water from ground water. The overall detection frequency of MTBE in all three surveys was similar to the detection frequencies of some other volatile organic compounds (VOCs) that have much longer production and use histories in the United States. The detection frequency of MTBE was higher in drinking water and lower in source water and ground water. However, when the data for ground water and source water were limited to the same geographic extent as drinking-water data, the detection frequencies of MTBE were comparable to the detection frequency of MTBE in drinking water. In all three surveys, the detection frequency of any gasoline hydrocarbon was less than the detection frequency of MTBE. No concentration of MTBE in source water exceeded the lower limit of U.S. Environmental Protection Agency's Drinking-Water Advisory of 20 ?g/L (micrograms per liter). One concentration of MTBE in ground water exceeded 20 ?g/L, and 0.9 percent of drinking-water samples exceeded 20 ?g/L. The overall detection frequency of MTBE relative to other widely used VOCs indicates that MTBE is an important concern with respect to ground-water management. The probability of detecting MTBE was strongly associated with population density, use of MTBE in gasoline, and recharge, and weakly associated with density of leaking underground storage tanks, soil permeability, and aquifer consolidation. Only concentrations of MTBE above 0.5 ?g/L were associated with dissolved oxygen. Ground water underlying areas with high population density, ground water underlying areas where MTBE is used as a gasoline oxygenate, and ground water underlying areas with high recharge has a greater probability of MTBE contamination. Ground water from public-supply wells and shallow ground water underlying urban land-use areas has a greater probability of MTBE contamination compared to ground water from domestic wells and ground water underlying rural land-use areas.

  13. Overcoming environmental deterioration through defensive expenditures: field evidence from Bahía del Tóbari (Sonora, México) and implications for coastal impact assessment.

    PubMed

    Escofet, A; Bravo-Peña, L C

    2007-08-01

    The costs of the maneuvers that fishermen and shrimp farmers have to undertake in a coastal scenario where both the access to navigable waters and water quality have decreased were interpreted as defensive expenditures. Maneuvers were prompted by profound changes in water circulation and siltation mode imposed by major shifts in regional and local land-use patterns. In coastal scenarios under heavy land-based discharges and local geomorphic modifications, local users with little chance to move away may modify their routines in order to maintain existing levels of utility. The concept of defensive expenditures could be used to assess social responses to adverse changes in environmental and resource conditions, as a means to distinguish stages in which local sectors respond individually from qualitatively different stages in which intersectoral events are more conspicuous.

  14. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  15. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    NASA Astrophysics Data System (ADS)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such monitoring methods can therefore be interesting for designing monitoring strategy of environmental observatory and provide dense time series likely to highlight patterns or trends using appropriate approaches such as spectral analysis [2]. 1. Wade, A.J. et al., HESS Discuss., 2012. 9(5), p.6458- 6506. 2. Aubert, A. et al., submitted to EGU 2013-4745 vol. 15.

  16. A survey of domestic wells and pit latrines in rural settlements of Mali: Implications of on-site sanitation on the quality of water supplies.

    PubMed

    Martínez-Santos, P; Martín-Loeches, M; García-Castro, N; Solera, D; Díaz-Alcaide, S; Montero, E; García-Rincón, J

    2017-10-01

    On-site sanitation is generally advocated as a means to eradicate the health hazards associated with open defecation. While this has provided a welcome upgrade to the livelihoods of millions of people in low-income countries, improved sanitation facilities are increasingly becoming a threat to domestic groundwater-based supplies. Within this context, a survey of pit latrines, domestic wells and improved water sources was carried out in a large rural village of southern Mali. All households were surveyed for water, sanitation and hygiene habits. Domestic wells and improved water sources were georeferenced and sampled for water quality (pH, electric conductivity, temperature, turbidity, total dissolved solids, thermotolerant coliforms, chloride and nitrate) and groundwater level, while all latrines were inspected and georeferenced. A GIS database was then used to evaluate the proportion of water points within the influence area of latrines, as well as to underpin multiple regression models to establish the determinants for fecal contamination in drinking supplies. Moreover, an appraisal of domestic water treatment practices was carried out. This revealed that nearly two-thirds of the population uses bleach to purify drinking supplies, but also that domestic-scale treatment as currently implemented by the population is far from effective. It is thus concluded that existing habits could be enhanced as a means to make water supplies safer. Furthermore, population, well and latrine density were all identified as statistically significant predictors for fecal pollution at different spatial scales. These findings are policy-relevant in the context of groundwater-dependent human settlements, since many countries in the developing world currently pursue the objective of eliminating open defecation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply.

    PubMed

    Rotiroti, Marco; McArthur, John; Fumagalli, Letizia; Stefania, Gennaro A; Sacchi, Elisa; Bonomi, Tullia

    2017-02-01

    In aquifers 160 to 260m deep that used for public water-supply in an area ~150km 2 around the town of Cremona, in the Po Plain of Northern Italy, concentrations of arsenic (As) are increasing with time in some wells. The increase is due to drawdown of As-polluted groundwater (As ≤144μg/L) from overlying aquifers at depths 65 to 150m deep in response to large-scale abstraction for public supply. The increase in As threatens drinking-water quality locally, and by inference does so across the entire Po Plain, where natural As-pollution of groundwater (As >10μg/L) is a basin-wide problem. Using new and legacy data for Cl/Br, δ 18 O/δ 2 H and other hydrochemical parameters with groundwater from 32 wells, 9 surface waters, a sewage outfall and rainwater, we show that the deep aquifer (160-260m below ground level), which is tapped widely for public water-supply, is partly recharged by seepage from overlying aquifers (65-150m below ground level). Groundwater quality in deep aquifers appears free of anthropogenic influences and typically <10μg/L of As. In contrast, shallow groundwater and surface water in some, not all, areas are affected by anthropogenic contamination and natural As-pollution (As >10μg/L). Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, which then locally infiltrate shallow aquifers under high channel-stages. Wastewater permeating shallow aquifers carries with it NO 3 and SO 4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so suppress the natural release of As to groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Applying Reactive Barrier Technology to Enhance Microbially-mediated Denitrification during Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.

    2015-12-01

    We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.

  19. Spatial distribution of dinoflagellates from the tropical coastal waters of the South Andaman, India: Implications for coastal pollution monitoring.

    PubMed

    Narale, Dhiraj Dhondiram; Anil, Arga Chandrashekar

    2017-02-15

    Dinoflagellate community structure from two semi-enclosed areas along the South Andaman region, India, was investigated to assess the anthropogenic impact on coastal water quality. At the densely inhabited Port Blair Bay, the dominance of mixotrophs in water and Protoperidinoids in sediments was attributed to anthropogenic nutrient enrichment and prey availability. A significant decrease in dinoflagellate abundance from inner to outer bay emphasize the variation in nutrient availability. The dominance of autotrophs and Gonyaulacoid cysts at the North Bay highlight low nutrient conditions with less anthropogenic pressure. The occurrence of oceanic Ornithocercus steinii and Diplopsalis sp. could evince the oceanic water intrusion into the North Bay. Nine potentially harmful and red-tide-forming species including Alexandrium tamarense complex, A. minutum were identified in this study. Although there are no harmful algal bloom (HABs) incidences in this region so far, increasing coastal pollution could support their candidature towards the future HABs initiation and development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources

    PubMed Central

    Naidoo, Shalinee; Olaniran, Ademola O.

    2013-01-01

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines. PMID:24366046

  1. Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Straub, John E., II; Schultz, John R.; Sauer, Richard L.; Williams, David E.; Bobe, L. S.; Novikov, V. M.; Andreichouk, P. O.; Protasov, N. N.

    1999-01-01

    Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid. Tests using the actual condensate were then conducted with scaled-down elements of the Russian condensate recovery system to determine the quality of water produced. The composition and test results are described, and implications for ISS are discussed.

  2. Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Lemaire, Bruno J.; Noss, Christian; Lorke, Andreas

    2017-09-01

    Solute transport across the sediment-water interface has major implications for water quality and biogeochemical cycling in aquatic ecosystems. Existing measurement techniques, however, are not capable of resolving sediment-water fluxes of most constituents under in situ flow conditions. We investigated whether relaxed eddy accumulation (REA), a micrometeorological technique with conditional sampling of turbulent updrafts and downdrafts, can be adapted to the aquatic environment. We simulated REA fluxes by reanalyzing eddy covariance measurements from a riverine lake. We found that the empirical coefficient that relates mass fluxes to the concentration difference between both REA samples is invariant with scalar and flow and responds as predicted by a joint Gaussian distribution of linearly correlated variables. Simulated REA fluxes differed on average by around 30% from eddy covariance fluxes (mean absolute error). Assessment of the lower quantification limit suggests that REA can potentially be applied for measuring benthic fluxes of a new range of constituents that cannot be assessed by standard eddy covariance methods.

  3. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt

  4. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    PubMed

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  5. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  6. The Implication of Agricultural Expansion on the Groundwater Flow Regime of Saq Aquifer in Al Qassim Region, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, T.; Mansour Helmy, B. M.

    2017-12-01

    Al-Qassim Region in Saudi Arabia is characterized by expanding agricultural activities. Most agricultural fields are irrigated by groundwater, mainly from the Saq aquifer. Excessive water extraction from this aquifer and arid climatic conditions negatively alter the quality and quantity of the groundwater. In this study, detailed hydrological and hydrogeological investigations were carried out to characterize spatially the potential groundwater recharge zones, deal with the estimation of groundwater balance of the Saq aquifer in the study area and to assess the safe yield of the aquifer. Accordingly, the implication of agricultural expansion on groundwater flow regime of Saq aquifer and its relation with safe yield and groundwater recharge was evaluated. The water-budget was calculated and the main water Inputs and outputs were measured. Change detections of agricultural areas in the region for years, 1983, 1995 and 2005 were conducted using Landsat Satellite images and results were compared to water levels for same years. There are two potential recharge zones for Saq aquifer in the area, both are structurally controlled. The first zone is the outlet of wadi Ar Risha basin in south-eastern corner of the study area. The second is the western water divide of wadi Turfiya basin in the North west. Results of the study also indicated that 96.4 % of the total abstraction is consumed for agriculture supply. The present abstractions exceed both recharge and safe yield of the aquifer system, thus the aquifer is overexploited and mined. The average decrease in groundwater storage during the year 1983-2005 was estimated to be 33.4 Mm3, representing an average yearly decline of 1.98 m of the water table.

  7. Surface water characteristics and trace metals level of the Bonny/New Calabar River Estuary, Niger Delta, Nigeria

    NASA Astrophysics Data System (ADS)

    Onojake, M. C.; Sikoki, F. D.; Omokheyeke, O.; Akpiri, R. U.

    2017-05-01

    Surface water samples from three stations in the Bonny/New Calabar River Estuary were analyzed for the physicochemical characteristics and trace metal level in 2011 and 2012, respectively. Results show pH ranged from 7.56 to 7.88 mg/L; conductivity, 33,489.00 to 33,592.00 µScm-1; salinity, 15.33 to 15.50 ‰; turbidity, 4.35 to 6.65 NTU; total dissolved solids, 22111.00 to 23263.00 gm-3; dissolved oxygen, 4.53 to 6.65 mg/L; and biochemical oxygen demand, 1.72 mg/L. The level of some trace metals (Ca, Mg, K, Zn, Pb, Cd, Co, Cr, Cu, Fe, Ni, and Na) were also analyzed by Atomic absorption spectrometry with K, Zn, and Co being statistically significant ( P < 0.05). The results were compared with USEPA and WHO Permissible Limits for water quality standards. It was observed that the water quality parameters in the Bonny Estuary show seasonal variation with higher values for pH, DO, BOD, temperature, and salinity during the dry season than wet season. Concentrations of trace metals such as Pb, Cd, Zn, Ni, and Cr were higher than stipulated limits by WHO (2006). The result of the Metal Pollution Index suggests that the river was slightly affected and therefore continuous monitoring is necessary to avert possible public health implications of these metals on consumers of water and seafood from the study area.

  8. Geomorphic and Hydrological challenges in Africa: implications for soil and water conservation

    NASA Astrophysics Data System (ADS)

    Vanmaercke, Matthias; Poesen, Jean

    2017-04-01

    Expected scenarios of climate change and population growth confront Africa with various important challenges related to food, water and energy security. Many of these challenges are closely linked to the impacts of soil erosion and other geomorphic processes, such as reduced crop yields, sedimentation of reservoirs and reduced freshwater quality. Despite the urgency and extent of many of these challenges, the causes and dynamics of these processes and their impacts remain severely understudied. This becomes apparent when the availability of e.g. soil erosion and catchment sediment export measurements for Africa is compared to that of other continents. Nonetheless, a substantial amount of geomorphic research has been conducted in Africa. Many of this work dates back from several decades ago, and were often only reported in 'gray literature' (e.g. internal reports). Here we present an overview of our current state of knowledge on soil erosion and its implications in Africa. We discuss which geomorphic process rate measurements are currently available and what can be learned from these with respect to the challenged raised above. We especially focus on our current understanding about the effectiveness of soil and water conservation techniques at various spatial and temporal scales. Based on specific case-studies (e.g. in Ethiopia and Uganda) and a meta-analysis of previous work, we highlight some research gaps, research needs and research opportunities when aiming to use Africa's soil and water resources sustainably and efficiently.

  9. Access to water

    NASA Astrophysics Data System (ADS)

    Stein, Robyn; Niklaas, Lindie

    This paper will examine the legal implications of the South African Constitutional judgement of Government of the Republic of South Africa and others vs Grootboom and others (2001(1) SA 46 (CC)) in view of the developing debate on socio-economic rights under the constitution on the constitutional right of access to sufficient water. It will look at the manner in which effect is being given to this right at municipal level through the provision of free water and the constitutional implications of an adequate basic minimum level set by the State and local authorities. The paper will also explore the implications of relevant legislation, which enables local authorities to cut off water supplies as well as the implications of the Grootboom decision for communities facing water cut-offs.

  10. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-11

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid.

  11. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

    PubMed Central

    Lee, Cheonghoon; Marion, Jason W.; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-01-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  12. Climate and Humans as Amplifiers of Hydro-Ecologic Change: Science and Policy Implications for Intensively Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Czuba, J. A.; Belmont, P.; Wilcock, P. R.; Gran, K. B.; Kumar, P.

    2015-12-01

    Climatic trends and agricultural intensification in Midwestern U.S. landscapes has contributed to hydrologic regime shifts and a cascade of changes to water quality and river ecosystems. Informing management and policy to mitigate undesired consequences requires a careful scientific analysis that includes data-based inference and conceptual/physical modeling. It also calls for a systems approach that sees beyond a single stream to the whole watershed, favoring the adoption of minimal complexity rather than highly parameterized models for scenario evaluation and comparison. Minimal complexity models can focus on key dynamic processes of the system of interest, reducing problems of model structure bias and equifinality. Here we present a comprehensive analysis of climatic, hydrologic, and ecologic trends in the Minnesota River basin, a 45,000 km2 basin undergoing continuous agricultural intensification and suffering from declining water quality and aquatic biodiversity. We show that: (a) it is easy to arrive at an erroneous view of the system using traditional analyses and modeling tools; (b) even with a well-founded understanding of the key drivers and processes contributing to the problem, there are multiple pathways for minimizing/reversing environmental degradation; and (c) addressing the underlying driver of change (i.e., increased streamflows and reduced water storage due to agricultural drainage practices) by restoring a small amount of water storage in the landscape results in multiple non-linear improvements in downstream water quality. We argue that "optimization" between ecosystem services and economic considerations requires simple modeling frameworks, which include the most essential elements of the whole system and allow for evaluation of alternative management scenarios. Science-based approaches informing management and policy are urgent in this region calling for a new era of watershed management to new and accelerating stressors at the intersection of the food-water-energy-environment nexus.

  13. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  14. Economic and health risk trade-offs of swim closures at a Lake Michigan beach

    USGS Publications Warehouse

    Rabinovici, Sharyl M.; Bernknopf, Richard L.; Wein, Anne M.; Coursey, Don L.; Whitman, Richard L.

    2004-01-01

    This paper presents a framework for analyzing the economic, health, and recreation implications of swim closures related to high fecal indicator bacteria (FIB) levels. The framework utilizes benefit transfer policy analysis to provide a practical procedure for estimating the effectiveness of recreational water quality policies. Evaluation criteria include the rates of intended and unintended management outcomes, whether the chosen protocols generate closures with positive net economic benefits to swimmers, and the number of predicted illnesses the policy is able to prevent. We demonstrate the framework through a case study of a Lake Michigan freshwater beach using existing water quality and visitor data from 1998 to 2001. We find that a typical closure causes a net economic loss among would-be swimmers totaling $1274-37 030/ day, depending on the value assumptions used. Unnecessary closures, caused by high indicator variability and a 24-h time delay between when samples are taken and the management decision can be made, occurred on 14 (12%) out of 118 monitored summer days. Days with high FIB levels when the swim area is open are also common but do relatively little economic harm in comparison. Also, even if the closure policy could be implemented daily and perfectly without error, only about 42% of predicted illnesses would be avoided. These conclusions were sensitive to the relative values and risk preferences that swimmers have for recreation access and avoiding health effects, suggesting a need for further study of the impacts of recreational water quality policies on individuals.

  15. Development of innovative computer software to facilitate the setup and computation of water quality index.

    PubMed

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  16. Depth as an organizer of fish assemblages in floodplain lakes

    USGS Publications Warehouse

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  17. Cytotoxic drugs in drinking water: a prediction and risk assessment exercise for the thames catchment in the United kingdom.

    PubMed

    Rowney, Nicole C; Johnson, Andrew C; Williams, Richard J

    2009-12-01

    Cytotoxic, also known as antineoplastic, drugs remain an important weapon in the fight against cancer. This study considers the water quality implications for the Thames catchment (United Kingdom) arising from the routine discharge of these drugs after use, down the drain and into the river. The review focuses on 13 different cytotoxic drugs from the alkylating agent, antimetabolite, and anthracycline antibiotic families. A geographic-information-system-based water quality model was used in the present study. The model was informed by literature values on consumption, excretion, and fate data to predict raw drinking water concentrations at the River Thames abstraction points at Farmoor, near Oxford, and Walton, in West London. To discover the highest plausible values, upper boundary values for consumption and excretion together with lower removal values for sewage treatment were used. The raw drinking water cytotoxic drug maximum concentrations at Walton (the higher of the two) representative of mean and low flow conditions were predicted to be 11 and 20 ng/L for the five combined alkylating agents, 2 and 4 ng/L for the three combined antimetabolites, and 0.05 and 0.10 ng/L the for two combined anthracycline antibiotics, respectively. If they were to escape into tap water, then the highest predicted concentrations would still be a factor of between 25 and 40 below the current recommended daily doses of concern. Although the risks may be negligible for healthy adults, more concern may be associated with special subgroup populations, such as pregnant women, their fetuses, and breast-feeding infants, due to their developmental vulnerability.

  18. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications

    NASA Astrophysics Data System (ADS)

    Han, Zhen; Cui, Baoshan; Zhang, Yongtao

    2015-09-01

    Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

  19. Ecohydrology across Scales in an Arid, Human-dominated Landscape: Implications for Ecosystems, Water Availability and Human Interactions

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Deems, J. S.; Kind, A.; Munson, S.; Neff, J.; Okin, G.; Painter, T. H.; Reheis, M. C.; Reynolds, R. L.; Wilcox, B. P.

    2011-12-01

    Arid and semi-arid regions constitute over 35% of global lands. The utilization of these areas is increasing rapidly in response to rising human populations and attendant food needs. In addition, they are also foci for activities associated with energy production, mineral extraction, military training and conflict, and recreation. The resultant disturbance reduces the protective cover of plants and physical and biological soil crusts. This leads to accelerated soil loss by both wind and water, across a wide range of parent materials, textures, or soil surface ages. Further vulnerability to soil erosion is expected with predicted future drier and hotter climates, as plant cover declines and fires increase. Synergistic effects, such as surface disturbance occurring during drought periods in plant communities dominated by annual weeds, can exacerbate the situation further. At a local scale, the redistribution of soil by wind and water results in nutrients being more heterogeneously distributed, subsequently altering abundance and distribution of plants, animals, and rates of biogeochemical cycling. Particles transported by wind from disturbed settings can be deposited in washes, subsequently entering streams and rivers.Particles saltating across the soil surface are also frequently deposited in washes, subsequently entering streams and rivers. This process represents a local loss of soil fertility and a local and regional decrease in water quality, as sediment and salts enter water bodies. At the larger watershed scale, dust is deposited on nearby snow cover, darkening the snow and increasing melt rates. Increased melt rates decrease the length of the snow-cover season, increasing water losses to evapotranspiration and thus the amount of water entering streams and rivers. As water quantity decreases, salts and sediments are concentrated, thereby further decreasing water quality. As water becomes scarcer in drylands around the world, the diminishing integrity of the soil surface is likely to become a major issue for land managers. In addition, the spatial decoupling between the people engaged in the upstream activities that lower water availability/quality and the downstream users facing water shortages will likely result in new combinations of interest groups and the need for novel ways to address their differences. The science of ecohydrology has an important role to play in these conversations.

  20. Integrating long-term water and sediment pollution data, in assessing chemical status within the European Water Framework Directive.

    PubMed

    Tueros, Itziar; Borja, Angel; Larreta, Joana; Rodríguez, J Germán; Valencia, Victoriano; Millán, Esmeralda

    2009-09-01

    The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995-2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the 'one out, all out' approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.

  1. Implications of the South African Constitution on Quality Assurance in Higher Education

    ERIC Educational Resources Information Center

    Mammen, K. John

    2006-01-01

    The article addresses the concept of quality assurance (QA) and its relation to quality in higher education which itself is a component of total quality management. It then examines the regulatory policies for higher education followed by the meaning of the concept of democracy in the South African Constitution and its impact and implications on…

  2. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  3. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  4. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  5. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  6. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    PubMed

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality.

  8. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    PubMed

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  9. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  10. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  11. The dual threat of urbanisation and climate change in urbanising catchments - integrated science to meet future challenges - a case study of the Thames catchment, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Miller, J.; Hutchins, M.; McGrane, S. J.; Kjeldsen, T. R.; Rowland, C.; Hagen-Zanker, A.; Rickards, N. J.; Fidal, J.; Vesuviano, G.; Hitt, O.

    2016-12-01

    Rapid urbanisation coupled with climate change poses a significant threat of increased flooding in urban locations around the world. In the UK there is a lack of joined up science and monitoring data to support model development and management decisions required for a rapidly growing population. Here, we present the findings from a multi-disciplinary research project entitled POLLCURB involving a combination of both monitoring and modelling approaches, including participatory citizen science, to evaluate impacts of urbanisation and climate change on flooding and water quality in the Thames basin, United Kingdom. Empirical analysis of five years of monitoring data in intensely monitored sub-catchments reveals the degree to which urban land-use impacts upon hydrological and water quality response. Analysis reveals hydrological impacts do not always follow the expected urban gradient due to intra-catchment differences in hydraulic functions. Statistical detection and attribution techniques are used to assess long-term river data, highlighting strong signals of urban growth after climate variability is accounted for. Historical land-use change mapping of the Thames basin using remote sensing shows growth in urban coverage from around 13% (1980's) to 15% (2015) and was used to develop and train a cellular automata model. Projections of a business-as-usual scenario indicates future growth of 12% by 2035. Future potential changes to flooding and water quality are assessed under urbanisation and climate scenarios for the Thames region to provide comparative and cumulative analysis of how these drivers will affect existing and new urban areas within the Thames basin. Results show the relative and cumulative impacts that both urbanisation and climate change have on basin hydrology and water quality, and highlight the improvements in modelling accuracy when utilising high-resolution data. Discussion is made of results in relation to modelling, policy, mitigation options, and implications for further scientific research.

  12. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  13. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    PubMed

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection

    PubMed Central

    Kirchner, James W.; Neal, Colin

    2013-01-01

    The chemical dynamics of lakes and streams affect their suitability as aquatic habitats and as water supplies for human needs. Because water quality is typically monitored only weekly or monthly, however, the higher-frequency dynamics of stream chemistry have remained largely invisible. To illuminate a wider spectrum of water quality dynamics, rainfall and streamflow were sampled in two headwater catchments at Plynlimon, Wales, at 7-h intervals for 1–2 y and weekly for over two decades, and were analyzed for 45 solutes spanning the periodic table from H+ to U. Here we show that in streamflow, all 45 of these solutes, including nutrients, trace elements, and toxic metals, exhibit fractal 1/fα scaling on time scales from hours to decades (α = 1.05 ± 0.15, mean ± SD). We show that this fractal scaling can arise through dispersion of random chemical inputs distributed across a catchment. These 1/f time series are non–self-averaging: monthly, yearly, or decadal averages are approximately as variable, one from the next, as individual measurements taken hours or days apart, defying naive statistical expectations. (By contrast, stream discharge itself is nonfractal, and self-averaging on time scales of months and longer.) In the solute time series, statistically significant trends arise much more frequently, on all time scales, than one would expect from conventional t statistics. However, these same trends are poor predictors of future trends—much poorer than one would expect from their calculated uncertainties. Our results illustrate how 1/f time series pose fundamental challenges to trend analysis and change detection in environmental systems. PMID:23842090

  15. Suspending sediment transport, sedimentation, and resuspension in Lake Houston, Texas: Implications for water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matty, J.M.; Anderson, J.B.; Dunbar, R.B.

    1987-01-01

    Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less

  16. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection

    NASA Astrophysics Data System (ADS)

    Kirchner, James W.; Neal, Colin

    2013-07-01

    The chemical dynamics of lakes and streams affect their suitability as aquatic habitats and as water supplies for human needs. Because water quality is typically monitored only weekly or monthly, however, the higher-frequency dynamics of stream chemistry have remained largely invisible. To illuminate a wider spectrum of water quality dynamics, rainfall and streamflow were sampled in two headwater catchments at Plynlimon, Wales, at 7-h intervals for 1-2 y and weekly for over two decades, and were analyzed for 45 solutes spanning the periodic table from H+ to U. Here we show that in streamflow, all 45 of these solutes, including nutrients, trace elements, and toxic metals, exhibit fractal 1/fα scaling on time scales from hours to decades (α = 1.05 ± 0.15, mean ± SD). We show that this fractal scaling can arise through dispersion of random chemical inputs distributed across a catchment. These 1/f time series are non-self-averaging: monthly, yearly, or decadal averages are approximately as variable, one from the next, as individual measurements taken hours or days apart, defying naive statistical expectations. (By contrast, stream discharge itself is nonfractal, and self-averaging on time scales of months and longer.) In the solute time series, statistically significant trends arise much more frequently, on all time scales, than one would expect from conventional t statistics. However, these same trends are poor predictors of future trends-much poorer than one would expect from their calculated uncertainties. Our results illustrate how 1/f time series pose fundamental challenges to trend analysis and change detection in environmental systems.

  17. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  18. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    PubMed

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ < 1) between December 2012 to December 2013. Cd concentration in sediment in polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    PubMed

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  20. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs

    PubMed Central

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible. PMID:28301562

  1. Hydrological connectivity in the karst critical zone: an integrated approach

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A. M.; Tao, M.

    2017-12-01

    Spatial heterogeneity in the subsurface is high, evidenced by specific landform features (sinkholes, caves etc.) and resulting in high variability of hydrological processes in space and time. This includes complex exchange of various flow sources (e.g. hillslope springs and depression aquifers) and fast conduit flow and slow fracture flow. In this paper we integrate various "state-of-the-art" methods to understand the structure and function of this understudied critical zone environment. Geophysical, hydrometric and hydrogeochemical tools are used to characterize the hydrological connectivity of the cockpit karst critical zone in a small catchment of Chenqi, Guizhou province, China. Geophysical surveys, using electrical resistivity tomography (ERT), identified the complex conduit networks that link flows between hillslopes and depressions. Statistical time series analysis of water tables and discharge responses at hillslope springs and in depression wells and underground channels showed different threshold responses of hillslope and depression flows. This reflected the differing relative contribution of fast and slow flow paths during rainfall events of varying magnitude in the hillslope epikarst and depression aquifer in dry and wet periods. This showed that the hillslope epikarst receives a high proportion of rainfall recharge and is thus a main water resource in the catchment during the drought period. In contrast, the depression aquifer receives fast, concentrated hillslope flows during large rainfall events during the wet period, resulting in the filling of depression conduits and frequent flooding. Hydrological tracer studies using water temperatures and stable water isotopes (δD and δ18O) corroborated this and provided quantitative information of the mixing proportions of various flow sources and insights into water travel times. This revealed how higher contributions of event "new" water (from hillslope springs and depression conduits displaces "old" pre-event water primarily from low permeability fissures and fractures), particularly during heavy rainfall. As the various water sources have contrasting water quality characteristics, these mixing and exchange processes have important implications for understanding and managing water quality in karst waters.

  2. Physico-chemical characteristics of groundwater in and around Surat City (India).

    PubMed

    Raval, Viral H; Malik, G M

    2010-10-01

    Groundwater samples were collected from different locations of Surat city, Gujarat (India). These samples from 32 locations of Surat city were analysed for their physico-chemical characteristics involving pH, colour, odour, hardness, chloride, alkalinity, COD, sulfate, TDS, SS, iron, Cu, boron, chromium, temperature and Langelier Saturation Index. On comparing the results against drinking water quality standards laid by Indian Council of Medical Research (ICMR) and World Health Organization (WHO), it is found that most of the water samples are non-potable. Most of the samples indicated Total Alkalinity, Hardness, Chloride and TDS values much higher than the permissible level stipulated by ICMR and WHO. Even at some places Langelier Saturation Index values found higher too. The high values of these parameters may have health implications and therefore these need attention.

  3. Assessment of Physicochemical and Microbiological Quality of Public Swimming Pools in Addis Ababa, Ethiopia

    PubMed Central

    Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson

    2017-01-01

    Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562

  4. Microbiological Food Safety Status of Commercially Produced Tomatoes from Production to Marketing.

    PubMed

    van Dyk, Brigitte N; de Bruin, Willeke; du Plessis, Erika M; Korsten, Lise

    2016-03-01

    Tomatoes have been implicated in various microbial disease outbreaks and are considered a potential vehicle for foodborne pathogens. Traceback studies mostly implicate contamination during production and/or processing. The microbiological quality of commercially produced tomatoes was thus investigated from the farm to market, focusing on the impact of contaminated irrigation and washing water, facility sanitation, and personal hygiene. A total of 905 samples were collected from three largescale commercial farms from 2012 through 2014. The farms differed in water sources used (surface versus well) and production methods (open field versus tunnel). Levels of total coliforms and Escherichia coli and prevalence of E. coli O157:H7 and Salmonella Typhimurium were determined. Dominant coliforms were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. No pathogens or E. coli were detected on any of the tomatoes tested throughout the study despite the high levels of coliforms (4.2 to 6.2 log CFU/g) present on the tomatoes at the market. The dominant species associated with tomatoes belonged to the genera Enterobacter, Klebsiella, and Citrobacter. Water used on the farm for irrigation considered not fit for purpose according to national agricultural irrigation standards, with high E. coli levels resulting from either a highly contaminated source water (river water at 3.19 log most probable number [MPN]/100 ml) or improper storage of source water (stored well water at 1.72 log MPN/100 ml). Salmonella Typhimurium was detected on two occasions on a contact surface in the processing facility of the first farm in 2012. Contact surface coliform counts were 2.9 to 4.8 log CFU/cm(2). Risk areas identified in this study were water used for irrigation and poor sanitation practices in the processing facility. Implementation of effective food safety management systems in the fresh produce industry is of the utmost importance to ensure product safety for consumers.

  5. An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2013-06-01

    Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.

  6. The fault pattern in the northern Negev and southern Coastal Plain of Israel and its hydrogeological implications for groundwater flow in the Judea Group aquifer

    NASA Astrophysics Data System (ADS)

    Weinberger, G.; Rosenthal, E.

    1994-03-01

    On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.

  7. Analysis of hydrologic and geochemical time-series data at James Cave, Virginia: Implications for epikarst influence on recharge in Appalachian karst aquifers

    USGS Publications Warehouse

    Eagle, Sarah D.; Orndorff, William; Schwartz, Benjamin F.; Doctor, Daniel H.; Gerst, Jonathan D.; Schreiber, Madeline E.

    2016-01-01

    The epikarst, which consists of highly weathered rock in the upper vadose zone of exposed karst systems, plays a critical role in determining the hydrologic and geochemical characteristics of recharge to an underlying karst aquifer. This study utilized time series (2007–2014) of hydrologic and geochemical data of drip water collected within James Cave, Virginia, to examine the influence of epikarst on the quantity and quality of recharge in a mature, doline-dominated karst terrain. Results show a strong seasonality of both hydrology and geochemistry of recharge, which has implications for management of karst aquifers in temperate climatic zones. First, recharge (discharge from the epikarst to the underlying aquifer) reaches a maximum between late winter and early spring, with the onset of the recharge season ranging from as early as December to as late as March during the study period. The timing and duration of the recharge season were found to be a function of precipitation in excess of evapotranspiration on a seasonal time scale. Secondly, seasonally variable residence times for water in the epikarst influence rock-water interaction and, hence, the geochemical characteristics of recharge. Overall, results highlight the strong and complex influence that the epikarst has on karst recharge, which requires long-term and high-resolution data sets to accurately understand and quantify.

  8. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California...

  9. Restoring fish ecological quality in estuaries: Implication of interactive and cumulative effects among anthropogenic stressors.

    PubMed

    Teichert, Nils; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario

    2016-01-15

    Estuaries are subjected to multiple anthropogenic stressors, which have additive, antagonistic or synergistic effects. Current challenges include the use of large databases of biological monitoring surveys (e.g. the European Water Framework Directive) to help environmental managers prioritizing restoration measures. This study investigated the impact of nine stressor categories on the fish ecological status derived from 90 estuaries of the North East Atlantic countries. We used a random forest model to: 1) detect the dominant stressors and their non-linear effects; 2) evaluate the ecological benefits expected from reducing pressure from stressors; and 3) investigate the interactions among stressors. Results showed that largest restoration benefits were expected when mitigating water pollution and oxygen depletion. Non-additive effects represented half of pairwise interactions among stressors, and antagonisms were the most common. Dredged sediments, flow changes and oxygen depletion were predominantly implicated in non-additive interactions, whereas the remainder stressors often showed additive impacts. The prevalence of interactive impacts reflects a complex scenario for estuaries management; hence, we proposed a step-by-step restoration scheme focusing on the mitigation of stressors providing the maximum of restoration benefits under a multi-stress context. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of environmental change on yield and quality of fruits and vegetables: two systematic reviews and projections of possible health effects

    NASA Astrophysics Data System (ADS)

    Smith, P.; Scheelbeek, P.; Bird, F.; Green, R.; Dangour, A.

    2017-12-01

    Background - Environmental changes—including climatic change, water scarcity, and biodiversity loss—threaten agricultural production and pose challenges to global food security. In this study, we review the evidence of the effects of environmental change on the yield and quality of fruits and vegetables - a food group that plays a highly important role in our diets - and assess possible implications for nutrition and health outcomes. Methods - We undertook two systematic reviews of the published literature on the effect of 8 different environmental stressors on yields and nutritional quality of (1) fruits and (2) vegetables, measured in greenhouse and field studies. We combined the review outcomes with Food Balance Sheet data to assess the potential consequences of changed availability and quality of fruits and vegetables for global nutrient deficiencies and related chronic diseases. Findings - Overall, fruits were affected more prominently by changing environmental patterns than vegetables. In tropical countries, there were largely adverse effects on yield of increased temperature and changing precipitation patterns, although in more temperate zones some beneficial effects were reported. In contrast, the effects on nutritional quality were mostly positive, especially in fruit crops, with higher vitamin and mineral content measured in most crops. Increased atmospheric CO2 concentrations had a predominantly positive effect on yield, especially in legumes, but a negative effect on nutritional quality of both fruits and vegetables. Adverse nutritional implications were estimated to be largest in areas characterised by high vulnerability to environmental change, high dependency on local markets, and high rates of food insecurity. Interpretation - Our study identified effects of environmental change on yields and quality of fruits and vegetables that might pose threats to population health, especially in areas vulnerable to climate-change and food insecurity. To obtain more precise estimates of the burden of disease attributable to these effects, further research is needed on farmers' and consumers' adaptation/substitution strategies, which would allow development of future food security scenarios.

  11. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  12. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China.

    PubMed

    Song, Weiwei; Xu, Qing; Fu, Xingqian; Zhang, Peng; Pang, Yong; Song, Dahao

    2018-06-14

    Water diversion is often used to improve water quality to reach the standard of China in the short term. However, this large amount of water diversion can not only improve the water quality, but also lead to a decline in the water quality (total phosphorus, total nitrogen) of Xuanwu Lake. Through theoretical analysis, the relationship between water quality and water diversion is established. We also found that the multiplication of the pollutant degradation coefficient ( K ) and the water residence time ( T ) is a constant ( N ), K⋅T=N. The water quality changed better at first, with the increase of inflow discharge, and then became worse, and the optimal water quality inflow discharge is 180,000 m³/day. By constructing two-dimensional hydrodynamic and water quality models, the optimal diversion water plan is calculated. Through model calculations, it can be seen that reducing the inflow discharge makes the water residence time longer (15.3 days changed to 23.8 days). Thereby, increasing the degradation of pollutants, and thus improving water quality. Compared with other wind directions, the southwest wind makes the water quality of Xuanwu Lake the most uniform. The concentration of water quality first became smaller and then became larger, as the wind speed increased, and eventually became constant. Implementing these results for water quality improvement in small and medium lakes will significantly reduce the cost of water diversion.

  13. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  14. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  15. Highway runoff quality in Ireland.

    PubMed

    Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul

    2007-04-01

    Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.

  16. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  17. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  18. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    The fundamental theme of this research was to investigate tradeoffs in model resolution for modeling water resources in the context of national economic development and capital investment decisions.. Based on a case study of China, the research team has developed water resource models at relatively fine scales, then investigated how they can be aggregated to regional or national scales and for use in national level planning decisions or global scale integrated assessment models of food and/or environmental change issues. The team has developed regional water supply and water demand functions.. Simplifying and aggregating the supply and demand functions will allow reduced form functions of the water sector for inclusion in large scale national economic models. Water Supply Cost functions were developed looking at both surface and groundwater supplies. Surface Water: Long time series of flows at the mouths of the 36 major river sub-basins in China are used in conjunction with different basin reservoir storage quantities to obtain storage-yield curves. These are then combined with reservoir and transmission cost data to obtain yield-cost or surface water demand curves. The methodology to obtain the long time series of flows for each basin is to fit a simple abcd water balance model to each basin. The costs of reservoir storage have been estimated by using a methodology developed in the USA that relates marginal storage costs to existing storage, slope and geological conditions. USA costs functions have then been adjusted to Chinese costs. The costs of some actual dams in China were used to "ground-truth" the methodology. Groundwater: The purpose of the groundwater work is to estimate the recharge in each basin, and the depths and quality of water of aquifers. A byproduct of the application of the abcd water balance model is the recharge. Depths and quality of aquifers are being taken from many separate reports on groundwater in different parts of China; we have been unable to find any global or regional datasets of groundwater.. Combining Surface and Groundwater Supply Functions Water Demand Curves. Water Use data is reported on political regions. Water Supply is reported and modeled on river basin regions. It is necessary to allocate water demands to river basins. To accomplish this China's 9 major river basins were divided into 36 hydroeconomic regions. The counties were then allocated to one of the 36-hydroeconomic zones. The county-level water use data was aggregated to 5 major water use sectors: 1)industry; 2)urban municipal and vegetable gardens: 3) major irrigation; 4) Energy and 5)Other agriculture (forestry, pasture; fishery). Sectoral Demand functions that include price and income elasticity were developed for the 5 sectors for each of the 9 major river basin. The supply and demand curves were aggregated at a variety of geographical scales as well as levels of economic sectoral aggregation. Implications for investment and sustainable development policies were examined for the various aggregation using partial and general equilibrium modeling of the Chinese economy. These results and policy implications for China as well as insights and recommendation for other developing countries will be presented.

  19. Breakpoint chlorination and free-chlorine contact time: implications for drinking water N-nitrosodimethylamine concentrations.

    PubMed

    Charrois, Jeffrey W A; Hrudey, Steve E

    2007-02-01

    North American drinking water utilities are increasingly incorporating alternative disinfectants, such as chloramines, in order to comply with disinfection by-product (DBP) regulations. N-Nitrosodimethylamine (NDMA) is a non-halogenated DBP, associated with chloramination, having a drinking water unit risk two to three orders of magnitude greater than currently regulated halogenated DBPs. We quantified NDMA from two full-scale chloraminating water treatment plants in Alberta between 2003 and 2005 as well as conducted bench-scale chloramination/breakpoint experiments to assess NDMA formation. Distribution system NDMA concentrations varied and tended to increase with increasing distribution residence time. Bench-scale disinfection experiments resulted in peak NDMA production near the theoretical monochloramine maximum in the sub-breakpoint region of the disinfection curve. Breakpoints for the raw and partially treated waters tested ranged from 1.9:1 to 2.4:1 (Cl(2):total NH(3)-N, M:M). Bench-scale experiments with free-chlorine contact (2h) before chloramination resulted in significant reductions in NDMA formation (up to 93%) compared to no free-chlorine contact time. Risk-tradeoff issues involving alternative disinfection methods and unregulated DBPs, such as NDMA, are emerging as a major water quality and public health information gap.

  20. Monitoring and Assessment of Youshui River Water Quality in Youyang

    NASA Astrophysics Data System (ADS)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  1. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    NASA Astrophysics Data System (ADS)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and reduction of network losses from sewer leakage. Furthermore, these investigations contribute to an improved understanding of urban water cycle systems in the Middle-East which may help water managers in the region to conserve precious resources.

  2. Water quality assessment of Australian ports using water quality evaluation indices

    PubMed Central

    Jahan, Sayka

    2017-01-01

    Australian ports serve diverse and extensive activities, such as shipping, tourism and fisheries, which may all impact the quality of port water. In this work water quality monitoring at different ports using a range of water quality evaluation indices was applied to assess the port water quality. Seawater samples at 30 stations in the year 2016–2017 from six ports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden, were investigated to determine the physicochemical and biological variables that affect the port water quality. The large datasets obtained were designed to determine the Water Quality Index, Heavy metal Evaluation Index, Contamination Index and newly developed Environmental Water Quality Index. The study revealed medium water quality index and high and medium heavy metal evaluation index at three of the study ports and high contamination index in almost all study ports. Low level dissolved oxygen and higher level of total dissolved solids, turbidity, fecal coliforms, copper, iron, lead, zinc, manganese, cadmium and cobalt are mainly responsible for the poor water qualities of the port areas. Good water quality at the background samples indicated that various port activities are the likely cause for poor water quality inside the port area. PMID:29244876

  3. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  4. The impact of the High Park Wildfire on stream water quality and implications for drinking water treatment

    NASA Astrophysics Data System (ADS)

    Rosario-Ortiz, F.

    2014-12-01

    The Cache La Poudre (CLP) watershed in Northern Colorado was impacted by the High Park fire, which burned from June 9th through July 1st of 2012. The CLP watershed serves as a source of drinking water for three water districts in Northern Colorado, including the City of Fort Collins. Sampling was conducted during four different storm events immediately after the fire was extinguished. The sampling was expanded through spring and summer 2013 in order to capture the flush of debris from the wildfire into the CLP River. Samples were also collected from an unburned control site for comparison. Surface water samples were analyzed for parameters including nutrients, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) characterization. In addition, bench scale treatment analyses were conducted to better understand the impacts of the wildfire on treatment processes for drinking water utilities. Lastly, leaching of stream bank sediments was conducted to determine the potential longer term inputs of burned material to the stream water. The overarching goals of the sampling campaign were to: 1) Evaluate the impact that wildfires have on the properties of DOM, specifically with respect to DBP formation and speciation (TTHM, HAA5, HAN, NDMA); 2) Establish the condition under which the source water could be effectively treated (using coagulation) to remove DBP precursors; 3) Evaluate the use of fluorescence spectroscopy as a surrogate for the concentration and reactivity of DOM in the CLP watershed; and 4) Assess the quantity and quality of DOM leached from streambed sediments. Preliminary results showed elevated DOC levels during the storm events and at wildfire impacted sites compared to the unburned site following the fire. DBP yields were higher for the four storm events following the fire when compared to yields for the control site located upstream of the burn area, and also when compared to data from a previous DBP study conducted on similar Colorado source waters in 2010. Fluorescence spectroscopy shows promise as a tool for discerning differences in DOM quality between burned and unburned areas of the CLP watershed. Ultimately, the results of this study will offer insight for recovering this watershed as a sustainable water source and will prepare utilities for future wildfires.

  5. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management.

    PubMed

    Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex

    2014-08-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli shoreline. The implications for aquifer management are discussed.

  7. The psychology of drinking water quality: An exploratory study

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Williams, Katrina D.

    1993-12-01

    Perceptions of drinking water quality were measured for residents at four locations in Western Australia. The total dissolved solid levels for the locations varied. Four scales of drinking water satisfaction were measured: acceptability of water quality; water quality risk judgment; perception of neighborhood water quality; and attitudes toward fluoride as an additive. Responses to each of these scales did not appear to be highly related to total dissolved solids. The relationship between attitudes toward water quality and a variety of psychological, attitudinal, experiential, and demographic variables was investigated. It was found that responses to the acceptability of water quality and water quality risk judgment scales related to perceived credibility of societal institutions and feelings of control over water quality and environmental problems. For the remaining two scales few significant correlations were found. The results support those who advocate localized information and involvement campaigns on drinking water quality issues.

  8. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section...

  9. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water year descriptors (wet, dry, critical low, etc.). Implications are discussed with respect to effective reservoir operation (requisite flow releases and temperature) and restorative actions (e.g., riparian vegetation) in the context of habitat suitability.

  10. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    PubMed

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to Tianchi was made, and the results indicated that about 212.97 t of total nitrogen and 32.14 t of total phosphorus were transported into Tianchi Lake annually. Human socio-economic activities (runoff caused by historical overgrazing and increasing tourism) were identified as the most important contributors to Tianchi nutrient loadings.

  11. On the implications of aerosol liquid water and phase ...

    EPA Pesticide Factsheets

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM ∕ OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM ∕ OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH  >  SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM ∕ OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were hig

  12. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    PubMed

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water quality and actual quality. We had little scope to explore the possible explanations, and hence further studies are required to verify the age, gender educational status and income differential about the satisfaction of public service like water supply. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. 40 CFR 131.35 - Colville Confederated Tribes Indian Reservation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.35 Colville Confederated Tribes Indian Reservation. The water quality standards applicable to the waters within the... these Federal water quality standards to prescribe minimum water quality requirements for the surface...

  14. Global water dynamics: issues for the 21st century.

    PubMed

    Simonovic, Slobodan P

    2002-01-01

    The WorldWater system dynamics model has been developed for modeling the global world water balance and capturing the dynamic character of the main variables affecting water availability and use in the future. Despite not being a novel approach, system dynamics offers a new way of addressing complex systems. WorldWater simulations are clearly demonstrating the strong feedback relation between water availability and different aspects of world development. Results of numerous simulations are contradictory to the assumption made by many global modelers that water is not an issue on the global scale. Two major observations can be made from early simulations: (a) the use of clean water for dilution and transport of wastewater, if not dealt with in other ways, imposes a major stress on the global world water balance; and (b) water use by different sectors is demonstrating quite different dynamics than predicted by classical forecasting tools and other water-models. Inherent linkages between water quantity and quality sectors with food, industry, persistent pollution, technology, and non-renewable resources sectors of the model create shoot and collapse behavior in water use dynamics. This paper discusses a number of different water-related scenarios and their implications on the global water balance. In particular, two extreme scenarios (business as usual - named "Chaos", and unlimited desalination - named "Ocean") are presented in the paper. Based on the conclusions derived from these two extreme cases a set of more moderate and realistic scenarios (named "Conservation") is proposed and their consequences on the global water balance are evaluated.

  15. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    PubMed

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  16. The effect of transport on the quality of rabbit meat.

    PubMed

    Składanowska-Baryza, Joanna; Ludwiczak, Agnieszka; Pruszyńska-Oszmałek, Ewa; Kołodziejski, Paweł; Bykowska, Marta; Stanisz, Marek

    2018-04-01

    The analyzed material included 40 hybrid rabbits slaughtered at the age of 90 days. The control group was transported directly after weaning, while the transport group was transported directly prior to slaughter. The experiment was designed to assess the transport stress, carcass and meat quality implications, taking into account the muscle type and sex. The transported animals were characterized by a higher level of blood cortisol, glucose and triglycerides (P < 0.0001), and a lower level of insulin (P < 0.0001) compared to the control group. In the presented study the time post-mortem affected the pH decline in both rabbit groups (P < 0.0001). The lightness, redness and yellowness of rabbit meat were affected by the transport (P < 0.0001, P = 0.001 and P < 0.0001). The percentage of free water and its share in the total water was higher for the non-transported rabbits compared to the transported ones (P < 0.0001). Moreover, the meat from the control group was characterized by greater plasticity compared to the transport group (P = 0.003). The chemical composition of rabbit meat was not changed by the effect of transport (P = 0.643-0.979). To conclude, the quality traits of meat from the transported hybrid rabbits clearly indicated the development of dark firm and dry-like lower quality of meat. © 2018 Japanese Society of Animal Science.

  17. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments.

    PubMed

    Rosqvist, N H; Dollar, L H; Fourie, A B

    2005-08-01

    In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.

  18. Effects of changes in climate variability and extremes on the exceedance of critical algal bloom thresholds

    NASA Astrophysics Data System (ADS)

    Hecht, J. S.; Zia, A.; Beckage, B.; Winter, J.; Schroth, A. W.; Bomblies, A.; Clemins, P. J.; Rizzo, D. M.

    2017-12-01

    Identifying critical thresholds associated with algal blooms in freshwater lakes is important for avoiding persistent eutrophic conditions and their undesirable ecological, recreational and drinking water impacts. Recent Integrated Assessment Model (IAM) and Bayesian network studies have demonstrated that future climatic changes could increase the duration and intensity of these blooms. Yet, few studies have systematically examined the sensitivity of algal blooms to projected changes in precipitation and temperature variability and extremes at storm-event to seasonal timescales. We employ an IAM, which couples downscaled Global Climate Model (GCM) output with hydrologic and water quality models, to examine the sensitivity of algal blooms in Lake Champlain's shallow Missisquoi Bay to potential future climate changes. We first identify a set of statistically downscaled GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5) that reproduce recent historical daily temperature and precipitation observations well in the Lake Champlain basin. Then, we identify plausible covarying changes in the (i) mean and variance of seasonal precipitation and temperature distributions and (ii) frequency and magnitude of individual storm events. We assess the response of water quality indicators (e.g. chlorophyll a concentrations, Trophic State Index) and societal impacts to sequences of daily meteorological series generated from distributions that account for these covarying changes. We also discuss strategies for examining the sensitivity of bloom impacts to different weather sequences generated from a single set of precipitation and temperature distributions with a limited number of computationally intensive IAM simulations. We then evaluate the implications of modeling these changes in climate variability and extreme precipitation events for nutrient management. Finally, we consider the generalizability of our findings for water bodies with different physical and climatic characteristics and address the extent to which climate-driven alterations to terrestrial hydrologic processes, such as evapotranspiration and soil moisture storage, mediate changes to lake water quality.

  19. Chemical and Isotopic Tracers of Groundwater Sustainability: an Overview of New Science Directions

    NASA Astrophysics Data System (ADS)

    Bullen, T.

    2002-12-01

    Groundwater sustainability is an emerging concept that is rapidly gaining attention from both scientists and water resource managers, particularly with regard to contamination and degradation of water quality in strategic aquifers. The sustainability of a groundwater resource is a complex function of its susceptibility to factors such as intrusion of poor-quality water from diverse sources, lack of sufficient recharge and reorganization of groundwater flowpaths in response to excessive abstraction. In theory the critical limit occurs when degradation becomes irreversible, such that remediative efforts may be fruitless on a reasonable human time scale. Chemical and isotopic tracers are proving to be especially useful tools for assessment of groundwater sustainability issues such as characterization of recharge, identification of potential sources, pathways and impacts of contaminants and prediction of how hydrology will change in response to excessive abstraction. A variety of relatively cost-efficient tracers are now available with which to assess the susceptibility of groundwater reserves to contamination from both natural and anthropogenic sources, and may provide valuable monitoring and regulatory tools for water resource managers. In this overview, the results of several ongoing groundwater studies by the U.S. Geological Survey will be discussed from the perspective of implications for new science directions for groundwater sustainability research that can benefit water policy development. A fundamental concept is that chemical and isotopic tracers used individually often provide ambiguous information, and are most effective when used in a rigorous "multi-tracer" context that considers the complex linkages between the hydrology, geology and biology of groundwater systems.

  20. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-03

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management.

  1. Assessment of the Water Quality Conditions at Ed Zorinsky Reservoir and the Zebra Mussel (Dreissena polymorpha) Population Emerged after the Drawdown of the Reservoir and Management Implications for the District’s Papillion and Salt Creek Reservoirs

    DTIC Science & Technology

    2012-04-23

    organic matter) can be a nutritional source (US Army Corps of Engineers, 2002; Benson & Raikow, 2012). When food resources are limiting, intraspecific...Food and Agriculture Organization of the United Nations mainly for the analysis of fish population length-frequency data (Gayanilo, Sparre, & Pauly... fish kill. The organically -rich sediments at all these reservoirs would place a high sediment-oxygen demand on the drawn down reservoir over the

  2. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  3. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  4. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  5. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  6. The economic value of water use: implications for implementing the Water Framework Directive in Scotland.

    PubMed

    Moran, Dominic; Dann, Sabrina

    2008-05-01

    The European Union Water Framework Directive (WFD) enshrines several economic principles in pursuit of 'good ecological status' for Europe's waters and rationalising water use in society. The implicit principle of maximising the social value from use of a scarce resource is reminiscent of the debate about treating water as an economic good, which has competing uses in society. This paper locates the debate about the economic value of water in the requirements of WFD. Specifically, we consider the implications of national reporting requirements for the economic characterisation report that stress the identification of relative value derived from use. As part of the Scottish contribution to the UK reporting exercise, we use a range of secondary data sources to derive economic values for water on a sector basis. We suggest whether the implications of different water values can be followed through in the WFD.

  7. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.

  8. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  9. Evaluating benefits and costs of changes in water quality.

    Treesearch

    Jessica Koteen; Susan J. Alexander; John B. Loomis

    2002-01-01

    Water quality affects a variety of uses, such as municipal water consumption and recreation. Changes in water quality can influence the benefits water users receive. The problem is how to define water quality for specific uses. It is not possible to come up with one formal definition of water quality that fits all water uses. There are many parameters that influence...

  10. The Relation of Environmental Quality and Fishery Sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Oktavilia, Shanty; Habibah Yusfi, Reikha; Firmansyah; Sugiyanto, FX

    2018-02-01

    The condition of fishery sector is currently stagnating, even tending to decline, which is indicated by the decrease of production in some areas in Indonesia. Environmental degradation in marine waters is due to global climate change and uncontrolled fish exploitation impact on the decline of marine fisheries production. While in aquaculture, the environmental quality is also indicated to influence the production. Nevertheless, the increase of production of both marine and terrestrial fisheries has an effect on the quality of the environment. This study aims to analyze the interrelationship between the influence of environmental quality on the production of fishery sub-sector and the influence of fishery subsector production on environmental quality. This research employs environmental quality data and output of fishery of 34 provinces in Indonesia during 2011-2015. The study finds that output of fishery sector affects the environmental quality, which proves the Environment Kuznets Curve in the fishery sector in Indonesia. Since a certain threshold is achieved, the increase in revenue followed by the increase in environmental quality. The study also finds that the environmental quality has a positive effect on the production of fishery. Implication of the study is the increase of income of fishery households can be encouraged the ability of the community to protect the environment and increases the willingness of households to sacrifice other goods to environmental protection.

  11. Estimating future temperature maxima in lakes across the United States using a surrogate modeling approach

    PubMed Central

    Zi, Tan; Schmidt, Michelle; Johnson, Thomas E.; Nover, Daniel M.; Clark, Christopher M.

    2017-01-01

    A warming climate increases thermal inputs to lakes with potential implications for water quality and aquatic ecosystems. In a previous study, we used a dynamic water column temperature and mixing simulation model to simulate chronic (7-day average) maximum temperatures under a range of potential future climate projections at selected sites representative of different U.S. regions. Here, to extend results to lakes where dynamic models have not been developed, we apply a novel machine learning approach that uses Gaussian Process regression to describe the model response surface as a function of simplified lake characteristics (depth, surface area, water clarity) and climate forcing (winter and summer air temperatures and potential evapotranspiration). We use this approach to extrapolate predictions from the simulation model to the statistical sample of U.S. lakes in the National Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment of the potential thermal risk to lake water quality and ecosystems across the U.S. We suggest a small fraction of lakes will experience less risk of summer thermal stress events due to changes in stratification and mixing dynamics, but most will experience increases. The percentage of lakes in the NLA with simulated 7-day average maximum water temperatures in excess of 30°C is projected to increase from less than 2% to approximately 22% by the end of the 21st century, which could significantly reduce the number of lakes that can support cold water fisheries. Site-specific analysis of the full range of factors that influence thermal profiles in individual lakes is needed to develop appropriate adaptation strategies. PMID:29121058

  12. Just Around the Riverbend: Seasonal hydrologic controls on dynamic hyporheic zone redox biogeochemistry

    NASA Astrophysics Data System (ADS)

    Saup, C. M.; Sawyer, A. H.; Williams, K. H.; Wilkins, M.

    2017-12-01

    Upland rivers host exceptionally strong linkages between the terrestrial and aquatic elemental cycles. The weathering of mineral phases, coupled with degradation of organic matter and anthropogenic influences can result in the export of carbon, metals, and nutrients in upland fluvial systems, often decreasing downstream water quality with negative impacts on both human usage and ecosystem functioning. Within these fluvial networks, zones of hyporheic mixing—regions within the riverbed where surface water and groundwater mix—are thought to represent hotspots of biogeochemical activity, thus exerting significant control over elemental cycling and solute export. To investigate how the deeper exchange of oxic river water into the riverbed during snowmelt-driven peak discharge affects microbial degradation (oxidation) of carbon pools, depth resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO. At each location, a series of temperature and redox probes were installed in the riverbed to track the extent of hyporheic mixing and the impact of this process on riverbed biogeochemistry. We complemented this real-time data with discrete samples collected during peak flow, intermediate flow, and base flow at a 10 cm resolution over 70 cm vertical profiles for a suite of microbiological and geochemical analyses. Results revealed elevated pore fluid concentrations of dissolved metals and recalcitrant DOC species under reducing conditions induced by base flow, while regions that were more influenced by down-welling oxic surface water hosted distinct microbial communities and lower metal concentrations. Overall, our results indicate that mixing-driven vertical redox gradients exert a strong control on biogeochemical processing in riverbeds, with implications for downstream water quality and solute export from watersheds.

  13. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water quality management and control. However, protection of the water resources of the basin from... quality program in the comprehensive plan. (c) The Commission's role in water quality management and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7...

  14. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  15. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  16. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  17. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  18. Integrating ecosystem-service tradeoffs into land-use decisions

    PubMed Central

    Goldstein, Joshua H.; Caldarone, Giorgio; Duarte, Thomas Kaeo; Ennaanay, Driss; Hannahs, Neil; Mendoza, Guillermo; Polasky, Stephen; Wolny, Stacie; Daily, Gretchen C.

    2012-01-01

    Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O’ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environmental and financial implications of seven planning scenarios encompassing contrasting land-use combinations including biofuel feedstocks, food crops, forestry, livestock, and residential development. All scenarios had positive financial return relative to the status quo of negative return. However, tradeoffs existed between carbon storage and water quality as well as between environmental improvement and financial return. Based on this analysis and community input, Kamehameha Schools is implementing a plan to support diversified agriculture and forestry. This plan generates a positive financial return ($10.9 million) and improved carbon storage (0.5% increase relative to status quo) with negative relative effects on water quality (15.4% increase in potential nitrogen export relative to status quo). The effects on water quality could be mitigated partially (reduced to a 4.9% increase in potential nitrogen export) by establishing vegetation buffers on agricultural fields. This plan contributes to policy goals for climate change mitigation, food security, and diversifying rural economic opportunities. More broadly, our approach illustrates how information can help guide local land-use decisions that involve tradeoffs between private and public interests. PMID:22529388

  19. Integrating ecosystem-service tradeoffs into land-use decisions.

    PubMed

    Goldstein, Joshua H; Caldarone, Giorgio; Duarte, Thomas Kaeo; Ennaanay, Driss; Hannahs, Neil; Mendoza, Guillermo; Polasky, Stephen; Wolny, Stacie; Daily, Gretchen C

    2012-05-08

    Recent high-profile efforts have called for integrating ecosystem-service values into important societal decisions, but there are few demonstrations of this approach in practice. We quantified ecosystem-service values to help the largest private landowner in Hawaii, Kamehameha Schools, design a land-use development plan that balances multiple private and public values on its North Shore land holdings (Island of O'ahu) of ∼10,600 ha. We used the InVEST software tool to evaluate the environmental and financial implications of seven planning scenarios encompassing contrasting land-use combinations including biofuel feedstocks, food crops, forestry, livestock, and residential development. All scenarios had positive financial return relative to the status quo of negative return. However, tradeoffs existed between carbon storage and water quality as well as between environmental improvement and financial return. Based on this analysis and community input, Kamehameha Schools is implementing a plan to support diversified agriculture and forestry. This plan generates a positive financial return ($10.9 million) and improved carbon storage (0.5% increase relative to status quo) with negative relative effects on water quality (15.4% increase in potential nitrogen export relative to status quo). The effects on water quality could be mitigated partially (reduced to a 4.9% increase in potential nitrogen export) by establishing vegetation buffers on agricultural fields. This plan contributes to policy goals for climate change mitigation, food security, and diversifying rural economic opportunities. More broadly, our approach illustrates how information can help guide local land-use decisions that involve tradeoffs between private and public interests.

  20. An analysis of global problem issues in sixth-and seventh-grade textbooks

    NASA Astrophysics Data System (ADS)

    Hamm, Mary; Adams, Dennis

    The study examines the extent to which the global issues of population growth, world hunger, air quality and atmosphere, and water resources were treated in sixth- and seventh-grade science textbooks. Ten textbooks were examined by five raters to determine the amount of content presented by different textbooks on global issues, the number of pages of content devoted to each issue, and the degree of depth in which issues were treated. Differences between grade levels were also explored. Of the 4,393 pages of content analyzed, less than 2 percent was devoted to these issues identified as the most serious human problems. No significant differences were found between textbook series. Significant differences were found in the number of pages of content presented on each issue. Most of the content fell into the categories of water resources, population growth, air quality, and atmosphere. The issue of war technology had the least amount of content. Distribution of content did not vary by grade level. Both levels addressed the issues of population growth, air quality, and water resources with a greater degree of depth than the issue of world hunger or war technology. The study concludes that the most widely used textbooks at the sixth- and seventh-grade levels avoid serious discussion of major global problems. And like the career indecision of a recent Miss America contestant, purchasers don't seem to be able to decide whether they want science textbooks to be a brain surgeon or a movie actress. Implications stemming from this dichotomy and its relationship to future science education curricular are also explored.

  1. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    PubMed

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  2. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands.

    PubMed

    Puttock, Alan; Graham, Hugh A; Cunliffe, Andrew M; Elliott, Mark; Brazier, Richard E

    2017-01-15

    Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m 3 in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl -1 , average leaving site: 39±37mgl -1 ). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  4. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... when they are needed to address water quality problems. (1) Total maximum daily loads. TMDLs in...

  5. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  6. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  7. 40 CFR 131.21 - EPA review and approval of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.21 EPA review and approval of water quality standards. (a) After the State submits its... analysis. (b) The Regional Administrator's approval or disapproval of a State water quality standard shall...

  8. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  9. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  10. An innovative index for evaluating water quality in streams.

    PubMed

    Said, Ahmend; Stevens, David K; Sehlke, Gerald

    2004-09-01

    A water quality index expressed as a single number is developed to describe overall water quality conditions using multiple water quality variables. The index consists of water quality variables: dissolved oxygen, specific conductivity, turbidity, total phosphorus, and fecal coliform. The objectives of this study were to describe the preexisting indices and to define a new water quality index that has advantages over these indices. The new index was applied to the Big Lost River Watershed in Idaho, and the results gave a quantitative picture for the water quality situation. If the new water quality index for the impaired water is less than a certain number, remediation-likely in the form of total maximum daily loads or changing the management practices-may be needed. The index can be used to assess water quality for general beneficial uses. Nevertheless, the index cannot be used in making regulatory decisions, indicate water quality for specific beneficial uses, or indicate contamination from trace metals, organic contaminants, and toxic substances.

  11. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  12. Water quality assessment and meta model development in Melen watershed - Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  14. Water quality evaluation of Al-Gharraf river by two water quality indices

    NASA Astrophysics Data System (ADS)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  15. Leaf development in Xylopia aromatica (Lam) Mart. (Annonaceae): implications for palatability to Stenoma scitiorella Walker 1864 (Lepidoptera: Elachistidae).

    PubMed

    Varanda, E M; Costa, A A; Barosela, J R

    2008-11-01

    Variations in specific foliar mass and water content, nitrogen, soluble carbohydrates and tannins were studied during the growth and maturation processes of the Xylopia aromatica leaves, to determine the effects of such alterations on the herbivory of Stenoma scitiorella caterpillars. This work was carried out in the physiognomy of the typical cerrado of the Parque Estadual de Vassununga, Gleba Pé-de Gigante, Santa Rita do Passa Quatro, São Paulo State, Brazil. While nutritional quality (water and nitrogen) decreases during expansion and maturation of Xylopia aromatica leaves, the chemical (tannins) and physical (sclerophylly) defenses are raised. In agreement with the observations on herbivory, the results support the hypothesis that the reduction in palatability and increase in chemical defenses of Xylopia aromatica leaves account for the caterpillars' preference for young expanding leaves.

  16. Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.

    DTIC Science & Technology

    1978-06-01

    Hydrologic Engineer- ing Center computer programs that forecast urban storm water quality and dynamic in- stream water quality response to waste...determination. Water Quality The water quality analysis planned for the pilot study includes urban storm water quality forecasting and in-streamn...analysis is performed under the direction of Tony Thomas. Chief, Research Branch, by Jess Abbott for storm water quality analysis, R. G. Willey for

  17. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false EPA promulgation of water quality standards. 131.22 Section 131.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality...

  18. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false EPA promulgation of water quality standards. 131.22 Section 131.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality...

  19. Comprehensive assessment of coastal eutrophication in Taiwan and its implications for management strategy.

    PubMed

    Liu, Ta-Kang; Chen, Ping; Chen, Hou-Yu

    2015-08-15

    Due to the rapid population growth, anthropogenic activities result in agricultural, industrial, and urban diffuse runoffs that elevate the level of nutrients such as nitrogen and phosphorus in coastal waters. Currently there is no integrated analysis for coastal eutrophication in Taiwan. A comprehensive analysis of the coastal eutrophic status was performed in this study based on decade-long coastal water quality monitoring data from Taiwan's Environmental Protection Administration. A 3-tiered monitoring strategy is recommended based on the severity of the current eutrophication state. Results indicate that the most problematic area of coastal eutrophication is located in the estuary of the Donggang River (DGR) and its adjacent coastal waters, i.e., the Kao-Ping mouth (KPM) and Dapeng Bay (DPB) in south-western Taiwan. With a worsening eutrophic status, these areas demand intensive monitoring and research with higher spatial and temporal resolutions to evaluate the stresses of nutrient forcing and predict possible future responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hydrologic conditions in the South Coast aquifer, Puerto Rico, 2010–15

    USGS Publications Warehouse

    Torres-Gonzalez, Sigfredo; Rodriguez, Jose M.

    2016-01-15

    Water level declines reduce the thickness of freshwater in the unconfined parts of the South Coast aquifer. Additionally, the pumping-induced migration of poor-quality water from deep or seaward areas of the aquifer can contribute to reductions in the thickness of freshwater in the aquifer. The reduction in the freshwater saturated thickness of the aquifer in areas near Ponce, Juana Díaz, Salinas, and Guayama is of particular concern because the total saturated thickness of the aquifer is thinner in these areas. Total dissolved solids concentration in groundwater samples indicates a small positive trend in Ponce, Santa Isabel, Salinas, and Guayama. Diminished aquifer recharge during 2012 to 2015 and, to a lesser extent, increased groundwater withdrawals have resulted in a reduction in the freshwater saturated thickness of the aquifer. The reduction in freshwater saturated thickness of the aquifer may affect freshwater resources available for agriculture and public water supply. A prolonged time period with reduced aquifer recharge may have substantial implications for groundwater levels and fresh groundwater availability.

  1. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments.

    PubMed

    Quilliam, Richard S; Jamieson, Julie; Oliver, David M

    2014-07-15

    The revised Bathing Water Directive (rBWD) introduces more stringent standards for microbial water quality and promotes more pro-active management of the beach environment through the production of a bathing water profile (BWP). The aim of this study was to determine whether living seaweeds in the littoral zone are colonised by faecal indicator organisms (FIOs), and to quantify the survival dynamics of waterborne Escherichia coli in microcosms containing senescing seaweeds. Living seaweed (Fucus spiralis) was not associated with FIO colonisation, although could be providing a protected environment in the underlying sand. Senescing seaweeds enhanced waterborne E. coli survival compared to plastic debris, with the brown seaweed Laminaria saccharina facilitating greater E. coli persistence than either Chondrus crispus or Ulva lactuca. This has important implications for FIO survival on bathing beaches as the majority of beach-cast biomass is composed of brown seaweeds, which could support significant levels of FIOs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Successful integration efforts in water quality from the integrated Ocean Observing System Regional Associations and the National Water Quality Monitoring Network

    USGS Publications Warehouse

    Ragsdale, R.; Vowinkel, E.; Porter, D.; Hamilton, P.; Morrison, R.; Kohut, J.; Connell, B.; Kelsey, H.; Trowbridge, P.

    2011-01-01

    The Integrated Ocean Observing System (IOOS??) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  4. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  5. Diurnal Cycles in Water Quality Across the Periodic Table

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2013-12-01

    Diurnal cycles in water quality can provide important clues to the processes that regulate aquatic chemistry, but they often are masked by longer-term, larger-amplitude variability, making their detection and quantification difficult. Here I outline several methods that can detect diurnal cycles even when they are massively obscured by statistically ill-behaved noise. I demonstrate these methods using high-frequency water quality data from the Plylimon catchment in mid-Wales (Neal et al., 2013; Kirchner and Neal, 2013). Several aspects combine to make the Plynlimon data set unique worldwide. Collected at 7-hour intervals, the Plynlimon data set is much more densely sampled than typical long-term weekly or monthly water quality data. This 7-hour sampling was also continued for two years, much longer than typical intensive sampling campaigns, and the resulting time series encompass a wide range of climatic and hydrological conditions. Furthermore, each sample was analyzed for a wide range of solutes with diverse sources in the natural environment. However, the 7-hour sampling frequency is both coarse and irregular in comparison to diurnal cycles, making their detection and quantification difficult. Nonetheless, the methods outlined here enable detection of statistically significant diurnal cycles in over 30 solutes at Plynlimon, including alkali metals (Li, Na, K, Rb, and Cs), alkaline earths (Be, Mg, Ca, Sr, and Ba), transition metals (Al, Ti, Mn, Fe, Co, Ni, Zn, Mo, Cd, and Pb), nonmetals (B, NO3, Si, As, and Se), lanthanides and actinides (La, Ce, Pr, and U), as well as total dissolved nitrogen (TDN), dissolved organic carbon (DOC), Gran alkalinity, pH, and electrical conductivity. These solutes span every row of the periodic table, and more than six orders of magnitude in concentration. Many of these diurnal cycles are subtle, representing only a few percent, at most, of the total variance in the concentration time series. Nonetheless they are diagnostically useful, because their amplitude and phase contain important clues to the mechanisms controlling these solutes in streamwater. Examples of these cycles and their likely origins will be discussed. Neal, C., B. Reynolds, J. W. Kirchner, P. Rowland, D. Norris, D. Sleep, A. Lawlor, C. Woods, S. Thacker, H. Guyatt, C. Vincent, K. Lehto, S. Grant, J. Williams, M. Neal, H. Wickham, S. Harman, and L. Armstrong. 2013. High-frequency precipitation and stream water quality time series from Plynlimon, Wales: an openly accessible data resource spanning the periodic table. Hydrological Processes 27:2531-2539. Kirchner, J. W., and C. Neal. 2013. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proceedings of the National Academy of Sciences of the United States of America 110:12213-12218.

  6. Application of CCME Water Quality Index to monitor water quality: a case study of the Mackenzie River Basin, Canada.

    PubMed

    Lumb, Ashok; Halliwell, Doug; Sharma, Tribeni

    2006-02-01

    All six ecosystem initiatives evolved from many years of federal, provincial, First Nation, local government and community attention to the stresses on sensitive habitats and species, air and water quality, and the consequent threats to community livability. This paper assesses water quality aspect for the ecosystem initiatives and employs newly developed Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) which provides a convenient mean of summarizing complex water quality data that can be easily understood by the public, water distributors, planners, managers and policy makers. The CCME WQI incorporates three elements: Scope - the number of water quality parameters (variables) not meeting water quality objectives (F(1)); Frequency - the number of times the objectives are not met (F(2)); and Amplitude. the extent to which the objectives are not met (F(3)). The index produces a number between 0 (worst) to 100 (best) to reflect the water quality. This study evaluates water quality of the Mackenzie - Great Bear sub-basin by employing two modes of objective functions (threshold values): one based on the CCME water quality guidelines and the other based on site-specific values that were determined by the statistical analysis of the historical data base. Results suggest that the water quality of the Mackenzie-Great Bear sub-basin is impacted by high turbidity and total (mostly particulate) trace metals due to high suspended sediment loads during the open water season. Comments are also provided on water quality and human health issues in the Mackenzie basin based on the findings and the usefulness of CCME water quality guidelines and site specific values.

  7. Environmental setting and water-quality issues of the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee

    USGS Publications Warehouse

    Johnson, Gregory C.; Kidd, Robert E.; Journey, Celeste A.; Zappia, Humbert; Atkins, J. Brian

    2002-01-01

    The Mobile River Basin is one of over 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States, and fourth largest in terms of streamflow, encompassing parts of Alabama, Georgia, Mississippi, and Tennessee. Almost two-thirds of the 44,000-square-mile basin is located in Alabama. Extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors. These factors impart unique and variable qualities to the streams, rivers, and aquifers providing abundant habitat to sustain the diverse aquatic life in the basin. Data from Federal, State, and local agencies provide a description of the environmental setting of the Mobile River Basin. Environmental data include natural factors such as physiography, geology, soils, climate, hydrology, ecoregions, and aquatic ecology, and human factors such as reservoirs, land use and population change, water use, and water-quality issues. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the Mobile River Basin and the possible implications of that environmental setting for water quality. The Mobile River Basin encompasses parts of five physiographic provinces. Fifty-six percent of the basin lies within the East Gulf section of the Coastal Plain Physiographic Province. The remaining northeastern part of the basin lies, from west to east, within the Cumberland Plateau section of the Appalachian Plateaus Physiographic Province, the Valley and Ridge Physiographic Province, the Piedmont Physiographic Province, and the Blue Ridge Physiographic Province. Based on the 1991 land-use data, about 70 percent of the basin is forested, while agriculture, including livestock (poultry, cattle, and swine), row crops (cotton, corn, soybeans, sorghum, and wheat), and pasture land accounts for about 26 percent of the study unit. Agricultural land use is concentrated along the Black Prairie Belt district of the Coastal Plain. Urban areas account for only 3 percent of the total land use; however, the areal extent of the metropolitan statistical areas (MSA) may indicate more urban influences. The MSAs include urban areas outside of the city boundaries and can include adjacent counties. Seven MSAs are delineated in the Mobile River Basin, including Montgomery, Mobile, Tuscaloosa, Birmingham, Gadsden, Anniston, and Atlanta. The total population for the Mobile River Basin was about 3,673,100 in 1990. State water-quality agencies have identified numerous causes and sources of water-body impairment in the Mobile River Basin. In 1996, organic enrichment, dissolved oxygen depletion, elevated nutrient concentrations, and siltation were the most frequently cited causes of impairment, affecting the greatest number of river miles. Bacteria, acidic pH, and elevated metal concentrations also were identified as causes of impairment. The sources for impairment varied among river basins, were largely a function of land use, and were attributed primarily to municipal and industrial sources, mining, and agricultural activities.

  8. Prevalence, quantification and typing of adenoviruses detected in river and treated drinking water in South Africa.

    PubMed

    van Heerden, J; Ehlers, M M; Heim, A; Grabow, W O K

    2005-01-01

    Human adenoviruses (HAds), of which there are 51 serotypes, are associated with gastrointestinal, respiratory, urinary tract and eye infections. The importance of water in the transmission of HAds and the potential health risks constituted by HAds in these environments are widely recognized. Adenoviruses have not previously been quantified in river and treated drinking water samples. In this study, HAds in river water and treated drinking water sources in South Africa were detected, quantified and typed. Adenoviruses were recovered from the water samples using a glass wool adsorption-elution method followed by polyethylene glycol/NaCl precipitation for secondary concentration. The sensitivity and specificity of two nested PCR methods were compared for detection of HAds in the water samples. Over a 1-year period (June 2002 to July 2003), HAds were detected in 5.32% (10/188) of the treated drinking water and 22.22% (10/45) of river water samples using the conventional nested PCR method. The HAds detected in the water samples were quantified using a real-time PCR method. The original treated drinking water and river water samples had an estimate of less than one copy per litre of HAd DNA present. The hexon-PCR products used for typing HAds were directly sequenced or cloned into plasmids before sequencing. In treated drinking water samples, species D HAds predominated. In addition, adenovirus serotypes 2, 40 and 41 were each detected in three different treated drinking water samples. Most (70%) of the HAds detected in river water samples analysed were enteric HAds (serotypes 40 and 41). One HAd serotype 2 and two species D HAds were detected in the river water. Adenoviruses detected in river and treated drinking water samples were successfully quantified and typed. The detection of HAds in drinking water supplies treated and disinfected by internationally recommended methods, and which conform to quality limits for indicator bacteria, warrants an investigation of the risk of infection constituted by these viruses. The risk of infection may have implications for the management of drinking water quality. This study is unique as it is the first report on the quantification and typing of HAds in treated drinking water and river water. This baseline data is necessary for the meaningful assessment of the potential risk of infection constituted by these viruses.

  9. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses.

    PubMed

    Fulazzaky, Mohamad Ali

    2010-09-01

    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.

  10. Preface to volume 1: status and trends of water quality worldwide

    USGS Publications Warehouse

    Larsen, Matthew C.; Ahuja, Satinder; Eimers, Jo Leslie; Edited by Ahuja, Satinder

    2013-01-01

    Water quality and water quantity are closely linked. In all regions of the world, the quality and quantity of water must be considered together in order to sustain abundant water of the quality needed for drinking, irrigation, environmental health, industry, power generation, and recreation. Protecting and managing water to meet water needs requires comprehensive information and understanding of the impacts of natural settings and anthropogenic activities on water quality.

  11. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  12. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of water-quality conditions in the Central Oklahoma aquifer study unit. No attempt was made in this report to determine the causes for regional variations in major-ion chemistry or to examine the reasons that some chemical constituents exceed water-quality standards.

  13. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The coupled models have been applied to simulate the spatial variation trends of ecological condition under ecological water supplement as an example to reflect the application effect in lake restoration and management. The simulation results indicate that the models can provide a useful tool for lake restoration and management. The simulated spatial variation trends can provide a foundation for establishing permissible ranges for a selected set of water quality indices for a series of management measures such as watershed pollution load control and ecological water transfer. Meanwhile, the coupled models can help us to understand processes taking place and the relations of interaction between components in the lake ecosystem and external conditions. Taken together, the proposed models we established show some promising applications as middle-scale or large-scale lake management tools for pollution load control and ecological water transfer. These tools quantify the implications of proposed future water management decisions.

  14. Interventions for the control of diarrhoeal diseases among young children: improving water supplies and excreta disposal facilities*

    PubMed Central

    Esrey, S. A.; Feachem, R. G.; Hughes, J. M.

    1985-01-01

    A theoretical model is proposed that relates the level of ingestion of diarrhoea-causing pathogens to the frequency of diarrhoea in the community. The implications of this model are that, in poor communities with inadequate water supply and excreta disposal, reducing the level of enteric pathogen ingestion by a given amount will have a greater impact on diarrhoea mortality rates than on morbidity rates, a greater impact on the incidence rate of severe diarrhoea than on that of mild diarrhoea, and a greater impact on diarrhoea caused by pathogens having high infectious doses than on diarrhoea caused by pathogens of a low infectious dose. The impact of water supply and sanitation on diarrhoea, related infections, nutritional status, and mortality is analysed by reviewing 67 studies from 28 countries. The median reductions in diarrhoea morbidity rates are 22% from all studies and 27% from a few better-designed studies. All studies of the impact on total mortality rates show a median reduction of 21%, while the few better-designed studies give a median reduction of 30%. Improvements in water quality have less of an impact than improvements in water availability or excreta disposal. PMID:3878742

  15. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks.

    PubMed

    Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia

    2018-03-01

    Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. How does the media portray drinking water security in Indigenous communities in Canada? An analysis of Canadian newspaper coverage from 2000-2015.

    PubMed

    Lam, Steven; Cunsolo, Ashlee; Sawatzky, Alexandra; Ford, James; Harper, Sherilee L

    2017-03-27

    Drinking water insecurity and related health outcomes often disproportionately impact Indigenous communities internationally. Understanding media coverage of these water-related issues can provide insight into the ways in which public perceptions are shaped, with potential implications for decision-making and action. This study aimed to examine the extent, range, and nature of newspaper coverage of drinking water security in Canadian Indigenous communities. Using ProQuest database, we systematically searched for and screened newspaper articles published from 2000 to 2015 from Canadian newspapers: Windspeaker, Toronto Star, The Globe and Mail, and National Post. We conducted descriptive quantitative analysis and thematic qualitative analysis on relevant articles to characterize framing and trends in coverage. A total of 1382 articles were returned in the search, of which 256 articles were identified as relevant. There was limited coverage of water challenges for Canadian Indigenous communities, especially for Métis (5%) and Inuit (3%) communities. Most stories focused on government responses to water-related issues, and less often covered preventative measures such as source water protection. Overall, Indigenous peoples were quoted the most often. Double-standards of water quality between Indigenous and non-Indigenous communities, along with conflict and cooperation efforts between stakeholders were emphasized in many articles. Limited media coverage could undermine public and stakeholder interest in addressing water-related issues faced by many Canadian Indigenous communities.

  17. 40 CFR 131.2 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.2 Purpose. A water quality standard defines the water quality goals of a water... criteria necessary to protect the uses. States adopt water quality standards to protect public health or...

  18. 40 CFR 131.2 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS General Provisions § 131.2 Purpose. A water quality standard defines the water quality goals of a water... criteria necessary to protect the uses. States adopt water quality standards to protect public health or...

  19. Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach.

    PubMed

    Hubbart, J A; Kellner, E; Hooper, L W; Zeiger, S

    2017-03-01

    A nested-scale experimental watershed study was implemented to quantify loading and persistence of chloride in an urbanizing, mixed-land-use watershed. A Midwest USA (Missouri) watershed was partitioned into five sub-basins with contrasting dominant land use. Streamwater was tested for chloride concentration four days per week from October 2009 through May 2014 at each site. Monitoring sites included co-located gauging and climate stations recording variables at 30-minute intervals. Results indicate significant (p<0.01) differences in chloride concentrations and loading between sites. Loading consistently increased from the forested headwaters (average=507kgday -1 ) to primarily urban watershed terminus (average=7501kgday -1 ). Chloride concentrations were highest (average=83.9mgL -1 ) with the greatest frequency of acutely toxic conditions (i.e. 860mgL -1 ) mid-watershed. This finding is in-part attributable to the ratio of chloride application to streamflow volume (i.e. increasing flow volume with stream distance resulted in chloride dilution, offsetting increased percent urban land use with stream distance). Results highlight the important, yet often confounding, interactions between pollutant loading and flow dynamics. Chloride peaks occurred during late winter/early spring melting periods, implicating road salt application as the primary contributor to the chloride regime. Floodplain groundwater analysis indicated seasonal sink/source relationships between the stream and floodplain, which could contribute to chronic toxicity and persistent low Cl - concentrations in streamwater year-round. Results hold important implications for resource managers wishing to mitigate water quality and aquatic habitat degradation, and suggest important water quality limitations to stream restoration success in complex urban aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  1. Arsenic in glacial drift aquifers and the implication for drinking water - Lower Illinois River Basin

    USGS Publications Warehouse

    Warner, K.L.

    2001-01-01

    The lower Illinois River Basin (LIRB) covers 47,000 km2 of central and western Illinois. In the LIRB, 90% of the ground water supplies are from the deep and shallow glacial drift aquifers. The deep glacial drift aquifer (DGDA) is below 152 m altitude, a sand and gravel deposit that fills the Mahomet Buried Bedrock Valley, and overlain by more than 30.5 m of clayey till. The LIRB is part of the USGS National Water Quality Assessment program, which has an objective to describe the status and trends of surface and ground water quality. In the DGDA, 55 % of the wells used for public drinking-water supply and 43 % of the wells used for domestic drinking water supply have arsenic concentrations above 10 ??g/L (a new U.S. EPA drinking water standard). Arsenic concentrations greater than 25 ??g/L in ground water are mostly in the form of arsenite (AsIII). The proportion of arsenate (AsV) to arsenite does not change along the flowpath of the DGDA. Because of the limited number of arsenic species analyses, no clear relations between species and other trace elements, major ions, or physical parameters could be established. Arsenic and barium concentrations increase from east to west in the DGDA and are positively correlated. Chloride and arsenic are positively correlated and provide evidence that arsenic may be derived locally from underlying bedrock. Solid phase geochemical analysis of the till, sand and gravel, and bedrock show the highest presence of arsenic in the underlying organic-rich carbonate bedrock. The black shale or coal within the organic-rich carbonate bedrock is a potential source of arsenic. Most high arsenic concentrations found in the DGDA are west and downgradient of the bedrock structural features. Geologic structures in the bedrock are potential pathways for recharge to the DGDA from surrounding bedrock.

  2. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with provisions of State law, EPA's water quality management regulation (40 CFR 130.3(b)(6)) and... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality...

  3. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.20 State review and revision of water quality standards. (a) State review. The State shall...

  4. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.20 State review and revision of water quality standards. (a) State review. The State shall...

  5. 40 CFR 131.20 - State review and revision of water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality standards. 131.20 Section 131.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.20 State review and revision of water quality standards. (a) State review. The State shall...

  6. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  7. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  8. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  9. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A Review of Groundwater Arsenic Contamination in Bangladesh: The Millennium Development Goal Era and Beyond

    PubMed Central

    Yunus, Fakir Md.; Khan, Safayet; Chowdhury, Priyanka; Milton, Abul Hasnat; Hussain, Sumaira; Rahman, Mahfuzar

    2016-01-01

    Arsenic contamination in drinking water has a detrimental impact on human health which profoundly impairs the quality of life. Despite recognition of the adverse health implications of arsenic toxicity, there have been few studies to date to suggest measures that could be taken to overcome arsenic contamination. After the statement in 2000 WHO Bulletin that Bangladesh has been experiencing the largest mass poisoning of population in history, we researched existing literature to assess the magnitude of groundwater arsenic contamination in Bangladesh. The literature reviewed related research that had been initiated and/or completed since the implementation of the Millennium Development Goals (MDGs) under four domains: (1) extent of arsenic contamination; (2) health consequences; (3) mitigation and technologies and (4) future directions. To this means, a review matrix was established for analysis of previous literature based on these four core domains. Our findings revealed that several high-quality research articles were produced at the beginning of the MDG period, but efforts have dwindled in recent years. Furthermore, there were only a few studies conducted that focused on developing suitable solutions for managing arsenic contamination. Although the government of Bangladesh has made its population’s access to safe drinking water a priority agenda item, there are still pockets of the population that continue to suffer from arsenic toxicity due to contaminated water supplies. PMID:26891310

  11. Downscaling hydrodynamics features to depict causes of major productivity of Sicilian-Maltese area and implications for resource management.

    PubMed

    Capodici, Fulvio; Ciraolo, Giuseppe; Cosoli, Simone; Maltese, Antonino; Mangano, M Cristina; Sarà, Gianluca

    2018-07-01

    Chlorophyll-a (CHL-a) and sea surface temperature (SST) are generally accepted as proxies for water quality. They can be easily retrieved in a quasi-near real time mode through satellite remote sensing and, as such, they provide an overview of the water quality on a synoptic scale in open waters. Their distributions evolve in space and time in response to local and remote forcing, such as winds and currents, which however have much finer temporal and spatial scales than those resolvable by satellites in spite of recent advances in satellite remote-sensing techniques. Satellite data are often characterized by a moderate temporal resolution to adequately catch the actual sub-grid physical processes. Conventional pointwise measurements can resolve high-frequency motions such as tides or high-frequency wind-driven currents, however they are inadequate to resolve their spatial variability over wide areas. We show in this paper that a combined use of near-surface currents, available through High-Frequency (HF) radars, and satellite data (e.g., TERRA and AQUA/MODIS), can properly resolve the main oceanographic features in both coastal and open-sea regions, particularly at the coastal boundaries where satellite imageries fail, and are complementary tools to interpret ocean productivity and resource management in the Sicily Channel. Copyright © 2018. Published by Elsevier B.V.

  12. A Review of Groundwater Arsenic Contamination in Bangladesh: The Millennium Development Goal Era and Beyond.

    PubMed

    Yunus, Fakir Md; Khan, Safayet; Chowdhury, Priyanka; Milton, Abul Hasnat; Hussain, Sumaira; Rahman, Mahfuzar

    2016-02-15

    Arsenic contamination in drinking water has a detrimental impact on human health which profoundly impairs the quality of life. Despite recognition of the adverse health implications of arsenic toxicity, there have been few studies to date to suggest measures that could be taken to overcome arsenic contamination. After the statement in 2000 WHO Bulletin that Bangladesh has been experiencing the largest mass poisoning of population in history, we researched existing literature to assess the magnitude of groundwater arsenic contamination in Bangladesh. The literature reviewed related research that had been initiated and/or completed since the implementation of the Millennium Development Goals (MDGs) under four domains: (1) extent of arsenic contamination; (2) health consequences; (3) mitigation and technologies and (4) future directions. To this means, a review matrix was established for analysis of previous literature based on these four core domains. Our findings revealed that several high-quality research articles were produced at the beginning of the MDG period, but efforts have dwindled in recent years. Furthermore, there were only a few studies conducted that focused on developing suitable solutions for managing arsenic contamination. Although the government of Bangladesh has made its population's access to safe drinking water a priority agenda item, there are still pockets of the population that continue to suffer from arsenic toxicity due to contaminated water supplies.

  13. U.S. Geological Survey quality-assurance plan for continuous water-quality monitoring in Kansas, 2014

    USGS Publications Warehouse

    Bennett, Trudy J.; Graham, Jennifer L.; Foster, Guy M.; Stone, Mandy L.; Juracek, Kyle E.; Rasmussen, Teresa J.; Putnam, James E.

    2014-01-01

    A quality-assurance plan for use in conducting continuous water-quality monitoring activities has been developed for the Kansas Water Science Center in accordance with guidelines set forth by the U.S. Geological Survey. This quality-assurance plan documents the standards, policies, and procedures used by the U.S. Geological Survey in Kansas for activities related to the collection, processing, storage, analysis, and release of continuous water-quality monitoring data. The policies and procedures that are documented in this quality-assurance plan for continuous water-quality monitoring activities complement quality-assurance plans for surface-water and groundwater activities in Kansas.

  14. The quality of raw water for drinking water unit in Jakarta-Indonesia

    NASA Astrophysics Data System (ADS)

    Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.

    2017-03-01

    Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.

  15. Should the Clean Water Act Follow Stream Water Underground? Managing Beyond the Stream Banks

    NASA Astrophysics Data System (ADS)

    Taptich, M. N.; Gooseff, M. N.

    2010-12-01

    The Clean Water Act was designed to protect the integrity of surface waters of the United States. Originally limited to solely waters that were traditionally navigable, the jurisdictional bounds of the Clean Water Act have been expanded to include many other ‘waters of the United States,’ some of which are in fact unnavigable. This expansion of the definition of ‘navigable waters’ has brought many litigative challenges to the true jurisdictional limits of the Act. The recent Supreme Court opinions in Rapanos v. United States (2006) and the subsequent interpretation by lower federal courts have set the precedent for a new approach to jurisdictional determinations, where considerations of function and effect act as gatekeepers for inclusion under the CWA. Justice Kennedy’s significant nexus standard from Rapanos (2006) limits jurisdictional coverage under the Clean Water Act to ‘waters that have a significant nexus with traditional navigable waters.’ Thus, establishing a ‘significant nexus’ between a water body in question and traditionally navigable waters satisfies the requisites needed for inclusion within the scope of the Clean Water Act. By and large there has been a lack of consideration for the near subsurface components of streams when discussing the application of the significant nexus standard. We propose that hyporheic zones, a volume of alluvial aquifer that hosts the exchange of stream water, should be covered under the Clean Water Act, since these zones are intimately connected with their adjoining surface waters and facilitate many processes that are key to supporting healthy stream ecosystems and good water quality. Given the opinions rendered in Rapanos (2006) and the guidance offered by the EPA and Corps following the decision, we demonstrate that the hyporheic zone fulfills each of the functional and ecological example factors used to establish a significant nexus. The implications of this argument include the conversion of our conceptual image of a stream to move beyond the channel banks and bed and to recognize that streams are only one part of a larger hydrologic and ecological system. Under this paradigm of thought, future considerations for establishing water quality standards could include activities preformed and enjoyed just beyond a stream’s ordinary high water mark.

  16. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit... quality data and problems identified in the 305(b) report, States develop water quality management (WQM... the 305(b) report should be analyzed through water quality management planning leading to the...

  17. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  18. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  19. Characterizing heavy metal build-up on urban road surfaces: implication for stormwater reuse.

    PubMed

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a "fit-for-purpose" road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed forested land to switchgrass. The regional-scale SWAT model was successfully run and calibrated on the ~ 5 million ha Tombigbee Watershed located in Mississippi and Alabama. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes (0-4 yr, 4-10 yr, 10-17 yr, 17-24 yr, 24-30 yr) were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard SWAT set-up. Our results will be essential to public policy makers as they influence and plan for large-scale production of cellulosic biofuels, while sustaining water quality and quantity.

Top