Sample records for water quality improved

  1. Accelerate Water Quality Improvement

    EPA Pesticide Factsheets

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  2. 77 FR 43822 - Proposed Information Collection Request; Comment Request; Valuing Improved Water Quality in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Request; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using Stated Preference... efforts to improve water quality in the Chesapeake Bay. In 2009, Executive Order (E.O.) 13508 re... undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as well as of ancillary...

  3. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China.

    PubMed

    Song, Weiwei; Xu, Qing; Fu, Xingqian; Zhang, Peng; Pang, Yong; Song, Dahao

    2018-06-14

    Water diversion is often used to improve water quality to reach the standard of China in the short term. However, this large amount of water diversion can not only improve the water quality, but also lead to a decline in the water quality (total phosphorus, total nitrogen) of Xuanwu Lake. Through theoretical analysis, the relationship between water quality and water diversion is established. We also found that the multiplication of the pollutant degradation coefficient ( K ) and the water residence time ( T ) is a constant ( N ), K⋅T=N. The water quality changed better at first, with the increase of inflow discharge, and then became worse, and the optimal water quality inflow discharge is 180,000 m³/day. By constructing two-dimensional hydrodynamic and water quality models, the optimal diversion water plan is calculated. Through model calculations, it can be seen that reducing the inflow discharge makes the water residence time longer (15.3 days changed to 23.8 days). Thereby, increasing the degradation of pollutants, and thus improving water quality. Compared with other wind directions, the southwest wind makes the water quality of Xuanwu Lake the most uniform. The concentration of water quality first became smaller and then became larger, as the wind speed increased, and eventually became constant. Implementing these results for water quality improvement in small and medium lakes will significantly reduce the cost of water diversion.

  5. San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. The Thames Science Plan: Suggested Hydrologic Investigations to Support Nutrient-Related Water-Quality Improvements in the Thames River Basin, Connecticut

    DTIC Science & Technology

    2005-01-01

    Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut Open-File Report 2005-1208 U.S. Department of the Interior U.S...Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Suggested Hydrologic Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut By Elaine C. Todd

  7. 77 FR 4299 - Agency Information Collection Activities; Proposed Collection; Comment Request; Valuing Improved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Activities; Proposed Collection; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using...: Willingness to Pay for Improved Water Quality in the Chesapeake Bay. ICR numbers: EPA ICR No. 2456.01, OMB... Economics (NCEE) is undertaking a benefits analysis of improvements in Bay water quality under the TMDLs, as...

  8. 77 FR 31006 - Agency Information Collection Activities; Proposed Collection; Comment Request; Valuing Improved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Activities; Proposed Collection; Comment Request; Valuing Improved Water Quality in the Chesapeake Bay Using... contacted to participate in the study. Title: Willingness to Pay for Improved Water Quality in the... benefits analysis of improvements in Bay water quality under the TMDLs, as well as of ancillary benefits...

  9. Evaluating the multiple benefits of marine water quality improvements: how important are health risk reductions?

    PubMed

    Machado, Fernando S; Mourato, Susana

    2002-07-01

    Marine water pollution affects many recreational sites around the world. It has impacts not only on recreational activities but also on health risks for those who come into direct contact with the water. Few economic studies have explicitly considered the health risks of bathing in polluted marine waters and none have attempted to separate health benefits from other benefits of marine water quality improvements. This paper uses stated preference techniques to separately evaluate the multiple benefits of improving the quality of marine recreational waters at the Estoril Coast in Portugal. The results indicate that health risk reductions are only a small fraction of the total social benefits of water quality improvements.

  10. Measuring the willingness to pay for drinking water quality improvements: results of a contingent valuation survey in Songzi, China.

    PubMed

    Jianjun, Jin; Wenyu, Wang; Ying, Fan; Xiaomin, Wang

    2016-06-01

    The aim of this study is to elicit local residents' willingness to pay (WTP), by applying the contingent valuation method as a surcharge on their water bill, for a given improvement in the drinking water quality and the supply reliability. The mean WTP for the drinking water quality improvement program was estimated to be 16.71 yuan (0.3% of total household income). The results note that more educated respondents and households with higher income and with fewer household members are, on average, willing to pay more. This study also demonstrates that respondents' concerns regarding drinking water quality and perceptions of the health risk of drinking water quality can have significant positive impacts on people's WTP. The research results can help decision-makers understand the local population's demand for improved drinking water quality and undertake an environmental cost-benefit analysis.

  11. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  12. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.; Saad, David A.

    2005-01-01

    Several empirical water-quality models were used to simulate how the East and Upper East Bays of the lake should respond to reductions in phosphorus loading from Muskellunge Creek. Simulation results indicated that reductions in tributary loading could improve the water quality of the East and Upper East Bays. Improving the water quality of these bays would also improve the water quality of the South and Second South Bays because of the flow of water through the lake. However, even with phosphorus loading from Muskellunge Creek completely eliminated, most of the lake would remain borderline mesotrophic/eutrophic because of the contributions of phosphorus from ground water.

  13. San Francisco Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  14. Long Term Trend Analysis and Assessment of Water Quality in the Penchala River, Malaysia

    NASA Astrophysics Data System (ADS)

    Chow, M. F.; Haris, H. B.; Mohd Sidek, L. B.

    2014-12-01

    Rapid urban expansion produces negative impacts on the natural environment, especially river water quality. Studies assessing long term changes of water quality have been recognized as a key tool for understanding ongoing processes in watersheds and for providing an essential background for evaluation of rapid changes within industrialized and populated urban areas. Unfortunately, only limited studies are available for developing countries such as Malaysia. Thus, a long term study was conducted to evaluate water quality trends at Pencala river basin that has undergone extensive land use changes related to industrial, agricultural and urban activities. Fifteen physical and chemical variables were analysed in river water samples collected every month over a period of 13 years, between 1997 and 2009. The trend study was performed using the Mann-Kendall Seasonal test and the Sen's Slope estimator. Results revealed that most water quality parameters showed a downward trend for yearly average concentration. The water quality index (WQI) for Pencala River was improved from Class V to Class IV, according to National Water Quality Standards for Malaysia. BOD, COD, NH3-N and SS show trends toward decreasing concentrations over time. The improvements seen in water quality appear to be the result of improved wastewater treatment and other water quality improvement efforts achieved through government initiative. Continued long-term and high frequency monitoring is necessary to establish plans and policies for effective water resources management.

  15. The Public Discourse about Land Use and Water Quality: Themes in Newspapers in the Upper Mississippi River Basin

    ERIC Educational Resources Information Center

    Schmid, Andrea N.; Thompson, Jan R.; Bengston, David N.

    2007-01-01

    Effective educational and management programs to improve water quality will require an improved understanding of public perceptions of the relationship between land use and water quality. We analyzed a large database of newspaper articles in the Upper Mississippi River Basin to assess the public discourse about water quality and land use, and…

  16. Perceptional and socio-demographic factors associated with household drinking water management strategies in rural Puerto Rico.

    PubMed

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption.

  17. Perceptional and Socio-Demographic Factors Associated with Household Drinking Water Management Strategies in Rural Puerto Rico

    PubMed Central

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A.; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption. PMID:24586302

  18. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  19. Environmental Assessment for Demolition of SAC Alert Facility

    DTIC Science & Technology

    2008-05-01

    the installation and may improve the quality of storm water leaving the installation. No negative impact to storm water quality is anticipated...and drainage and storm water quality would be anticipated to Improve. Implementing the proposed action would have the potential to impact surface

  20. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China

    PubMed Central

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-01-01

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water. PMID:26184258

  1. Impacts of changes in water quality on recreation behavior and benefits in Finland.

    PubMed

    Vesterinen, J; Pouta, E; Huhtala, A; Neuvonen, M

    2010-01-01

    The implementation of the European Union Water Framework Directive (WFD) requires nationally generalizable estimates of the benefits of protecting inland and coastal waters. As an alternative to benefit transfers and meta-analyses, we utilize national recreation inventory data combined with water quality data to model recreation participation and estimate the benefits of water quality improvements. Using hurdle models, we analyze the association of water clarity in individuals' home municipalities with the three most common water recreation activities--swimming, fishing and boating. The results show no effect on boating, but improved water clarity would increase the frequency of close-to-home swimming and fishing, as well as the number of fishers. Furthermore, to value the potential benefits of the WFD, we estimate the consumer surplus of a water recreation day using a travel cost approach. A water policy scenario with a 1-m improvement in water clarity for both inland and coastal waters indicates that the consumer surplus would increase 6% for swimmers and 15% for fishers. In contrast to previously estimated abatement costs to improve water quality, net benefits could turn out to be positive. Our study is a promising example of applying existing national recreation inventory data to estimate the benefits of water quality improvements for the purposes of the WFD. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Influence of the water quality improvement on fish population in the Seine River (Paris, France) over the 1990-2013 period.

    PubMed

    Azimi, Sam; Rocher, Vincent

    2016-01-15

    Over the past 20 years, rules concerning wastewater treatment and quality of water discharged into the environment have changed considerably. Huge investments have been made in Paris conurbation to improve waste water treatment processes in accordance with the European Water Framework Directive. The interdepartmental association for sewage disposal in Paris conurbation (SIAAP) carried out a monitoring of both fish assemblages and water quality in the Seine River around the Paris conurbation (France) since the early 90's. The main goal of this study was to estimate the influence of the water quality improvement on fish. On one hand, the study confirmed the improvement of the water quality (dissolved oxygen, ammonia nitrogen, organic matter) in the Seine River, mostly focused downstream of Paris conurbation. On the other hand, an increase of the number of species occurred from 1990 (14) to 2013 (21). Moreover, changes in the river Seine assemblages happened over that 23-year period with emergence of sensitive species (ruffe, scalpin and pike-perch). The improvement of the water quality was also reported with respect to the Index of Biotic Integrity (IBI). However, no variation of pollutant concentrations in roach, eel and chub muscles has been observed. An exceedance of the environmental quality standards have even been reported all over this period as regards mercury and organochlorine.

  3. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. 77 FR 42679 - National Pollutant Discharge Elimination System (NPDES) Concentrated Animal Feeding Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    .... SUMMARY: On October 21, 2011, the EPA proposed a rulemaking to improve and restore water quality by... comments on improving water quality by promoting environmental stewardship and compliance rather than... from CAFOs to support the EPA in meeting its water quality protection responsibilities under the CWA...

  5. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    PubMed

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  6. Assessing the Microbial Quality of Improved Drinking Water Sources: Results from the Dominican Republic

    PubMed Central

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411

  7. Analysis of Best Management Practices for Storm Water Compliance at Air Force Airfields

    DTIC Science & Technology

    1993-09-01

    before selecting an infiltration system. These factors include the local vegetation, soil type and condition, groundwater condition, and storm water quality . The...reduce the peak flow rate of storm water discharges and remove sediments in order to improve storm water quality . Detention facilities should be...discharge rate of runoff and/or provide significant detention time to improve storm water quality through natural physical, chemical, and biological

  8. Analysis of the ecological water diversion project in Wenzhou City

    NASA Astrophysics Data System (ADS)

    Xu, Haibo; Fu, Lei; Lin, Tong

    2018-02-01

    As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.

  9. Application of flowmeter and depth-dependent water quality data for improved production well construction.

    PubMed

    Gossell, M A; Nishikawa, T; Hanson, R T; Izbicki, J A; Tabidian, M A; Bertine, K

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  10. Application of flowmeter and depth-dependent water quality data for improved production well construction

    USGS Publications Warehouse

    Gossell, M.A.; Nishikawa, Tracy; Hanson, Randall T.; Izbicki, John A.; Tabidian, M.A.; Bertine, K.

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  11. Interventions to improve water quality for preventing diarrhoea

    PubMed Central

    Clasen, Thomas F; Alexander, Kelly T; Sinclair, David; Boisson, Sophie; Peletz, Rachel; Chang, Howard H; Majorin, Fiona; Cairncross, Sandy

    2015-01-01

    Background Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces. In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. Objectives To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Selection criteria Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Main results Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with unimproved water sources (30 studies) and unimproved or unclear sanitation (34 studies). The primary outcome in most studies was self-reported diarrhoea, which is at high risk of bias due to the lack of blinding in over 80% of the included studies. Source-based water quality improvements There is currently insufficient evidence to know if source-based improvements such as protected wells, communal tap stands, or chlorination/filtration of community sources consistently reduce diarrhoea (one cluster-RCT, five CBA studies, very low quality evidence). We found no studies evaluating reliable piped-in water supplies delivered to households. Point-of-use water quality interventions On average, distributing water disinfection products for use at the household level may reduce diarrhoea by around one quarter (Home chlorination products: RR 0.77, 95% CI 0.65 to 0.91; 14 trials, 30,746 participants, low quality evidence; flocculation and disinfection sachets: RR 0.69, 95% CI 0.58 to 0.82, four trials, 11,788 participants, moderate quality evidence). However, there was substantial heterogeneity in the size of the effect estimates between individual studies. Point-of-use filtration systems probably reduce diarrhoea by around a half (RR 0.48, 95% CI 0.38 to 0.59, 18 trials, 15,582 participants, moderate quality evidence). Important reductions in diarrhoea episodes were shown with ceramic filters, biosand systems and LifeStraw® filters; (Ceramic: RR 0.39, 95% CI 0.28 to 0.53; eight trials, 5763 participants, moderate quality evidence; Biosand: RR 0.47, 95% CI 0.39 to 0.57; four trials, 5504 participants, moderate quality evidence; LifeStraw®: RR 0.69, 95% CI 0.51 to 0.93; three trials, 3259 participants, low quality evidence). Plumbed in filters have only been evaluated in high-income settings (RR 0.81, 95% CI 0.71 to 0.94, three trials, 1056 participants, fixed effects model). In low-income settings, solar water disinfection (SODIS) by distribution of plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (RR 0.62, 95% CI 0.42 to 0.94; four trials, 3460 participants, moderate quality evidence). In subgroup analyses, larger effects were seen in trials with higher adherence, and trials that provided a safe storage container. In most cases, the reduction in diarrhoea shown in the studies was evident in settings with improved and unimproved water sources and sanitation. Authors' conclusions Interventions that address the microbial contamination of water at the point-of-use may be important interim measures to improve drinking water quality until homes can be reached with safe, reliable, piped-in water connections. The average estimates of effect for each individual point-of-use intervention generally show important effects. Comparisons between these estimates do not provide evidence of superiority of one intervention over another, as such comparisons are confounded by the study setting, design, and population. Further studies assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. As evidence suggests effectiveness improves with adherence, studies assessing programmatic approaches to optimising coverage and long-term utilization of these interventions among vulnerable populations could also help strategies to improve health outcomes. PLAIN LANGUAGE SUMMARY Interventions to improve water quality and prevent diarrhoea This Cochrane Review summarizes trials evaluating different interventions to improve water quality and prevent diarrhoea. After searching for relevant trials up to 11 November 2014, we included 55 studies enrolling over 84,000 participants. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies), with unimproved water sources (30 studies), and unimproved or unclear sanitation (34 studies). What causes diarrhoea and what water quality interventions might prevent diarrhoea? Diarrhoea is a major cause of death and disease, especially among young children in low-income countries where the most common causes are faecally contaminated water and food, or poor hygiene practices. In remote and low-income settings, source-based water quality improvement may include providing protected groundwater (springs, wells, and bore holes) or harvested rainwater as an alternative to surface sources (rivers and lakes). Alternatively water may be treated at the point-of-use in people's homes by boiling, chlorination, flocculation, filtration, or solar disinfection. These point-of-use interventions have the potential to overcome both contaminated sources and recontamination of safe water in the home. What the research says There is currently insufficient evidence to know if source-based improvements in water supplies, such as protected wells and communal tap stands or treatment of communal supplies, consistently reduce diarrhoea in low-income settings (very low quality evidence). We found no trials evaluating reliable piped-in water supplies to people's homes. On average, distributing disinfection products for use in the home may reduce diarrhoea by around one quarter in the case of chlorine products (low quality evidence), and around a third in the case of flocculation and disinfection sachets (moderate quality evidence). Water filtration at home probably reduces diarrhoea by around a half (moderate quality evidence), and effects were consistently seen with ceramic filters (moderate quality evidence), biosand systems (moderate quality evidence) and LifeStraw® filters (low quality evidence). Plumbed-in filtration has only been evaluated in high-income settings (low quality evidence). In low-income settings, distributing plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (moderate quality evidence). Research assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. Evidence indicates the more people use the various interventions for improving water quality, the larger the effects, so research into practical approaches to increase coverage and help assure long term use of them in poor groups will help improve impact. PMID:26488938

  12. CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY

    EPA Science Inventory

    A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...

  13. Interacting coastal based ecosystem services: recreation and water quality in Puget Sound, WA

    USGS Publications Warehouse

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments.

  14. Interacting Coastal Based Ecosystem Services: Recreation and Water Quality in Puget Sound, WA

    PubMed Central

    Kreitler, Jason; Papenfus, Michael; Byrd, Kristin; Labiosa, William

    2013-01-01

    Coastal recreation and water quality are major contributors to human well-being in coastal regions. They can also interact, creating opportunities for ecosystem based management, ecological restoration, and water quality improvement that can positively affect people and the environment. Yet the effect of environmental quality on human behavior is often poorly quantified, but commonly assumed in coastal ecosystem service studies. To clarify this effect we investigate a water quality dataset for evidence that environmental condition partially explains variation in recreational visitation, our indicator of human behavior. In Puget Sound, WA, we investigate variation in visitation in both visitation rate and fixed effects (FE) models. The visitation rate model relates the differences in annual recreational visitation among parks to environmental conditions, park characteristics, travel cost, and recreational demand. In our FE model we control for all time-invariant unobserved variables and compare monthly variation at the park level to determine how water quality affects visitation during the summer season. The results of our first model illustrate how visitation relates to various amenities and costs. In the FE analysis, monthly visitation was negatively related to water quality while controlling for monthly visitation trends. This indicates people are responding to changes in water quality, and an improvement would yield an increase in the value of recreation. Together, these results could help in prioritizing water quality improvements, could assist the creation of new parks or the modification of existing recreational infrastructure, and provide quantitative estimates for the expected benefits from potential changes in recreational visitation and water quality improvements. Our results also provide an example of how recreational visitation can be quantified and used in ecosystem service assessments. PMID:23451067

  15. Evaluation of karst water quality as an early reference of land suitability mapping for vaname shrimp (Litopenaeusvannamei) culture media

    NASA Astrophysics Data System (ADS)

    Wildan, D. M.; Affandi, R.; Pratiwi, N. T. M.; Krisanti, M.; Ayu, I. P.; Iswantari, A.

    2017-01-01

    Vaname shrimp (Litopenaeusvannamei) is one of the excellent fishery commodities in Indonesia. Vaname shrimp farming can be conducted in low salinity water. Low salinity water sources which could be used as culture media is karst water because it has a high mineral. The research was aimedto evaluate land suitability mapping for pond as the vaname shrimpculture mediaseen from the water quality. Research was conducted in May and August 2016. Water sampling was conducted in several locations; Ancol-Jakarta (seawater), Ciseeng-Bogor (karst water salinity), Ciampea-Bogor (karst freshwater), and Situ Gede Bogor (freshwater). Evaluating the suitability of karst water quality for vaname shrimp culture media, done by the results of karst water quality analysis compared with seawater and SNI 01-7246-2006 on shrimp vaname culture media. The results showed that Karst water of Ciseeng and Ciampea could not directly use as vaname shrimp culture media. It is needed water quality treatment of ozonation and aeration of karst water to improve water quality. Ozonation and aeration treatments were able to improve the quality of karst water up to approach the living quality standard of vaname shrimp media.

  16. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    PubMed Central

    Kravitz, J. D.; Nyaphisi, M.; Mandel, R.; Petersen, E.

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P < 0.001) in most of the improved water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning. PMID:10593031

  17. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    USDA-ARS?s Scientific Manuscript database

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  18. Workshop: Valuation of Ecological Benefits: Improving the Science Behind Policy Decisions (2005)

    EPA Pesticide Factsheets

    Two-day workshop includes research examining the benefits of improved coastal water quality, the value of improved fresh water quality, advances in the stated preference valuation method, balancing conservation and urban growth, and valuing biodiversity.

  19. Corporatization as a means of improving water quality: the experience in Victoria, Australia.

    PubMed

    Martin, Narelle

    Factors including fragmentation, a lack of direction, poor accountability, poor water quality, and a sizable state government subsidy contributed to the rural water industry in Victoria, Australia, in 1993. In 1993 the state government set out parameters for reform to change the size, structure, performance, and culture of the water industry. The path taken was not privatization, but corporatization. Tools used included amalgamation of organizations; separating water provisions from local government; changing the composition and reporting mechanisms of the boards; establishing clear benchmarks and performance criteria; making information publicly available; and providing a commercial orientation. The outcomes of the reforms were to be a focus on water quality and effluent management. In 2001, 15 water authorities were in place. There were significant improvements in accountability, finances, and performance. The authorities provided information on performance to both the state and the public. Reductions of operating costs have been in the range of 20-35%, with savings put back into new infrastructure. Water quality has significantly improved in a number of parameters and effluent management has also improved. This paper describes the challenges faced before the reform process, the reforms initiated, and the outcomes. It argues that privatization is not the only path to improvement: Developing a corporate structure and accountability can also deliver substantial improvements.

  20. The potential contribution of the Queensland wet tropics region natural resource plan to river improvement and water quality.

    PubMed

    McDonald, G; Weston, N; Dorrington, B

    2003-01-01

    This paper reports on work in progress on the new Wet Tropics Regional Natural Resource Management Plan and its potential to deliver river management and water quality outcomes. The plan is being prepared in accordance with the guidelines of the Nation Action Plan for Salinity and Water Quality/Natural Heritage Trust (NAP/NHT2). In particular the paper discusses the technical basis for priorities, target setting and implementation and the most effective instruments for achieving river improvement and water quality outcomes in the region.

  1. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    PubMed

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The contingent behavior of charter fishing participants on the Chesapeake Bay: Welfare estimates associated with water quality improvements

    USGS Publications Warehouse

    Poor, P.J.; Breece, M.

    2006-01-01

    Water quality in the Chesapeake Bay has deteriorated over recent years. Historically, fishing has contributed to the region's local economy in terms of commercial and recreational harvests. A contingent behavior model is used to estimate welfare measures for charter fishing participants with regard to a hypothetical improvement in water quality. Using a truncated Poisson count model corrected for endogenous stratification, it was found that charter fishers not only contribute to the local market economy, but they also place positive non-market value on preserving the Bay's water quality. Using two estimates for travels costs it is estimated that the individual consumer surplus is $200 and $117 per trip, and the average individual consumer surplus values for an improvement in water quality is $75 and $44 for two models estimated. ?? 2006 University of Newcastle upon Tyne.

  3. Dramatic Improvements in Beach Water Quality Following Gull Removal

    EPA Science Inventory

    Gulls are often cited as important contributors of fecal contamination to surface waters, and some recreational beaches have used gull control measures to improve microbial water quality. In this study, gulls were chased from a Lake Michigan beach using specially trained dogs, a...

  4. Water quality risks of 'improved' water sources: evidence from Cambodia.

    PubMed

    Shaheed, A; Orgill, J; Ratana, C; Montgomery, M A; Jeuland, M A; Brown, J

    2014-02-01

    The objective of this study was to investigate the quality of on-plot piped water and rainwater at the point of consumption in an area with rapidly expanding coverage of 'improved' water sources. Cross-sectional study of 914 peri-urban households in Kandal Province, Cambodia, between July-August 2011. We collected data from all households on water management, drinking water quality and factors potentially related to post-collection water contamination. Drinking water samples were taken directly from a subsample of household taps (n = 143), stored tap water (n = 124), other stored water (n = 92) and treated stored water (n = 79) for basic water quality analysis for Escherichia coli and other parameters. Household drinking water management was complex, with different sources used at any given time and across seasons. Rainwater was the most commonly used drinking water source. Households mixed different water sources in storage containers, including 'improved' with 'unimproved' sources. Piped water from taps deteriorated during storage (P < 0.0005), from 520 cfu/100 ml (coefficient of variation, CV: 5.7) E. coli to 1100 cfu/100 ml (CV: 3.4). Stored non-piped water (primarily rainwater) had a mean E. coli count of 1500 cfu/100 ml (CV: 4.1), not significantly different from stored piped water (P = 0.20). Microbial contamination of stored water was significantly associated with observed storage and handling practices, including dipping hands or receptacles in water (P < 0.005), and having an uncovered storage container (P = 0.052). The microbial quality of 'improved' water sources in our study area was not maintained at the point of consumption, possibly due to a combination of mixing water sources at the household level, unsafe storage and handling practices, and inadequately treated piped-to-plot water. These results have implications for refining international targets for safe drinking water access as well as the assumptions underlying global burden of disease estimates, which posit that 'improved' sources pose minimal risks of diarrhoeal diseases. © 2013 John Wiley & Sons Ltd.

  5. Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis

    PubMed Central

    Schmidt, Wolf-Peter; Rabie, Tamer; Roberts, Ian; Cairncross, Sandy

    2007-01-01

    Objective To assess the effectiveness of interventions to improve the microbial quality of drinking water for preventing diarrhoea. Design Systematic review. Data sources Cochrane Infectious Diseases Group's trials register, CENTRAL, Medline, Embase, LILACS; hand searching; and correspondence with experts and relevant organisations. Study selection Randomised and quasirandomised controlled trials of interventions to improve the microbial quality of drinking water for preventing diarrhoea in adults and in children in settings with endemic disease. Data extraction Allocation concealment, blinding, losses to follow-up, type of intervention, outcome measures, and measures of effect. Pooled effect estimates were calculated within the appropriate subgroups. Data synthesis 33 reports from 21 countries documenting 42 comparisons were included. Variations in design, setting, and type and point of intervention, and variations in defining, assessing, calculating, and reporting outcomes limited the comparability of study results and pooling of results by meta-analysis. In general, interventions to improve the microbial quality of drinking water are effective in preventing diarrhoea. Effectiveness was not conditioned on the presence of improved water supplies or sanitation in the study setting and was not enhanced by combining the intervention with instructions on basic hygiene, a water storage vessel, or improved sanitation or water supplies—other common environmental interventions intended to prevent diarrhoea. Conclusion Interventions to improve water quality are generally effective for preventing diarrhoea in all ages and in under 5s. Significant heterogeneity among the trials suggests that the level of effectiveness may depend on a variety of conditions that research to date cannot fully explain. PMID:17353208

  6. Relative benefits of on-plot water supply over other 'improved' sources in rural Vietnam.

    PubMed

    Brown, Joe; Hien, Vo Thi; McMahan, Lanakila; Jenkins, Marion W; Thie, Lauren; Liang, Kaida; Printy, Erin; Sobsey, Mark D

    2013-01-01

    Access to improved water sources is rapidly expanding in rural central Vietnam. We examined one NGO-led piped water supply programme to assess the drinking water quality and health impacts of piped water systems where access to 'improved' water sources is already good. This longitudinal, prospective cohort study followed 300 households in seven project areas in Da Nang province, Vietnam: 224 households who paid for an on-plot piped water connection and 76 control households from the same areas relying primarily on 'improved' water sources outside the home. The 4-month study was intended to measure the impact of the NGO-led water programmes on households' drinking water quality and health and to evaluate system performance. We found that: (i) households connected to a piped water supply had consistently better drinking water quality than those relying on other sources, including 'improved' sources and (ii) connected households experienced less diarrhoea than households without a piped water connection (adjusted longitudinal prevalence ratio: 0.57 (95% CI 0.39-0.86, P = 0.006) and households using an 'improved' source not piped to the plot: (adjusted longitudinal prevalence ratio: 0.59 (95% CI 0.39-0.91, P = 0.018). Our results suggest that on-plot water service yields benefits over other sources that are considered 'improved' by the WHO/UNICEF Joint Monitoring Programme. © 2012 Blackwell Publishing Ltd.

  7. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  8. Water Source Pollution and Disease Diagnosis in a Nigerian Rural Community.

    ERIC Educational Resources Information Center

    Sangodoyin, A. Y.

    1991-01-01

    Samples from five water sources (spring, borehole, pond, stream, and well) in rural Nigerian communities were tested. Results include source reliabilities in terms of water quality and quantity, pollution effects upon water quality, epidemiological effects related to water quantity and waste disposal, and impact of water quality improvement upon…

  9. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Li, Xuyong; Su, Jingjun; Hao, Shaonan

    2018-01-01

    Identification of the interactive responses of water quantity and quality to changes in nature and human stressors is important for the effective management of water resources. Many studies have been conducted to determine the influence of these stressors on river discharge and water quality. However, there is little information about whether sewage treatment plants can improve water quality in a region where river streamflow has decreased sharply. In this study, a seasonal trend decomposition method was used to analyze long-term (1996-2015) and seasonal trends in the streamflow and water quality of the Guanting Reservoir Basin, which is located in a semi-arid region of China. The results showed that the streamflow in the Guanting Reservoir Basin decreased sharply from 1996-2000 due to precipitation change and human activities (human use and reservoir regulation), while the streamflow decline over the longer period of time (1996-2015) could be attributed to human activities. During the same time, the river water quality improved significantly, having a positive relationship with the capacity of wastewater treatment facilities. The water quality in the Guanting Reservoir showed a deferred response to the reduced external loading, due to internal loading from sediments. These results implied that for rivers in which streamflow has declined sharply, the water quality could be improved significantly by actions to control water pollution control. This study not only provides useful information for water resource management in the Guanting Reservoir Basin, but also supports the implementation of water pollution control measures in other rivers with a sharp decline in streamflow.

  10. Impact assessments of water allocation on water environment of river network: Method and application

    NASA Astrophysics Data System (ADS)

    Wang, Qinggai; Wang, Yaping; Lu, Xuchuan; Jia, Peng; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei

    2018-02-01

    Two types of water allocation scenarios were proposed for reasonably utilizing water resources and improving water quality in a two-river network in Tongzhou District. Water circulation and quality were selected as two important indexes to evaluate the two scenario. Meanwhile, one-dimensional water amount and quality model was set up on the basis of the MIKE11 model to compare the two scenarios in terms of improving water environment. The results showed that both scenarios changed the hydrodynamic conditions, and consequently the river flow reached 0.05 m/s or higher in the central part of river stream. In addition, we also found that the two plans have similar effects on water quality, with first scenario producing larger area of water class III and IV than the second scenario.

  11. Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model.

    PubMed

    Lu, Yan; He, Tian

    2014-09-15

    Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Relationships between environmental governance and water quality in growing metropolitan areas: a synthetic view through the coupled natural and human system lens

    NASA Astrophysics Data System (ADS)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2013-06-01

    We investigate relationships between environmental governance and water quality in two adjacent, growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining a coupled human and natural system (CHANS). We conceptualize feedback loops in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly, using the metric of changes in the sale price of single-family residential properties. Governance then influences water quality directly through, for example, changes in the monitoring regime and riparian restoration and indirectly through land use policy. We investigate these hypotheses by presenting evidence of these linkages. Our results show that changes in monitoring regimes and land use differed in response to differences in governance systems. On the other hand, property sale prices increased in response to water quality improvement for both studied watersheds. Our results show that sales prices responded positively to improved water quality (i.e. DO) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in changes in water temperature over time. While urban areas expanded more than 20% over 24 yr, water temperature did not change. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefitted indirectly from land use policy. A combination of a long-term legacy effect of land development and a relatively short history of riparian restoration in both the Portland and Vancouver regions may have masked any subtle differences in both regions. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a long-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies.

  13. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  14. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  15. The strategy for improving water-quality monitoring in the United States; final report of the Intergovernmental Task Force on Monitoring Water Quality; technical appendices

    USGS Publications Warehouse

    ,

    1995-01-01

    The Intergovernmental Task Force on Monitoring Water Quality (ITFM) prepared this report in collaboration with representatives of all levels of government and the private sector. The report recommends a strategy for nationwide water-quality monitoring and technical monitoring improvements to support sound water-quality decisionmaking. The strategy is intended to achieve a better return on public and private investments in monitoring, environmental protection, and natural resources management. It is also designed to expand the base of information useful to a variety of users at multiple geographic scales. Institutional and technical changes are needed to improve water-quality monitoring and to meet the full range of monitoring requirements. Monitoring must be incorporated as a critical element of program planning, implementation, and evaluation. The strategy includes recommendations in many key elements, such as the development of goal-oriented monitoring and indicators, institutional collaboration, and methods comparability. Initial actions have been taken to implement the strategy. Several Federal agencies have jointly purchased and shared remotely sensed land-cover information needed for water assessment. Major agency data systems are using common data-element names and reference tables that will ensure easy sharing of data. A number of States have held meetings with collectors of water information to initiate statewide monitoring strategies. New monitoring guidance has been developed for Federal water-quality grants to States. Many State offices have changed monitoring programs to place emphasis on priority watersheds and to improve assessment of water quality. As the competition increases for adequate supplies of clean water, concerns about public health and the environment escalate, and more demands are placed on the water information infrastructure. To meet these demands, the collaborative approach has already produced benefits, which will continue to grow as the recommendations are implemented

  16. Groundwater sampling: Chapter 5

    USGS Publications Warehouse

    Wang, Qingren; Munoz-Carpena, Rafael; Foster, Adam; Migliaccio, Kati W.; Li, Yuncong; Migliaccio, Kati

    2011-01-01

    Discussing an array of water quality topics, from water quality regulations and criteria, to project planning and sampling activities, this book outlines a framework for improving water quality programs. Using this framework, you can easily put the proper training and tools in place for better management of water resources.

  17. Integrating sentinel watershed-systems into the monitoring and assessment of Minnesota's (USA) waters quality.

    PubMed

    Magner, J A; Brooks, K N

    2008-03-01

    Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.

  18. Water quality in hard rocks of the Karkonosze National Park (Western Sudetes, SW Poland)

    NASA Astrophysics Data System (ADS)

    Marszałek, Henryk; Rysiukiewicz, Michał

    2017-12-01

    Long-term regional emissions of air pollutants in the second half of the twentieth century led to strong changes in the quality of surface and groundwater in the Karkonosze Mts. As a result, in the most valuable natural parts of these mountains, protected in the area of the Karkonosze National Park, there was strong deforestation, which assumed the size of an ecological disaster. The various protective activities introduced at the beginning of the 1990s led to the improvement not only of the water quality, but also other ecosystems. Based on the chemical analyses of water sampled in 40 points located in the whole Park, the current state of water quality was assessed. Concentrations of some microelements were higher only in few points compared to the drinking water quality standards, which indicates a significant improvement in water quality.

  19. The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China

    PubMed Central

    Liu, Zhenhuan; Yang, Haiyan

    2018-01-01

    The urban landscape in China has changed rapidly over the past four decades, which has led to various environmental consequences, such as water quality degradation at the regional scale. To improve water restoration strategies and policies, this study assessed the relationship between water quality and landscape change in Shenzhen, China, using panel regression analysis. The results show that decreases in natural and semi-natural landscape compositions have had significant negative effects on water quality. Landscape composition and configuration changes accounted for 39–58% of the variation in regional water quality degradation. Additionally, landscape fragmentation indices, such as patch density (PD) and the number of patches (NP), are important indicators of the drivers of water quality degradation. PD accounted for 2.03–5.44% of the variability in water quality, while NP accounted for −1.63% to −4.98% of the variability. These results indicate that reducing landscape fragmentation and enhancing natural landscape composition at the watershed scale are vital to improving regional water quality. The study findings suggest that urban landscape optimization is a promising strategy for mitigating urban water quality degradation, and the results can be used in policy making for the sustainable development of the hydrological environment in rapidly urbanizing areas. PMID:29786672

  20. The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China.

    PubMed

    Liu, Zhenhuan; Yang, Haiyan

    2018-05-22

    The urban landscape in China has changed rapidly over the past four decades, which has led to various environmental consequences, such as water quality degradation at the regional scale. To improve water restoration strategies and policies, this study assessed the relationship between water quality and landscape change in Shenzhen, China, using panel regression analysis. The results show that decreases in natural and semi-natural landscape compositions have had significant negative effects on water quality. Landscape composition and configuration changes accounted for 39⁻58% of the variation in regional water quality degradation. Additionally, landscape fragmentation indices, such as patch density (PD) and the number of patches (NP), are important indicators of the drivers of water quality degradation. PD accounted for 2.03⁻5.44% of the variability in water quality, while NP accounted for -1.63% to -4.98% of the variability. These results indicate that reducing landscape fragmentation and enhancing natural landscape composition at the watershed scale are vital to improving regional water quality. The study findings suggest that urban landscape optimization is a promising strategy for mitigating urban water quality degradation, and the results can be used in policy making for the sustainable development of the hydrological environment in rapidly urbanizing areas.

  1. Mass imbalances in EPANET water-quality simulations

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  2. OPERATION OF WATER QUALITY DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. n order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wate...

  3. Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection.

    PubMed

    Zhang, Yinan; Chu, Chunli; Liu, Lei; Xu, Shengguo; Ruan, Xiaoxue; Ju, Meiting

    2017-08-02

    A 'red line' was established, identifying an area requiring for ecological protection in Tianjin, China. Within the protected area of the red line area, the Qilihai wetland is an important ecotope with complex ecological functions, although the ecosystem is seriously disturbed due to anthropogenic activities in the surrounding areas. This study assesses the water quality status of the Qilihai wetlands to identify the pollution sources and potential improvements based on the ecological red line policy, to improve and protect the waters of the Qilihai wetlands. An indicator system was established to assess water quality status using single factor evaluation and a comprehensive evaluation method, supported by data from 2010 to 2013. Assessment results show that not all indicators met the requirement of the Environmental Quality Standards for Surface Water (GB3838-2002) and that overall, waters in the Qilihai wetland were seriously polluted. Based on these findings we propose restrictions on all polluting anthropogenic activities in the red line area and implementation of restoration projects to improve water quality.

  4. Environmental Assessment And Finding of No Significant Impact for the Low Impact Development Retrofit At Pillar Point Air Force Station, California

    DTIC Science & Technology

    2012-01-09

    utilize LID techniques to enable greater on-site infiltration of storm water to improve storm water quality and restore natural water quality conditions...systems and conveyed through above- and below-ground piping to concrete roadside ditches. Stonn Water Quality Storm water quality monitoring has been...process of being awarded and implemented. The results of all referenced storm water quality and septic inspection reports is available upon request to

  5. Water Technology Innovation: 10 Market Opportunities

    EPA Pesticide Factsheets

    The Water Technology Innovation Blueprint offers an overview of market opportunities that include conserving and recovering energy, recovering nutrients, improving water infrastructure, reducing costs for water monitoring, and improving water quality.

  6. Annual Report Card Shows Water Quality Improvements in Parts of the Mystic River Watershed

    EPA Pesticide Factsheets

    Each year, the US Environmental Protection Agency (EPA), in collaboration with the Mystic River Watershed Association (MyRWA), issues a Water Quality Report Card on water quality in the Mystic River watershed.

  7. [Hygienic evaluation of the effectiveness of the concept of improvement the water supply in the south-eastern region of the Republic of Tatarstan].

    PubMed

    Ivanov, A V; Tafeeva, E A; Davletova, N Kh

    2014-01-01

    In the paper there is presented the hygienic assessment of the effectiveness of the implementation of a program aimed at improving conditions of the water supply in the oil producing regions of the Republic of Tatarstan. As a result of realization of measures it was able to improve the quality of drinking water in terms of chemical safety and to reduce the risk to public health. For the present time the following factors: water quality of the water source, the mismatch of sanitary protective zone to requirements of sanitary laws and failure to comply with security measures on its territory, deterioration of water quality during transport and imperfection of laboratory control monitoring were shown to make the highest contribution to the disadvantage of centralized drinking water systems.

  8. [Quality of water for human consumption and its association with morbimortality in Colombia, 2008-2012].

    PubMed

    Guzmán, Blanca Lisseth; Nava, Gerardo; Díaz, Paula

    2015-08-01

    The quality of water for human consumption has been correlated with the occurrence of different diseases. Studying the relationship between these parameters would allow determining the impact of water quality on human health, and to direct preventative measures and promote environmental health. To analyze the quality of water intended for human consumption and its association with morbimortality in Colombia, 2008-2012. The database for surveillance of water quality was analyzed by means of descriptive statistics of the principal indicators (total coliforms, Escherichia coli , turbidity, color, pH, free residual chlorine and water quality risk index). The results were correlated with infant mortality and morbidity due to acute diarrheal diseases, foodborne diseases and hepatitis A. A risk map was prepared to identify those municipalities with the highest risk of water contamination and infant mortality. A high percentage of municipalities did not conform to existing standards for water potability values. Problems were identified that were related to presence of E. coli and total coliforms, as well as absence of free residual chlorine, a situation that was exacerbated in rural areas. Water quality showed a high correlation with infant mortality, highlighting its importance for children's health. Water quality was found to have an important impact on infant mortality. Improving water quality in Colombia will require policies that strengthen water supply systems in this country. Strengthening of environmental health surveillance programs is essential to guide actions aimed at improving water quality and exert a positive impact on health.

  9. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  10. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  11. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  12. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  13. 7 CFR 634.14 - Review and approval of project applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quality, (3) Economic, and technical feasibility to control water quality problems within the life of the... and recommending priorities, the NRCWCC will consider the following: (1) Severity of the water quality...) Effects on human health, (ii) Population benefited by improved water quality, (iii) Effects on the natural...

  14. Microbial quality of improved drinking water sources: evidence from western Kenya and southern Vietnam.

    PubMed

    Grady, Caitlin A; Kipkorir, Emmanuel C; Nguyen, Kien; Blatchley, E R

    2015-06-01

    In recent decades, more than 2 billion people have gained access to improved drinking water sources thanks to extensive effort from governments, and public and private sector entities. Despite this progress, many water sector development interventions do not provide access to safe water or fail to be sustained for long-term use. The authors examined drinking water quality of previously implemented water improvement projects in three communities in western Kenya and three communities in southern Vietnam. The cross-sectional study of 219 households included measurements of viable Escherichia coli. High rates of E. coli prevalence in these improved water sources were found in many of the samples. These findings suggest that measures above and beyond the traditional 'improved source' definition may be necessary to ensure truly safe water throughout these regions.

  15. Assessing BMP Performance Using Microtox Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  16. Trend analysis of a tropical urban river water quality in Malaysia.

    PubMed

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.

  17. Chemical quality of surface waters in the Brazos River basin in Texas

    USGS Publications Warehouse

    Irelan, Burdge; Mendieta, H.B.

    1964-01-01

    The quality of water in the lower main stem can be improved by control and disposal of brines in the upper basin. Also, the maximum concentrations in the water of the lower main stem can be lowered by dilution with water stored in reservoirs on tributaries that yield water of good quality.

  18. Impact of water-vending kiosks and hygiene education on household drinking water quality in rural Ghana.

    PubMed

    Opryszko, Melissa C; Guo, Yayi; MacDonald, Luke; MacDonald, Laura; Kiihl, Samara; Schwab, Kellogg J

    2013-04-01

    Innovative solutions are essential to improving global access to potable water for nearly 1 billion people. This study presents an independent investigation of one alternative by examining for-profit water-vending kiosks, WaterHealth Centers (WHCs), in rural Ghana to determine their association with household drinking water quality. WHCs' design includes surface water treatment using filtration and ultraviolet light disinfection along with community-based hygiene education. Analyses of water samples for Escherichia coli and household surveys from 49 households across five villages collected one time per year for 3 years indicate that households using WHCs had improved water quality compared with households using untreated surface water (adjusted incidence rate ratio = 0.07, 95% confidence interval = 0.02, 0.21). However, only 38% of households used WHCs by the third year, and 60% of those households had E. coli in their water. Recontamination during water transport and storage is an obstacle to maintaining WHC-vended water quality.

  19. Impact of Water-Vending Kiosks and Hygiene Education on Household Drinking Water Quality in Rural Ghana

    PubMed Central

    Opryszko, Melissa C.; Guo, Yayi; MacDonald, Luke; MacDonald, Laura; Kiihl, Samara; Schwab, Kellogg J.

    2013-01-01

    Innovative solutions are essential to improving global access to potable water for nearly 1 billion people. This study presents an independent investigation of one alternative by examining for-profit water-vending kiosks, WaterHealth Centers (WHCs), in rural Ghana to determine their association with household drinking water quality. WHCs' design includes surface water treatment using filtration and ultraviolet light disinfection along with community-based hygiene education. Analyses of water samples for Escherichia coli and household surveys from 49 households across five villages collected one time per year for 3 years indicate that households using WHCs had improved water quality compared with households using untreated surface water (adjusted incidence rate ratio = 0.07, 95% confidence interval = 0.02, 0.21). However, only 38% of households used WHCs by the third year, and 60% of those households had E. coli in their water. Recontamination during water transport and storage is an obstacle to maintaining WHC-vended water quality. PMID:23382168

  20. Historical water-quality data from the Harlem River, New York

    USGS Publications Warehouse

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U.S. Geological Survey has worked to address the chronic water-quality concerns of the Harlem River by compiling relevant data and studies, which is an important component for understanding and rectifying water-quality problems within a watershed.

  1. Water quality, compliance, and health outcomes among utilities implementing Water Safety Plans in France and Spain.

    PubMed

    Setty, Karen E; Kayser, Georgia L; Bowling, Michael; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Alonso, Jordi Martin; Mateu, Arnau Pla; Bartram, Jamie

    2017-05-01

    Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, seek to proactively identify potential risks to drinking water supplies and implement preventive barriers that improve safety. To evaluate the outcomes of WSP application in large drinking water systems in France and Spain, we undertook analysis of water quality and compliance indicators between 2003 and 2015, in conjunction with an observational retrospective cohort study of acute gastroenteritis incidence, before and after WSPs were implemented at five locations. Measured water quality indicators included bacteria (E. coli, fecal streptococci, total coliform, heterotrophic plate count), disinfectants (residual free and total chlorine), disinfection by-products (trihalomethanes, bromate), aluminum, pH, turbidity, and total organic carbon, comprising about 240K manual samples and 1.2M automated sensor readings. We used multiple, Poisson, or Tobit regression models to evaluate water quality before and after the WSP intervention. The compliance assessment analyzed exceedances of regulated, recommended, or operational water quality thresholds using chi-squared or Fisher's exact tests. Poisson regression was used to examine acute gastroenteritis incidence rates in WSP-affected drinking water service areas relative to a comparison area. Implementation of a WSP generally resulted in unchanged or improved water quality, while compliance improved at most locations. Evidence for reduced acute gastroenteritis incidence following WSP implementation was found at only one of the three locations examined. Outcomes of WSPs should be expected to vary across large water utilities in developed nations, as the intervention itself is adapted to the needs of each location. The approach may translate to diverse water quality, compliance, and health outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. [Research of input water ratio's impact on the quality of effluent water from hydrolysis reactor].

    PubMed

    Liang, Kang-Qiang; Xiong, Ya; Qi, Mao-Rong; Lin, Xiu-Jun; Zhu, Min; Song, Ying-Hao

    2012-11-01

    Based on high SS/BOD and low C/N ratio of waste water of municipal wastewater treatment plant, the structure of currently existing hydrolysis reactor was reformed to improve the influent quality. In order to strengthen the sludge hydrolysis and improve effluent water quality, two layers water distributors were set up so that the sludge hydrolysis zone was formed between the two layers distribution. For the purpose of the hydrolysis reactor not only plays the role of the primary sedimentation tank but also improves the effluent water biodegradability, input water ratios of the upper and lower water distributor in the experiment were changed to get the best input water ratio to guide the large-scale application of this sort hydrolysis reactor. Results show, four kinds of input water ratio have varying degrees COD and SS removal efficiency, however, input water ratio for 1 : 1 can substantially increase SCOD/COD ratio and VFA concentration of effluent water compared with the other three input water ratios. To improve the effluent biodegradability, input water ratio for 1 : 1 was chosen for the best input water ratio. That was the ratio of flow of upper distributor was 50%, and the ratio of the lower one was 50%, at this case it can reduce the processing burden of COD and SS for follow-up treatment, but also improve the biodegradability of the effluent.

  3. Benefit transfer and spatial heterogeneity of preferences for water quality improvements.

    PubMed

    Martin-Ortega, J; Brouwer, R; Ojea, E; Berbel, J

    2012-09-15

    The improvement in the water quality resulting from the implementation of the EU Water Framework Directive is expected to generate substantial non-market benefits. A wide spread estimation of these benefits across Europe will require the application of benefit transfer. We use a spatially explicit valuation design to account for the spatial heterogeneity of preferences to help generate lower transfer errors. A map-based choice experiment is applied in the Guadalquivir River Basin (Spain), accounting simultaneously for the spatial distribution of water quality improvements and beneficiaries. Our results show that accounting for the spatial heterogeneity of preferences generally produces lower transfer errors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  5. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  6. Issues in water quality trading: Introduction to featured collection

    EPA Science Inventory

    Water quality trading is a type of market mechanism for water pollution control. Policy makers have discovered that market mechanisms can play important roles in protecting and improving environmental quality by changing the economic signals an individual or firm faces. Potenti...

  7. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits

    PubMed Central

    Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde

    2016-01-01

    Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. PMID:27856709

  8. Assessing the Total Economic Value of Improving Water Quality to Inform Water Resources Management: Evidence and Challenges from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Jalilov, S.; Fukushi, K.

    2016-12-01

    Population growth, high rates of economic development and rapid urbanization in the developing countries of Southeast Asia (SEA) have resulted in degradation and depletion of natural resources, including water resources and related ecosystem services. Many urban rivers in the region are highly polluted with domestic, industrial and agricultural wastes. Policymakers are often aware of the direct value of water resources for domestic and industrial consumption, but they often underestimate the indirect value of these functions, since they are not exchanged in the market and do not appear in national income accounts. Underestimation of pollution and over-exploitation of water resources result in a loss of these benefits and have adverse impacts on nearby residents, threatening the long-term sustainable development of natural resources in the region. Behind these constraints lies a lack of knowledge (ignorance) from governments that a clean water environment could bring significant economic benefits. This study has been initiated to tackle this issue and to foster a more rational approach for sustainable urban development in Metro Manila in the Philippines. We applied a Contingent Valuation Method (CVM) based on Computer-Assisted Personal Interviewing (CAPI) technique. Results show that users are willing to pay up to PHP 102.42 (2.18) monthly to improve quality of urban waterbodies whereas nonusers are willing to pay up to PHP 366.53 (7.80) as one-time payment towards water quality improvement. The estimated monetary value of water quality improvements would be a useful variable in cost-benefit analyses of various water quality-related policies, in both public and private sectors in Metro Manila. This survey design could serve as a useful template for similar water quality studies in other SEA countries.

  9. Assessing BMP Performance Using Microtox Toxicity Analysis - Rhode Island

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  10. Assessing BMP Performance Using Microtox® Toxicity Analysis

    EPA Science Inventory

    Best Management Practices (BMPs) have been shown to be effective in reducing runoff and pollutants from urban areas and thus provide a mechanism to improve downstream water quality. Currently, BMP performance regarding water quality improvement is assessed through measuring each...

  11. Supplemental calcium nutrition improves tuber yield and quality of native potatoes in the Peruvian highlands

    USDA-ARS?s Scientific Manuscript database

    Potato tubers are known to be calcium deficient. This is because calcium moves with water and most water is transported to leaves and tubers being in soil do not have the draw for water and calcium. Calcium fertilizers are now routinely used to improve tuber quality and production in the US. Potatoe...

  12. Interventions to improve water quality for preventing diarrhoea.

    PubMed

    Clasen, Thomas F; Alexander, Kelly T; Sinclair, David; Boisson, Sophie; Peletz, Rachel; Chang, Howard H; Majorin, Fiona; Cairncross, Sandy

    2015-10-20

    Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces.In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with unimproved water sources (30 studies) and unimproved or unclear sanitation (34 studies). The primary outcome in most studies was self-reported diarrhoea, which is at high risk of bias due to the lack of blinding in over 80% of the included studies. Source-based water quality improvementsThere is currently insufficient evidence to know if source-based improvements such as protected wells, communal tap stands, or chlorination/filtration of community sources consistently reduce diarrhoea (one cluster-RCT, five CBA studies, very low quality evidence). We found no studies evaluating reliable piped-in water supplies delivered to households. Point-of-use water quality interventionsOn average, distributing water disinfection products for use at the household level may reduce diarrhoea by around one quarter (Home chlorination products: RR 0.77, 95% CI 0.65 to 0.91; 14 trials, 30,746 participants, low quality evidence; flocculation and disinfection sachets: RR 0.69, 95% CI 0.58 to 0.82, four trials, 11,788 participants, moderate quality evidence). However, there was substantial heterogeneity in the size of the effect estimates between individual studies.Point-of-use filtration systems probably reduce diarrhoea by around a half (RR 0.48, 95% CI 0.38 to 0.59, 18 trials, 15,582 participants, moderate quality evidence). Important reductions in diarrhoea episodes were shown with ceramic filters, biosand systems and LifeStraw® filters; (Ceramic: RR 0.39, 95% CI 0.28 to 0.53; eight trials, 5763 participants, moderate quality evidence; Biosand: RR 0.47, 95% CI 0.39 to 0.57; four trials, 5504 participants, moderate quality evidence; LifeStraw®: RR 0.69, 95% CI 0.51 to 0.93; three trials, 3259 participants, low quality evidence). Plumbed in filters have only been evaluated in high-income settings (RR 0.81, 95% CI 0.71 to 0.94, three trials, 1056 participants, fixed effects model).In low-income settings, solar water disinfection (SODIS) by distribution of plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (RR 0.62, 95% CI 0.42 to 0.94; four trials, 3460 participants, moderate quality evidence).In subgroup analyses, larger effects were seen in trials with higher adherence, and trials that provided a safe storage container. In most cases, the reduction in diarrhoea shown in the studies was evident in settings with improved and unimproved water sources and sanitation. Interventions that address the microbial contamination of water at the point-of-use may be important interim measures to improve drinking water quality until homes can be reached with safe, reliable, piped-in water connections. The average estimates of effect for each individual point-of-use intervention generally show important effects. Comparisons between these estimates do not provide evidence of superiority of one intervention over another, as such comparisons are confounded by the study setting, design, and population.Further studies assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. As evidence suggests effectiveness improves with adherence, studies assessing programmatic approaches to optimising coverage and long-term utilization of these interventions among vulnerable populations could also help strategies to improve health outcomes.

  13. Upper Illinois River basin

    USGS Publications Warehouse

    Friedel, Michael J.

    1998-01-01

    During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.

  14. Improvement of water quality at Dongbin Harbor with construction of an inland canal, Korea.

    PubMed

    Cho, Yong-Sik

    2014-01-01

    The behaviors of the water body of Dongbin Harbor located at Pohang City, Gyongpook Province, in Korea were numerically simulated in this study. A canal was planned to connect the harbor and the Hyeongsan River to improve water quality inside the harbor. The current system was first simulated by using a commercial program RMA2, with respect to both tidal currents and river flow. The progress inside the harbor from a supply of fresh water from the Hyeongsan River was then predicted by using RMA4. Both the present and future conditions (before and after construction of an inland canal) were taken into consideration in numerical simulations. It is concluded that the water quality inside the harbor can be improved considerably after construction of the canal.

  15. A Novel Approach for Evaluation of Water Quality Trends in Gulf Coast Estuaries

    EPA Science Inventory

    Water quality data form the backbone of management programs aimed at protecting environmental resources. The increasing availability of long-term monitoring data for estuaries can improve detection of temporal and spatial changes in water quality. However, the relatively simple...

  16. Why is Improving Water Quality in the Gulf of Mexico so Critical?

    EPA Pesticide Factsheets

    The EPA regional offices and the Gulf of Mexico Program work with Gulf States to continue to maximize the efficiency and utility of water quality monitoring efforts for local managers by coordinating and standardizing state and federal water quality data

  17. EVALUATION OF STREAMBANK RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The objectives of this on-going project are to: investigate the effectiveness of streambank restoration techniques on increasing available biological habitat and improving in-stream water quality in an impaired stream; and, demonstrate the utility of continuous water-quality moni...

  18. Some bacteria are beneficial!

    USGS Publications Warehouse

    McMahon, Peter B.

    1995-01-01

    Most people would agree that bacteria usually spell trouble where the quality of drinking water is con cerned. However, recent studies conducted by the U.S. Geological Survey (USGS) under the National Water-Quality Assessment (NAWQA) program have shown that some bacteria can improve the quality of water.

  19. 7 CFR 634.4 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Environmental Protection Agency (EPA) will— (1) Approve 208 water quality management plans, (2) Participate in... approved agricultural portion of 208 water quality management plans for the purpose of selecting among... in improving water quality, and (6) Concur in the selection of project areas and the criteria for...

  20. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  1. Monitoring and Assessment of Youshui River Water Quality in Youyang

    NASA Astrophysics Data System (ADS)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  2. Option Price Estimates for Water Quality Improvements: A Contingent Valuation Study for the Monongahela River (1985)

    EPA Pesticide Factsheets

    This paper presents the findings from a contingent valuation survey designed to estimate the option price bids for the improved recreation resulting from enhanced water quality in the Pennsylvania portion of the Monongahela River.

  3. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  4. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quality improvement. These measures are not eligible for cost sharing under this program. The installation... Conservation Service will certify as to the technical adequacy of the water-quality plan. (g) The soil...

  5. Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection

    PubMed Central

    Zhang, Yinan; Chu, Chunli; Liu, Lei; Xu, Shengguo; Ruan, Xiaoxue; Ju, Meiting

    2017-01-01

    A ‘red line’ was established, identifying an area requiring for ecological protection in Tianjin, China. Within the protected area of the red line area, the Qilihai wetland is an important ecotope with complex ecological functions, although the ecosystem is seriously disturbed due to anthropogenic activities in the surrounding areas. This study assesses the water quality status of the Qilihai wetlands to identify the pollution sources and potential improvements based on the ecological red line policy, to improve and protect the waters of the Qilihai wetlands. An indicator system was established to assess water quality status using single factor evaluation and a comprehensive evaluation method, supported by data from 2010 to 2013. Assessment results show that not all indicators met the requirement of the Environmental Quality Standards for Surface Water (GB3838-2002) and that overall, waters in the Qilihai wetland were seriously polluted. Based on these findings we propose restrictions on all polluting anthropogenic activities in the red line area and implementation of restoration projects to improve water quality. PMID:28767096

  6. Environmental and economic benefits of preserving forests within urban areas: air and water quality. Chapter 4.

    Treesearch

    David J. Nowak; Jun Wang; Ted Endreny

    2007-01-01

    Forests and trees in urban areas provide many environmental and economic benefits that can lead to improved environmental quality and human health. These benefits include improvements in air and water quality, richer terrestrial and aquatic habitat, cooler air temperatures, and reductions in building energy use, ultraviolet radiation levels, and noise. As urbanization...

  7. Estimating the cost of improving service quality in water supply: A shadow price approach for England and wales.

    PubMed

    Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramón

    2016-01-01

    Service quality to customers is an aspect that cannot be ignored in the performance assessment of water companies. Nowadays water regulators introduce awards or penalties to incentivize companies to improve service quality to customers when setting prices. In this study, the directional distance function is employed to estimate the shadow prices of variables indicating the lack of service quality to customers in the water industry i.e., written complaints, unplanned interruptions and properties below the reference level. To calculate the shadow price of each undesirable output for each water company, it is needed to ascribe a reference price for the desirable output which is the volume of water delivered. An empirical application is carried out for water companies in England and Wales. Hence, the shadow price of each undesirable output is expressed both as a percentage of the price of the desirable output and in pence per cubic meter of water delivered The estimated results indicate that on average, each additional written complaint that needs to be dealt with by the water company includes a service quality cost of 0.399p/m(3). As expected, when looking at the other service quality variables which involve network repair or replacement, these values are considerably higher. On average, the water company must spend an extra 0.622p/m(3) to prevent one unplanned interruption and 0.702p/m(3) to avoid one water pressure below the reference level. The findings of this study are of great importance for regulated companies and regulators as it has been illustrated that improvements in the service quality in terms of customer service could be challenging and therefore ongoing investments will be required to address these issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Putting people into water quality modelling.

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real-time engagement of stakeholders in simulations to demostrate the potential effects of BMPs on water quality. This exercise helped us to better understand the stakeholders' viewpoints to propose effective BMPs and policies that are in-line with stakeholders' values and preferences.

  9. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  10. METHYL TERT-BUTYLETHER-WATER INTERACTION

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  11. Toward a theory of farmer conservation attitudes: Dual interests and willingness to take action to protect water quality

    Treesearch

    Kristin Floress; Silvestre García de Jalón; Sarah P. Church; Nicholas Babin; Jessica D. Ulrich-Schad; Linda S. Prokopy

    2017-01-01

    Water quality in the Midwestern United States is threatened as a result of agricultural runoff. Based on self-reported data from a survey of farmers in Indiana, we aim to provide a better understanding of how awareness of water quality problems, farm-as-business attitudes, and stewardship attitudes are related to each other and willingness to improve water quality....

  12. The challenge of documenting water quality benefits of conservation practices: a review of USDA-ARS's conservation effects assessment project watershed studies.

    PubMed

    Tomer, M D; Locke, M A

    2011-01-01

    The Conservation Effects Assessment Project was established to quantify water quality benefits of conservation practices supported by the U.S. Department of Agriculture (USDA). In 2004, watershed assessment studies were begun in fourteen agricultural watersheds with varying cropping systems, landscapes, climate, and water quality concerns. This paper reviews USDA Agricultural Research Service 'Benchmark' watershed studies and the challenge of identifying water quality benefits in watersheds. Study goals included modeling and field research to assess practices, and evaluation of practice placement in watersheds. Not all goals were met within five years but important lessons were learned. While practices improved water quality, problems persisted in larger watersheds. This dissociation between practice-focused and watershed-scale assessments occurred because: (1) Conservation practices were not targeted at critical sources/pathways of contaminants; (2) Sediment in streams originated more from channel and bank erosion than from soil erosion; (3) Timing lags, historical legacies, and shifting climate combined to mask effects of practice implementation; and (4) Water quality management strategies addressed single contaminants with little regard for trade-offs among contaminants. These lessons could help improve conservation strategies and set water quality goals with realistic timelines. Continued research on agricultural water quality could better integrate modeling and monitoring capabilities, and address ecosystem services.

  13. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  14. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in an Estuary

    EPA Science Inventory

    To improve the description of long-term changes in water quality, we adapted a weighted regression approach to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach, originally developed to resolve pollutant transport trends in rivers...

  15. WETLANDS AND WATER QUALITY TRADING: REVIEW OF CURRENT SCIENCE AND ECONOMIC PRACTICES WITH SELECTED CASE STUDIES

    EPA Science Inventory

    The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...

  16. Adaptation of a weighted regression approach to evaluate water quality trends in anestuary

    EPA Science Inventory

    To improve the description of long-term changes in water quality, a weighted regression approach developed to describe trends in pollutant transport in rivers was adapted to analyze a long-term water quality dataset from Tampa Bay, Florida. The weighted regression approach allows...

  17. Access to safe water in rural Artibonite, Haiti 16 months after the onset of the cholera epidemic.

    PubMed

    Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas

    2013-10-01

    Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term.

  18. COMPUTER PROGRAM DOCUMENTATION FOR THE ENHANCED STREAM WATER QUALITY MODEL QUAL2E

    EPA Science Inventory

    Presented in the manual are recent modifications and improvements to the widely used stream water quality model QUAL-II. Called QUAL2E, the enhanced model incorporates improvements in eight areas: (1) algal, nitrogen, phosphorus, and dissolved oxygen interactions; (2) algal growt...

  19. Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits.

    PubMed

    Albert, Elise; Segura, Vincent; Gricourt, Justine; Bonnefoi, Julien; Derivot, Laurent; Causse, Mathilde

    2016-12-01

    Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    PubMed

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  1. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  2. Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2014-04-01

    We investigate relationships between environmental governance and water quality in two adjacent growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many common biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining how differences in governance might affect environmental quality. We conceptualize possible linkages in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly by using the change in the sale price of single-family residential properties. Governance may then influence water quality directly through riparian restoration resulting from monitoring results and indirectly through land use policy. We investigate evidence to substantiate these linkages. Our results showed that changes in monitoring regimes and land development patterns differed in response to differences in growth management policy and environmental governance systems. Our results also showed similarities in environmental quality responses to varying governance systems. For example, we found that sales prices responded positively to improved water quality (e.g., increases in DO and reductions in bacteria counts) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in water temperature over time, despite an expansion of these urban areas of more than 20 % over 24 years. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefited indirectly from land use policy. A combination of long-term legacy effects of land development, and a relatively short history of riparian restoration in both the Portland and Vancouver regions, may have masked any subtle differences between study areas. An alternative explanation is that both cities exhibited combinations of positive indirect and direct water quality governance that resulted in maintenance of water quality in the face of increased urban growth. These findings suggest that a much longer-term water quality monitoring effort is needed to identify the effectiveness of alternative land development and water governance policies.

  3. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  4. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    EPA Science Inventory

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  5. Environmental Assessment: 49th Materiel Maintenance Group BEAR Base Improvements Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    2004-08-01

    land clearing action will be an irreversible commitment of resources. 4.3.2 Water Quality Construction project impacts to storm water quality can...nearby monitored outfalls for the MSGP. High turbidity, suspended solids, and decreased cross section due to deposition can violate storm water quality benchmarks...and result in a Notice of Violation for storm water quality permits. Beside erosive impacts, construction period activities can cause

  6. Preimpoundment water quality in the Tioga River Basin, Pennsylvania and New York

    USGS Publications Warehouse

    Ward, Janice R.

    1981-01-01

    The addition of Hammond Lake water to the outflow from Tioga Lake will probably improve the water quality of the Tioga River below Tioga Dam. Releases from the multi-level withdrawal system will allow the water quality of the river to stabilize, and not be subject to the extreme low-flow conditions that have historically damaged aquatic life.

  7. Socioeconomic dynamics of water quality in the Egyptian Nile

    NASA Astrophysics Data System (ADS)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification of economic activities related to these indicators. Keywords: Water quality dynamics, Environmental Kuznets Curve (EKC), Jevons Paradox (JP), economic variables, polynomial regressions, environmental indicators, permissible limit References: (1)Evans, A. (2007). River of Life River Nile. (2)Egypt's Water Crisis - Recipe for Disaster. (2016). [Blog] EcoMENA- Echoing Sustainability. (3)Alstine, J. and Neumayer, E. (2010). The Environmental Kuznets Curve. (4)Garrett, T. (2014). Rebound, Backfire, and the Jevons Paradox. [Blog] (5)Data.worldbank.org

  8. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    USGS Publications Warehouse

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  9. EVALUATING AN URBAN STREAM RESTORATION PROGRAM FOR IMPROVING WATER QUALITY, IN-STREAM HABITAT, AND BANK STABILITY

    EPA Science Inventory

    To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff, as well as minimize pollutants and other stressors contained in stormwater runoff. It is well known that land use practice...

  10. Placement of riparian forest buffers to improve water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2005-01-01

    Riparian forest buffers can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, hydrology, and surficial geology detemine the capability of forest buffers to intercept and treat these flows. This paper describes landscape analysis techniques for identifying and mapping...

  11. STRUCTURES AND BINDING ENERGIES OF METHYL TERT-BUTYL ETHER-WATER COMPLEXES

    EPA Science Inventory

    Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...

  12. Draft framework for watershed-based trading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-30

    Effluent trading is an innovative way for water quality agencies and community stakeholders to develop common-sense, cost-effective solutions for water quality problems in their watersheds. Trading can allow communities to grow and prosper while retaining their commitment to water quality. The bulk of this framework discusses effluent trading in watersheds. Remaining sections discuss transactions that, while not technically fulfilling the definition of `effluent` trade, do involve the exchange of valued water quality or other ecological improvements between partners responding to market initiatives. This document therefore includes activities such as trades within a facility (intra-plant trading) and wetland mitigation banking, effluentmore » trading/watersheds/watershed management/water quality protection/water quality management.« less

  13. Improving water quality in China: Environmental investment pays dividends.

    PubMed

    Zhou, Yongqiang; Ma, Jianrong; Zhang, Yunlin; Qin, Boqiang; Jeppesen, Erik; Shi, Kun; Brookes, Justin D; Spencer, Robert G M; Zhu, Guangwei; Gao, Guang

    2017-07-01

    This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH 4 + -N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Levers supporting tariff growth for water services: evidence from a contingent valuation analysis.

    PubMed

    Guerrini, Andrea; Vigolo, Vania; Romano, Giulia; Testa, Federico

    2018-02-01

    The backwardness of the water utilities sector necessitates urgent investment in infrastructure to improve water quality and efficiency in water supply networks. A policy of tariff growth represents the main source to sustain such investments. Therefore, customer engagement in the form of willingness to pay (WTP) is highly desirable by water utilities to obtain social legitimization and support. This study examines the determinants of consumers' WTP for improvement programs for three drinking water issues: quality of water sources, renewal of water mains, and building of new wastewater treatment plants. The study is based on a survey conducted among a sample of 587 customers of a water utility located in the province of Verona in the north of Italy. The contingence valuation method is used to measure WTP. Specifically, an ordinal logistic regression model yields the following significant determinants of WTP: quality of water and services provided, preference for privatization of the water utility, sustainable consumption of water, and some socio-demographic variables. The findings provide interesting insights into the drivers of WTP as well as managerial recommendations for water utilities. In particular, the findings show that water utilities need to improve service and water quality to increase customers' acceptance of tariff growth. In addition, utilities should invest in customer education and communication activities focusing on specific age groups (e.g., older customers) to enhance their WTP. Finally, communication strategies should reinforce the possible role of liberalization and privatization in supporting infrastructure investments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Translations on Environmental Quality, Number 142

    DTIC Science & Technology

    1977-07-28

    Theo Wurm; SUEDEUTSCHE ZEITUNG, 27 May 77) 42 Improved Air Pollution Measurement Systems Discussed . (FRANKFURTER ALLGEMEINE, 28 May 77) 45...lowest cost to the economy and the pollu- tion authority has also gai- ned revenue to use to fur- ther improve water quality . Dr Uriarte saw no... improvement , and restoration of the environment and the rational utilization of water resources; 2. To control and coordinate the implementation of

  16. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    PubMed

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  17. OPERATION OF WATER DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. In order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wat...

  18. Data from selected U.S. Geological Survey National Stream Water-Quality Networks (WQN)

    USGS Publications Warehouse

    Alexander, Richard B.; Slack, J.R.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.; Briel, L.I.; Buttleman, K.P.

    1996-01-01

    This CD-ROM set contains data from two USGS national stream water-quality networks, the Hydrologic Benchmark Network (HBN) and the National Stream Quality Accounting Network (NASQAN), operated during the past 30 years. These networks were established to provide national and regional descriptions of stream water-quality conditions and trends, based on uniform monitoring of selected watersheds throughout the United States, and to improve our understanding of the effects of the natural environment and human activities on water quality. The HBN, consisting of 63 relatively small, minimally disturbed watersheds, provides data for investigating naturally induced changes in streamflow and water quality and the effects of airborne substances on water quality. NASQAN, consisting of 618 larger, more culturally influenced watersheds, provides information for tracking water-quality conditions in major U.S. rivers and streams.

  19. Strategies for ensuring global consistency/comparability of water-quality data

    USGS Publications Warehouse

    Klein, J.M.

    1999-01-01

    In the past 20 years the water quality of the United States has improved remarkably-the waters are safer for drinking, swimming, and fishing. However, despite many accomplishments, it is still difficult to answer such basic questions as: 'How clean is the water?' and 'How is it changing over time?' These same questions exist on a global scale as well. In order to focus water-data issues in the United States, a national Intergovernmental Task Force on Monitoring Water Quality (ITFM) was initiated for public and private organizations, whereby key elements involved in data collection, analysis, storage, and management could be made consistent and comparable. The ITFM recommended and its members are implementing a nationwide strategy to improve water-quality monitoring, assessment, and reporting activities. The intent of this paper is to suggest that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. Consistent, long-term data sets that are comparable are necessary in order to formulate ideas regarding regional and global trends in water quantity and quality. The author recommends that a voluntary effort similar to the ITFM effort be utilized. The strategy proposed would involve voluntary representation from countries and international organizations (e.g. World Health Organization) involved in drinking-water assessments and/or ambient water-quality monitoring. Voluntary partnerships such as this will improve curability to reduce health risks and achieve a better return on public and private investments in monitoring, environmental protection, and natural resource management, and result in a collaborative process that will save millions of dollars.In this work it is suggested that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. The strategy proposed would involve voluntary representation from countries and international organizations involved in drinking-water assessments and/or ambient water-quality monitoring.

  20. Application of a risk management system to improve drinking water safety.

    PubMed

    Jayaratne, Asoka

    2008-12-01

    The use of a comprehensive risk management framework is considered a very effective means of managing water quality risks. There are many risk-based systems available to water utilities such as ISO 9001 and Hazard Analysis and Critical Control Point (HACCP). In 2004, the World Health Organization's (WHO) Guidelines for Drinking Water Quality recommended the use of preventive risk management approaches to manage water quality risks. This paper describes the framework adopted by Yarra Valley Water for the development of its Drinking Water Quality Risk Management Plan incorporating HACCP and ISO 9001 systems and demonstrates benefits of Water Safety Plans such as HACCP. Copyright IWA Publishing 2008.

  1. Predictors of Success for Community-Driven Water Quality Management--Lessons from Three Catchments in New Zealand

    ERIC Educational Resources Information Center

    Tyson, Ben; Unson, Christine; Edgar, Nick

    2017-01-01

    Three community engagement projects on the South Island of New Zealand are enacting education and communication initiatives to improve the uptake of best management practices on farms regarding nutrient management for improving water quality. Understanding the enablers and barriers to effective community-based catchment management is fundamental…

  2. Tiered on-the-ground implementation projects for Gulf of Mexico water quality improvements

    USDA-ARS?s Scientific Manuscript database

    Both the Gulf Hypoxia Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin (USEPA 2008) and the GOMA Governors’ Action Plan II for Healthy and Resilient Coasts (GOMA 2009) call for the development and ...

  3. The Heartland Region P-Index Conservation Innovation Grant: protecting water quality through improved phosphorus management

    USDA-ARS?s Scientific Manuscript database

    Reducing phosphorus loss from agricultural land is important for improvement and protection of surface water quality. Agricultural models can be used to determine management impacts on P loss and therefore serve as a guide for recommending best management practices. However, the models must be comp...

  4. Methods to prioritize placement of riparian buffers for improved water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2008-01-01

    Agroforestry buffers in riparian zones can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, surficial geology, and hydrology determine the capability of forest buffers to intercept and treat these flows. This paper describes two landscape analysis techniques for identifying...

  5. Toward delisting of the water quality beneficial use impairment in the St. Louis River, MN: A monitoring approach

    EPA Science Inventory

    Water quality in the St. Louis River Estuary (SLRE), a great lakes area of concern (AOC), is improving. A significant leap forward followed the opening of the Western Lake Superior Sanitary District in 1978. However, desire for continued improvement throughout the estuary was the...

  6. Investigation of stormwater quality improvements utilizing permeable friction course (PFC).

    DOT National Transportation Integrated Search

    2010-09-01

    This report describes research into the water quality and hydraulics of the Permeable Friction Course (PFC). : Water quality monitoring of 3 locations in the Austin area indicates up to a 90 percent reduction in pollutant : discharges from PFC compar...

  7. An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.

    PubMed

    Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P

    2013-01-01

    The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.

  8. Tree leaf control on low flow water quality in a small Virginia stream

    USGS Publications Warehouse

    Slack, K.V.; Feltz, H.R.

    1968-01-01

    Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.

  9. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature - Ecological Economics

    EPA Science Inventory

    Watershed protection, and associated in situ water quality improvements, has received considerable attention as a means of mitigating health risks and avoiding expenditures at drinking water treatment plants (DWTPs). This study reviews the extant cost function literature linking ...

  10. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature - slides

    EPA Science Inventory

    Watershed protection, and associated in situ water quality improvements, has received considerable attention as a means of mitigating health risks and avoiding expenditures at drinking water treatment plants (DWTPs). In this presentation, we review the literature linking raw wate...

  11. Improving Water Quality Assessments through a HierarchicalBayesian Analysis of Variability

    EPA Science Inventory

    Water quality measurement error and variability, while well-documented in laboratory-scale studies, is rarely acknowledged or explicitly resolved in most water body assessments, including those conducted in compliance with the United States Environmental Protection Agency (USEPA)...

  12. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    USDA-ARS?s Scientific Manuscript database

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  13. Willingness to pay for safe drinking water: A contingent valuation study in Jacksonville, FL.

    PubMed

    Chatterjee, Chiradip; Triplett, Russell; Johnson, Christopher K; Ahmed, Parvez

    2017-12-01

    A surprising number of U.S. cities have drinking water with unhealthy levels of chemicals and contaminants. The city of Jacksonville (Florida), the location for this study, owns the dubious distinction of being ranked among the worst major American cities in water quality according to water quality tests conducted between 2005 and 2009 by the Environmental Working Group (EWG). This report of toxic chemicals in the Jacksonville water supply generated considerable negative publicity and coincides with a frequent and common complaint among residents of foul-smelling water. System revenues from water supply and program subsidies from government are often inadequate in mitigating the problems, perceived or real, with water quality. Therefore, this paper investigates how much residents will be willing to pay for improvements in the quality of tap water. The commonly known economic metric willingness-to-pay (WTP) is applied to estimate any possible rate hikes public utility can assess in any effort to improve real or perceived water quality. The study shows that the estimated weighted average of WTP is $6.22, which can be added to the regular water bill without eliciting much negative reaction from residents. Evidence shows that factors such as trust in authorities, health concerns, family structure, and education significantly impact the WTP. Published by Elsevier Ltd.

  14. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    PubMed

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process.

  15. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementingmore » dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in other« less

  16. Access to Safe Water in Rural Artibonite, Haiti 16 Months after the Onset of the Cholera Epidemic

    PubMed Central

    Patrick, Molly; Berendes, David; Murphy, Jennifer; Bertrand, Fabienne; Husain, Farah; Handzel, Thomas

    2013-01-01

    Haiti has the lowest improved water and sanitation coverage in the Western Hemisphere and is suffering from the largest cholera epidemic on record. In May of 2012, an assessment was conducted in rural areas of the Artibonite Department to describe the type and quality of water sources and determine knowledge, access, and use of household water treatment products to inform future programs. It was conducted after emergency response was scaled back but before longer-term water, sanitation, and hygiene activities were initiated. The household survey and source water quality analysis documented low access to safe water, with only 42.3% of households using an improved drinking water source. One-half (50.9%) of the improved water sources tested positive for Escherichia coli. Of households with water to test, 12.7% had positive chlorine residual. The assessment reinforces the identified need for major investments in safe water and sanitation infrastructure and the importance of household water treatment to improve access to safe water in the near term. PMID:24106191

  17. QTL analysis of genotype x environment interactions affecting cotton fiber quality.

    PubMed

    Paterson, A H; Saranga, Y; Menz, M; Jiang, C-X; Wright, R J

    2003-02-01

    Cotton is unusual among major crops in that large acreages are grown under both irrigated and rainfed conditions, making genotype x environment interactions of even greater importance than usual in designing crop-improvement strategies. We describe the impact of well-watered versus water-limited growth conditions on the genetic control of fiber quality, a complex suite of traits that collectively determine the utility of cotton. Fiber length, length uniformity, elongation, strength, fineness, and color (yellowness) were influenced by 6, 7, 9, 21, 25 and 11 QTLs (respectively) that could be detected in one or more treatments. The genetic control of cotton fiber quality was markedly affected both by general differences between growing seasons ("years") and by specific differences in water management regimes. Seventeen QTLs were detected only in the water-limited treatment while only two were specific to the well-watered treatment, suggesting that improvement of fiber quality under water stress may be even more complicated than improvement of this already complex trait under well-watered conditions. In crops such as cotton with widespread use of both irrigated and rainfed production systems, the need to manipulate larger numbers of genes to confer adequate quality under both sets of conditions will reduce the expected rate of genetic gain. These difficulties may be partly ameliorated by efficiencies gained through identification and use of diagnostic DNA markers, including those identified herein.

  18. LANDSCAPE MANAGEMENT FOR RESTORATION OF AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    As part of CEAP, we conducted a review of the available literature on landscape management to achieve improvement of water quality, water quantity, soil quality, and air quality in agricultural systems. At least 15 general principles emerged from this review. These principles wil...

  19. The cumulative effects assessment of a coastal ecological restoration project in China: An integrated perspective.

    PubMed

    Ma, Deqiang; Zhang, Liyu; Fang, Qinhua; Jiang, Yuwu; Elliott, Michael

    2017-05-15

    Large scale coastal land-claim and sea-enclosing (CLASE) activities have caused habitat destruction, biodiversity losses and water deterioration, thus the local governments in China have recently undertaken seabed dredging and dyke opening (SDADO) as typical ecological restoration projects. However, some projects focus on a single impact on hydrodynamic conditions, water quality or marine organisms. In a case study in Xiamen, China, an integrated effects assessment framework centres on ecohydrology, using modeling of hydrodynamic conditions and statistical analysis of water quality, was developed to assess the effects of ecological restoration projects. The benefits of SDADO projects include improving hydrodynamic conditions and water quality, as a precursor to further marine biological improvements. This study highlights the need to comprehensively consider ecological effects of SDADO projects in the planning stage, and an integrative assessment method combining cumulative effects of hydrodynamic conditions, water quality and biological factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sachet water quality and brand reputation in two low-income urban communities in greater Accra, Ghana.

    PubMed

    Stoler, Justin; Tutu, Raymond A; Ahmed, Hawa; Frimpong, Lady Asantewa; Bello, Mohammed

    2014-02-01

    Sachet water has become an important primary source of drinking water in western Africa, but little is known about bacteriologic quality and improvements to quality control given the recent, rapid evolution of this industry. This report examines basic bacteriologic indicators for 60 sachet water samples from two very low-income communities in Accra, Ghana, and explores the relationship between local perceptions of brand quality and bacteriologic quality after controlling for characteristics of the vending environment. No fecal contamination was detected in any sample, and 82% of total heterotrophic bacteria counts were below the recommended limit for packaged water. Sachets from brands with a positive reputation for quality were 90% less likely to present any level of total heterotrophic bacteria after controlling for confounding factors. These results contrast with much of the recent sachet water quality literature and may indicate substantial progress in sachet water regulation and quality control.

  1. Sachet Water Quality and Brand Reputation in Two Low-Income Urban Communities in Greater Accra, Ghana

    PubMed Central

    Stoler, Justin; Tutu, Raymond A.; Ahmed, Hawa; Frimpong, Lady Asantewa; Bello, Mohammed

    2014-01-01

    Sachet water has become an important primary source of drinking water in western Africa, but little is known about bacteriologic quality and improvements to quality control given the recent, rapid evolution of this industry. This report examines basic bacteriologic indicators for 60 sachet water samples from two very low-income communities in Accra, Ghana, and explores the relationship between local perceptions of brand quality and bacteriologic quality after controlling for characteristics of the vending environment. No fecal contamination was detected in any sample, and 82% of total heterotrophic bacteria counts were below the recommended limit for packaged water. Sachets from brands with a positive reputation for quality were 90% less likely to present any level of total heterotrophic bacteria after controlling for confounding factors. These results contrast with much of the recent sachet water quality literature and may indicate substantial progress in sachet water regulation and quality control. PMID:24379244

  2. Report: EPA Is Taking Steps to Improve State Drinking Water Program Reviews and Public Water Systems Compliance Data

    EPA Pesticide Factsheets

    Report #17-P-0326, July 18, 2017. The EPA is taking action to improve oversight tools used to determine whether public water systems are monitoring and reporting drinking water quality in accordance with the Safe Drinking Water Act.

  3. The genomics revolution and its effect on water quality

    EPA Science Inventory

    Genomic-based molecular tools are emerging as powerful laboratory methods for assessing water quality characteristics and improving our ability to assess the human health risks posed by microbial contaminants in drinking water. To a great extent, this revolution in genomics-rese...

  4. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    NASA Astrophysics Data System (ADS)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study has the potential to provide empirical evidence to promote large scale monitoring and education campaigns in Africa to improve health and reduce the burden of waterborne disease.

  5. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  6. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  7. Interpreting drinking water quality in the distribution system using Dempster-Shafer theory of evidence.

    PubMed

    Sadiq, Rehan; Rodriguez, Manuel J

    2005-04-01

    Interpreting water quality data routinely generated for control and monitoring purposes in water distribution systems is a complicated task for utility managers. In fact, data for diverse water quality indicators (physico-chemical and microbiological) are generated at different times and at different locations in the distribution system. To simplify and improve the understanding and the interpretation of water quality, methodologies for aggregation and fusion of data must be developed. In this paper, the Dempster-Shafer theory also called theory of evidence is introduced as a potential methodology for interpreting water quality data. The conceptual basis of this methodology and the process for its implementation are presented by two applications. The first application deals with the interpretation of spatial water quality data fusion, while the second application deals with the development of water quality index based on key monitored indicators. Based on the obtained results, the authors discuss the potential contribution of theory of evidence as a decision-making tool for water quality management.

  8. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  9. Correction of stream quality trends for the effects of laboratory measurement bias

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  10. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Treesearch

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  11. Understanding the effectiveness of vegetated streamside management zones for protecting water quality (Chapter 5)

    Treesearch

    Philip Smethurst; Kevin Petrone; Daniel Neary

    2012-01-01

    We set out to improve understanding of the effectiveness of streamside management zones (SMZs) for protecting water quality in landscapes dominated by agriculture. We conducted a paired-catchment experiment that included water quality monitoring before and after the establishment of a forest plantation as an SMZ on cleared farmland that was used for extensive grazing....

  12. Sustainable Improvement of Urban River Network Water Quality and Flood Control Capacity by a Hydrodynamic Control Approach-Case Study of Changshu City

    NASA Astrophysics Data System (ADS)

    Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu

    2017-01-01

    Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.

  13. Occurrence and exposures to disinfectants and disinfection by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumming, R.B.; Jolley, R.L.

    1992-12-31

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBPmore » precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of ``new`` DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.« less

  14. Occurrence and exposures to disinfectants and disinfection by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumming, R.B.; Jolley, R.L.

    1992-01-01

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBPmore » precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of new'' DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.« less

  15. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  16. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  17. Watershed Academy Webcast: USDA's National Water Quality Initiative

    EPA Pesticide Factsheets

    This page contains a description and documentation associated with the webcast on how USDA’s NWQI is working in priority watersheds to help farmers, ranchers and forest landowners improve water quality.

  18. Report: EPA Needs to Track Whether Its Major Municipal Settlements for Combined Sewer Overflows Benefit Water Quality

    EPA Pesticide Factsheets

    Report #15-P-0280, September 16, 2015. By tracking environmental results, the EPA can show how the $32 billion that communities are spending to address discharges of untreated sewage and contaminated storm water improves water quality.

  19. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China.

    PubMed

    Duan, Weili; He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004-2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution.

  20. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  1. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  2. Dam Removal Provides Fish Passage, Water Quality Benefits

    EPA Pesticide Factsheets

    The Bishopville Pond Dam in Maryland has been replaced with a series of pools, runs and step-like structures, improving water quality downstream and providing access for key fish species to spawn upstream.

  3. Integrity Model Application: A Quality Support System for Decision-makers on Water Quality Assessment and Improvement

    NASA Astrophysics Data System (ADS)

    Mirauda, D.; Ostoich, M.; Di Maria, F.; Benacchio, S.; Saccardo, I.

    2018-03-01

    In this paper, a mathematical model has been applied to a river in North-East Italy to describe vulnerability scenarios due to environmental pollution phenomena. Such model, based on the influence diagrams theory, allowed identifying the extremely critical factors, such as wastewater discharges, drainage of diffuse pollution from agriculture and climate changes, which might affect the water quality of the river. The obtained results underlined how the water quality conditions have improved thanks to the continuous controls on the territory, following the application of Water Framework Directive 2000/60/EC. Nevertheless, some fluvial stretches did not reach the “good ecological status” by 2015, because of the increasing population in urban areas recorded in the last years and the high presence of tourists during the summer months, not balanced by a treatment plants upgrade.

  4. The impact of water quality in Narragansett Bay on housing prices

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Opaluch, James J.; Uchida, Emi

    2017-08-01

    We examine the impact of water quality in Narragansett Bay on housing prices in coastal towns and cities using a hedonic housing-price model. Unlike other hedonic studies of water quality, we test whether housing market responds to average water quality or more to extreme events. We also test the spatial and temporal extent of effects of water quality on housing prices. We find that poor coastal water quality, measured in terms of the concentration of chlorophyll, has a negative impact on housing prices that diminishes with distance from the shoreline. Furthermore, our finding suggests that housing prices are most influenced by the extreme environmental conditions, which may be accompanied by unpleasant odors, discoloration, and even fish kills. We further predict potential increases in home values associated under water quality improvement scenarios and find an increase in the values of homes in coastal communities along Narragansett Bay of about 18 million up to 136 million.

  5. Analysis and interpretation of water-quality trends in major U.S. rivers, 1974-81

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.; Wolman, M. Gordon

    1987-01-01

    Water-quality records from two nationwide sampling networks are now of sufficient length to permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 water-quality measures for the period 1974--81 provide evidence of both improvement and deterioration in stream quality during a time of major changes in atmospheric and terrestrial influences on surface waters. Particularly noteworthy are widespread decreases in lead and fecal bacteria concentrations and widespread increases in nitrate, arsenic, and cadmium concentrations. Changes in municipal waste treatment, leaded-gasoline consumption, highway-salt use, and nitrogen-fertilizer application, and regionally variable trends in coal production and combustion during the period, appear to be reflected in water-quality changes. There is evidence that atmospheric deposition of a variety of substances has played a surprisingly large role in water-quality changes.

  6. Detecting gradual and abrupt changes in water quality time series in response to regional payment programs for watershed services in an agricultural area

    NASA Astrophysics Data System (ADS)

    He, Tian; Lu, Yan; Cui, Yanping; Luo, Yabo; Wang, Min; Meng, Wei; Zhang, Kaijie; Zhao, Feifei

    2015-06-01

    Market-based watershed protection instruments can effectively improve water quality at various catchment scales. Two payments for watershed services (PWS) programs for water quality improvement have been successively implemented in the Huai River catchment and its sub-watershed, the Shaying River catchment, in Henan Province since 2009. To detect changes in water quality in response to PWS schemes, nonparametric statistical approaches were used to analyze gradual and abrupt trends in water quality, focusing on chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) at 26 monitoring stations in the Huai River watershed during 2006-2013. The nonparametric Mann-Kendall test and the Theil-Sen estimator were used to identify trends and their magnitudes in weekly water quality observations and the Pettitt test was applied to change-point analysis of water quality time series. We found decreasing concentration trends in the weekly water quality data set in this catchment, with water quality at most stations affected by the PWS schemes. The COD and NH3-N concentrations decreased at 26 stations by an average of 0.05 mg/L wk and 0.01 mg/L wk, respectively, from 2006 to 2013. Meanwhile, the mean concentrations of COD and NH3-N decreased at the 26 stations by an average of 18.03 mg/L and 4.82 mg/L, respectively, after the abrupt change points of the time-series trends of these two pollutants. We also estimated annual reductions in COD and NH3-N for each station based on average flow observations using the Theil-Sen approach along with the resulting economic benefits from 2009 to 2010. The COD and NH3-N reductions were 14604.50 and 6213.25 t/y, respectively, in the Huai River catchment in Henan Province. The total economic benefits of reductions in these two pollutants were 769.71 million ¥ in 2009 and 2010, accounting for 0.08% and 0.06%, respectively, of the GDP in the entire Huai River watershed of Henan Province. These results provide new insights into the linkages between PWS programs and water quality improvements at regional and local scales for effective management of water resources.

  7. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries.

    PubMed

    Bain, Rob E S; Gundry, Stephen W; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-03-01

    To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement.

  8. Global access to safe water: accounting for water quality and the resulting impact on MDG progress.

    PubMed

    Onda, Kyle; LoBuglio, Joe; Bartram, Jamie

    2012-03-01

    Monitoring of progress towards the Millennium Development Goal (MDG) drinking water target relies on classification of water sources as "improved" or "unimproved" as an indicator for water safety. We adjust the current Joint Monitoring Programme (JMP) estimate by accounting for microbial water quality and sanitary risk using the only-nationally representative water quality data currently available, that from the WHO and UNICEF "Rapid Assessment of Drinking Water Quality". A principal components analysis (PCA) of national environmental and development indicators was used to create models that predicted, for most countries, the proportions of piped and of other-improved water supplies that are faecally contaminated; and of these sources, the proportions that lack basic sanitary protection against contamination. We estimate that 1.8 billion people (28% of the global population) used unsafe water in 2010. The 2010 JMP estimate is that 783 million people (11%) use unimproved sources. Our estimates revise the 1990 baseline from 23% to 37%, and the target from 12% to 18%, resulting in a shortfall of 10% of the global population towards the MDG target in 2010. In contrast, using the indicator "use of an improved source" suggests that the MDG target for drinking-water has already been achieved. We estimate that an additional 1.2 billion (18%) use water from sources or systems with significant sanitary risks. While our estimate is imprecise, the magnitude of the estimate and the health and development implications suggest that greater attention is needed to better understand and manage drinking water safety.

  9. Hot spots and hot moments in riparian zones: potential for improved water quality management

    USDA-ARS?s Scientific Manuscript database

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  10. All coliforms are not created equal: A comparison of the effects of water source and in-house water contamination on Infantile Diarrheal Disease

    NASA Astrophysics Data System (ADS)

    VanDerslice, James; Briscoe, James

    1993-07-01

    Storing drinking water in the home is common in the developing world. Several studies have documented increased concentrations of fecal coliforms during household storage. This has led to the belief that in-house water contamination is an important transmission route for enteric pathogens and, moreover, that improving water source quality is not warranted until that quality can be maintained in the home. We contend that in-house water contamination does not pose a serious risk of diarrhea because family members would likely develop some level of immunity to pathogens commonly encountered in the household environment. Even when there is no such immunity, transmission of these pathogens via stored water may be inefficient relative to other household transmission routes, such as person-to-person contact or food contamination. A contaminated water source poses much more of a risk since it may introduce new pathogens into the household, The effects of water source and in-house contamination on diarrheal disease are estimated for 2355 Filipino infants. The results confirm our hypothesis: contaminated water sources pose a serious risk of diarrhea while contamination of drinking water in the home does not. Water boiling is shown to eliminate the risk of diarrhea due to water source contamination. The results imply that improvements in water source quality are more important than improving water storage practices.

  11. Surface-water-quality assessment of the Kentucky River Basin, Kentucky; fixed-station network and selected water-quality data, April 1987 through August 1991

    USGS Publications Warehouse

    Griffin, M.S.; Martin, G.R.; White, K.D.

    1994-01-01

    This report describes selected data-collection activities and the associated data collected during the Kentucky River Basin pilot study of the U.S. Geological Survey's National Water-Quality Assessment Program. The data are intended to provide a nationally consistent description and improved understanding of current water quality in the basin. The data were collected at seven fixed stations that represent stream cross sections where constituent transport and water-quality trends can be evaluated. The report includes descriptions of (1) the basin; (2) the design of the fixed-station network; (3) the fixed-station sites; (4) the physical and chemical measurements; (5) the methods of sample collection, processing, and analysis; and (6) the quality-assurance and quality-control procedures. Water-quality data collected at the fixed stations during routine periodic sampling and supplemental high-flow sampling from April 1987 to August 1991 are presented.

  12. Influencing factors for household water quality improvement in reducing diarrhoea in resource-limited areas.

    PubMed

    Zin, Thant; Mudin, Kamarudin D; Myint, Than; Naing, Daw K S; Sein, Tracy; Shamsul, B S

    2013-01-01

    Water and sanitation are major public health issues exacerbated by rapid population growth, limited resources, disasters and environmental depletion. This study was undertaken to study the influencing factors for household water quality improvement for reducing diarrhoea in resource-limited areas. Data were collected from articles and reviews from relevant randomized controlled trials, new articles, systematic reviews and meta-analyses from PubMed, World Health Organization (WHO), United Nations Children's Fund (UNICEF) and WELL Resource Centre For Water, Sanitation And Environmental Health. Water quality on diarrhoea prevention could be affected by contamination during storage, collection and even at point-of-use. Point-of-use water treatment (household-based) is the most cost-effective method for prevention of diarrhoea. Chemical disinfection, filtration, thermal disinfection, solar disinfection and flocculation and disinfection are five most promising household water treatment methodologies for resource-limited areas. Promoting household water treatment is most essential for preventing diarrhoeal disease. In addition, the water should be of acceptable taste, appropriate for emergency and non-emergency use.

  13. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    NASA Astrophysics Data System (ADS)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  14. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  15. Geostatistical Prediction of Microbial Water Quality Throughout a Stream Network Using Meteorology, Land Cover, and Spatiotemporal Autocorrelation.

    PubMed

    Holcomb, David A; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-25

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modeled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  16. Wetlands receiving water treated with coagulants improve water quality by removing dissolved organic carbon and disinfection byproduct precursors.

    PubMed

    Hansen, Angela M; Kraus, Tamara E C; Bachand, Sandra M; Horwath, William R; Bachand, Philip A M

    2018-05-01

    Constructed wetlands are used worldwide to improve water quality while also providing critical wetland habitat. However, wetlands have the potential to negatively impact drinking water quality by exporting dissolved organic carbon (DOC) that upon disinfection can form disinfection byproducts (DBPs) like trihalomethanes (THMs) and haloacetic acids (HAAs). We used a replicated field-scale study located on organic rich soils in California's Sacramento-San Joaquin Delta to test whether constructed flow-through wetlands which receive water high in DOC that is treated with either iron- or aluminum-based coagulants can improve water quality with respect to DBP formation. Coagulation alone removed DOC (66-77%) and THM (67-70%) precursors, and was even more effective at removing HAA precursors (77-90%). Passage of water through the wetlands increased DOC concentrations (1.5-7.5mgL -1 ), particularly during the warmer summer months, thereby reversing some of the benefits from coagulant addition. Despite this addition, water exiting the wetlands treated with coagulants had lower DOC and DBP precursor concentrations relative to untreated source water. Benefits of the coagulation-wetland systems were greatest during the winter months (approx. 50-70% reduction in DOC and DBP precursor concentrations) when inflow water DOC concentrations were higher and wetland DOC production was lower. Optical properties suggest DOC in this system is predominantly comprised of high molecular weight, aromatic compounds, likely derived from degraded peat soils. Published by Elsevier B.V.

  17. Managed aquifer recharge of treated wastewater: water quality changes resulting from infiltration through the vadose zone.

    PubMed

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Higginson, Simon

    2011-11-01

    Secondary treated wastewater was infiltrated through a 9 m-thick calcareous vadose zone during a 39 month managed aquifer recharge (MAR) field trial to determine potential improvements in the recycled water quality. The water quality improvements of the recycled water were based on changes in the chemistry and microbiology of (i) the recycled water prior to infiltration relative to (ii) groundwater immediately down-gradient from the infiltration gallery. Changes in the average concentrations of several constituents in the recycled water were identified with reductions of 30% for phosphorous, 66% for fluoride, 62% for iron and 51% for total organic carbon when the secondary treated wastewater was infiltrated at an applied rate of 17.5 L per minute with a residence time of approximately four days in the vadose zone and less than two days in the aquifer. Reductions were also noted for oxazepam and temazepam among the pharmaceuticals tested and for a range of microbial pathogens, but reductions were harder to quantify as their magnitudes varied over time. Total nitrogen and carbamazepine persisted in groundwater down-gradient from the infiltration galleries. Infiltration does potentially offer a range of water quality improvements over direct injection to the water table without passage through the unsaturated zone; however, additional treatment options for the non-potable water may still need to be considered, depending on the receiving environment or the end use of the recovered water. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  18. Update to the Propagation and Establishment of Aquatic Plants Handbook

    DTIC Science & Technology

    2005-03-01

    decades or even longer. In the interim these reservoirs provide relatively poor aquatic habitat and water quality. Unvegetated aquatic ecosystems are also...establishment or reestab- lishment of aquatic plant communities. Many reservoirs without aquatic plants suffer from poor water quality (high nutrients...serve as a food source for waterfowl and other aquatic wildlife, improve water clarity and quality (James and Barko 1990), reduce rates of

  19. Groundwater-quality data from the eastern Snake River Plain Aquifer, Jerome and Gooding Counties, south-central Idaho, 2017

    USGS Publications Warehouse

    Skinner, Kenneth D.

    2018-05-11

    Groundwater-quality samples and water-level data were collected from 36 wells in the Jerome/Gooding County area of the eastern Snake River Plain aquifer during June 2017. The wells included 30 wells sampled for the U.S. Geological Survey’s National Water-Quality Assessment project, plus an additional 6 wells were selected to increase spatial distribution. The data provide water managers with the ability for an improved understanding of groundwater quality and flow directions in the area. Groundwater-quality samples were analyzed for nutrients, major ions, trace elements, and stable isotopes of water. Quality-assurance and quality-control measures consisted of multiple blank samples and a sequential replicate sample. All data are available online at the USGS National Water Information System.

  20. Public-Private Partnerships Working Beyond Scale Challenges toward Water Quality Improvements from Private Lands

    NASA Astrophysics Data System (ADS)

    Enloe, Stephanie K.; Schulte, Lisa A.; Tyndall, John C.

    2017-10-01

    In recognition that Iowa agriculture must maintain long-term production of food, fiber, clean water, healthy soil, and robust rural economies, Iowa recently devised a nutrient reduction strategy to set objectives for water quality improvements. To demonstrate how watershed programs and farmers can reduce nutrient and sediment pollution in Iowa waters, the Iowa Water Quality Initiative selected the Boone River Watershed Nutrient Management Initiative as one of eight demonstration projects. For over a decade, diverse public, private, and non-profit partner organizations have worked in the Boone River Watershed to engage farmers in water quality management efforts. To evaluate social dynamics in the Boone River Watershed and provide partners with actionable recommendations, we conducted and analyzed semi-structured interviews with 33 program leaders, farmers, and local agronomists. We triangulated primary interview data with formal analysis of Boone River Watershed documents such as grant applications, progress reports, and outreach materials. Our evaluation suggests that while multi-stakeholder collaboration has enabled partners to overcome many of the traditional barriers to watershed programming, scale mismatches caused by external socio-economic and ecological forces still present substantial obstacles to programmatic resilience. Public funding restrictions and timeframes, for example, often cause interruptions to adaptive management of water quality monitoring and farmer engagement. We present our findings within a resilience framework to demonstrate how multi-stakeholder collaboration can help sustain adaptive watershed programs to improve socio-ecological function in agricultural watersheds such as the Boone River Watershed.

  1. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    USDA-ARS?s Scientific Manuscript database

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  2. Exploration of indigenous bacteria in an intensive aquaculture system of African catfish (Clarias sp.) in Banyuwangi, Indonesia

    NASA Astrophysics Data System (ADS)

    Prayogo; Rahardja, B. S.; Asshanti, A. N.; Dewi, N. N.; Santanumurti, M. B.

    2018-04-01

    Intensive African catfish culture in tarpaulin pond was popular in Banyuwangi, Indonesia since the government supported the fisheries sector. Unfortunately, the failure of African catfish culture still occurred since the waste from fish metabolite process and feed residue decreased the water quality. Bacteria in the water could be the solution to increase the success rate of aquaculture by improving the water quality. This study purpose was to obtained indigenous bacteria in intensive aquaculture system of African catfish to improve water quality. This study successfully isolated bacteria contained with amylase, protease and lipase characteristic. Isolated bacteria in this study were identified as Pseudomonas pseudomallei (97.81%), Bacillus subtilis (95.81%) and Pseudomonas stutzeri (61.21%).

  3. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  4. 36 CFR 230.7 - Program practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... soil erosion. (5) Soil and Water Protection and Improvement (SIP5), which includes the maintenance or improvement of water quality and soil productivity on forest land. (6) Riparian and Wetland Protection and...) Forest and Agroforest Improvement (SIP3), which includes the improvement of forest and agroforest stand...

  5. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. 7 CFR 632.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... programs of soil and water conservation with which the Secretary of Agriculture cooperates under the Soil..., structures, or other improvements. Land user. Any person, partnership, firm, company, corporation... sediment damage, elimination of public safety or health hazards, improvement of water quality, improved...

  7. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  8. ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)

    EPA Science Inventory

    The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...

  9. Spatial and temporal variation of fecal indicator organisms in two creeks in Beltsville, Maryland

    USDA-ARS?s Scientific Manuscript database

    Evaluation of microbial water quality is commonly achieved by monitoring populations of indicator bacteria such as E. coli and enterococci. Monitoring data are utilized by water managers to predict potential fecal contaminations as well as a decision tool to improve microbial water quality. Both te...

  10. BEYOND WATER QUALITY: CAN THE CLEAN WATER ACT BE USED TO REDUCE THE QUANTITY OF STORMWATER RUNOFF?

    EPA Science Inventory

    Improving water quality by targeting stormwater runoff and the pollutants it carries has become an increasingly important and discussed issue in both environmental policy and urban management literature. Although this is certainly an important concern in both realms of policy, l...

  11. The environmental audit. I. Concepts

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Kerster, Harold W.; Perry, James A.; Cox, David K.

    1985-05-01

    Extensive criticism of water quality monitoring programs has developed as costs are compared with the benefits produced by monitoring efforts. Collecting water quality data while developing understanding of the functional character of the environment will improve water quality monitoring data utility in environmental management. The “environmental audit” characterizes the attributes of the natural environment (that is, attribute type, intensity, and variability), providing a theoretical as well as practical foundation for data interpretation. In the view proposed here, traditional monitoring means the very narrow activity of collecting samples and perhaps analyzing them and storing the analyses. In the environmental audit, these activities are a mechanism to systematically improve environmental monitoring and assessment by improving the design and implementation of environmental programs. Major reasons why existing programs fail to meet the needs of legislators, regulators, and conservationists are identified.

  12. Tsukamoto fuzzy implementation to identify the pond water quality of koi

    NASA Astrophysics Data System (ADS)

    Qur'ania, A.; Verananda, D. I.

    2017-01-01

    The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.

  13. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    PubMed

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  14. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  15. Household water treatment and the millennium development goals: keeping the focus on health.

    PubMed

    Clasen, Thomas F

    2010-10-01

    Waterborne diseases such as diarrhea are a major killer in low-income settings, particularly of young children. For those without access to safe drinking water, household water treatment, such as boiling, chlorinating, and filtering water in the home, when combined with safe storage (HWTS) can significantly improve water quality and prevent disease, thereby contributing to the child survival and other health priorities encompassed within the Millennium Development Goals (MDGs). There is uncertainly, however, about whether HWTS should count toward the MDG water target, which promotes "sustainable access to safe drinking water". This paper reviews the relevant research and concludes that it should not. Although HWTS can significantly improve water quality, it does not improve water quantity and access-key aspects of the MDG water target that are essential for optimal improvements in health and development. A policy that excludes HWTS from the MDG water target will discourage governments from diverting scarce public resources from comprehensive and long-term improvements in water supplies. At the same time, the health-oriented MDGs provide a sufficient case for scaling up effective and appropriate HWTS among target populations. Moreover, a health-based strategy for HWTS will help ensure that promotion of the intervention is driven by measurable improvements in outcomes rather than inputs, thus encouraging advances in both hardware and programmatic delivery that will make HWTS more effective, appropriate, and accessible to vulnerable populations.

  16. Community-Based Participatory Research in Indian Country: Improving Health through Water Quality Research and Awareness

    PubMed Central

    Cummins, C.; Doyle, J.; Kindness, L.; Lefthand, M.J.; Bear Don't Walk, U.J.; Bends, A.; Broadaway, S.C.; Camper, A.K.; Fitch, R.; Ford, T.E.; Hamner, S.; Morrison, A.R.; Richards, C.L.; Young, S.L.; Eggers, M.J.

    2011-01-01

    Water has always been held in high respect by the Apsaálooke (Crow) people of Montana. Tribal members questioned the health of the rivers and well water due to visible water quality deterioration and potential connections to illnesses in the community. Community members initiated collaboration among local organizations, the Tribe and academic partners, resulting in genuine community based participatory research. The article shares what we have learned as tribal members and researchers about working together to examine surface and groundwater contaminants, assess routes of exposure and use our data to bring about improved health of our people and our waters. PMID:20531097

  17. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  18. Mass imbalances in EPANET water-quality simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less

  19. Report: Saving the Chesapeake Bay Watershed Requires Better Coordination of Environmental and Agricultural Resources

    EPA Pesticide Factsheets

    Report #2007-P-00004, November 20, 2006. Despite significant efforts to improve water quality in the Chesapeake Bay watershed, excess nutrients and sediment continue to impair the Bay’s water quality.

  20. Effect of aquifer storage and recovery (ASR) on recovered stormwater quality variability.

    PubMed

    Page, D W; Peeters, L; Vanderzalm, J; Barry, K; Gonzalez, D

    2017-06-15

    Aquifer Storage and Recovery (ASR) is increasingly being considered as a means of reusing urban stormwater to supplement available urban water resources. Storage of stormwater in an aquifer has been shown to affect water quality but it has also been claimed that storage will also decrease the stormwater quality variability making for improved predictability and management. This study is the first to document the changes in stormwater quality variability as a result of subsurface storage at four full scale ASR sites using advanced statistical techniques. New methods to examine water quality are required as data is often highly left censored and so traditional measures of variability such as the coefficient of variation are inappropriate. It was observed that for some water quality parameters (most notably E. coli) there was a marked improvement of water quality and a significant decrease in variability at all sites. This means that aquifer storage prior to engineered treatment systems may be advantageous in terms of system design to avoid over engineering. For other parameters such as metal(loids)s and nutrients the trend was less clear due to the numerous processes occurring during storage leading to an increase in variability, especially for geogenic metals and metalloids such as iron and arsenic. Depending upon the specific water quality parameters and end use, use of ASR may not have a dampening effect on stormwater quality variability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  2. Relations of changes in wastewater-treatment practices to changes in stream-water quality during 1978-88 in the Chicago area, Illinois, and implications for regional and national water-quality assessments

    USGS Publications Warehouse

    Terrio, P.J.

    1994-01-01

    A study in the upper Illinois River Basin defined relations between changes in wastewater-treatment practices and changes in stream-water quality on the basis of available information. These relations were examined for five large wastewater-treatment plants in the Chicago area, Illinois. At the three largest treatment plants, two major changes in wastewater-treatment practices were identified--the cessation of chlorination and the implementation of Chicago's Tunnel and Reservoir Plan (TARP). Other changes, such as improved aeration and expansion of the facilities, also were made at some of the treatment plants. At the Calumet Water Reclamation Plant, median densities of fecal coliform bacteria in the effluent increased from 3,100 to 1,200,000 colonies per 100 milliliters after the cessation of chlorination. Median densities at the nearest downstream monitoring site increased from 9,500 to 250,000 colonies per 100 milliliters. Similar changes in bacteria densities were indicated for other treatment plants and stream-monitoring sites, but increases in densities of fecal coliform bacteria were not indicated at distances greater than 7 miles downstream. Substantial changes in effluent and stream-water quality, primarily improvements, were identified after the implemen- of TARP and improvements in aeration. Decreases in some of the largest concentrations of ammonia were particularly notable and were likely results of the cape and treatment of combined sewer overflows by TARP. Improvements in water quality were commonly related to climatic season, with greater changes taking place during warm periods. Substantial decreases in concentrations were identified for many constituents, including oxygen demand, ammonia, bacteria, and cyanide. The water-quality data available for this study were considered to be more accurate and were more comprehensive than data from most other monitoring programs. The results of this study, however, identified some needed enhancements to increase the usefulness of the data for additional purposes and analyses.

  3. Microbiological surveillance and state of the art technological strategies for the prevention of dialysis water pollution.

    PubMed

    Bolasco, Piergiorgio; Contu, Antonio; Meloni, Patrizia; Vacca, Dorio; Galfrè, Andrea

    2012-08-01

    The present report attempts to illustrate the positive impact on the microbiological quality of dialysis patients over a 15-year period through the progressive implementation of state-of-the-art technological strategies and the optimization of microbiological surveillance procedures in five dialysis units in Sardinia. Following on better microbiological, quality controls of dialysis water and improvement of procedures and equipment, a drastic improvement of microbiological water quality was observed in a total of 945 samples. The main aim was to introduce the use of microbiological culture methods as recommended by the most important guidelines. The microbiological results obtained have led to a progressive refining of controls and introduction of new materials and equipment, including two-stage osmosis and piping distribution rings featuring a greater capacity to prevent biofilm adhesion. The actions undertaken have resulted in unexpected quality improvements. Dialysis water should be viewed by the nephrologist as a medicinal product exerting a demonstrable positive impact on microinflammation in dialysis patients. A synergic effort between nephrologists and microbiologists undoubtedly constitutes the most effective means of preventing dialysis infections.

  4. Microbiological Surveillance and State of the Art Technological Strategies for the Prevention of Dialysis Water Pollution

    PubMed Central

    Bolasco, Piergiorgio; Contu, Antonio; Meloni, Patrizia; Vacca, Dorio; Galfrè, Andrea

    2012-01-01

    Methods: The present report attempts to illustrate the positive impact on the microbiological quality of dialysis patients over a 15-year period through the progressive implementation of state-of-the-art technological strategies and the optimization of microbiological surveillance procedures in five dialysis units in Sardinia. Results: Following on better microbiological, quality controls of dialysis water and improvement of procedures and equipment, a drastic improvement of microbiological water quality was observed in a total of 945 samples. The main aim was to introduce the use of microbiological culture methods as recommended by the most important guidelines. The microbiological results obtained have led to a progressive refining of controls and introduction of new materials and equipment, including two-stage osmosis and piping distribution rings featuring a greater capacity to prevent biofilm adhesion. The actions undertaken have resulted in unexpected quality improvements. Conclusions: Dialysis water should be viewed by the nephrologist as a medicinal product exerting a demonstrable positive impact on microinflammation in dialysis patients. A synergic effort between nephrologists and microbiologists undoubtedly constitutes the most effective means of preventing dialysis infections. PMID:23066395

  5. Risk aversion and willingness to pay for water quality: The case of non-farm rural residents.

    PubMed

    Larue, Bruno; West, Gale E; Singbo, Alphonse; Tamini, Lota Dabio

    2017-07-15

    Stated choice experiments are used to investigate the economic valuation of rural residents living in the province of Quebec for water quality improvements. In Quebec, rural residents played an important role in the setting of stricter environmental regulations. Unlike most stated choice experiments about the valuation of improvements in water quality, this study explicitly accounts for risk in the design and analysis of choice experiments. Risk in phosphorus and coliform reductions is introduced through a three-point uniform distribution in the choice sets. The results show greater support for constant absolute risk aversion preferences than for constant relative risk aversion. Rural residents value coliform and phosphorus reductions and the more educated ones are particularly willing to see the government tax farmers and taxpayers to secure such reductions. As the science improves and risk in water quality outcomes decrease and as the political weight of non-farm rural residents increase, it should be easier for governments to replace voluntary cost-share programs by polluter-payer programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China

    PubMed Central

    He, Bin; Chen, Yaning; Zou, Shan; Wang, Yi; Nover, Daniel; Chen, Wen; Yang, Guishan

    2018-01-01

    Comprehensive understanding of the long-term trends and seasonality of water quality is important for controlling water pollution. This study focuses on spatio-temporal distributions, long-term trends, and seasonality of water quality in the Yangtze River basin using a combination of the seasonal Mann-Kendall test and time-series decomposition. The used weekly water quality data were from 17 environmental stations for the period January 2004 to December 2015. Results show gradual improvement in water quality during this period in the Yangtze River basin and greater improvement in the Uppermost Yangtze River basin. The larger cities, with high GDP and population density, experienced relatively higher pollution levels due to discharge of industrial and household wastewater. There are higher pollution levels in Xiang and Gan River basins, as indicated by higher NH4-N and CODMn concentrations measured at the stations within these basins. Significant trends in water quality were identified for the 2004–2015 period. Operations of the three Gorges Reservoir (TGR) enhanced pH fluctuations and possibly attenuated CODMn, and NH4-N transportation. Finally, seasonal cycles of varying strength were detected for time-series of pollutants in river discharge. Seasonal patterns in pH indicate that maxima appear in winter, and minima in summer, with the opposite true for CODMn. Accurate understanding of long-term trends and seasonality are necessary goals of water quality monitoring system efforts and the analysis methods described here provide essential information for effectively controlling water pollution. PMID:29466354

  7. Water quality and nutrient loading in the Klamath River between Keno, Oregon and Seiad Valley, CA from 1996-1998

    USGS Publications Warehouse

    Campbell, Sharon G.

    2001-01-01

    Implementing management strategies for reservoir operations to improve water quality and reduce nutrient concentration or loading in the Klamath River study area to benefit anadromous fisheries may be difficult and expensive. However, improving the thermal regime in spring to benefit YOY salmonids may be possible as is short-term relief in late summer for oversummering species. Decreases in nutrient concentration or loading accomplished through best management practices in the water shed may allow general protection of water resources in the Klamath Basin for future needs.

  8. Environmental Assessment: Improvements to Silver Flag Training Area at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2013-01-01

    moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program soils , wetlands, surface water, floodplains, vegetation, fish...magnitude, on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, smf ace water, floodplains, vegetation, fish and wildlife...range from negligible to moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, surface water

  9. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  10. Fecal contamination of drinking-water in low- and middle-income countries: a systematic review and meta-analysis.

    PubMed

    Bain, Robert; Cronk, Ryan; Wright, Jim; Yang, Hong; Slaymaker, Tom; Bartram, Jamie

    2014-05-01

    Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global access to safe drinking-water is monitored by WHO and UNICEF using as an indicator "use of an improved source," which does not account for water quality measurements. Our objectives were to determine whether water from "improved" sources is less likely to contain fecal contamination than "unimproved" sources and to assess the extent to which contamination varies by source type and setting. Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases, including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between 1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC) were included provided they associated results with a particular source type. In total 319 studies were included, reporting on 96,737 water samples. The odds of contamination within a given study were considerably lower for "improved" sources than "unimproved" sources (odds ratio [OR] = 0.15 [0.10-0.21], I2 = 80.3% [72.9-85.6]). However over a quarter of samples from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries (OR = 2.37 [1.52-3.71]; p<0.001) and rural areas (OR = 2.37 [1.47-3.81] p<0.001) were more likely to be contaminated. Studies rarely reported stored water quality or sanitary risks and few achieved robust random selection. Safety may be overestimated due to infrequent water sampling and deterioration in quality prior to consumption. Access to an "improved source" provides a measure of sanitary protection but does not ensure water is free of fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine indicators of sanitary protection with measures of water quality.

  11. The Profile Quality of Pond In Kendal Regency to Diversification Aquaculture

    NASA Astrophysics Data System (ADS)

    Ayuniar, Ligar Novi; Hidayat, Jafron Wasiq

    2018-02-01

    Water quality, particularly coastal areas, is systematically tropogenic. The decline in water quality is caused by industrial waste pollution, soil erosion carried by the river, and the depletion of mangrove areas. The decrease of water quality can affect the fishery cultivation activities that exist in the region. It also affects the quality of the cultivated fish. Fish cultivated in ponds with poor water quality can be harmful to the health of the people who consume the fish. One effort to manage the feasibility of pond waters is by identifying the quality. The purpose of this research is to know the profile of pond water quality and to know the diversity potential of aquaculture. Based on the nature of the problem this research is a field research, while the purpose of this study is descriptive and explanatory research. The method used in this research is research by using survey method. Aquatic profile results are essential to improve the quality and quantity of Fisheries, especially in diversifying fisheries.

  12. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries

    PubMed Central

    Bain, Rob ES; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-01-01

    Abstract Objective To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Methods Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Findings Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. Conclusion The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement. PMID:22461718

  13. Relationship between water quality and human health: a case study of the Linggi River Basin in Malaysia.

    PubMed

    Lonergan, S; Vansickle, T

    1991-01-01

    Due to the increasingly documented prevalence of diarrhoeal diseases in Malaysia, a number of water-related programmes have been implemented in an attempt to improve health status through the reduction of incidence of waterborne communicable diseases associated with poor public water supplies. The implicit assumption underlying these projects is that the enhancement of the physical infrastructure, and subsequent improvements in the quality of the water supply, will substantially reduce water-related disease. The present study questions this hypothesis and uses a socio-ecological model as a framework to assess risk factors associated with the increased probability of waterborne disease. Research is centred on Port Dickson, a district which typifies existing water and sanitation conditions in much of semi-rural Malaysia. Health services utilization data and a 268-household diarrhoeal morbidity survey were used to measure the burden of illness of waterborne disease within the district and to identify predictors of morbidity. It was concluded that although treatment facilities will reduce the health burden in the region, a number of behavioural and sanitation factors may be more important and could act to minimize the potential impacts of improved water quality.

  14. Grafting improves cucumber water stress tolerance in Saudi Arabia.

    PubMed

    Al-Harbi, Abdulaziz R; Al-Omran, Abdulrasoul M; Alharbi, Khadiga

    2018-02-01

    Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F 1 cucumber cultivar ( Cucumis sativus L.) was grafted onto Affyne ( Cucumis sativus L.) and Shintoza A90 ( Cucurbitamaxima × C. moschata ) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F 1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant -1 in non-grafted treatment to 6.149 kg plant -1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.

  15. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    PubMed

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  16. Valuing preferences over stormwater management outcomes including improved hydrologic function

    NASA Astrophysics Data System (ADS)

    LondoñO Cadavid, Catalina; Ando, Amy W.

    2013-07-01

    Stormwater runoff causes environmental problems such as flooding, soil erosion, and water pollution. Conventional stormwater management has focused primarily on flood reduction, while a new generation of decentralized stormwater solutions yields ancillary benefits such as healthier aquatic habitat, improved surface water quality, and increased water table recharge. Previous research has estimated values for flood reduction from stormwater management, but no estimates exist for the willingness to pay (WTP) for some of the other environmental benefits of alternative approaches to stormwater control. This paper uses a choice experiment survey of households in Champaign-Urbana, Illinois, to estimate the values of several attributes of stormwater management outcomes. We analyzed data from 131 surveyed households in randomly selected neighborhoods. We find that people value reduced basement flooding more than reductions in yard or street flooding, but WTP for basement flood reduction in the area only exists if individuals are currently experiencing significant flooding themselves. Citizens value both improved water quality and improved hydrologic function and aquatic habitat from runoff reduction. Thus, widespread investment in low impact development stormwater solutions could have very large total benefits, and stormwater managers should be wary of policies and infrastructure plans that reduce flooding at the expense of water quality and aquatic habitat.

  17. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    PubMed

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  18. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    PubMed

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Annual Report Card Shows Water Quality Improvements in Parts of the Mystic River Watershed in 2017

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA), in collaboration with the Mystic River Watershed Association (MyRWA), announced its annual Water Quality Report Card on the Mystic River watershed for 2017.

  20. EPA Region 7 and Four States Water Quality Standards Review Process Kaizen Event

    EPA Pesticide Factsheets

    The submittal, review and approval process of the EPA–State process for developing and revising Water Quality Standards (WQS) was the focus of a Lean business process improvement kaizen event in June 2007.

  1. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  2. Hot spots and hot moments in riparian zones: Potential for improved water quality management

    Treesearch

    Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen

    2010-01-01

    Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...

  3. Environmental Assessment. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Described is an hour-long learning session on environmental assessment that is designed to help citizen advisory groups improve decision making in water quality planning. The instructor's guide addresses: (1) environmental considerations in water quality planning, and (2) the identification of primary and secondary impacts of wastewater projects.…

  4. EPA Announces Improvements to Keep Massachusetts Waters Clean

    EPA Pesticide Factsheets

    Today, US EPA announced a major step forward for Massachusetts’ water quality with improved stormwater management requirements as well as an array of training and implementation tools to assist municipalities with implementation.

  5. Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition.

    PubMed

    Baslam, Marouane; Pascual, Inmaculada; Sánchez-Díaz, Manuel; Erro, Javier; García-Mina, José María; Goicoechea, Nieves

    2011-10-26

    The improvement of the nutritional quality of lettuce by its association with arbuscular mycorrhizal fungi (AMF) has been recently reported in a previous study. The aim of this research was to evaluate if the fertilization with three P sources differing in water solubility affects the effectiveness of AMF for improving lettuce growth and nutritional quality. The application of either water-soluble P sources (Hewitt's solution and single superphosphate) or the water-insoluble (WI) fraction of a "rhizosphere-controlled fertilizer" did not exert negative effects on the establishment of the mycorrhizal symbiosis. AMF improved lettuce growth and nutritional quality. Nevertheless, the effect was dependent on the source of P and cultivar. Batavia Rubia Munguía (green cultivar) benefited more than Maravilla de Verano (red cultivar) in terms of mineral nutrients, total soluble sugars, and ascorbate contents. The association of lettuce with AMF resulted in greater quantities of anthocyanins in plants fertilized with WI, carotenoids when plants received either Hewitt's solution or WI, and phenolics regardless of the P fertilizer applied.

  6. Water-based exercise training for chronic obstructive pulmonary disease.

    PubMed

    McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A

    2013-12-18

    Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.

  7. Evaluation of the impact of the plastic BioSand filter on health and drinking water quality in rural Tamale, Ghana.

    PubMed

    Stauber, Christine E; Kominek, Byron; Liang, Kaida R; Osman, Mumuni K; Sobsey, Mark D

    2012-10-24

    A randomized controlled trial of the plastic BioSand filter (BSF) was performed in rural communities in Tamale (Ghana) to assess reductions in diarrheal disease and improvements in household drinking water quality. Few studies of household water filters have been performed in this region, where high drinking water turbidity can be a challenge for other household water treatment technologies. During the study, the longitudinal prevalence ratio for diarrhea comparing households that received the plastic BSF to households that did not receive it was 0.41 (95% confidence interval: 0.18, 0.92), suggesting an overall diarrheal disease reduction of 59% [corrected]. The plastic BSF achieved a geometric mean reduction of 97% and 67% for E. coli and turbidity, respectively. These results suggest the plastic BSF significantly improved drinking water quality and reduced diarrheal disease during the short trial in rural Tamale, Ghana. The results are similar to other trials of household drinking water treatment technologies.

  8. Evaluation of the Impact of the Plastic BioSand Filter on Health and Drinking Water Quality in Rural Tamale, Ghana

    PubMed Central

    Stauber, Christine E.; Kominek, Byron; Liang, Kaida R.; Osman, Mumuni K.; Sobsey, Mark D.

    2012-01-01

    A randomized controlled trial of the plastic BioSand filter (BSF) was performed in rural communities in Tamale (Ghana) to assess reductions in diarrheal disease and improvements in household drinking water quality. Few studies of household water filters have been performed in this region, where high drinking water turbidity can be a challenge for other household water treatment technologies. During the study, the longitudinal prevalence ratio for diarrhea comparing households that received the plastic BSF to households that did not receive it was 0.40 (95% confidence interval: 0.05, 0.80), suggesting an overall diarrheal disease reduction of 60%. The plastic BSF achieved a geometric mean reduction of 97% and 67% for E. coli and turbidity, respectively. These results suggest the plastic BSF significantly improved drinking water quality and reduced diarrheal disease during the short trial in rural Tamale, Ghana. The results are similar to other trials of household drinking water treatment technologies. PMID:23202818

  9. Promoting household water treatment through women's self help groups in Rural India: assessing impact on drinking water quality and equity.

    PubMed

    Freeman, Matthew C; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent and sustained use of these water treatment products.

  10. Promoting Household Water Treatment through Women's Self Help Groups in Rural India: Assessing Impact on Drinking Water Quality and Equity

    PubMed Central

    Freeman, Matthew C.; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent and sustained use of these water treatment products. PMID:22957043

  11. Land Use and Water Quality Along a Mekong Tributary in Northern Lao P.D.R.

    NASA Astrophysics Data System (ADS)

    Ribolzi, Olivier; Cuny, Juliette; Sengsoulichanh, Phonexay; Mousquès, Claire; Soulileuth, Bounsamai; Pierret, Alain; Huon, Sylvain; Sengtaheuanghoung, Oloth

    2011-02-01

    Improving access to clean water has the potential to make a major contribution toward poverty reduction in rural communities of Lao P.D.R. This study focuses on stream water quality along a Mekong basin tributary, the Houay Xon that flows within a mountainous, mosaic land-use catchment of northern Lao P.D.R. To compare direct water quality measurements to the perception of water quality within the riparian population, our survey included interviews of villagers. Water quality was found to vary greatly depending on the location along the stream. Overall, it reflected the balance between the stream self-cleaning potential and human pressure on the riparian zone: (i) high bacteria and suspended load levels occurred where livestock are left to free-range within the riparian zone; (ii) very low oxygen content and high bacteriological contamination prevailed downstream from villages; (iii) high concentrations of bacteria were consistently observed along urbanized banks; (iv) low oxygen content were associated with the discharge of organic-rich wastewater from a small industrial plant; (v) very high suspended load and bacteria levels occurred during flood events due to soil erosion from steep cultivated hill slopes. Besides these human induced pollutions we also noted spontaneous enrichments in metals in wetland areas fed by dysoxic groundwater. These biophysical measurements were in agreement with the opinions expressed by the majority of the interviewees who reported poor and decreasing water quality in the Houay Xon catchment. Based on our survey, we propose recommendations to improve or maintain stream water quality in the uplands of northern Lao P.D.R.

  12. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  13. SF Bay Delta TMDL Progress Assessment

    EPA Pesticide Factsheets

    EPA assessed the progress 14 TMDLs in the SF Bay Delta Estuary (SF Bay Delta) to determine if the actions called for in the TMDL were being accomplished and water quality was improving. Status and water quality reports can be found here.

  14. National Water Quality Benefits

    EPA Science Inventory

    This project will provide the basis for advancing the goal of producing tools in support of quantifying and valuing changes in water quality for EPA regulations. It will also identify specific data and modeling gaps and Improve benefits estimation for more complete benefit-cost a...

  15. HISTORICAL DEVELOPMENT OF WET-WEATHER FLOW MANAGEMENT

    EPA Science Inventory

    The management of wet-weather flow (WWF) is necessary to maintain the quality of urban water resources. Throughout history strategies were implemented to control WWF for reasons, e.g., flood and water quality control, aesthetic improvement, waste removal and others. A comprehen...

  16. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    PubMed

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  17. Applications of MIDAS regression in analysing trends in water quality

    NASA Astrophysics Data System (ADS)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  18. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  19. EPA Announces Improvements to Keep New Hampshire Waters Clean

    EPA Pesticide Factsheets

    Today, US EPA announced a major step forward for New Hampshire’ water quality with improved stormwater management requirements as well as an array of training and implementation tools to assist municipalities with implementation.

  20. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality.

    PubMed

    Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke

    2018-03-01

    Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Ground-Water Availability Assessment for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) is assessing the availability and use of the Nation's water resources to gain a clearer understanding of the status of our water resources and the land-use, water-use, and climatic trends that affect them. The goal of the National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have now, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). Water availability is a function of many factors, including the quantity and quality of water, and the laws, regulations, economics, and environmental factors that control its use. The focus of the Columbia Plateau regional ground-water availability assessment is to improve fundamental knowledge of the ground-water balance of the region, including the flows, storage, and ground-water use by humans. An improved quantitative understanding of the region's water balance not only provides key information about water quantity, but also can serve as a fundamental basis for many analyses of water quality and ecosystem health.

  2. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    PubMed

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  3. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    PubMed Central

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-01-01

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135

  4. Integrating watershed hydrology and economics to establish a local market for water quality improvement: A field experiment.

    PubMed

    Uchida, Emi; Swallow, Stephen K; Gold, Arthur; Opaluch, James; Kafle, Achyut; Merrill, Nathaniel; Michaud, Clayton; Gill, Carrie Anne

    2018-04-01

    Innovative market mechanisms are being increasingly recognized as effective decision-making institutions to incorporate the value of ecosystem services into the economy. We present a field experiment that integrates an economic auction and a biophysical water flux model to develop a local market process consisting of both the supply and demand sides. On the supply side, we operate an auction with small-scale livestock owners who bid for contracts to implement site-specific manure management practices that reduce phosphorus loadings to a major reservoir. On the demand side, we implement a real money, multi-unit public good auction for these contracts with residents who potentially benefit from reduced water quality risks. The experiments allow us to construct supply and demand curves to find an equilibrium price for water quality improvement. The field experiments provide a proof-of-concept for practical implementation of a local market for environmental improvements, even for the challenging context of nonpoint pollution.

  5. Community-based wastewater treatment systems and water quality of an Indonesian village.

    PubMed

    Lim, H S; Lee, L Y; Bramono, S E

    2014-03-01

    This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.

  6. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also modelling systems to enable the user to link the effect of changes in urban sewage systems with specific quality, energy consumption, CO(2) emission, and ecological improvements of the receiving water.

  7. 76 FR 66927 - New York State Prohibition of Discharges of Vessel Sewage; Final Affirmative Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    .... 1322(f)(3)), the State of New York has determined that the protection and enhancement of the quality of... certified the need for greater protection of the water quality. EPA hereby makes a final affirmative... commenters pointed out that this action will reduce pathogens and chemicals, improve water quality and...

  8. The National Water-Quality Assessment (NAWQA) Program planned monitoring and modeling activities for Texas, 2013–23

    USGS Publications Warehouse

    Ging, Patricia

    2013-01-01

    The U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Program was established by Congress in 1992 to answer the following question: What is the status of the Nation’s water quality and is it getting better or worse? Since 1992, NAWQA has been a primary source of nationally consistent data and information on the quality of the Nation’s streams and groundwater. Data and information obtained from objective and nationally consistent water-quality monitoring and modeling activities provide answers to where, when, and why the Nation’s water quality is degraded and what can be done to improve and protect it for human and ecosystem needs. For NAWQA’s third decade (2013–23), a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing the USGS’s ongoing assessment of the Nation’s freshwater quality and aquatic ecosystems.

  9. Long term impacts of combined sewer overflow remediation on water quality and population dynamics of Culex quinquefasciatus, the main urban West Nile virus vector in Atlanta, GA.

    PubMed

    Lund, Andrea; McMillan, Joseph; Kelly, Rosmarie; Jabbarzadeh, Shirin; Mead, Daniel G; Burkot, Thomas R; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M

    2014-02-01

    Combined sewers are a significant source of urban water pollution due to periodic discharges into natural streams. Such events (called combined sewer overflows, or CSOs) contribute to the impairment of natural waterways and are associated with increased mosquito productivity and elevated risk of West Nile virus transmission. We investigated the impact of CSOs on water quality and immature mosquito productivity in the city of Atlanta, Georgia, one year before and four years after CSO facility remediation. Water quality (ammonia, phosphate, nitrate and dissolved oxygen concentrations), immature mosquitoes (larvae and pupae), water temperature and rainfall were quantified biweekly between June-October at two urban creeks during 2008-2012. A before-after control-intervention design tested the impact of remediation on mosquito productivity and water quality, whereas generalized linear mixed-effect models quantified the factors explaining the long term impacts of remediation on mosquito productivity. Ammonia and phosphate concentrations and late immature (fourth-instar and pupae) mosquito populations were significantly higher in CSO than in non-CSO creeks, while dissolved oxygen concentrations were lower. Remediation significantly improved water quality estimates (particularly ammonia and dissolved oxygen) and reduced the number of overflows, mosquito productivity and the overall contribution of CSO-affected streams as sources of vectors of West Nile virus. The quality of water in CSOs provided a suitable habitat for immature mosquitoes. Remediation of the CSO facility through the construction of a deep storage tunnel improved water quality indices and reduced the productivity of mosquito species that can serve as vectors of West Nile virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Riverbank filtration for the treatment of highly turbid Colombian rivers

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  11. Uses and biases of volunteer water quality data

    USGS Publications Warehouse

    Loperfido, J.V.; Beyer, P.; Just, C.L.; Schnoor, J.L.

    2010-01-01

    State water quality monitoring has been augmented by volunteer monitoring programs throughout the United States. Although a significant effort has been put forth by volunteers, questions remain as to whether volunteer data are accurate and can be used by regulators. In this study, typical volunteer water quality measurements from laboratory and environmental samples in Iowa were analyzed for error and bias. Volunteer measurements of nitrate+nitrite were significantly lower (about 2-fold) than concentrations determined via standard methods in both laboratory-prepared and environmental samples. Total reactive phosphorus concentrations analyzed by volunteers were similar to measurements determined via standard methods in laboratory-prepared samples and environmental samples, but were statistically lower than the actual concentration in four of the five laboratory-prepared samples. Volunteer water quality measurements were successful in identifying and classifying most of the waters which violate United States Environmental Protection Agency recommended water quality criteria for total nitrogen (66%) and for total phosphorus (52%) with the accuracy improving when accounting for error and biases in the volunteer data. An understanding of the error and bias in volunteer water quality measurements can allow regulators to incorporate volunteer water quality data into total maximum daily load planning or state water quality reporting. ?? 2010 American Chemical Society.

  12. Research on the Purification Effect of Aquatic Plants Based on Grey Clustering Method

    NASA Astrophysics Data System (ADS)

    Gu, Sudan; Du, Fuhui

    2018-01-01

    This paper uses the grey clustering method to evaluate the water quality level of the MingGuan constructed wetland at the import and export of artificial wetlands. Constructed wetland of Ming Guanis established on the basis of the Fuyang River’s water quality improvement, to choose suitable aquatic plants, in order to achieve the Fuyang River water purification effect. Namely TP, TN, NH3-N, DO, COD and COMMn and permanganate index are selected as clustering indicators. Water quality is divided into five grades according to the Surface Water Environmental Quality Standard (GB3838-2002) as the evaluation standard. In order to select the suitable wetland plants, the purification effect of 6 kinds of higher aquatic plants on the sewage of fuyang river was tested. one kind of plants was selected: Typha. The results show that the water quality of the section is gradually changed from V water quality to III water quality. After tartificial wetland of cycle for a long time, Typha has good purification effect. In November, water quality categories are basically concentrated in the VI, V class, may be caused by chemical decomposition of aquatic plants, should strengthen the academic research.

  13. Household's willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment

    NASA Astrophysics Data System (ADS)

    Dauda, Suleiman Alhaji; Yacob, Mohd Rusli; Radam, Alias

    2015-09-01

    The service of providing good quality of drinking water can greatly improve the lives of the community and maintain a normal health standard. For a large number of population in the world, specifically in the developing countries, the availability of safe water for daily sustenance is none. Damaturu is the capital of Yobe State, Nigeria. It hosts a population of more than two hundred thousand, yet only 45 % of the households are connected to the network of Yobe State Water Corporation's pipe borne water services; this has led people to source for water from any available source and thus, exposed them to the danger of contracting waterborne diseases. In order to address the problem, Yobe State Government has embarked on the construction of a water treatment plant with a capacity and facility to improve the water quality and connect the town with water services network. The objectives of this study are to assess the households' demand preferences of the heterogeneous water attributes in Damaturu, and to estimate their marginal willingness to pay, using mixed logit model in comparison with conditional logit model. A survey of 300 households randomly sampled indicated that higher education greatly influenced the households' WTP decisions. The most significant variable from both of the models is TWQ, which is MRS that rates the water quality from the level of satisfactory to very good. 219 % in simple model is CLM, while 126 % is for the interaction model. As for MLM, 685 % is for the simple model and 572 % is for the interaction model. Estimate of MLM has more explanatory powers than CLM. Essentially, this finding can help the government in designing cost-effective management and efficient tariff structure.

  14. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-2022: Part 1: Framework of Water-Quality Issues and Potential Approaches

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lynch, Dennis D.; Munn, Mark D.; Wolock, David W.

    2010-01-01

    In 1991, the U.S. Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to develop long-term, nationally consistent information on the quality of the Nation's streams and groundwater. Congress recognized the critical need for this information to support scientifically sound management, regulatory, and policy decisions concerning the increasingly stressed water resources of the Nation. The long-term goals of NAWQA are to: (1) assess the status of water-quality conditions in the United States, (2) evaluate long-term trends in water-quality conditions, and (3) link status and trends with an understanding of the natural and human factors that affect water quality. These goals are national in scale, include both surface water and groundwater, and include consideration of water quality in relation to both human uses and aquatic ecosystems. Since 1991, NAWQA assessments and findings have fostered and supported major improvements in the availability and use of unbiased scientific information for decisionmaking, resource management, and planning at all levels of government. These improvements have enabled agencies and stakeholders to cost-effectively address a wide range of water-quality issues related to natural and human influences on the quality of water and potential effects on aquatic ecosystems and human health (http://water.usgs.gov/nawqa/xrel.pdf). NAWQA, like all USGS programs, provides policy relevant information that serves as a scientific basis for decisionmaking related to resource management, protection, and restoration. The information is freely available to all levels of government, nongovernmental organizations, industry, academia, and the public, and is readily accessible on the NAWQA Web site and other diverse formats to serve the needs of the water-resource community at different technical levels. Water-quality conditions in streams and groundwater are described in more than 1,700 publications (available online at http://water.usgs.gov/nawqa/bib/), and are documented by more than 14 million data records representing about 7,600 stream sites, 8,100 wells, and 2,000 water-quality and ecological constituents that are available from the NAWQA data warehouse (http://infotrek.er.usgs.gov/traverse/f?p=NAWQA:HOME:0). The Program promotes collaboration and liaison with government officials, resource managers, industry representatives, and other stakeholders to increase the utility and relevance of NAWQA science to decisionmakers. As part of this effort, NAWQA supports integration of data from other organizations into NAWQA assessments, where appropriate and cost-effective, so that more comprehensive findings are available across geographic and temporal scales.

  15. Big Data and Heath Impacts of Drinking Water Quality Violation

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Health impacts of drinking water quality violations are only understood at a coarse level in the United States. This limits identification of threats to water security in communities across the country. Substantial under-reporting is suspected due to requirements at U.S. public health institutes that water borne illnesses be confirmed by health providers. In the era of `big data', emerging information sources could offer insight into waterborne disease trends. In this study, we explore the use of fine-resolution sales data for over-the-counter medicine to estimate the health impacts of drinking water quality violations. We also demonstrate how unreported water quality issues can be detected by observing market behavior. We match a panel of supermarket sales data for the U.S. at the weekly level with geocoded violations data from 2006-2015. We estimate the change in anti-diarrheal medicine sale due to drinking water violations using a fixed effects model. We find that water quality violations have considerable effects on medicine sales. Sales nearly double due to Tier 1 violations, which pose an immediate health risk, and sales increase 15.1 percent due to violations related to microorganisms. Furthermore, our estimate of diarrheal illness cases associated with water quality violations indicates that the Centers for Disease Control and Prevention (CDC) reporting system may only capture about one percent of diarrheal cases due to impaired water. Incorporating medicine sales data could offer national public health institutes a game-changing way to improve monitoring of disease outbreaks. Since many disease cases are not formally diagnosed by health providers, consumption information could provide additional information to remedy under-reporting issues and improve water security in communities across the United States.

  16. Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan

    USDA-ARS?s Scientific Manuscript database

    Lake Shinji lies in eastern Shimane Prefecture, and is typical of brackish lakes in Japan. Water quality of the lake does not meet the expected environmental standards for total nitrogen (TN) and total phosphorus (TP), even though the national and prefectural governments have tried to improve water...

  17. Continuous water-quality monitoring to improve lake management at Lake Mattamuskeet National Wildlife Refuge

    Treesearch

    Michelle Moorman; Tom Augspurger

    2016-01-01

    The U.S. Fish and Wildlife Service has partnered with U.S. Geological Survey to establish 2 continuous water-quality monitoring stations at Lake Mattamuskeet. Stations on the east and west side of the lake measure water level, clarity, dissolved oxygen, pH, temperature, salinity, and conductivity.

  18. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  19. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    PubMed Central

    2017-01-01

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (<2%). At the regional level, we estimated that monitoring the microbial quality of all improved water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD). PMID:28459563

  20. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    PubMed

    Delaire, Caroline; Peletz, Rachel; Kumpel, Emily; Kisiangani, Joyce; Bain, Robert; Khush, Ranjiv

    2017-06-06

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (<2%). At the regional level, we estimated that monitoring the microbial quality of all improved water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD).

  1. Evaluating climatic and non-climatic stresses for declining surface water quality in Bagmati River of Nepal.

    PubMed

    Panthi, Jeeban; Li, Fengting; Wang, Hongtao; Aryal, Suman; Dahal, Piyush; Ghimire, Sheila; Kabenge, Martin

    2017-06-01

    Both climatic and non-climatic factors affect surface water quality. Similar to its effect across various sectors and areas, climate change has potential to affect surface water quality directly and indirectly. On the one hand, the rise in temperature enhances the microbial activity and decomposition of organic matter in the river system and changes in rainfall alter discharge and water flow in the river ultimately affecting pollution dilution level. On the other hand, the disposal of organic waste and channelizing municipal sewage into the rivers seriously worsen water quality. This study attempts to relate hydro-climatology, water quality, and impact of climatic and non-climatic stresses in affecting river water quality in the upper Bagmati basin in Central Nepal. The results showed that the key water quality indicators such as dissolved oxygen and chemical oxygen demand are getting worse in recent years. No significant relationships were found between the key water quality indicators and changes in key climatic variables. However, the water quality indicators correlated with the increase in urban population and per capita waste production in the city. The findings of this study indicate that dealing with non-climatic stressors such as reducing direct disposal of sewerage and other wastes in the river rather than emphasizing on working with the effects from climate change would largely help to improve water quality in the river flowing from highly populated urban areas.

  2. Perceived versus actual water quality: Community studies in rural Oaxaca, Mexico.

    PubMed

    Rowles, Lewis Stetson; Alcalde, Reinaldo; Bogolasky, Francisca; Kum, Soyoon; Diaz-Arriaga, Farith A; Ayres, Craig; Mikelonis, Anne M; Toledo-Flores, Luis Javier; Alonso-Gutiérrez, Manuel Gerardo; Pérez-Flores, Maria Eufemia; Lawler, Desmond F; Ward, Peter M; Lopez-Cruz, Juana Yolanda; Saleh, Navid B

    2018-05-01

    Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality. However, there has been a paucity of reports on the status of water quality of culturally diverse rural Oaxaca. This study follows community-based participatory research methods to address the data gap by reporting on water quality (chemical and microbiological) and by exploring social realities and water use practices within and among communities. Surveys and water quality analyses were conducted on 73 households in three rural communities, which were selected based on the choice of water sources (i.e., river water, groundwater, and spring water). Statistically significant variations among communities were observed including the sanitation infrastructure (p-value 0.001), public perception on water quality (p-value 0.007), and actual microbiological quality of water (p-value 0.001). Results indicate a high prevalence of diarrheal diseases, a desire to improve water quality and reduce the cost of water, and a need for education on water quality and health in all the surveyed communities. The complexities among the three studied communities highlight the need for undertaking appropriate policies and water treatment solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A decision support system for drinking water production integrating health risks assessment.

    PubMed

    Delpla, Ianis; Monteith, Donald T; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2014-07-18

    The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation.

  4. ECOSYSTEM RESTORATION TO RESTORE WATER QUALITY; AN UNREALIZED OPPORTUNITY FOR PRACTITIONERS AND RESEARCHERS

    EPA Science Inventory

    Restoration of ecosystems is increasingly proposed as a strategy for improving water quality. Although this approach makes intuitive sense, practitioners have received little guidance from researchers on the effectiveness of and concerns associated with particular techniques. Thi...

  5. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  6. Groundwater studies: principal aquifer surveys

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth

    2014-01-01

    In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.

  7. Land use impact on water quality: valuing forest services in terms of the water supply sector.

    PubMed

    Fiquepron, Julien; Garcia, Serge; Stenger, Anne

    2013-09-15

    The aim of this paper is to quantify the impact of the forest on raw water quality within the framework of other land uses. On the basis of measurements of quality parameters that were identified as being the most problematic (i.e., pesticides and nitrates), we modeled how water quality is influenced by land uses. In order to assess the benefits provided by the forest in terms of improved water quality, we used variations of drinking water prices that were determined by the operating costs of water supply services (WSS). Given the variability of links between forests and water quality, we chose to cover all of France using data observed in each administrative department (France is divided into 95 départements), including a description of WSS and information on land uses. We designed a model that describes the impact of land uses on water quality, as well as the operation of WSS and prices. This bioeconomic model was estimated by the generalized method of moments (GMM) to account for endogeneity and heteroscedasticity issues. We showed that the forest has a positive effect on raw water quality compared to other land uses, with an indirect impact on water prices, making them lower for consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Combining the Power of Statistical Analyses and Community Interviews to Identify Adoption Barriers for Stormwater Best-Management Practices

    NASA Astrophysics Data System (ADS)

    Hoover, F. A.; Bowling, L. C.; Prokopy, L. S.

    2015-12-01

    Urban stormwater is an on-going management concern in municipalities of all sizes. In both combined or separated sewer systems, pollutants from stormwater runoff enter the natural waterway system during heavy rain events. Urban flooding during frequent and more intense storms are also a growing concern. Therefore, stormwater best-management practices (BMPs) are being implemented in efforts to reduce and manage stormwater pollution and overflow. The majority of BMP water quality studies focus on the small-scale, individual effects of the BMP, and the change in water quality directly from the runoff of these infrastructures. At the watershed scale, it is difficult to establish statistically whether or not these BMPs are making a difference in water quality, given that watershed scale monitoring is often costly and time consuming, relying on significant sources of funds, which a city may not have. Hence, there is a need to quantify the level of sampling needed to detect the water quality impact of BMPs at the watershed scale. In this study, a power analysis was performed on data from an urban watershed in Lafayette, Indiana, to determine the frequency of sampling required to detect a significant change in water quality measurements. Using the R platform, results indicate that detecting a significant change in watershed level water quality would require hundreds of weekly measurements, even when improvement is present. The second part of this study investigates whether the difficulty in demonstrating water quality change represents a barrier to adoption of stormwater BMPs. Semi-structured interviews of community residents and organizations in Chicago, IL are being used to investigate residents understanding of water quality and best management practices and identify their attitudes and perceptions towards stormwater BMPs. Second round interviews will examine how information on uncertainty in water quality improvements influences their BMP attitudes and perceptions.

  9. Drinking Water State Revolving Fund (DWSRF)

    EPA Pesticide Factsheets

    This website provides information on financial assistance to water systems needing capitalization grants and/or technical assistance to improve the quality of drinking water and for the delivery of safe drinking water to consumers.

  10. Real-time assessments of water quality: expanding nowcasting throughout the Great Lakes

    USGS Publications Warehouse

    ,

    2013-01-01

    Nowcasts are systems that inform the public of current bacterial water-quality conditions at beaches on the basis of predictive models. During 2010–12, the U.S. Geological Survey (USGS) worked with 23 local and State agencies to improve existing operational beach nowcast systems at 4 beaches and expand the use of predictive models in nowcasts at an additional 45 beaches throughout the Great Lakes. The predictive models were specific to each beach, and the best model for each beach was based on a unique combination of environmental and water-quality explanatory variables. The variables used most often in models to predict Escherichia coli (E. coli) concentrations or the probability of exceeding a State recreational water-quality standard included turbidity, day of the year, wave height, wind direction and speed, antecedent rainfall for various time periods, and change in lake level over 24 hours. During validation of 42 beach models during 2012, the models performed better than the current method to assess recreational water quality (previous day's E. coli concentration). The USGS will continue to work with local agencies to improve nowcast predictions, enable technology transfer of predictive model development procedures, and implement more operational systems during 2013 and beyond.

  11. Study of pollution effect on water quality of Grogol River, DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Amira, S.; Astono, W.; Hendrawan, D.

    2018-01-01

    A study has been conducted to identify the incoming pollutants and assess the water quality in Grogol River, DKI Jakarta, Indonesia, which has a length of 13.35 km and consists of two segments. The water quality assessment is determined by pollution index method, referring to Minister of Environment Decree No. 15/2013 on The Guidelines of Water Quality Status. The samples were taken both in rainy and dry seasons at 7 sampling points. Based on the analyses of 10 key parameters and the calculation of pollution index value, it can be concluded that Grogol River is low polluted in rainy season and moderate polluted in dry season. The information obtained from this research can be used for decision making to improve the water quality of Grogol River.

  12. Environmental Assessment for the Improvements and Repair to Forty-Niner Avenue Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    2005-06-01

    impacts to storm water quality can range from minor to severe. For this project, impacts are anticipated to be moderate ifBMPs are adequately applied...monitored outfalls. High turbidity, suspended solids, and decreased cross section due to deposition may violate storm water quality benchmarks and...result in a Notice of Violation (NOV) for storm water quality permits. Besides erosive impacts, construction period activities can cause much more

  13. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  14. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  15. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to develop coupled salt loading and GIS-based hydrological modelling tool that will be able to simulate the salt loadings under various user defined scenarios in the regions undergoing CBM development. Therefore, the findings from this study will be used to formulate the predominant processes responsible for solute loading.

  16. NASA-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay.

    PubMed

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.

  17. Long-term behaviour and cross-correlation water quality analysis of the River Elbe, Germany.

    PubMed

    Lehmann, A; Rode, M

    2001-06-01

    This study analyses weekly data samples from the river Elbe at Magdeburg between 1984 and 1996 to investigate the changes in metabolism and water quality in the river Elbe since the German reunification in 1990. Modelling water quality variables by autoregressive component models and ARIMA models reveals the improvement of water quality due to the reduction of waste water emissions since 1990. The models are used to determine the long-term and seasonal behaviour of important water quality variables. Organic and heavy metal pollution parameters showed a significant decrease since 1990, however, no significant change of chlorophyll-a as a measure for primary production could be found. A new procedure for testing the significance of a sample correlation coefficient is discussed, which is able to detect spurious sample correlation coefficients without making use of time-consuming prewhitening. The cross-correlation analysis is applied to hydrophysical, biological, and chemical water quality variables of the river Elbe since 1984. Special emphasis is laid on the detection of spurious sample correlation coefficients.

  18. Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach.

    PubMed

    Mitra, Soumita; Ghosh, Swayambhu; Satpathy, Kamala Kanta; Bhattacharya, Bhaskar Deb; Sarkar, Santosh Kumar; Mishra, Pravakar; Raja, P

    2018-01-01

    Spatio-temporal and seasonal variation of the water quality characteristics of the Hooghly River Estuary, India were studied considering eight stations of diverse eco-hydrological characteristics. Wide variations in turbidity, total dissolved solids and fecal coliform exceeded the permissible BIS drinking water level limit. The estuary is observed to be relatively low-oxygenated, mesotropic and phosphate limiting. Spatial heterogeneity and impact of the southwest monsoon were remarkably pronounced in the distribution of the inorganic nutrients revealing the following values (expressed in μgatml -1 ): nitrate+nitrite (2.42-37.19), phosphate (0.41-1.52) and silicate (38.5-187.75). Water Quality Index (WQI) values confirmed the prevailing 'bad' condition, detrimental for sustenance of aquatic biota. Results of Principal Component Analysis identified the major factors liable for water quality deterioration while cluster analysis categorized the stations on the basis of similar water quality status. The authors recommend adopting preventive measures for water quality improvement linked to biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    PubMed

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to households to motivate behavioral changes to effectively protect future water resources and human health.

  20. Improvement of Baltic proper water quality using large-scale ecological engineering.

    PubMed

    Stigebrandt, Anders; Gustafsson, Bo G

    2007-04-01

    Eutrophication of the Baltic proper has led to impaired water quality, demonstrated by, e.g., extensive blooming of cyanobacteria during the premium summer holiday season and severe oxygen deficit in the deepwater. Sustainable improvements in water quality by the reduction of phosphorus (P) supplies will take several decades before giving full effects because of large P storages both in soils in the watershed and in the water column and bottom sediments of the Baltic proper. In this article it is shown that drastically improved water quality may be obtained within a few years using large-scale ecological engineering methods. Natural variations in the Baltic proper during the last decades have demonstrated how rapid improvements may be achieved. The present article describes the basic dynamics of P, organic matter, and oxygen in the Baltic proper. It also briefly discusses the advantages and disadvantages of different classes of methods of ecological engineering aimed at restoring the Baltic proper from eutrophication effects. Preliminary computations show that the P content might be halved within a few years if about 100 kg O2 s(-1) are supplied to the upper deepwater. This would require 100 pump stations, each transporting about 100 m3 s(-1) of oxygen-rich so-called winter water from about 50 to 125 m depth where the water is released as a buoyant jet. Each pump station needs a power supply of 0.6 MW. Offshore wind power technology seems mature enough to provide the power needed by the pump stations. The cost to install 100 wind-powered pump stations, each with 0.6 MW power, at about 125-m depth is about 200 million Euros.

  1. A global assessment of climate-water quality relationships in large rivers: an elasticity perspective.

    PubMed

    Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng

    2014-01-15

    To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.

  2. Effect of aquatic macrophyte growth on landscape water quality improvement.

    PubMed

    Zhang, Hengfeng; Zhao, Yixi; Yin, Hang; Wang, Yuanyuan; Li, Huixian; Wang, Zhanshen; Geng, Yongbo; Liang, Wenyan; Wang, Hongjie

    2018-06-07

    The water of urban landscape park is often confronted with microalgal blooms due to its stagnancy. Bioremediation using the combined emergent and submerged plants to control the microalgae growth was investigated in the present study. Two water bodies (Bei and Xin) of Yuyuantan Park in Beijing were selected for the field experiments, and the other lakes with different vegetation of macrophytes were selected as the comparison. The concentrations of chlorophyll a (chl a), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP), and water temperature and transparency were monitored before and after bioremediation from 2015 to 2017. Results showed that the effects of microalgal inhibition were more significant 2 years after bioremediation. Specifically, the chl a of Dong Lake without any vegetation of macrophytes was up to 65.1 μg/L in summer of 2017, while the Bei and Xin Lakes was only 6.2 and 11.3 μg/L, respectively. In addition, the water quality and transparency also improved, with water bodies being crystal clear. Submerged plants played major roles in microalgal control and water quality improvement, compared to the lakes with only emergent plants. The intensity of humic acid-like substances in three-dimensional fluorescent spectra was stronger for the lakes with submerged plants.

  3. Water Quality vs. Sanitation Accessibility: What is the most effective intervention point for preventing cholera in Dhaka, Bangladesh?

    NASA Astrophysics Data System (ADS)

    Majumder, M. S.; Gute, D.; Faruque, A. S.

    2011-12-01

    Every year, 3 to 5 million individuals contract cholera, an acute diarrheal infection that is caused by the ingestion of food or water containing the Vibrio cholerae bacterium. Because cholera is a waterborne disease, it can be transmitted quickly in environments with inadequate water and sanitation systems where infected waste can easily pollute drinking water. Today, Bangladesh continues to struggle with endemic cholera. Donor organizations address water and sanitation via localized initiatives, including the installation of community water collection sites (i.e. tubewells; water-boiling points; etc.). At this small-scale level, water quality and sanitation accessibility can be improved independently of one another, and when resources are limited, donors must invest in the most effective disease prevention options. This study used laboratory-confirmed cholera incidence data (2000-2009) collected by the International Centre of Diarrheal Disease Research, Bangladesh at their on-site hospital to compare the efficacy of interventions addressing water quality versus sanitation accessibility in Dhaka, Bangladesh. Data regarding use of sanitary latrines and boiling of drinking water were extracted from sequential patient interviews conducted at the Dhaka facility and used as surrogate variables for sanitation accessibility and water quality respectively. Our analysis indicates that boiling water is 10 times more effective at preventing cholera than the use of a sanitary latrine. This finding suggests that regulating water quality is perhaps more critical to cholera prevention than increasing sanitation accessibility in an urban environment like that of Dhaka. At present, WaterAid - one of Bangladesh's most significant water and sanitation donor organizations - invests the majority of its budget on improving sanitation accessibility. The World Health Organization and the United Nations Millennium Development Goals also prioritize sanitation accessibility. However, in Bangladesh, water quality must be given greater attention. As the nation's most prevalent diarrheal disease, cholera outbreaks result in incalculable lost wages and treatment expenses, taken from the pockets of an already impoverished society. Bangladesh cannot afford cholera; prevention is the only sustainable control option, and water quality is the most effective intervention point for Dhaka, Bangladesh.

  4. MODELING CONSISTENCY, MODEL QUALITY, AND FOSTERING CONTINUED IMPROVEMENT

    EPA Science Inventory

    We believe that most contributors to and participants of the International Conference, Marine Waste Water Discharges 2000, "MWWD 2000," could agree that the overarching dream of the conference might be to chart a path the will lead to the best, long-term, applicable water quality...

  5. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    PubMed

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  6. A snapshot evaluation of stream environmental quality in the Little Conestoga Creek basin, Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Loper, Connie A.; Davis, Ryan C.

    1998-01-01

    Many Lancaster County residents are interested in stream monitoring and habitat restoration to maintain or improve stream water quality and to keep contaminants from reaching ground water used to supply drinking water. To promote resident involvement and environmental stewardship, the Alliance for the Chesapeake Bay (ACB) and the U.S. Geological Survey (USGS) designed this “snapshot” study of water quality and aquatic-insect communities in the Little Conestoga Creek Basin. Citizen-based restoration programs can improve water quality at a local level; such efforts will ultimately improve the ecological integrity of the Lower Susquehanna River and the Chesapeake Bay.The Little Conestoga Creek Basin was studied for several reasons. It was felt the project should benefit Lancaster County residents because funding was provided by Pennsylvania Department of Environmental Protection funds generated in Lancaster County. The small drainage area size, 65.5 mi2 (square miles), allowed resident involvement in the necessary training and the snapshot sampling plan. Also, a previous study within south-central Pennsylvania reported the highest nutrient yields entering the Susquehanna River are contributed by the Conestoga River and its tributary subbasins, and the Basin’s location within the Conestoga River watershed made it a potential contributor of high nutrient loads. However, few data had been collected in this Basin to characterize the water quality and aquatic-insect populations. Ongoing studies by a “stream team” from Lancaster County Academy and by students and staff at Millersville University did not fully document the level of stream impairment throughout the Basin.

  7. Analysis of water-quality trends at two discharge stations; one within Big Cypress National Preserve and one near Biscayne Bay; southern Florida, 1966-94

    USGS Publications Warehouse

    Lietz, A.C.

    2000-01-01

    An analysis of water-quality trends was made at two U.S. Geological Survey daily discharge stations in southern Florida. The ESTREND computer program was the principal tool used for the determination of water-quality trends at the Miami Canal station west of Biscayne Bay in Miami and the Tamiami Canal station along U.S. Highway 41 in the Big Cypress National Preserve in Collier County. Variability in water quality caused by both seasonality and streamflow was compensated for by applying the nonparametric Seasonal Kendall trend test to unadjusted concentrations or flow-adjusted concentrations (residuals) determined from linear regression analysis. Concentrations of selected major inorganic constituents and physical characteristics; pH and dissolved oxygen; suspended sediment; nitrogen, phosphorus, and carbon species; trace metals; and bacteriological and biological characteristics were determined at the Miami and Tamiami Canal stations. Median and maximum concentrations of selected constituents were compared to the Florida Class III freshwater standards for recreation, propagation, and maintenance of a healthy, well-balanced population of fish and wildlife. The median concentrations of the water-quality constituents and characteristics generally were higher at the Miami Canal station than at the Tamiami Canal station. The maximum value for specific conductance at the Miami Canal station exceeded the State standard. The median and maximum concentrations for ammonia at the Miami and Tamiami Canal stations exceeded the State standard, whereas median dissolved-oxygen concentrations at both stations were below the State standard. Trend results were indicative of either improvement or deterioration in water quality with time. Improvement in water quality at the Miami Canal station was reflected by downward trends in suspended sediment (1987-94), turbidity, (1970-78), total ammonia (1971-94), total phosphorus (1987-94), barium (1978-94), iron (1969-94), and fecal coliform (1976-94). Deterioration in water quality at the same station was indicated by upward trends in specific conductance (1966-94), dissolved solids (1966-94, 1976-94, and 1987-94), chloride (1966-94), potassium (1966-94), magnesium (1966-94), sodium (1966-94), sulfate (1966-94), silica (1966-94), suspended sediment (1974-94), total organic carbon (1970-81), and fecal streptococcus (1987-94). The downward trend in pH (1966-94) was indicative of deterioration in water quality at the Miami Canal station. Improvement in water quality at the Tamiami Canal station was reflected by downward trends in fluoride (1967-93), total ammonia (1970-92), total nitrite plus nitrate (1975-85), and barium (1978-93). Deterioration in water quality at the same station was statistically significant by upward trends in specific conductance (1967-93), dissolved solids (1967-93), chloride (1967-93), sodium (1967-93), potassium (1967-93), magnesium (1967-93), strontium (1967-93), and suspended sediment (1976-93). The downward trend in dissolved oxygen (1970-93) was indicative of deterioration in water quality.

  8. A summary of the U.S. Geological Survey National Water-Quality Assessment program

    USGS Publications Warehouse

    Hirsch, R.M.; Alley, W.M.; Wilber, W.G.

    1988-01-01

    Beginning in 1986, the Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water Quality Assessment Program. At present, the program is in a pilot phase with field studies occurring in seven areas around the Nation. In 1990, a committee of the National Academy of Sciences will complete an evaluation of the design and potential utility of the program. A decision about moving to full-scale implementation will be made upon completion of this evaluation. The program is intended to address a wide range of national water quality issues that include chemical contamination, acidification, eutrophication, salinity, sedimentation, and sanitary quality. The goals of the program are to: (1) provide nationally consistent descriptions of current water quality conditions for a large part of the Nation 's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify and describe the relations of both current conditions and trends in water quality to natural and human factors. This information will be provided to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water quality management programs and for predicting the likely effects of contemplated changes in land- and water-management practices. (USGS)

  9. Water quality of the French Broad River, North Carolina : An analysis of data collected at Marshall, 1958-77

    USGS Publications Warehouse

    Daniel, C. C.; Wilder, H.B.; Weiner, M.S.

    1979-01-01

    An investigation of water quality in the industrialized French Broad River basin of western North Carolina has identified water-quality variations, the extent of man's influence on water quality, and trends in changes in the chemical quality of the river. The study centered on data collected during 1958-77 at the U.S. Geological Survey's station at Marshall, N.C. The French Broad is a clean river. Only occasionally have concentrations of some trace metals been observed to exceed drinking water standards. However, 58 percent of samples analyzed for fecal coliform bacteria during 1974-77 exceeded criteria levels for bathing waters. Most water-quality variations are associated with variations in streamflow. Concentrations of constituents transported in solution generally decrease at higher flows, whereas concentrations of materials associated with suspended sediment increase with flow. No correlation between discharge and nutrient concentrations has been observed. Man's activities in the basin have resulted in deterioration of water quality. In 1958, an estimated 64 percent of the inorganic dissolved-solids load in the river at Marshall was due to man-made pollution, and by 1966, it was 74 percent. As of 1977, water quality had returned to levels of 1958, apparently the result of new waste-water treatment facilities and improved industrial technology.

  10. Evaluation of the San Dieguito, San Elijo, and San Pasqual hydrologic subareas for reclaimed water use, San Diego County, California

    USGS Publications Warehouse

    Izbicki, J.A.

    1983-01-01

    A study was made to determine the suitability of three small hydrologic subareas in San Diego County, California, for reuse of municipal wastewater. Ground-water quality has been impacted by agricultural water use, imported water use, changes in natural recharge patterns, seawater intrusion, and intrusion of ground water from surrounding marine sediments; therefore, ground water is of limited value as a water-supply source. Reclaimed water use is feasible and expected to improve ground-water quality, creating a new source of water for agricultural use. (USGS)

  11. Water quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14

    USGS Publications Warehouse

    Moorman, Michelle C.; Fitzgerald, Sharon A.; Gurley, Laura N.; Rhoni-Aref, Ahmed; Loftin, Keith A.

    2017-01-23

    The Albemarle Sound region was selected in 2012 as one of two demonstration sites in the Nation to test and improve the design of the National Water Quality Monitoring Council’s National Monitoring Network (NMN) for U.S. Coastal Waters and Tributaries. The goal of the NMN for U.S. Coastal Waters and Tributaries is to provide information about the health of our oceans, coastal ecosystems, and inland influences on coastal waters for improved resource management. The NMN is an integrated, multidisciplinary, and multi-organizational program using multiple sources of data and information to augment current monitoring programs.This report presents and summarizes selected water-quality and bed sediment-quality data collected as part of the demonstration project conducted in two phases. The first phase was an occurrence and distribution study to assess nutrients, metals, pesticides, cyanotoxins, and phytoplankton communities in the Albemarle Sound during the summer of 2012 at 34 sites in Albemarle Sound, nearby sounds, and various tributaries. The second phase consisted of monthly sampling over a year (March 2013 through February 2014) to assess seasonality in a more limited set of constituents including nutrients, cyanotoxins, and phytoplankton communities at a subset (eight) of the sites sampled in the first phase. During the summer of 2012, few constituent concentrations exceeded published water-quality thresholds; however, elevated levels of chlorophyll a and pH were observed in the northern embayments and in Currituck Sound. Chlorophyll a, and metals (copper, iron, and zinc) were detected above a water-quality threshold. The World Health Organization provisional guideline based on cyanobacterial density for high recreational risk was exceeded in approximately 50 percent of water samples collected during the summer of 2012. Cyanobacteria capable of producing toxins were present, but only low levels of cyanotoxins below human health benchmarks were detected. Finally, 12 metals in surficial bed sediments were detected at levels above a published sediment-quality threshold. These metals included chromium, mercury, copper, lead, arsenic, nickel, and cadmium. Sites with several metal concentrations above the respective thresholds had relatively high concentrations of organic carbon or fine sediment (silt plus clay), or both and were predominantly located in the western and northwestern parts of the Albemarle Sound.Results from the second phase were generally similar to those of the first in that relatively few constituents exceeded a water-quality threshold, both pH and chlorophyll a were detected above the respective water-quality thresholds, and many of these elevated concentrations occurred in the northern embayments and in Currituck Sound. In contrast to the results from phase one, the cyanotoxin, microcystin was detected at more than 10 times the water-quality threshold during a phytoplankton bloom on the Chowan River at Mount Gould, North Carolina in August of 2013. This was the only cyanotoxin concentration measured during the entire study that exceeded a respective water-quality threshold.The information presented in this report can be used to improve understanding of water-quality conditions in the Albemarle Sound, particularly when evaluating causal and response variables that are indicators of eutrophication. In particular, this information can be used by State agencies to help develop water-quality criteria for nutrients, and to understand factors like cyanotoxins that may affect fisheries and recreation in the Albemarle Sound region.

  12. Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: Framework development and demonstraton using a Bayesian method

    USDA-ARS?s Scientific Manuscript database

    Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water q...

  13. Impact of cover crop, irrigation and season on nutrient and sediment in the runoff water measured at the edge-of-fields in northeast Arkansas

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of water quality at the edge-of-field (EOF) from production-size fields is needed to better inform agriculture and resource managers regarding sustainable farming practices and environmental stewardship. We measured runoff water quality at EOF of paired commercial fields in Mi...

  14. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.

    PubMed

    Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G

    2010-01-01

    To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.

  15. Pollutant load removal efficiency of pervious pavements: is clogging an issue?

    PubMed

    Kadurupokune, N; Jayasuriya, N

    2009-01-01

    Pervious pavements in car parks and driveways reduce the peak runoff rate and the quantity of runoff discharged into urban drains as well as improve the stormwater quality by trapping the sediments in the infiltrated water. The paper focuses on presenting results from the laboratory tests carried out to evaluate water quality improvements and effects of long-term decrease in infiltration rates with time due to sediments trapping (clogging) within the pavement pores. Clogging was not found to be a major factor affecting pervious pavement performance after simulating 17 years of stormwater quality samples.

  16. Influence of the Nogales International Wastewater Treatment Plant on surface water in the Santa Cruz River and local aquifers

    NASA Astrophysics Data System (ADS)

    LaBrie, H. M.; Brusseau, M. L.; Huth, H.

    2015-12-01

    As water resources become limited in Arizona due to drought and excessive use of ground water, treated wastewater effluent is becoming essential in creating natural ecosystems and recharging the decreasing groundwater supplies. Therefore, future water supplies are heavily dependent of the flow (quantity) and quality of the treated effluent. The Nogales International Wastewater Treatment Plant (NIWTP) releases treated wastewater from both Nogales, Arizona and Nogales, Sonora, Mexico into the Santa Cruz River. This released effluent not only has the potential to impact surface water, but also groundwater supplies in Southern Arizona. In the recent past, the NIWTP has had reoccurring issues with elevated levels of cadmium, in addition to other, more infrequent, releases of high amounts of other metals. The industrial demographic of the region, as well as limited water quality regulations in Mexico makes the NIWTP and its treated effluent an important area of study. In addition, outdated infrastructure can potentially lead to damaging environmental impacts, as well as human health concerns. The Santa Cruz River has been monitored and studied in the past, but in recent years, there has been a halt in research regarding the state of the river. Data from existing water quality databases and recent sampling reports are used to address research questions regarding the state of the Santa Cruz River. These questions include: 1) How will change in flow eventually impact surface water and future groundwater supplies 2) What factors influence this flow (such as extreme flooding and drought) 3) What is the impact of effluent on surface water quality 4) Can changes in surface water quality impact groundwater quality 5) How do soil characteristics and surface flow impact the transport of released contaminants Although outreach to stakeholders across the border and updated infrastructure has improved the quality of water in the river, there are many areas to improve upon as the demand for treated wastewater increases.

  17. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.

  18. Water quality of streams in Johnson County, Kansas, 2002-07

    USGS Publications Warehouse

    Rasmussen, T.J.

    2009-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/. ?? 2009 ASCE.

  19. Water quality of streams in Johnson County, Kansas, 2002-07

    USGS Publications Warehouse

    Rasmussen, Teresa J.

    2008-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/ .

  20. 33 CFR 385.38 - Interim goals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (ii) Improvement in water quality; including: (A) Total phosphorus concentrations in the Everglades...) Increases in total spatial extent of restored wetlands; (B) Improvement in habitat quality; and (C... implementation process. In addition, interim goals will facilitate adaptive management and allow the Corps of...

  1. High adherence is necessary to realize health gains from water quality interventions.

    PubMed

    Brown, Joe; Clasen, Thomas

    2012-01-01

    Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Results suggest that high adherence is essential in order to realize potential health gains from HWT.

  2. High Adherence Is Necessary to Realize Health Gains from Water Quality Interventions

    PubMed Central

    Brown, Joe; Clasen, Thomas

    2012-01-01

    Background Safe drinking water is critical for health. Household water treatment (HWT) has been recommended for improving access to potable water where existing sources are unsafe. Reports of low adherence to HWT may limit the usefulness of this approach, however. Methods and Findings We constructed a quantitative microbial risk model to predict gains in health attributable to water quality interventions based on a range of assumptions about pre-treatment water quality; treatment effectiveness in reducing bacteria, viruses, and protozoan parasites; adherence to treatment interventions; volume of water consumed per person per day; and other variables. According to mean estimates, greater than 500 DALYs may be averted per 100,000 person-years with increased access to safe water, assuming moderately poor pre-treatment water quality that is a source of risk and high treatment adherence (>90% of water consumed is treated). A decline in adherence from 100% to 90% reduces predicted health gains by up to 96%, with sharpest declines when pre-treatment water quality is of higher risk. Conclusions Results suggest that high adherence is essential in order to realize potential health gains from HWT. PMID:22586491

  3. New York Harbor water quality survey, 1994. Executive summary. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1995-10-24

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  4. New York Harbor water quality survey, 1994. (Includes appendices). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.; O`Shea, M.L.

    1995-11-15

    This summary presents the results of the 1994 survey, followed by a synopsis of recent changes to pollutant loads from NYC facilities. In general, conventional water quality, as indicated by coliform bacterica and DO levels, continues to improve in most areas of NY Harbor. However, violations of the `never less than` DO standards, although improved, are still occasionally recorded at 50-75% of all stations in summer. Therefore, loadings of nutrients and organic carbon, and changes in water column stratification and flushing rate, remain a concern, as does the appropriateness of the current `never the less` DO standards.

  5. WATER QUALITY IMPROVEMENTS DURING RIVERBANK FILTRATION AT THREE SITES IN THE MIDWESTERN US

    EPA Science Inventory

    A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...

  6. Compost improves urban soil and water quality

    USDA-ARS?s Scientific Manuscript database

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  7. Improving Recreational Water Quality Assessments Through Novel Approaches to Quantifying Measurement Uncertainty

    EPA Science Inventory

    Bacteriological water quality in the Great Lakes is typically measured by the concentration of fecal indicator bacteria (FIB), and is reported via most probable number (MPN) or colony forming unit (CFU) values derived from algorithms relating \\raw data" in a FIB analysis procedu...

  8. Environmental Assessment for Clean and Stabilize Ditches at the Golf Course and C Street

    DTIC Science & Technology

    2003-08-01

    proposed action would require the disturbance of installation property, minimal decrease in storm water quality during the cleaning and a temporary...increase in noise levels during construction. Storm water quality would improve following the cleaning and stabilization. Erosion and sediment controls

  9. Nutrient Credit Trading--a Market-based Approach for Improving Water Quality

    USDA-ARS?s Scientific Manuscript database

    Farmers are getting financial rewards for implementing conservation measures on their farms. Industrial wastewater treatment plants are buying credits generated from these measures to meet their NPDES permit regulatory requirements. This is referred to as “water quality trading.” The treatment p...

  10. Effectiveness of combined sewer overflow treatment for dissolved oxygen improvement in the Chicago waterways.

    PubMed

    Alp, E; Melching, C S; Zhang, H; Lanyon, R

    2007-01-01

    An Use Attainability Analysis (UAA) has been initiated to evaluate what water-quality standards can be achieved in the Chicago Waterway System (CWS). There are nearly 200 combined sewer overflow (CSO) locations discharging to the CWS by gravity. Three CSO pumping stations also drain approximately 140 km2. Because of the dynamic nature of the CWS the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate the effectiveness of water-quality improvement techniques identified by the UAA including CSO treatment. Several CSO treatment levels were applied at gravity flow CSOs to evaluate improvement in dissolved oxygen (DO). The results show that pollutant removal at CSOs improves DO to a certain degree, but it still was not sufficient to bring DO concentrations to 5 mg/L or higher for 90% of the time during wet weather at most locations on the CWS. Flow from the pumping stations results in substantial stress on DO since a huge amount of un-treated water with a high pollution load is discharged into the CWS in a short period of time at a certain location. The simulation results indicate that CSO treatment does not effectively improve DO during wet-weather periods on the CWS.

  11. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  12. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  13. Environmental and ecological impacts of water supplement schemes in a heavily polluted estuary.

    PubMed

    Su, Qiong; Qin, Huapeng; Fu, Guangtao

    2014-02-15

    Water supplement has been used to improve water quality in a heavily polluted river with small base flow. However, its adverse impacts particularly on nearby sensitive ecosystems have not been fully investigated in previous studies. In this paper, using the Shenzhen River estuary in China as a case study, the impacts of two potential water supplement schemes (reclaimed water scheme and seawater scheme) on water quality improvement and salinity alteration of the estuary are studied. The influences of salinity alteration on the dominant mangrove species (Aegiceras corniculatum, Kandelia candel, and Avicennia marina) are further evaluated by comparing the alteration with the historical salinity data and the optimum salinity range for mangrove growth. The results obtained indicate that the targets of water quality improvement can be achieved by implementing the water supplement schemes with roughly the same flow rates. The salinity under the reclaimed water scheme lies in the range of historical salinity variation, and its average value is close to the optimum salinity for mangrove growth. Under the seawater scheme, however, the salinity in the estuary exceeds the range of historical salinity variation and approaches to the upper bound of the survival salinity of the mangrove species which have a relatively low salt tolerance (e.g. A. corniculatum). Therefore, the seawater scheme has negative ecological consequences, while the reclaimed water scheme has less ecological impact and is recommended in this study. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Monitoring the effects of manure policy in the Peat region, Netherlands

    NASA Astrophysics Data System (ADS)

    Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid

    2014-05-01

    Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better than between N surplus and total N in root zone leaching. The precipitation surplus flows to ditches directly or via open field drains. However, the ditches may be fed partly with older water (seepage of groundwater). In the open field drain only recent water will occur. We expect that monitoring the water quality of the open field drains may even better reflect changes in agricultural practices. These data may also improve the understanding of contribution of agricultural nitrogen and natural nitrogen, necessary to develop measures to decrease the total-N concentration in ditch water.

  15. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Progress and lessons learned from water-quality monitoring networks

    USGS Publications Warehouse

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  17. Water-quality assessment and wastewater-management alternatives for Dardenne Creek in St Charles County, Missouri

    USGS Publications Warehouse

    Berkas, W.R.; Lodderhose, J.R.

    1985-01-01

    The quality of water in the 15 mile downstream reach of Dardenne Creek in St. Charles County, Missouri, was assessed to determine if it met the Missouri water quality standards. Concentrations of dissolved oxygen and total ammonia failed to meet water quality standards downstream from the Harvester-Dardenne and St. Peters Wastewater-Treatment Plants. The QUAL-II SEMCOG water quality model was calibrated and verified using two independent data sets from Dardenne Creek. Management alternatives using current, design capacity, and future expansion wastewater discharges from the St. Peters Wastewater-Treatment Plant were evaluated. Results of the computer simulation indicate that a nitrification-type advanced-treatment facility installed at the plant would produce a 5-day carbonaceous biochemical oxygen demand of 10 mg/L. An effluent limit of 5.0 mg/L of 5-day carbonaceous biochemical oxygen demand would further improve the water quality of Dardenne Creek; however, an additional treatment process, such as sand filtration, would be needed to meet this criterion. (USGS)

  18. Assessment of water quality in canals of eastern Broward County, Florida, 1969-74

    USGS Publications Warehouse

    Waller, Bradley G.; Miller, Wesley L.

    1982-01-01

    An intensive water-quality monitoring program was started in 1969 to determine the effects of man-induced contaminants on the water quality in the primary canal system of eastern Broward County, Florida. This report covers the first 6 years of the program and provides a data base that can be used to compare future changes in water-quality conditions. Most data indicate that beyond the small seasonal fluctuation in constituent level, the greatest adverse effect on the quality of water is caused by discharge of sewage and treated sewage effluent to the canals. The areas affected by sewage have greater concentrations of macronutrients, trace metals, and pesticides than unaffected areas. Major-ion concentrations were affected only by season and local lithology. Over the 6-year study a gradual decrease in macronutrient concentration and an increase in dissolved oxygen have occurred. This improvement in water quality is attributed to a decrease of sewage discharge into canals and better treatment of sewage effluents. (USGS)

  19. An insight into the drinking-water access in the health institutions at the Saharawi refugee camps in Tindouf (Algeria) after 40years of conflict.

    PubMed

    Vivar, M; Pichel, N; Fuentes, M; Martínez, F

    2016-04-15

    Drinking water access in the Saharawi refugee camps located in the Algerian desert is a challenge that is still an on-going problem after 40years of conflict. This work presents an analysis of the situation with emphasis on the water supply in health institutions (quantity and quality) including both sanitary inspections and a comprehensive water quality study. Results from sanitary inspections show that only half of the water supply installations at the hospitals are in adequate conditions and the rest present high risk of microbiological contamination. Water access in small medical community centres on the other hand present issues related to the non-availability of food-grade water tanks for the institutions (70%), the use of small 10l containers as the main water supply (40%), poor maintenance (60% under antihygienic conditions and 30% with damaged covers), and insufficient chlorine levels that prevent microbiological contamination. Regarding water quality analyses, raw water supply in Smara, El Aiun and Awserd camps present high conductivity and high levels of fluoride, chloride, nitrate and sulphate, but dropping to normal levels within the drinking-water standards after water treatment via reverse osmosis plants. But for the case of El Aiun and Awserd, the reverse osmosis plant only provides treated water to the population each 20days, so the population receives raw water directly and health risks should be evaluated. Finally, Dakhla water supply is the best in terms of physico-chemical parameters quality, currently providing safe drinking water after a chlorination stage. In summary, drinking water access has improved dramatically in the last years due to the efforts of local and international authorities but several issues remain to be solved: access to treated water for all the population, improved water quality controls (especially in Dakhla), expansion of distribution networks, and adequate storage systems and maintenance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The microbial quality of drinking water in Manonyane community: Maseru District (Lesotho).

    PubMed

    Gwimbi, P

    2011-09-01

    Provision of good quality household drinking water is an important means of improving public health in rural communities especially in Africa; and is the rationale behind protecting drinking water sources and promoting healthy practices at and around such sources. To examine the microbial content of drinking water from different types of drinking water sources in Manonyane community of Lesotho. The community's hygienic practices around the water sources are also assessed to establish their contribution to water quality. Water samples from thirty five water sources comprising 22 springs, 6 open wells, 6 boreholes and 1 open reservoir were assessed. Total coliform and Escherichia coli bacteria were analyzed in water sampled. Results of the tests were compared with the prescribed World Health Organization desirable limits. A household survey and field observations were conducted to assess the hygienic conditions and practices at and around the water sources. Total coliform were detected in 97% and Escherichia coli in 71% of the water samples. The concentration levels of Total coliform and Escherichia coli were above the permissible limits of the World Health Organization drinking water quality guidelines in each case. Protected sources had significantly less number of colony forming units (cfu) per 100 ml of water sample compared to unprotected sources (56% versus 95%, p < 0.05). Similarly in terms of Escherichia coli, protected sources had less counts (7% versus 40%, p < 0.05) compared with those from unprotected sources. Hygiene conditions and practices that seemed to potentially contribute increased total coliform and Escherichia coli counts included non protection of water sources from livestock faeces, laundry practices, and water sources being down slope of pit latrines in some cases. These findings suggest source water protection and good hygiene practices can improve the quality of household drinking water where disinfection is not available. The results also suggest important lines of inquiry and provide support and input for environmental and public health programmes, particularly those related to water and sanitation.

  1. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of water-quality conditions in the Central Oklahoma aquifer study unit. No attempt was made in this report to determine the causes for regional variations in major-ion chemistry or to examine the reasons that some chemical constituents exceed water-quality standards.

  2. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  3. Fishes of the White River basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  4. Water use data to enhance scientific and policy insight

    NASA Astrophysics Data System (ADS)

    Konar, M.

    2017-12-01

    We live in an era of big data. However, water use data remains sparse. There is an urgent need to enhance both the quality and resolution of water data. Metered water use information - as opposed to estimated water use, typically based on climate - would enhance the quality of existing water databases. Metered water use data would enable the research community to evaluate the "who, where, and when" of water use. Importantly, this information would enable the scientific community to better understand decision making related to water use (i.e. the "why"), providing the insight necessary to guide policies that promote water conservation. Metered water use data is needed at a sufficient resolution (i.e. spatial, temporal, and water user) to fully resolve how water is used throughout the economy and society. Improving the quality and resolution of water use data will enable scientific understanding that can inform policy.

  5. A Decision Support System for Drinking Water Production Integrating Health Risks Assessment

    PubMed Central

    Delpla, Ianis; Monteith, Donald T.; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G.; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2014-01-01

    The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation. PMID:25046634

  6. Applications of MODIS Fluorescence Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity in Coastal and Estuarine Waters

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Ryan, J. P.; Moreno-Madriñán, M. J.

    2012-12-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS), calibration updates, improved aerosol retrievals, and new aerosol models have led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean-color. This has opened the way for studying coastal ocean phenomena and processes at finer spatial scales. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and increases in local concentrations of phytoplankton, which could result in harmful algal blooms. In two case studies we present improved and validated MODIS coastal observations of fluorescence line height (FLH) to: (1) assess trends in water quality for Tampa Bay, Florida; and (2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California, as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and imagery from Tampa Bay, we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout this large, optically complex estuarine system. A systematic analysis of sampling sites throughout the bay illustrates that the correlations between FLH and in situ chlorophyll-a are influenced by water quality parameters of total nitrogen, total phosphorous, turbidity and biological oxygen demand. Sites that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and cyclonic bay-wide circulation transports these nutrients to a northern Bay bloom incubation region. Both of these case studies illustrate the utility of improved MODIS FLH observations in supporting management decisions in coastal and estuarine waters.

  7. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to inves...

  8. 9 CFR 381.21 - Refusal of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conducted in a manner which will not violate the applicable water quality standards. No grant of inspection can be issued after April 3, 1970 (the date of enactment of the Water Quality Improvement Act), unless... required in connection with an application for inspection granted after April 3, 1970, for facilities...

  9. DEVELOPMENT OF GUIDELINES FOR CALIBRATING, VALIDATING, AND EVALUATING HYDROLOGIC AND WATER QUALITY MODELS: ASABE ENGINEERING PRACTICE 621

    USDA-ARS?s Scientific Manuscript database

    Information to support application of hydrologic and water quality (H/WQ) models abounds, yet modelers commonly use arbitrary, ad hoc methods to conduct, document, and report model calibration, validation, and evaluation. Consistent methods are needed to improve model calibration, validation, and e...

  10. Water quality effects and placement of pasture best management practices in the Spring Creek Watershed (Centre County, PA)

    USDA-ARS?s Scientific Manuscript database

    Pasture-based best management practices (BMPs), including stream bank fencing, stream crossings, and bank stabilization, improved water quality ten years after installation by reducing sediment, but did not affect nitrogen concentration. Abundance and diversity of aquatic macroinvertebrates increas...

  11. INFORMATION MANAGEMENT AND RELATED QUALITY ASSURANCE FOR A LARGE SCALE, MULTI-SITE RESEARCH PROJECT

    EPA Science Inventory

    During the summer of 2000, as part of a U.S. Environmental Protection Agency study designed to improve microbial water quality monitoring protocols at public beaches, over 11,000 water samples were collected at five selected beaches across the country. At each beach, samples wer...

  12. Climate impacts on water quality in the Fort Cobb Reservoir (OK) watershed

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a dominant land use in the U.S., and significant water quality concerns are associated with agricultural systems and practices. It is essential to understand interactive effects of geology, geomorphology, soils, and climate, with agricultural systems so that we can improve environmen...

  13. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  14. Environmental value transfer: an application for the South East Queensland waterways.

    PubMed

    Robinson, J J

    2002-01-01

    Economic valuations of the environmental resources provided by the waterways of South East Queensland are required for the evaluation of proposed environmental management strategies. Due to time and funding constraints it is unlikely that the environmental resources for each tributary of the river system will be subject to individual and explicit valuation. This paper reviews the literature about the validity of environmental benefit transfer, identifying the protocol for undertaking such a study. It then describes a study designed to transfer the estimated value of water quality improvements for the Bremer River to other waterways in South East Queensland. The study addresses some of the shortcomings of stated preference techniques to value the environment, including improving the quality of the information provided to survey respondents and the reliability of their responses by adopting a citizens' jury approach to the valuation exercise. In addition, the study is expected to provide the results in a form that will facilitate the estimation of a demand function for water quality improvements that will be meaningful for environmental value transfer to other sites with similar water quality issues.

  15. Lake Erie Wastewater Management Study.

    DTIC Science & Technology

    1982-09-01

    quality problems, the causes of these problems, and a cost- effective strategy to improve Lake Erie’s water quality.Numerous questions remain...unanswered about the exact relationship between land use and water quality and about the effectiveness of the proposed management strategy. However, enough...Dr. Terry J. Logan of Ohio State University who wrote the biological availa- bility section and developed cost effectiveness of different Best

  16. Clean Water State Revolving Fund (CWSRF) Results

    EPA Pesticide Factsheets

    The Clean Water State Revolving provides significant environmental benefits by maintaining and improving the nation's water quality. Reports on financial performance document CWSRF progress and account for the use of federal funds.

  17. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    NASA Astrophysics Data System (ADS)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  18. Water quality improvement policies: lessons learned from the implementation of Proposition O in Los Angeles, California

    Treesearch

    Mi-Hyun Park; Michael Stenstrom; Stephanie Pincetl

    2009-01-01

    This article evaluates the implementation of Proposition O, a stormwater cleanup measure, in Los Angeles, California. The measure was intended to create new funding to help the city comply with the Total Maximum Daily Load requirements under the federal Clean Water Act. Funding water quality objectives through a bond measure was necessary because the city had...

  19. The Interflow of Two Rivers: An Inter-School CSCL Project on Improving Water Quality by Using Videoconferencing

    ERIC Educational Resources Information Center

    Fung, Leo Sun-wai; Chan, Yu-nang

    2009-01-01

    The aim of this research is to study the effectiveness of using videoconferencing as a tool for collaborative learning on water pollution among students from two secondary schools located in different districts. The poor water quality of the nullahs in urban areas aroused the interest of students from two secondary schools in Tin Shui Wai and Wong…

  20. Effects of water quality and dietary potassium on performance and carcass characteristics of yearling steers.

    PubMed

    Sexson, J L; Wagner, J J; Engle, T E; Spears, J W

    2010-01-01

    Four hundred thirty-two crossbred yearling steers (339 kg +/- 4.8) were used to investigate the effects of water quality and dietary potassium concentration and source on feedlot performance and carcass merit. The study was conducted using a 2 x 3 factorial treatment arrangement. Factors evaluated included 2 water sources: 1) a blend of reverse osmosis and well water (RO; 608 +/- 164 mg/L of SO(4)) and 2) 100% well water with SO(4) concentration of 1,933 +/- 53 mg/L and 3 dietary K treatments. Potassium treatments included 0.75% K with supplemental K from potassium chloride (0.75% K-KCl), 0.75% K with supplemental K from potassium carbonate (0.75% K-K(2)CO(3)), and 1.0% K with supplemental K from potassium carbonate (1.0% K-K(2)CO(3)). Interactions between water quality and dietary treatments were not significant. Dry matter intake tended (P = 0.10) to be greater for steers consuming RO water compared with well water and was not affected by dietary treatment. Feed efficiency (P = 0.04) and NE(g) recovery (P = 0.04) were greater for 1.0% K-K(2)CO(3) compared with 0.75% K-KCl but were not affected by water quality. Final BW was heavier (P < 0.001) and ADG was greater (P = 0.04) for RO water compared with well water but were not affected by diet. Carcasses from steers that consumed RO water tended (P = 0.08) to be heavier than carcasses from steers consuming well water. Dietary treatment did not affect HCW (P = 0.52). Yield grade calculated from carcass measurements was not affected by dietary treatment or water quality. Carcasses from steers consuming well water had greater (P = 0.04) marbling scores than RO water. These data demonstrate that steers consuming RO water achieved improved feedlot performance. Steers fed 1.0% K-K(2)CO(3) were more efficient and demonstrated improved energy recovery compared with steers fed 0.75% K-KCl. Improved efficiency and energy recovery may be related to a reduction (P = 0.06) in the liver abscess rate for steers consuming 1.0% K-K(2)CO(3). Dietary cation-anion balance was positively related to ADG (P < 0.01) and NE(g) (P = 0.03) recovery but negatively related to marbling score (P = 0.04).

  1. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  2. 76 FR 5156 - Environmental Impact Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Firm Water Supplies, Improve Water Quality, and to Reduce Water Costs, San Bernardino and Riverside.... 20110020, Draft EIS, NRCS, IA, Clarke County Water Supply, To Construct a Multiple-purpose Structure that Provides for Rural Water Supply and Water Based Recreational Opportunities, Clarke County, IA, Comment...

  3. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed

    NASA Astrophysics Data System (ADS)

    Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon

    2012-02-01

    SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.

  4. Water quality of selected streams in the coal area of southeastern Montana. Water-resources investigations (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapton, J.R.; McKinley, P.W.

    1977-08-01

    This report summarizes and evaluates water-quality data collected at 35 stream sites in the coal region of southeastern Montana. Sarpy Creek, Armells Creek, and Rosebud Creek sometimes have dissolved-solids concentrations that cause water to be marginal for agricultural purposes. At times of rainfall and snowmelt, the runoff water mixes with the base-flow component to improve the overall quality. Water in the Tongue River generally showed a downstream degradation in which some changes were related to the lithology of the aquifers contributing water to streamflow. Water from Pumpkin Creek and Mizpah Creek is used mostly for cattle watering. To some extentmore » water is used for irrigation although the salinity hazard was often high. The chemical quality of the Powder River changed little during flow downstream. High sediment loads of the river acted as transporting agents for many of the plant nutrients and trace-element constituents.« less

  5. NASA-Modified Precipitation Products to Improve EPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi

    2010-01-01

    The Environmental Protection Agency (EPA) has estimated that over 20,000 water bodies within the United States do not meet water quality standards. Ninety percent of the impairments are typically caused by nonpoint sources. One of the regulations in the Clean Water Act of 1972 requires States to monitor the Total Maximum Daily Load (TMDL), or the amount of pollution that can be carried by a water body before it is determined to be "polluted", for any watershed in the U.S.. In response to this mandate, the EPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a Decision Support Tool (DST) for assessing pollution and to guide the decision making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program -- Fortran (HSPF), computes daily stream flow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA modified/NOAA precipitation data. Using these data within HSPF, stream flow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better stream flow statistics and, ultimately, in improved water quality assessment.

  6. The impact of changing climate on surface and ground water quality in southeast of Ireland

    NASA Astrophysics Data System (ADS)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.

  7. Temporal changes in the vertical distribution of flow and chloride in deep wells.

    PubMed

    Izbicki, John A; Christensen, Allen H; Newhouse, Mark W; Smith, Gregory A; Hanson, Randall T

    2005-01-01

    The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield.

  8. Adaptive measurements of urban runoff quality

    NASA Astrophysics Data System (ADS)

    Wong, Brandon P.; Kerkez, Branko

    2016-11-01

    An approach to adaptively measure runoff water quality dynamics is introduced, focusing specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a static schedule or flow-weighted sampling, which can miss important water quality dynamics if parameterized inadequately, novel Internet-enabled sensor nodes are used to autonomously adapt their measurement frequency to real-time weather forecasts and hydrologic conditions. This dynamic approach has the potential to significantly improve the use of constrained experimental resources, such as automated grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in situ sensors are not available. Compared to conventional flow-weighted or time-weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were autonomously triggered in response to features in the underlying hydrograph and real-time weather forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context of larger sensor network deployments, as well the potential to improving control of urban water quality.

  9. An audit improves the quality of water within the dental unit water lines of three separate facilities of a United Kingdom NHS Trust.

    PubMed

    Chate, R A C

    2006-11-11

    To improve the quality of water emanating from dental unit waterlines (DUWLs). A prospective clinical audit. Three geographically separate district dental facilities of a United Kingdom NHS Trust, involving two community clinics and one hospital orthodontic department, which were evaluated between 2002 and 2004. Samples of water discharged from the DUWLs were collected prior to the start and midway through a morning session. These were tested microbiologically at a United Kingdom Accreditation Service testing laboratory within six hours of sampling. One of the clinics followed the contemporaneous BDA advice of flushing water through its DUWLs while the other two clinics used separate intermittent disinfection purging regimes instead. One of them used a two stage protocol of Ethylene Diamine Tetra-Acetic acid followed by hydrogen peroxide, while the other used Bio 2000 as a single agent, which was subsequently superseded by the continuous use of super-oxidised water (Sterilox). To assess whether the samples either met the American Dental Association's guideline on the quality of DUWL water, or the more stringent European Union standards for potable (drinking) water. The two units which used a disinfection regime both complied with the ADA guideline and the EU potable water standard. However, the unit which only flushed through its DUWLs without using a disinfectant failed to comply with either of them. After all three dental facilities subsequently standardised their DUWL disinfection regimes by using Bio 2000, the colony counts from all of the water samples thereafter remained well below the EU recommended level. The unit which progressed to using Sterilox as a continuous disinfectant achieved and maintained zero readings from its water samples. Clinical audit can result in the improvement of the quality of water that is discharged through DUWLs, thereby minimising both the risk of cross infection to vulnerable patients, as well as to dental staff chronically exposed to contaminated aerosols.

  10. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    PubMed Central

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se foliar spray (40 mg L-1) is a handy, feasible and cost-effective approach to improve maize fodder yield and quality in arid and semi-arid regions of the world facing acute shortage of water. PMID:27729917

  11. Factors associated with drinking and being satisfied with tap water in Indigenous communities in Saskatchewan, Canada

    PubMed Central

    Bharadwaj, Lalita; Waldner, Cheryl L.

    2018-01-01

    ABSTRACT Previous studies have described concerns regarding tap water in Indigenous communities, yet there is little information on participants who report drinking their tap water and being satisfied with its quality. This study undertaken with members of 8 Indigenous communities in Saskatchewan, Canada, and identified factors associated with both the decision to drink tap water at home and being satisfied with its quality. We examined the importance of factors such as individual attributes, experiences, attitudes, household and community-based variables. Less than one-quarter of participants (23.4%) drank tap water and were satisfied with its quality. Individuals who did not boil tap water (odds ratio [OR] = 5.76, 95% confidence interval [CI] = 1.68–19.8), those who did not experience tap water odour (OR = 2.38, 95% CI = 1.26–4.50) and participants living in communities away from urban centres (OR = 2.74, 95% CI = 1.63–4.51) were more likely to drink and be satisfied with their tap water. Concerns about the environment had the most impact on community members aged 55+ years. Those not reporting concerns about environmental problems affecting water (OR = 11.4, 95% CI = 3.10–42.2) were much more likely to drink and be satisfied with their tap water. Programmes to improve water quality, reduce the need for boil water advisories and increase community confidence in the environment could improve tap water satisfaction and consumption. PMID:29697009

  12. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    NASA Astrophysics Data System (ADS)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  13. A national-scale analysis of the impacts of drought on water quality in UK rivers

    NASA Astrophysics Data System (ADS)

    Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.

    2015-12-01

    Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are diverse both in terms of timing, magnitude and duration. We consider several scenarios in which management interventions may alleviate water quality pressures, and discuss how the many interacting factors need to be better characterised to support detailed mechanistic models to improve our process understanding.

  14. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa

    PubMed Central

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv

    2015-01-01

    Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l’Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts. PMID:26404343

  15. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa.

    PubMed

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv

    2015-09-02

    Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l'Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.

  16. Water quality simulation of sewage impacts on the west coast of Mumbai, India.

    PubMed

    Vijay, R; Khobragade, P J; Sohony, R A

    2010-01-01

    Most coastal cities use the ocean as a site of waste disposal where pollutant loading degrades the quality of coastal waters. Presently, the west coast of Mumbai receives partially treated effluent from wastewater treatment facilities through ocean outfalls and discharges into creeks as well as wastewater/sewage from various open drains and nallahs which affect the water quality of creek and coastal water. Therefore, the objective of this paper is to simulate and assess the hydrodynamic behaviour and water quality due to impact of sewage and wastewater discharges from the west coast of Mumbai. Hydrodynamics and water quality were simulated based on present conditions and validated by using measured tide, current data and observed DO, BOD and FC. Observed and simulated results indicated non compliance to standards in Malad, Mahim creeks and the impact zones of ocean outfalls. The developed model could be used for generating various conditions of hydrodynamics and water quality considering the improvement in wastewater collection systems, treatment levels and proper disposal for proper planning and management of creeks and coastal environment.

  17. Safety of community drinking-water and outbreaks of waterborne enteric disease: Israel, 1976-97.

    PubMed Central

    Tulchinsky, T. H.; Burla, E.; Clayman, M.; Sadik, C.; Brown, A.; Goldberger, S.

    2000-01-01

    Waterborne disease remains a major public health problem in many countries. We report findings on nearly three decades of waterborne disease in Israel and the part these diseases play in the total national burden of enteric disease. During the 1970s and 1980s, Israel's community water supplies were frequently of poor quality according to the microbiological standards at that time, and the country experienced many outbreaks of waterborne enteric disease. New regulations raised water quality standards and made chlorination of community water supplies mandatory, as well as imposing more stringent guidelines on maintaining water sources and distribution systems for both surface water and groundwater. This was followed by improved compliance and water quality, and a marked decline in the number of outbreaks of waterborne disease; no outbreaks were detected between 1992 and 1997. The incidence of waterborne salmonellosis, shigellosis, and typhoid declined markedly as proportions of the total burden of these diseases, but peaked during the time in which there were frequent outbreaks of waterborne disease (1980-85). Long-term trends in the total incidence of reported infectious enteric diseases from all sources, including typhoid, shigellosis, and viral hepatitis (all types) declined, while the total incidence of salmonellosis increased. Mandatory chlorination has had an important impact on improving water quality, in reducing outbreaks of waterborne disease in Israel, and reducing the total burden of enteric disease in the country. PMID:11196499

  18. Modeling the improvement of ultrafiltration membrane mass transfer when using biofiltration pretreatment in surface water applications.

    PubMed

    Netcher, Andrea C; Duranceau, Steven J

    2016-03-01

    In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Linking water quality and well-being for improved assessment and valuation of ecosystem services

    PubMed Central

    Keeler, Bonnie L.; Polasky, Stephen; Brauman, Kate A.; Johnson, Kris A.; Finlay, Jacques C.; O’Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-01-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  20. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-06

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting.

  1. Assessing the impacts of land use on downstream water quality using a hydrologically sensitive area concept.

    PubMed

    Giri, Subhasis; Qiu, Zeyuan; Zhang, Zhen

    2018-05-01

    Understanding the relationship between land use and water quality is essential to improve water quality through carefully managing landscape change. This study applies a linear mixed model at both watershed and hydrologically sensitive areas (HSAs) scales to assess such a relationship in 28 northcentral New Jersey watersheds located in a rapidly urbanizing region in the United States. Two models differ in terms of the geographic scope used to derive land use matrices that quantify land use conditions. The land use matrices at the watershed and HSAs scales represent the land use conditions in these watersheds and their HSAs, respectively. HSAs are the hydrological "hotspots" in a watershed that are prone to runoff generation during storm events. HSAs are derived using a soil topographic index (STI) that predicts hydrological sensitivity of a landscape based on a variable source area hydrology concept. The water quality indicators in these models are total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS) concentrations in streams observed at the watershed outlets. The modeling results suggest that presence of low density urban land, agricultural land and wetlands elevate while forest decreases TN, TP and/or TSS concentrations in streams. The watershed scale model tends to emphasize the role of agricultural lands in water quality degradation while the HSA scale model highlights the role of forest in water quality improvement. This study supports the hypothesis that even though HSAs are relatively smaller area compared to watershed, still the land uses within HSAs have similar impacts on downstream water quality as the land uses in entire watersheds, since both models have negligible differences in model evaluation parameters. Inclusion of HSAs brings an interesting perspective to understand the dynamic relationships between land use and water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Optimal Site Characterization and Selection Criteria for Oyster Restoration using Multicolinear Factorial Water Quality Approach

    NASA Astrophysics Data System (ADS)

    Yoon, J.

    2015-12-01

    Elevated levels of nutrient loadings have enriched the Chesapeake Bay estuaries and coastal waters via point and nonpoint sources and the atmosphere. Restoring oyster beds is considered a Best Management Practice (BMP) to improve the water quality as well as provide physical aquatic habitat and a healthier estuarine system. Efforts include declaring sanctuaries for brood-stocks, supplementing hard substrate on the bottom and aiding natural populations with the addition of hatchery-reared and disease-resistant stocks. An economic assessment suggests that restoring the ecological functions will improve water quality, stabilize shorelines, and establish a habitat for breeding grounds that outweighs the value of harvestable oyster production. Parametric factorial models were developed to investigate multicolinearities among in situ water quality and oyster restoration activities to evaluate posterior success rates upon multiple substrates, and physical, chemical, hydrological and biological site characteristics to systematically identify significant factors. Findings were then further utilized to identify the optimal sites for successful oyster restoration augmentable with Total Maximum Daily Loads (TMDLs) and BMPs. Factorial models evaluate the relationship among the dependent variable, oyster biomass, and treatments of temperature, salinity, total suspended solids, E. coli/Enterococci counts, depth, dissolved oxygen, chlorophyll a, nitrogen and phosphorus, and blocks consist of alternative substrates (oyster shells versus riprap, granite, cement, cinder blocks, limestone marl or combinations). Factorial model results were then compared to identify which combination of variables produces the highest posterior biomass of oysters. Developed Factorial model can facilitate maximizing the likelihood of successful oyster reef restoration in an effort to establish a healthier ecosystem and to improve overall estuarine water quality in the Chesapeake Bay estuaries.

  3. Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements.

    PubMed

    Harmel, Tristan; Gilerson, Alexander; Tonizzo, Alberto; Chowdhary, Jacek; Weidemann, Alan; Arnone, Robert; Ahmed, Sam

    2012-12-10

    Above-water measurements of water-leaving radiance are widely used for water-quality monitoring and ocean-color satellite data validation. Reflected skylight in above-water radiometry needs to be accurately estimated prior to derivation of water-leaving radiance. Up-to-date methods to estimate reflection of diffuse skylight on rough sea surfaces are based on radiative transfer simulations and sky radiance measurements. But these methods neglect the polarization state of the incident skylight, which is generally highly polarized. In this paper, the effects of polarization on the sea surface reflectance and the subsequent water-leaving radiance estimation are investigated. We show that knowledge of the polarization field of the diffuse skylight significantly improves above-water radiometry estimates, in particular in the blue part of the spectrum where the reflected skylight is dominant. A newly developed algorithm based on radiative transfer simulations including polarization is described. Its application to the standard Aerosol Robotic Network-Ocean Color and hyperspectral radiometric measurements of the 1.5-year dataset acquired at the Long Island Sound site demonstrates the noticeable importance of considering polarization for water-leaving radiance estimation. In particular it is shown, based on time series of collocated data acquired in coastal waters, that the azimuth range of measurements leading to good-quality data is significantly increased, and that these estimates are improved by more than 12% at 413 nm. Full consideration of polarization effects is expected to significantly improve the quality of the field data utilized for satellite data validation or potential vicarious calibration purposes.

  4. Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir.

    PubMed

    Ma, Wei-Xing; Huang, Ting-Lin; Li, Xuan; Zhang, Hai-Han; Ju, Tuo

    2015-12-01

    Climate variation can have obvious effects on hydrologic conditions, which in turn can have direct consequences for the thermal regime and quality of water for human use. In this research, weekly surveys were conducted from 2011 to 2013 to investigate how changes of climate and hydrology affect the thermal regime and water quality at the Heihe Reservoir. Our results show that the hydrology change during the flooding season can both increase the oxygen concentration and accelerate the consumption of dissolved oxygen. Continuous heavy rainfall events occurred in September 2011 caused the mixing of the entire reservoir, which led to an increase in dissolved oxygen at the bottom until the next year. Significant turbid density flow was observed following the extreme rainfall events in 2012 which leading to a rapid increase in turbidity at the bottom (up to 3000 NTU). Though the dissolved oxygen at the bottom increased from 0 to 9.02 mg/L after the rainfall event, it became anoxic within 20 days due to the increase of water oxygen demand caused by the suspended matter brought by the storm runoff. The release of compounds from the sediments was more serious during the anaerobic period after the rainfall events and the concentration of total iron, total phosphorus, and total manganese at the bottom reached 1.778, 0.102, and 0.125 mg/L. The improved water-lifting aerators kept on running after the storm runoff occurred in 2013 to avoid the deterioration of water quality during anaerobic conditions and ensured the good water quality during the mixing period. Our results suggest preventive and remediation actions that are necessary to improve water quality and status.

  5. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review.

    PubMed

    Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie

    2015-05-01

    Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Occurrence and distribution of fish species in the Great and Little Miami River basins, Ohio and Indiana, pre-1900 to 1998

    USGS Publications Warehouse

    Harrington, Stephanie

    1999-01-01

    Historically, 133 fish species representing 25 families have been documented in the Great and Little Miami River Basins. Of these, 132 species have been reported in the basins since 1901, 123 since 1955, 117 since 1980, and 113 post-1990. Natural processes and human activities have both been shown to be major factors in the alteration of fish-community structure and the decrease in species diversity. In the late 1800's, dam construction and the removal of riparian zones restricted fish migration and altered habitat. Industrialization and urbanization increased considerably in the 1900's, further degrading stream habitat and water quality. Species requiring riffles and clean, hard stream bottoms were the most adversely affected. The use of agricultural and industrial chemicals prompted fish-consumption advisories and an increase in studies reporting the occurrence of external fish anomalies. Over the last 20 years, water quality has improved in part because of the upgrading of wastewater-treatment facilities; and, as a result, many streams of the Great and Little Miami River Basins generally meet or exceed existing water-quality standards. Although significant improvements have occurred in the basins, continued efforts to improve water quality and restore the physical habitat of streams will be necessary to increase fish abundance and biodiversity

  7. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  8. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds.

    PubMed

    Liu, Fu-jun; Hu, Weng-Ying; Li, Quan-Yi

    2002-07-01

    The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline-alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO3-(-)N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH4-(-)N (NH3-N), NO2-(-)N; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect-exerting speed of PSB was slower, but the effect-sustaining time was longer; (6) the appropriate concentration of PSB application in saline-alkali wetland ponds was 10 x 10(-6) mg/L, one-time effective period was more than 15 days. So PSB was an efficient water quality improver in saline-alkali ponds.

  9. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi

    NASA Astrophysics Data System (ADS)

    Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.

    2017-08-01

    Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality specifications. The majority of the water samples (73%, n = 11) were classified as of ;Intermediate risk; (FC 11-100 cfu/100 mL), hence not suitable for human consumption without prior treatment. This calls for large scale adoption of HWTS and continued monitoring of the water sources used in the study areas.

  10. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  11. Sensitivity of stream water age to climatic variability and land use change: implications for water quality

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Birkel, Christian; Geris, Josie; Tetzlaff, Doerthe

    2016-04-01

    Advances in the use of hydrological tracers and their integration into rainfall runoff models is facilitating improved quantification of stream water age distributions. This is of fundamental importance to understanding water quality dynamics over both short- and long-time scales, particularly as water quality parameters are often associated with water sources of markedly different ages. For example, legacy nitrate pollution may reflect deeper waters that have resided in catchments for decades, whilst more dynamics parameters from anthropogenic sources (e.g. P, pathogens etc) are mobilised by very young (<1 day) near-surface water sources. It is increasingly recognised that water age distributions of stream water is non-stationary in both the short (i.e. event dynamics) and longer-term (i.e. in relation to hydroclimatic variability). This provides a crucial context for interpreting water quality time series. Here, we will use longer-term (>5 year), high resolution (daily) isotope time series in modelling studies for different catchments to show how variable stream water age distributions can be a result of hydroclimatic variability and the implications for understanding water quality. We will also use examples from catchments undergoing rapid urbanisation, how the resulting age distributions of stream water change in a predictable way as a result of modified flow paths. The implication for the management of water quality in urban catchments will be discussed.

  12. 7 CFR 622.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., water quality management, ground water supply, agricultural pollution control, and other water management. (d) After a final plan for works of improvement is agreed upon between NRCS and the sponsors and... proper utilization of land, flood prevention, agricultural water management including irrigation and...

  13. Town Flush with Benefits from New Water System

    EPA Pesticide Factsheets

    An EPA-funded project to replace the aging and undersized water lines in a Virginia town has transformed the community–providing cost savings, improved water quality and greater public safety, while eliminating leaks that drained half of the town' water.

  14. Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas.

    PubMed

    Xu, Yong-Quan; Zou, Chun; Gao, Ying; Chen, Jian-Xin; Wang, Fang; Chen, Gen-Sheng; Yin, Jun-Feng

    2017-12-01

    The physicochemical characteristics, sensory quality, and antioxidant activity of tea infusions prepared with purified water (PW), mineral water (MW), mountain spring water (MSW), and tap water (TW) from Hangzhou were investigated. The results showed that the taste quality, catechin concentration, and antioxidant capacity of green, oolong, and black tea infusions prepared using MW and TW were significantly lower than those prepared using PW. Extraction of catechins and caffeine was reduced with high-conductivity water, while high pH influenced the stability of catechins. PW and MSW were more suitable for brewing green and oolong teas, while MSW, with low pH and moderate ion concentration, was the most suitable water for brewing black tea. Lowering the pH of mineral water partially improved the taste quality and increased the concentration of catechins in the infusions. These results aid selection of the most appropriate water for brewing Chinese teas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Safety of packaged water distribution limited by household recontamination in rural Cambodia.

    PubMed

    Holman, Emily J; Brown, Joe

    2014-06-01

    Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.

  16. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    PubMed

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-23: Part 2: Science plan for improved water-quality information and management

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.

    2013-01-01

    This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate. However, a combination of funding growth and extensive collaboration with other USGS programs and other Federal, State, and local agencies, public interest groups, professional and trade associations, academia, and private industry will be needed to fully realize the monitoring and modeling goals laid out in this plan (USGS Fact Sheet 2013-3008).

  18. Temporal trend and determinants of river water quality across urbanization gradients in a coastal city, China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zhu, X.

    2015-12-01

    Water contamination in rivers embedded in urbanizing areas is increasingly affected by anthropogenic factors. The impacts may vary with location, time and water variables particularly in rapidly growing areas with clear urbanization gradients. Therefore, characterizing the temporal trend and identifying responsible divers to water quality changes in areas with different urbanization intensity could greatly improve our knowledge about human-water interactions. We employed geographically weighted regression (GWR) to interpret the determinants of river water quality changes in four urban development zones, i.e. central urban, suburban, central county and rural areas. Monitoring data of 8 variables- permanganate (CODMn), biochemical oxygen demand (BOD), ammonium (NH3-N), petroleum (oil), volatile phenol (VP), phosphorus (TP), mercury (Hg) and lead (Pb) from 33 stations were collected from 2004, 2008 and 2010. Five determinants were identified: urban land use intensity, environmental policies, industrial zone expansion, land use composition, and gross domestic product (GDP). Relationships between these identified determinants and water quality changes showed great variations due to their different nature and sensitivity. Typically, for zones with higher urbanization intensity located in central cities and central counties, urban land use had positive impacts on river water quality improvement. However, in less urbanized areas, rapid urban expansion indicated rapid river water degradation. Environmental policies had distinct influences on river pollution control in highly-urbanized areas, but led to unexpected negative impacts in areas beyond the management priorities. Industrial activities were the major contributor to heavy metal pollution in suburban areas while boosted N, P decrease in central cities. Our study highlighted the importance of "local" management instead of one-size-fits-all system in mitigating undesirable impacts of urbanization on water environment.

  19. Assessment of environmental improvement measures using a novel integrated model: a case study of the Shenzhen River catchment, China.

    PubMed

    Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam

    2013-01-15

    Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Charles River Water Quality Improvements Earns an A- for the Second Time in the Past Five Years

    EPA Pesticide Factsheets

    EPA has given the Charles River a grade of A- for bacterial water quality in the river during 2017. This is only the second time the river has earned a grade as high as an A-minus, and both have occurred within the past five years.

  1. Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in Tampa Bay, Florida

    EPA Science Inventory

    The increasing availability of long-term monitoring data can improve resolution of temporal and spatial changes in water quality. In many cases, the fact that changes have occurred is no longer a matter of debate. However, the relatively simple methods that have been used to ev...

  2. Evaluation of Water Quality Trends in Goodwater Creek Experimental Watershed, Missouri: Implications for Monitoring Strategies and Objective Setting

    USDA-ARS?s Scientific Manuscript database

    Continued public support for U.S. tax-payer funded programs aimed at reducing agricultural non-point source pollutants depends on clear demonstrations of water quality improvements. Effectiveness of structural BMPs, as well as watershed monitoring networks is an important information need to make f...

  3. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities

    USDA-ARS?s Scientific Manuscript database

    Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effect...

  4. 9 CFR 304.2 - Information to be furnished; grant or refusal of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... water quality standards. No grant of inspection can be issued after April 3, 1970 (the date of enactment of the Water Quality Improvement Act), unless such certification has been obtained, or is waived... inspection granted after April 3, 1970, for facilities existing or under construction on April 3, 1970...

  5. Simulated reductions in consumption of sugar-sweetened beverages improves dietary in Lower Mississippi Delta adults

    USDA-ARS?s Scientific Manuscript database

    While the effects of replacing sugar-sweetened beverages with water on energy intake and body weight have been reported, little is known about how these replacements affect diet quality. We simulated the effects of replacing sugar-sweetened beverages with tap water on the diet quality of Lower Miss...

  6. Rivierine Nutrient, Sediment and Carbon Load Reductions Through Modeling/Simulation Directed Field Targeting of Best Management Practices

    USDA-ARS?s Scientific Manuscript database

    Increased agricultural production has led to a reduction in water quality while funding for protection or improvement of water quality from agricultural runoff has been decreasing over time. It is becoming increasingly important that available funds be spent where it will result in the most benefici...

  7. 7 CFR 1468.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... financial assistance to eligible farmers and ranchers to address soil, water, and related natural resource concerns, water quality protection or improvement; wetland restoration and protection; wildlife habitat...

  8. Surrogate Analysis and Index Developer (SAID) tool

    USGS Publications Warehouse

    Domanski, Marian M.; Straub, Timothy D.; Landers, Mark N.

    2015-10-01

    The regression models created in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water quality and associated engineering and ecological management decisions.

  9. Performance of pond-wetland complexes as a preliminary processor of drinking water sources.

    PubMed

    Wang, Weidong; Zheng, Jun; Wang, Zhongqiong; Zhang, Rongbin; Chen, Qinghua; Yu, Xinfeng; Yin, Chengqing

    2016-01-01

    Shijiuyang Constructed Wetland (110 hm(2)) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond-wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. Copyright © 2015. Published by Elsevier B.V.

  10. Temporal changes in the vertical distribution of flow and chloride in deep wells

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Newhouse, Mark W.; Smith, Gregory A.; Hanson, Randall T.

    2005-01-01

    The combination of flowmeter and depth-dependent water-quality data was used to evaluate the quantity and source of high-chloride water yielded from different depths to eight production wells in the Pleasant Valley area of southern California. The wells were screened from 117 to 437 m below land surface, and in most cases, flow from the aquifer into the wells was not uniformly distributed throughout the well screen. Wells having as little as 6 m of screen in the overlying upper aquifer system yielded as much as 50% of their water from the upper system during drought periods, while the deeper parts of the well screens yielded 15% or less of the total yield of the wells. Mixing of water within wells during pumping degraded higher-quality water with poorer-quality water from deeper depths, and in some cases with poorer-quality water from the overlying upper aquifer system. Changes in the mixture of water within a well, resulting from changes in the distribution of flow into the well, changed the quality of water from the surface discharge of wells over time. The combination of flowmeter and depth-dependent water quality data yielded information about sources of high-chloride water to wells that was not available on the basis of samples collected from nearby observation wells. Changing well design to eliminate small quantities of poor-quality water from deeper parts of the well may improve the quality of water from some wells without greatly reducing well yield. Copyright ?? 2005 National Ground Water Association.

  11. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  12. Development of datamining software for the city water supply company

    NASA Astrophysics Data System (ADS)

    Orlinskaya, O. G.; Boiko, E. V.

    2018-05-01

    The article considers issues of datamining software development for city water supply enterprises. Main stages of OLAP and datamining systems development are proposed. The system will allow water supply companies analyse accumulated data. Accordingly, improving the quality of data analysis would improve the manageability of the company and help to make the right managerial decisions by executives of various levels.

  13. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning.

    PubMed

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  14. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    PubMed Central

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China. PMID:28386514

  15. Assessing the extent of altruism in the valuation of community drinking water quality improvements

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Adamowicz, Wiktor; Dupont, Diane P.; Krupnick, Alan

    2013-10-01

    Improvements in publically provided goods and services, like community drinking water treatment, have values to people arising from their self-interest, but may as well have value from their altruistic concerns. The extent to which the value is altruistic versus self-interested is an important empirical issue for policy analysis because the benefits to improving drinking water quality may be larger than previously thought. We conducted an internet survey across Canada to identify both self-interested willingness-to-pay and altruistic willingness-to-pay obtained through hypothetical responses to a series of stated choice tasks and actual self-protection data against health risks from tap water. We use the information on self-protection to identify altruistic WTP. We find significant differences between self-interested and altruistic WTP: the latter can be three times greater than the former. Whether benefits of water protection are actually larger, however, depends on whether the altruism is paternalistic or nonpaternalistic.

  16. Quantitative evaluation of water quality in the coastal zone by remote sensing

    NASA Technical Reports Server (NTRS)

    James, W. P.

    1971-01-01

    Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.

  17. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  18. Viability of Commercially Available Bleach for Water Treatment in Developing Countries

    PubMed Central

    2009-01-01

    Treating household water with low-cost, widely available commercial bleach is recommended by some organizations to improve water quality and reduce disease in developing countries. I analyzed the chlorine concentration of 32 bleaches from 12 developing countries; the average error between advertised and measured concentration was 35% (range = –45%–100%; standard deviation = 40%). Because of disparities between advertised and actual concentration, the use of commercial bleach for water treatment in developing countries is not recommended without ongoing quality control testing. PMID:19762657

  19. Viability of commercially available bleach for water treatment in developing countries.

    PubMed

    Lantagne, Daniele S

    2009-11-01

    Treating household water with low-cost, widely available commercial bleach is recommended by some organizations to improve water quality and reduce disease in developing countries. I analyzed the chlorine concentration of 32 bleaches from 12 developing countries; the average error between advertised and measured concentration was 35% (range = -45%-100%; standard deviation = 40%). Because of disparities between advertised and actual concentration, the use of commercial bleach for water treatment in developing countries is not recommended without ongoing quality control testing.

  20. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  1. Army industrial, landscaping, and agricultural water use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoughton, Kate McMordie; Loper, Susan A.; Boyd, Brian K.

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  2. Condition Assessment for Drinking Water Transmission and Distribution Mains

    EPA Science Inventory

    This project seeks to improve the capability to characterize the condition of water infrastructure. The integrity of buried drinking water mains is critical, as it influences water quality, losses, pressure and cost. This research complements the U.S. Environmental Protection A...

  3. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: a case study for the Minho region

    NASA Astrophysics Data System (ADS)

    Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.

    2012-04-01

    Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water pollution abatement. The presented approach differs from existing approaches in a number of ways. First, we explicitly present an analytical derivation of private (national) and social (trans-national) welfare maximizing rates of water pollution abatement using nation-specific abatement cost functions. Second, the analytical optimal control approach provides an elegant and easily understandable solution concept that contributes to the development of efficient water quality improvement targets. Finally, we go beyond the usual cost-effectiveness analysis based on arbitrary 'tolerable' or target levels of pollution as we specifically account for the negative external costs of increased water pollution in the downstream aquatic and coastal environment. Results for the Minho region show that some private (national) welfare gains can be obtained through the adoption of win-win management practices, leading to a 12% reduction in the annual rate of water pollution and an almost 7% increase in annual regional income. Maximum social (trans-national) welfare gains can, however, be obtained through the adoption of win-win and lose-win management practices across Spain and Portugal, leading to a 36% reduction in water pollution and a 14% increase in regional income. Yet, non-cooperation in water pollution mitigation would only lead to a 16%-32% reduction in water pollution and a 8%-13% increase in regional income. Hence, social (trans-national) welfare losses from non-cooperation between Spain and Portugal would equate to between 16 and 81 million Euros per year.

  4. Loch Vale Watershed Long-Term Ecological Research and Monitoring Program: Quality Assurance Report, 2003-09

    USGS Publications Warehouse

    Richer, Eric E.; Baron, Jill S.

    2011-01-01

    The Loch Vale watershed project is a long-term research and monitoring program located in Rocky Mountain National Park that addresses watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality are made within the watershed and elsewhere in Rocky Mountain National Park. As data collected for the program are used by resource managers, scientists, policy makers, and students, it is important that all data collected in Loch Vale watershed meet high standards of quality. In this report, data quality was evaluated for precipitation, discharge, and surface-water chemistry measurements collected during 2003-09. Equipment upgrades were made at the Loch Vale National Atmospheric Deposition Program monitoring site to improve precipitation measurements and evaluate variability in precipitation depth and chemistry. Additional solar panels and batteries have been installed to improve the power supply, and data completeness, at the NADP site. As a result of equipment malfunction, discharge data for the Loch Outlet were estimated from October 18, 2005, to August 17, 2006. Quality-assurance results indicate that more than 98 percent of all surface-water chemistry measurements were accurate and precise. Records that did not meet quality criteria were removed from the database. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality were all sufficiently complete and consistent to support project data needs.

  5. Design, implementation, and initial results from a water-quality monitoring network for Atlanta, Georgia, USA

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2005-01-01

    In cooperation with the City of Atlanta, Georgia, the US Geological Survey has designed and implemented a water-quantity and quality monitoring network that measures a variety of biological and chemical constituents in water and suspended sediment. The network consists of 20 long-term monitoring sites and is intended to assess water-quality trends in response to planned infrastructural improvements. Initial results from the network indicate that nonpoint-source contributions may be more significant than point-source contributions for selected sediment associated trace elements and nutrients. There also are indications of short-term discontinuous point-source contributions of these same constituents during baseflow.

  6. [Improvement of sanitary legislation for using the transboundary and boundary drinking water sources].

    PubMed

    Turbinskiĭ, V V; Trofimovich, E M; Khmelev, V A

    2012-01-01

    The paper considers legislative acts for organizing human water use in the transboundary areas and for ensuring hygienic requirements for choosing water sources to the conditions of economic activity in the drainage area of boundary subjects, for organizing a monitoring of the quality of water from centralized, household, and community water sources. Prompt interaction of the water users and supervisory bodies of adjoining areas must be a mandatory element of hydroeconomic activities in the border areas. Recommendations are given to improve water sanitary legislations.

  7. Testing the extended biotic index in Slovakia: consistency, advantages, and limitations versus the saprobic assessment method of water quality.

    PubMed

    Pennelli, Bruno; Nagel, Karl-Otto; Crivellaro, Giuseppe; Fabiani, Claudio; Vancova, Alexandra; Mancini, Laura

    2006-04-01

    The European Union Water Framework Directive requires the achievement of environmental objectives for the ecological quality of water bodies. A comparable implementation of the Directive throughout member countries of the European Union is necessary to verify equal protection of surface waters. The Directive specifies that member states determine ecological quality by means of biological indices. To improve comparability of water quality assessment, this research carried out an intercalibration trial between the Slovak Saprobic Index and the Italian protocol of the Extended Biotic Index, as part of a cooperative program between Italy and the Slovak Republic. When assessing streams with no or low pollution, statistics showed similar results for both methods. In contrast, the comparison of indices was not accurate in the case of severely affected waters. Reliable conversion formulas are feasible to transform the Italian Extended Biotic Index into the Slovak Saprobic Index, and not vice versa.

  8. Does improved access to water supply by rural households enhance the concept of safe water at the point of use? A case study from deep rural South Africa.

    PubMed

    Jagals, P

    2006-01-01

    The concept of safe water is defined by three principles: the health-related quality must be suitable, the supply/source must be accessible and the water must constantly be available in quantities sufficient for the intended use. If any one (or more) of these three elements is missing from a water services improvement programme, providing safe water is not successfully achieved. A study in a deep rural area in South Africa showed that providing small communities, using untreated river water as their only water source, with good quality water through a piped distribution system and accessible at communal taps did not fall within our parameters of safe water. The parameters for measuring the three principles were: absence of Escherichia coli in drinking water samples; accessibility by improving tap distances to within 200 m from each household; availability by assessing whether households have at least 25 L per person per day. Results show that although E. coli levels were reduced significantly, households were still consuming water with E. coli numbers at non-compliant levels. Access (distance) was improved from an average of 750 m from households to river source to an average of 120 m to new on-tap source points. This did not result in significant increases in household quantities, which on average remained around 18 L per person per day.

  9. Using LiDAR datasets to improve HSPF water quality modeling in the Red River of the North Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2013-12-01

    The Red River of the North Basin (RRB), located in the lakebed of ancient glacial Lake Agassiz, comprises one of the flattest landscapes in North America. The topography of the basin, coupled with the Red River's direction of flow from south to north results in a system that is highly susceptible to flooding. The magnitude and frequency of flood events in the RRB has prompted several multijurisdictional projects and mitigation efforts. In response to the devastating 1997 flood, an International Joint Commission sponsored task force established the need for accurate elevation data to help improve flood forecasting and better understand risks. This led to the International Water Institute's Red River Basin Mapping Initiative, and the acquisition LiDAR Data for the entire US portion of the RRB. The resulting 1 meter bare earth digital elevation models have been used to improve hydraulic and hydrologic modeling within the RRB, with focus on flood prediction and mitigation. More recently, these LiDAR datasets have been incorporated into Hydrological Simulation Program-FORTRAN (HSPF) model applications to improve water quality predictions in the MN portion of the RRB. RESPEC is currently building HSPF model applications for five of MN's 8-digit HUC watersheds draining to the Red River, including: the Red Lake River, Clearwater River, Sandhill River, Two Rivers, and Tamarac River watersheds. This work is being conducted for the Minnesota Pollution Control Agency (MPCA) as part of MN's statewide watershed approach to restoring and protecting water. The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and are formulated to provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. Incorporation of the LiDAR datasets has been critical to representing the topographic characteristics that impact hydrologic and water quality processes in the extremely flat, heavily drained sub-basins of the RRB. Beyond providing more detailed elevation and slope measurements, the high resolution LiDAR datasets have helped to identify drainage alterations due to agricultural practices, as well as improve representation of channel geometry. Additionally, when available, LiDAR based hydraulic models completed as part of the RRB flood mitigation efforts, are incorporated to further improve flow routing. The MPCA will ultimately use these HSPF models to aid in Total Maximum Daily Load (TMDL) development, permit development/compliance, analysis of Best Management Practice (BMP) implementation scenarios, and other watershed planning and management objectives. LiDAR datasets are an essential component of the water quality models build for the watersheds within the RRB and would greatly benefit water quality modeling efforts in similarly characterized areas.

  10. Quality-assurance plan and field methods for quality-of-water activities, U.S. Geological Survey, Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, L.J.

    1996-10-01

    Water-quality activities at the Idaho National Engineering Laboratory (INEL) Project Office are part of the US Geological Survey`s (USGS) Water Resources Division (WRD) mission of appraising the quantity and quality of the Nation`s water resources. The purpose of the Quality Assurance Plan (QAP) for water-quality activities performed by the INEL Project Office is to maintain and improve the quality of technical products, and to provide a formal standardization, documentation, and review of the activities that lead to these products. The principles of this plan are as follows: (1) water-quality programs will be planned in a competent manner and activities willmore » be monitored for compliance with stated objectives and approaches; (2) field, laboratory, and office activities will be performed in a conscientious and professional manner in accordance with specified WRD practices and procedures by qualified and experienced employees who are well trained and supervised, if or when, WRD practices and procedures are inadequate, data will be collected in a manner that its quality will be documented; (3) all water-quality activities will be reviewed for completeness, reliability, credibility, and conformance to specified standards and guidelines; (4) a record of actions will be kept to document the activity and the assigned responsibility; (5) remedial action will be taken to correct activities that are deficient.« less

  11. Water Quality Is a Poor Predictor of Recreational Hotspots in England

    PubMed Central

    Mullin, Karen; Boeuf, Blandine; Fincham, William; Taylor, Nigel; Villalobos-Jiménez, Giovanna; von Vittorelli, Laura; Wolf, Christine; Fritsch, Oliver; Strauch, Michael; Seppelt, Ralf; Volk, Martin; Beckmann, Michael

    2016-01-01

    Maintaining and improving water quality is key to the protection and restoration of aquatic ecosystems, which provide important benefits to society. In Europe, the Water Framework Directive (WFD) defines water quality based on a set of biological, hydro-morphological and chemical targets, and aims to reach good quality conditions in all river bodies by the year 2027. While recently it has been argued that achieving these goals will deliver and enhance ecosystem services, in particular recreational services, there is little empirical evidence demonstrating so. Here we test the hypothesis that good water quality is associated with increased utilization of recreational services, combining four surveys covering walking, boating, fishing and swimming visits, together with water quality data for all water bodies in eight River Basin Districts (RBDs) in England. We compared the percentage of visits in areas of good water quality to a set of null models accounting for population density, income, age distribution, travel distance, public access, and substitutability. We expect such association to be positive, at least for fishing (which relies on fish stocks) and swimming (with direct contact to water). We also test if these services have stronger association with water quality relative to boating and walking alongside rivers, canals or lakeshores. In only two of eight RBDs (Northumbria and Anglian) were both criteria met (positive association, strongest for fishing and swimming) when comparing to at least one of the null models. This conclusion is robust to variations in dataset size. Our study suggests that achieving the WFD water quality goals may not enhance recreational ecosystem services, and calls for further empirical research on the connection between water quality and ecosystem services. PMID:27875562

  12. [Experience of the implementation of the method of the integral assessment of drinking water on indicators of chemical harmlessness in St. Petersburg].

    PubMed

    Mel'tser, A V; Erastova, N V; Kiselev, A V

    2013-01-01

    Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.

  13. Applications of MODIS Fluorescent Line Height Measurements to Monitor Water Quality Trends and Algal Bloom Activity

    NASA Technical Reports Server (NTRS)

    Fischer, Andrew; Moreno-Mardinan, Max; Ryan, John P.

    2012-01-01

    Recent advances in satellite and airborne remote sensing, such as improvements in sensor and algorithm calibrations, processing techniques and atmospheric correction procedures have provided for increased coverage of remote-sensing, ocean-color products for coastal regions. In particular, for the Moderate Resolution Imaging Spectrometer (MODIS) sensor calibration updates, improved aerosol retrievals and new aerosol models has led to improved atmospheric correction algorithms for turbid waters and have improved the retrieval of ocean color in coastal waters. This has opened the way for studying ocean phenomena and processes at finer spatial scales, such as the interactions at the land-sea interface, trends in coastal water quality and algal blooms. Human population growth and changes in coastal management practices have brought about significant changes in the concentrations of organic and inorganic, particulate and dissolved substances entering the coastal ocean. There is increasing concern that these inputs have led to declines in water quality and have increase local concentrations of phytoplankton, which cause harmful algal blooms. In two case studies we present MODIS observations of fluorescence line height (FLH) to 1) assess trends in water quality for Tampa Bay, Florida and 2) illustrate seasonal and annual variability of algal bloom activity in Monterey Bay, California as well as document estuarine/riverine plume induced red tide events. In a comprehensive analysis of long term (2003-2011) in situ monitoring data and satellite imagery from Tampa Bay we assess the validity of the MODIS FLH product against chlorophyll-a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions and to develop a near decadal trend in water quality changes. In situ monitoring locations that correlated well with satellite imagery were in depths greater than seven meters and were located over five kilometers from shore. Water quality parameter of total nitrogen, phosphorous, turbidity and biological oxygen demand had high correlations with these sites, as well. Satellite FLH estimates show improving water quality from 2003-2007 with a slight decline up through 2011. Dinoflagellate blooms in Monterey Bay, California (USA) have recently increased in frequency and intensity. Nine years of MODIS FLH observations are used to describe the annual and seasonal variability of bloom activity within the Bay. Three classes of MODIS algorithms were correlated against in situ chlorophyll measurements. The FLH algorithm provided the most robust estimate of bloom activity. Elevated concentrations of phytoplankton were evident during the months of August-November, a period during which increased occurrences of dinoflagellate blooms have been observed in situ. Seasonal patterns of FLH show the on- and offshore movement of areas of high phytoplankton biomass between oceanographic seasons. Higher concentrations of phytoplankton are also evident in the vicinity of the land-based nutrient sources and outflows, and the cyclonic bay-wide circulation can transport these nutrients to the northern Bay bloom incubation region. Both of these case studies illustrate the utility MODIS FLH observations in supporting management decisions in coastal and estuarine waters.

  14. Impact of urban sprawl on water quality in eastern Massachusetts, USA.

    PubMed

    Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan

    2007-08-01

    A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.

  15. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  16. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    PubMed

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  17. "Upstream Thinking": the catchment management approach of a water provider

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Ross, M.; Smith, D.; Anderson, K.; Luscombe, D.; Le Feuvre, N.; Brazier, R. E.

    2012-04-01

    Human activities have large impacts on water quality and provision. Water companies throughout the UK are faced with the consequences of poor land management and need to find appropriate solutions to decreasing water quality. This is particularly true in the South West of England, where 93% of the drinking water is sourced from rivers and reservoirs: large areas of drained peatlands (i.e. Exmoor and Dartmoor National Parks) are responsible for a significant input of dissolved organic carbon (DOC) discolouring the water, whilst poorly managed farming activities can lead to diffuse pollution. Alongside the direct environmental implications, poor water quality is partly increasing water treatment costs and will drive significant future investment in additional water treatment, with further repercussions on customers. This highlights the need for water companies throughout the UK, and further afield, to be more involved in catchment management. "Upstream Thinking" is South West Water's (SWW) approach to catchment management, where working with stakeholders to improve water quality upstream aims to avoid increasingly costly solutions downstream. This approach has led the company to invest in two major areas of work: (1) The Farmland programme where problematic farm management practices and potential solutions are identified, typically 40% of the required investment is then offered in exchange for a legal undertaking to maintain the new farm assets in good condition for 25 years; (2) The Mires programme which involves heavy investment in peatland restoration through the blocking of open ditches in order to improve water storage and quality in the long term. From these two projects, it has been clear that stakeholder involvement of groups such as local farmers, the Westcountry Rivers Trust, the Exmoor National Park Authority, the Environment Agency, Natural England and the Exmoor Society is essential, first because it draws in catchment improvement expertise which is not directly held within the company, and second because it shows how local communities and groups are considered and valued by the company. Monitoring changes and providing a solid scientific base is also undertaken to prove the concept and justify any investment. The work carried out so far has highlighted that SWW's collaborative approach to catchment management is changing the relationship between private water suppliers in the UK and stakeholders or groups having an impact on water quality. This results in a progressive move from a situation where the polluter has to pay, to rewarding providers of clean water instead. The value of ecosystem payments of this kind is being discussed with the appropriate authorities (i.e. Natural England, and the Department for Environment, Food and Rural Affairs) so that it can form part of ensuring sustainable water supplies in future, with all the environmental and ecological benefits of clear raw waters in rivers, lakes and streams.

  18. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano.

    PubMed

    French, Megan; Alem, Natalie; Edwards, Stephen J; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  19. Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar

    2017-10-01

    Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.

  20. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  1. Bacteriological quality of drinking water from source to household in Ibadan, Nigeria.

    PubMed

    Oloruntoba, E O; Sridhar, M K C

    2007-06-01

    The bacteriological quality of drinking water from well, spring, borehole, and tap sources and that stored in containers by urban households in Ibadan was assessed during wet and dry seasons. The MPN technique was used to detect and enumerate the number of coliforms in water samples. Results showed that majority of households relied on wells, which were found to be the most contaminated of all the sources. At the household level, water quality significantly deteriorated after collection and storage as a result of poor handling. Furthermore, there was significant seasonal variation in E. coli count at source (P=0.013) and household (P=0.001). The study concludes that there is a need to improve the microbial quality of drinking water at source and the household level through hygiene education, and provision of simple, acceptable, low-cost treatment methods.

  2. Economic Valuation for Improved Water Quality: Analyzing the Public's Preferences Using Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Tsagarakis, Konstantinos P.; Mavragani, Amaryllis; Gemitzi, Alexandra

    2017-04-01

    As the subject of water quality in the European Union is becoming all the more important, public awareness is of significant importance in exploring ways towards the implementation of better water quality. Over the last decade, significant steps towards this direction have been employed in EU, such as Directive 2008/105/EC and Directive 2013/39/EU and Groundwater Directive and Decision 2015/495. What has been suggested so far is that public participation and information levels are relatively low in some EU countries. This paper focuses on providing a review on economic valuation in EU and in regions with degradated waters by applying geospatial techniques. Overall, it is shown that public awareness and information levels are crucial in better assessing the issues that arise due to water quality, and help better implement EU legislation.

  3. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water.

    PubMed

    Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I

    2017-10-15

    Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Quartermaster Reach Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Quartermaster Reach Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  5. Environmental Quality Index webinar

    EPA Pesticide Factsheets

    Environmental Quality index, data reduction approaches to help improve statistical efficiency, summarizing information on the wider environment humans are exposed to. air, water, land, built, socio-demographic, human and environmental health

  6. An exploration of multilevel modeling for estimating access to drinking-water and sanitation.

    PubMed

    Wolf, Jennyfer; Bonjour, Sophie; Prüss-Ustün, Annette

    2013-03-01

    Monitoring progress towards the targets for access to safe drinking-water and sanitation under the Millennium Development Goals (MDG) requires reliable estimates and indicators. We analyzed trends and reviewed current indicators used for those targets. We developed continuous time series for 1990 to 2015 for access to improved drinking-water sources and improved sanitation facilities by country using multilevel modeling (MLM). We show that MLM is a reliable and transparent tool with many advantages over alternative approaches to estimate access to facilities. Using current indicators, the MDG target for water would be met, but the target for sanitation missed considerably. The number of people without access to such services is still increasing in certain regions. Striking differences persist between urban and rural areas. Consideration of water quality and different classification of shared sanitation facilities would, however, alter estimates considerably. To achieve improved monitoring we propose: (1) considering the use of MLM as an alternative for estimating access to safe drinking-water and sanitation; (2) completing regular assessments of water quality and supporting the development of national regulatory frameworks as part of capacity development; (3) evaluating health impacts of shared sanitation; (4) using a more equitable presentation of countries' performances in providing improved services.

  7. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups of higher organisms, especially fish populations. It is clear that the improved water quality is to a large part due to improved waste water treatment. However detailed studies of the exchange between tidal marshes and the estuary clearly proved also the importance of these habitats for water quality. A whole ecosystem labeling experiment gave evidence on the sink function of these marshes for nitrogen. Detailed mass balance studies show also the importance of mashes in the silica cycle. Amorphous biogenic silica is imported into marshes were it accumulates in the soil, while dissolved silica is exported again to the pelagic. At times when the concentrations of dissolved silica in the estuary are limiting (during plankton blooms), the export of DSi from the marshes is highest. These results clearly indicate the crucial role tidal marshes play in the estuarine biogeochemical cycles and in their resilience against imbalanced nutrient inputs. Based on these insights new tidal marshes have been developed along the Schelde, their design being so that the delivery of ecosystems services (eg impact on water quality) is maximal.

  8. International Watershed Technology: Improving Water Quality and Quantity at the Local, Basin, and Regional Scales

    USGS Publications Warehouse

    Tollner, Ernest W.; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the five papers in the “International Watershed Technology” collection. These papers were selected from 60 technical presentations at the fifth biennial ASABE 21st Century Watershed Technology Conference and Workshop: Improving the Quality of Water Resources at Local, Basin, and Regional Scales, held in Quito, Ecuador, on 3-9 December 2016. The conference focused on solving spatial and temporal water quality and quantity problems and addressed topics such as watershed management in developing countries, aquatic ecology and ecohydrology, ecosystem services, climate change mitigation strategies, flood forecasting, remote sensing, and water resource policy and management. While diverse, the presentation topics reflected the continuing evolution of the “data mining” and “big data” themes of past conferences related to geospatial data applications, with increasing emphasis on practical solutions. The papers selected for this collection represent applications of spatial data analyses toward practical ends with a theme of “tools and techniques for sustainability.” The papers address a range of topics, including the matching of crops with water availability, and assessing the environmental impacts of agricultural production. The papers identify some of the latest tools and techniques for improving sustainability in watershed resource management that are relevant to both developing and developed countries.

  9. Water quality and management of private drinking water wells in Pennsylvania.

    PubMed

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  10. Water Quality Survey of Splash Pads After A Waterborne Salmonellosis Outbreak--Tennessee, 2014.

    PubMed

    Clayton, Joshua L; Manners, Judy; Miller, Susan; Shepherd, Craig; Dunn, John R; Schaffner, William; Jones, Timothy F

    2017-06-01

    Waterborne outbreaks of salmonellosis are uncommon. The Tennessee Department of Health investigated a salmonellosis outbreak of 10 cases with the only common risk factor being exposure to a single splash pad. Risks included water splashed in the face at the splash pad and no free residual chlorine in the water system. We surveyed water quality and patron behaviors at splash pads statewide. Of the 29 splash pads participating in the water quality survey, 24 (83%) used a recirculating water system. Of the 24, 5 (21%) water samples were tested by polymerase chain reaction and found to be positive for E. coli, Giardia, norovirus, or Salmonella. Among 95 patrons observed, we identified common high-risk behaviors of sitting on the fountain or spray head and putting mouth to water. Water venue regulations and improved education of patrons are important to aid prevention efforts.

  11. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    USGS Publications Warehouse

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data from the pre-construction and initial post-construction phases are presented in this report. ?? 2007 ASCE.

  12. Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.

    PubMed

    Ockenden, M C; Quinton, J N; Favaretto, N; Deasy, C; Surridge, B

    2014-07-01

    Surface water quality in the UK and much of Western Europe has improved in recent decades, in response to better point source controls and the regulation of fertilizer, manure and slurry use. However, diffuse sources of pollution, such as leaching or runoff of nutrients from agricultural fields, and micro-point sources including farmyards, manure heaps and septic tank sewerage systems, particularly systems without soil adsorption beds, are now hypothesised to contribute a significant proportion of the nutrients delivered to surface watercourses. Tackling such sources in an integrated manner is vital, if improvements in freshwater quality are to continue. In this research, we consider the combined effect of constructing small field wetlands and improving a septic tank system on stream water quality within an agricultural catchment in Cumbria, UK. Water quality in the ditch-wetland system was monitored by manual sampling at fortnightly intervals (April-October 2011 and February-October 2012), with the septic tank improvement taking place in February 2012. Reductions in nutrient concentrations were observed through the catchment, by up to 60% when considering total phosphorus (TP) entering and leaving a wetland with a long residence time. Average fluxes of TP, soluble reactive phosphorus (SRP) and ammonium-N (NH4-N) at the head of the ditch system in 2011 (before septic tank improvement) compared to 2012 (after septic tank improvement) were reduced by 28%, 9% and 37% respectively. However, TP concentration data continue to show a clear dilution with increasing flow, indicating that the system remained point source dominated even after the septic tank improvement.

  13. [Study of the bacteriological quality of water used in the agro-food industry in the North of Morocco].

    PubMed

    Haijoubi, El Houcine; Benyahya, Fatiha; Bendahou, Abdrezzak; Essadqui, Faima Zahra; Behhari, Mohammed El; El Mamoune, Ahmed Fouad; Ghailani, Naima Nourouti; Mechita, Mohcine Bennani; Barakat, Amina

    2017-01-01

    Water is used predominantly in food manufacturing process. Northern morocco agro-food industries use different sources of water, but public water and wells water are the main sources of water used. This water can be the main source of possible food contaminations and alterations. This study aims is to assess the bacteriological quality of water used in the agro-food industries in the Northern region of Morocco, to identify the different types of germs responsible for the pollution of these waters and to establish the main causes of this pollution. Water samples taken from taps or wells were analyzed to detect pollution indicator germs (total coliform (TC), fecal coliform (FC), intestinal enterococci (E), revivable microorganisms (RM), sulphite-reducing anaerobes) and pathogens (Salmonella, Staphylococci, Pseudomonas aeruginosa). The enumeration of the bacteria was performed by filtration technique and incorporation obtained through supercooled solid state. The results showed that public-supply waters were of satisfactory bacteriological quality while 40% of the wells water was non-compliant with water quality standards due to the presence of TC, FC, E and RM pollution indicators. In contrast, pathogens, particularly Salmonellae, were absent in all the wells water analyzed. Well water pollution was generally due to failure to meet hygienic requirements for water pumping. Bacteriological quality of these wells water could be improved by adequate protection.

  14. Evaluation of a commercially available organic acid product on body weight loss, carcass yield, and meat quality during preslaughter feed withdrawal in broiler chickens: a poultry welfare and economic perspective.

    PubMed

    Menconi, A; Kuttappan, V A; Hernandez-Velasco, X; Urbano, T; Matté, F; Layton, S; Kallapura, G; Latorre, J; Morales, B E; Prado, O; Vicente, J L; Barton, J; Andreatti Filho, R L; Lovato, M; Hargis, B M; Tellez, G

    2014-02-01

    The effect of a commercial organic acid (OA) product on BW loss (BWL) during feed withdrawal and transportation, carcass yield, and meat quality was evaluated in broiler chickens. Two experiments were conducted in Brazil. Commercial houses were paired as control groups receiving regular water and treated groups receiving OA in the water. Treated birds had a reduction in BWL of 37 g in experiment 1 and 32.2 g in experiment 2. In experiment 2, no differences were observed in carcass yield between groups. Estimation of the cost benefit suggested a 1:16 ratio by using the OA. In experiment 3, conducted in Mexico, significant differences on water consumption, BWL, and meat quality characteristics were observed in chickens that were treated with the OA (P < 0.05). These data suggest this OA product may improve animal welfare and economic concerns in the poultry industry by reducing BWL and improving meat quality attributes.

  15. Water quality, hydrology, and simulated response to changes in phosphorus loading of Mercer Lake, Iron County, Wisconsin, with special emphasis on the effects of wastewater discharges

    USGS Publications Warehouse

    Robertson, Dale M.; Garn, Herbert S.; Rose, William J.; Juckem, Paul F.; Reneau, Paul C.

    2012-01-01

    Mercer Lake is a relatively shallow drainage lake in north-central Wisconsin. The area near the lake has gone through many changes over the past century, including urbanization and industrial development. To try to improve the water quality of the lake, actions have been taken, such as removal of the lumber mill and diversion of all effluent from the sewage treatment plant away from the lake; however, it is uncertain how these actions have affected water quality. Mercer Lake area residents and authorities would like to continue to try to improve the water quality of the lake; however, they would like to place their efforts in the actions that will have the most beneficial effects. To provide a better understanding of the factors affecting the water quality of Mercer Lake, a detailed study of the lake and its watershed was conducted by the U.S. Geological Survey in collaboration with the Mercer Lake Association. The purposes of the study were to describe the water quality of the lake and the composition of its sediments; quantify the sources of water and phosphorus loading to the lake, including sources associated with wastewater discharges; and evaluate the effects of past and future changes in phosphorus inputs on the water quality of the lake using eutrophication models (models that simulate changes in phosphorus and algae concentrations and water clarity in the lake). Based on analyses of sediment cores and monitoring data collected from the lake, the water quality of Mercer Lake appears to have degraded as a result of the activities in its watershed over the past 100 years. The water quality appears to have improved, however, since a sewage treatment plant was constructed in 1965 and its effluent was routed away from the lake in 1995. Since 2000, when a more consistent monitoring program began, the water quality of the lake appears to have changed very little. During the two monitoring years (MY) 2008-09, the average summer near-surface concentration of total phosphorus was 0.023 mg/L, indicating the lake is borderline mesotrophic-eutrophic, or has moderate to high concentrations of phosphorus, whereas the average summer chlorophyll a concentration was 3.3 mg/L and water clarity, as measured with a Secchi depth, was 10.4 ft, both indicating mesotrophic conditions or that the lake has a moderate amount of algae and water clarity. Although actions have been taken to eliminate the wastewater discharges, the bottom sediment still has slightly elevated concentrations of several pollutants from wastewater discharges, lumber operations, and roadway drainage, and a few naturally occurring metals (such as iron). None of the concentrations, however, were high enough above the defined thresholds to be of concern. Based on nitrogen to phosphorus ratios, the productivity (algal growth) in Mercer Lake should typically be limited by phosphorus; therefore, understanding the phosphorus input to the lake is important when management efforts to improve or prevent degradation of the lake water quality are considered. Total inputs of phosphorus to Mercer Lake were directly estimated for MY 2008-09 at about 340 lb/yr and for a recent year with more typical hydrology at about 475 lb/yr. During these years, the largest sources of phosphorus were from Little Turtle Inlet, which contributed about 45 percent, and the drainage area near the lake containing the adjacent urban and residential developments, which contributed about 24 percent. Prior to 1965, when there was no sewage treatment plant and septic systems and other untreated systems contributed nutrients to the watershed, phosphorus loadings were estimated to be about 71 percent higher than during around 2009. In 1965, a sewage treatment plant was built, but its effluent was released in the downstream end of the lake. Depending on various assumptions on how much effluent was retained in the lake, phosphorus inputs from wastewater may have ranged from 0 to 342 lb. Future highway and stormwater improvements have been identified in the Mercer Infrastructure Improvement Project, and if they are done with the proposed best management practices, then phosphorus inputs to the lake may decrease by about 40 lb. Eutrophication models [Canfield and Bachman model (1981) and Carlson Trophic State Index equations (1977)] were used to predict how the water quality of Mercer Lake should respond to changes in phosphorus loading. A relatively linear response was found between phosphorus loading and phosphorus and chlorophyll a concentrations in the lake, with changes in phosphorus concentrations being slightly less (about 80 percent) and changes in chlorophyll a concentrations being slightly more (about 120 percent) than the changes in phosphorus loadings to the lake. Water clarity, indicated by Secchi depths, responded more to decreases in phosphorus loading than to increases in loading. Results from the eutrophication models indicated that the lake should have been negatively affected by the wastewater discharges. Prior to 1965, when there was no sewage treatment plant effluent and inputs from the septic systems and other untreated systems were thought to be high, the lake should have been eutrophic; near the surface, average phosphorus concentrations were almost 0.035 mg/L, chlorophyll a concentrations were about 7 μg/L, and Secchi depths were about 6 ft, which agreed with the shallower Secchi depths during this time estimated from the sediment-core analysis. The models indicated that between 1965 and 1995, when the lake retained some of the effluent from the new sewage treatment plant, water quality should have been between the conditions estimated prior to 1965 and what was expected during typical hydrologic conditions around MY 2008-09. The models also indicated that if the future Mercer Infrastructure Improvement Project is conducted with the best management practices as proposed, the water quality in the lake could improve slightly from that measured during 2006-10. Because of the small amount of phosphorus that is presently input into Mercer Lake any additional phosphorus added to the lake could degrade water quality; therefore, management actions can usefully focus on minimizing future phosphorus inputs. Phosphorus released from the sediments of a degraded lake often delays its response to decreases in external phosphorus loading, especially in shallow, frequently mixed systems. Mercer Lake, however, remains stratified throughout most of the summer, and phosphorus released from the sediments represents only about 6 percent, or a small fraction, of the total phosphorus load to the lake. Therefore, the phosphorus trapped in the sediments should minimally affect the long-term water quality of the lake and should not delay the response in its productivity to future changes in nutrient loading from its watershed.

  16. Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota

    USGS Publications Warehouse

    Ackerman, D.J.

    1980-01-01

    In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.

  17. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    USDA-ARS?s Scientific Manuscript database

    Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...

  18. ENHANCED STREAM WATER QUALITY MODELS QUAL2E AND QUAL2E-UNCAS: DOCUMENTATION AND USER MANUAL

    EPA Science Inventory

    The manual is a major revision of the original QUAL2E program documentation released in 1985. It includes a description of the recent modifications and improvements to the widely used water quality models QUAL-II and QUAL2E. The enhancements include an extensive capability for un...

  19. Assessing the Long-Term Impacts of Water Quality Outreach and Education Efforts on Agricultural Landowners

    ERIC Educational Resources Information Center

    Jackson-Smith, Douglas B.; McEvoy, Jamie P.

    2011-01-01

    We assess the long-term effectiveness of outreach and education efforts associated with a water quality improvement project in a watershed located in northern Utah, USA. Conducted 15 years after the original project began, our research examines the lasting impacts of different extension activities on landowners' motivations to participate and…

  20. Linking Changes in Management and Riparian Physical Functionality to Water Quality and Aquatic Habitat: A Case Study of Maggie Creek, NV

    EPA Science Inventory

    The total maximum daily load (TMDL) process is ineffective and inappropriate for improving stream water quality in the rural areas of the northern Great Basin, and likely in many areas throughout the country. Important pollutants (e.g., sediment and nutrients) come from the stre...

  1. "Using Satellite Remote Sensing to Derive Numeric Criteria in Coastal and Inland Waters of the United States"

    NASA Astrophysics Data System (ADS)

    Crawford, T. N.; Schaeffer, B. A.

    2016-12-01

    Anthropogenic nutrient pollution is a major stressor of aquatic ecosystems around the world. In the United States, states and tribes can adopt numeric water quality values (i.e. criteria) into their water quality management standards to protect aquatic life from eutrophication impacts. However, budget and resource constraints have limited the ability of many states and tribes to collect the water quality monitoring data needed to derive numeric criteria. Over the last few decades, satellite technology has provided water quality measurements on a global scale over long time periods. Water quality managers are finding the data provided by satellite technology useful in managing eutrophication impacts in coastal waters, estuaries, lakes, and reservoirs. In recent years EPA has worked with states and tribes to derive remotely sensed numeric Chl-a criteria for coastal waters with limited field-based data. This approach is now being expanded and used to derive Chl-a criteria in freshwater systems across the United States. This presentation will cover EPA's approach to derive numeric Chl-a criteria using satellite remote sensing, recommendations to improve satellite sensors to expand applications, potential areas of interest, and the challenges of using remote sensing to establish water quality management goals, as well as provide a case in which this approach has been applied.

  2. Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.

    2011-08-01

    Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.

  3. Scaling Up a Water, Sanitation, and Hygiene Program in Rural Bangladesh: The Role of Program Implementation.

    PubMed

    Benjamin-Chung, Jade; Sultana, Sonia; Halder, Amal K; Ahsan, Mohammed Ali; Arnold, Benjamin F; Hubbard, Alan E; Unicomb, Leanne; Luby, Stephen P; Colford, John M

    2017-05-01

    To evaluate whether the quality of implementation of a water, sanitation, and hygiene program called SHEWA-B and delivered by UNICEF to 20 million people in rural Bangladesh was associated with health behaviors and sanitation infrastructure access. We surveyed 33 027 households targeted by SHEWA-B and 1110 SHEWA-B hygiene promoters in 2011 and 2012. We developed an implementation quality index and compared the probability of health behaviors and sanitation infrastructure access in counterfactual scenarios over the range of implementation quality. Forty-seven percent of households (n = 14 622) had met a SHEWA-B hygiene promoter, and 47% of hygiene promoters (n = 527) could recall all key program messages. The frequency of hygiene promoter visits was not associated with improved outcomes. Higher implementation quality was not associated with better health behaviors or infrastructure access. Outcomes differed by only 1% to 3% in scenarios in which all clusters received low versus high implementation quality. SHEWA-B did not meet UNICEF's ideal implementation quality in any area. Improved implementation quality would have resulted in marginal changes in health behaviors or infrastructure access. This suggests that SHEWA-B's design was suboptimal for improving these outcomes.

  4. 75 FR 69983 - Notice of Intent to Prepare a Draft Environmental Impact Statement (EIS), Initiate the Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... that water quality has improved, these canals allow the transfer of both indigenous and nonindigenous... Water and Related Land Resource Implementation Studies, Water Resources Council, March 10, 1983. 2...

  5. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  6. Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program

    USGS Publications Warehouse

    Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.

    2000-01-01

    Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.

  7. Water-quality control, monitoring and wastewater treatment in Lithuania 1950 to 1999.

    PubMed

    Cetkauskaite, A; Zarkov, D; Stoskus, L

    2001-08-01

    The Lithuanian water-management system developed on the basis of Soviet regulations in 1950-1990. Surface-water quality monitoring started in the 1950s, and the system was improved in the 1960s. Today, 48 rivers are being monitored using up to 70 parameters. Statutory monitoring of discharges started in 1962, wastewater standards were issued in 1957 and 1966, and then revised in 1996. Wastewater-treatment plants were built first in rural areas, in factories since the 1950s, and later in towns. Since 1991, large capacity municipal plants have been constructed with foreign assistance. Water quality has improved in some rivers since 1970, but Lithuania's main river, Nemunas, remains moderately polluted. The lower Nemunas is especially affected by discharges of municipal and industrial wastewater from Sovietsk and Neman (Russia), which account for half of the total loading. Hydrobiological data of 1994-1998 indicated the eutrophication of the Curonian Lagoon, and bacteriological pollution and blue-green algae blooms in the Baltic Sea north of Klaipeda.

  8. Microbial water quality communication: public and practitioner insights from British Columbia, Canada.

    PubMed

    Dunn, G; Henrich, N; Holmes, B; Harris, L; Prystajecky, N

    2014-09-01

    This work examines the communication interactions of water suppliers and health authorities with the general public regarding microbial source water quality for recreational and drinking water. We compare current approaches to risk communication observable in British Columbia (BC), Canada, with best practices derived from the communications literature, finding significant gaps between theory and practice. By considering public views and government practices together, we identify key disconnects, leading to the conclusion that at present, neither the public's needs nor public health officials' goals are being met. We find: (1) there is a general lack of awareness and poor understanding by the public of microbial threats to water and the associated health implications; (2) the public often does not know where to find water quality information; (3) public information needs are not identified or met; (4) information sharing by authorities is predominantly one-way and reactive (crisis-oriented); and (5) the effectiveness of communications is not evaluated. There is a need for both improved public understanding of water quality-related risks, and new approaches to ensure information related to water quality reaches audiences. Overall, greater attention should be given to planning and goal setting related to microbial water risk communication.

  9. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  10. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment.

  11. The evolution of technological strategies in the prevention of dialysis water pollution: sixteen years' experience.

    PubMed

    Bolasco, Piergiorgio; Contu, Antonio; Meloni, Patrizia; Vacca, Dorio; Murtas, Stefano

    2012-01-01

    This report attempts to illustrate the positive impact on the quality of dialysis water produced over a 16-year period through the progressive optimization of technological procedures. Fundamental steps included the following: elimination of polyvinyl chloride (PVC), periodical controls, introduction of stainless steel and/or polyethylene polymer and substitution of single-pass reverse osmosis (SRO) with double-pass reverse osmosis (DRO). Daily overnight automatic thermal disinfection of distribution piping rings represented the final step. A dramatic improvement was observed in 645 water samples obtained from distribution piping. The measures applied resulted in a significant improvement of water quality, featuring levels of colony-forming units per milliliter ranging from 247.4 ± 393.7 in the presence of PVC and SRO to 14.1 ± 28.0 with stainless steel and DRO and 2.8 ± 3.2 with cross-linked polyethylene thermoplastic polymer and DRO (p < 0.01). Dialysis water should be viewed by nephrologists as a medicinal product, and every effort should be made to ensure a high-quality liquid. Copyright © 2012 S. Karger AG, Basel.

  12. Development and assessment of an integrated ecological modelling framework to assess the effect of investments in wastewater treatment on water quality.

    PubMed

    Holguin-Gonzalez, Javier E; Boets, Pieter; Everaert, Gert; Pauwels, Ine S; Lock, Koen; Gobeyn, Sacha; Benedetti, Lorenzo; Amerlinck, Youri; Nopens, Ingmar; Goethals, Peter L M

    2014-01-01

    Worldwide, large investments in wastewater treatment are made to improve water quality. However, the impacts of these investments on river water quality are often not quantified. To assess water quality, the European Water Framework Directive (WFD) requires an integrated approach. The aim of this study was to develop an integrated ecological modelling framework for the River Drava (Croatia) that includes physical-chemical and hydromorphological characteristics as well as the ecological river water quality status. The developed submodels and the integrated model showed accurate predictions when comparing the modelled results to the observations. Dissolved oxygen and nitrogen concentrations (ammonium and organic nitrogen) were the most important variables in determining the ecological water quality (EWQ). The result of three potential investment scenarios of the wastewater treatment infrastructure in the city of Varaždin on the EWQ of the River Drava was assessed. From this scenario-based analysis, it was concluded that upgrading the existing wastewater treatment plant with nitrogen and phosphorus removal will be insufficient to reach a good EWQ. Therefore, other point and diffuse pollution sources in the area should also be monitored and remediated to meet the European WFD standards.

  13. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  14. Water quality study of Sunter River in Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  15. Developing a Framework of Innovative Trials to Support Water Companies Strategic Response to WFD

    NASA Astrophysics Data System (ADS)

    Whitehead, Jodie; Cherry, Katherine; Revens, Neasa; O'Hanlon, Thomas

    2014-05-01

    Slug control in high risk fields and catchments can have serious implications for water companies, threatening compliance with drinking water standards and challenging the Water Framework Directive's requirement that additional water treatment is avoided. Severn Trent Water has established a framework of innovative trails at a range of scales and locations to help shape the company's strategic, sustainable response to elevated metaldehyde concentrations at drinking water abstractions. Currently four contrasting trials are underway, two at the catchment scale, one at the field scale and one at the 'operational site' scale at locations across the English Midlands. This presentation provides an overview of the different approaches, their effectiveness to date and lessons learnt to aid strategy development. The first trial entitled Farmer's as Producers of Clean Water adopts a 'results orientated' approach, rewarding farmers for improvements in water quality at the catchment scale and allowing farmers to decide how best to manage the issue on their land with no prescribed measures. It acknowledges that co-ordinated action is needed across the catchment to see improvements in water quality, and that by incentivising outcomes rather than actions, land owners and farmers may take greater ownership of water quality issues. The second project explores the potential for a 'zero metaldehyde' catchment with all farmers throughout the catchment being financial supported to use a water friendly alternative to metaldehyde. This project is being compared to more voluntary approaches adopted elsewhere. The third project is a field scale trial to test the efficacy of alternative products to metaldehyde and different pellet formulations. Field drains are being sampled following heavy rain and crop damaged assessed to review the benefits to water quality and crops. The final project considers what Severn Trent Water can do from an operational perspective, investigating the size and shape of metaldehyde peaks in relation to 'real time' pesticide usage data to assess the potential to switch abstractions off during high risk periods. To date results have been encouraging with water quality benefits observed in all three catchment/ field scale trials. Although still ongoing, the projects have highlighted the importance of strong farmer engagement and the need to get agronomist involved at an early stage. Farmers need reassurance of the efficacy of alternatives, support which is straightforward to understand and access, and localised evidence of the issues and subsequent improvements. Adopting a framework of projects is providing Severn Trent Water with tangible, results based results which can be used to develop practical, sustainable solutions that fit with both the agricultural and water industries alike.

  16. Piloting water quality testing coupled with a national socioeconomic survey in Yogyakarta province, Indonesia, towards tracking of Sustainable Development Goal 6.

    PubMed

    Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah

    2017-10-01

    There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    PubMed

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  18. New Perspectives in Monitoring Drinking Water Microbial Quality

    PubMed Central

    Figueras, Ma José; Borrego, Juan J.

    2010-01-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002

  19. Increased Use of No-till Cropping Systems Improves Stream Ecosystem Quality

    NASA Astrophysics Data System (ADS)

    Yates, A. G.; Bailey, R. C.; Schwindt, J. A.

    2005-05-01

    Release of sediments to streams from tilled lands has been a significant stressor to streams in agro-ecosystems for decades and has been shown to impact aquatic biota in a variety of ways. To limit soil erosion from cultivated lands, conservation tillage techniques, including the use of no-till systems, have been developed and widely adopted throughout the region. However, there haves been no tests of the effects of no-till systems on stream quality at a watershed scale. We measured habitat and water quality and sampled the benthic macroinvertebrate (BMI) and fish communities in 32 small (100-1400 ha) subwatersheds along a gradient of the proportion of land under no-till cropping systems to determine relationships between the use of no-till and stream quality. Our results demonstrate that with increasing proportions of no-till, habitat scores improve, the quantities of sediment and sediment associated stressors in the water decline, the BMI community exhibits reduced dominance by Oligocheata and Sphaeriidae, as well as improved Family Biotic Index (FBI) scores, and fish species richness increases. We concluded that increased use of no-till cropping systems by farmers does contribute to improved quality of streams in agro-ecosystems.

  20. Fremont Tree-Well Filter

    EPA Pesticide Factsheets

    Information about the SFBWQP Fremont Tree-Well Filter Spine project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  1. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  2. 7 CFR 3201.99 - Water clarifying agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Water clarifying agents. 3201.99 Section 3201.99... Designated Items § 3201.99 Water clarifying agents. (a) Definition. Products designed to clarify and improve the quality of water by reducing contaminants such as excess nitrites, nitrates, phosphates, ammonia...

  3. 7 CFR 3201.99 - Water clarifying agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Water clarifying agents. 3201.99 Section 3201.99... Designated Items § 3201.99 Water clarifying agents. (a) Definition. Products designed to clarify and improve the quality of water by reducing contaminants such as excess nitrites, nitrates, phosphates, ammonia...

  4. 7 CFR 1469.5 - Eligibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... determines that conservation treatment will contribute to an improvement in an identified natural resource... Quality and Soil Quality to the minimum level of treatment as specified in paragraphs (e)(2) and (3) of... concerns of water quality and soil quality to the minimum level of treatment as specified in paragraphs (e...

  5. Economic Benefits of Improved Water Quality: Public Perceptions of Option and Preservation Values

    NASA Astrophysics Data System (ADS)

    Bouwes, Nicolaas W., Sr.

    The primary objective of this book is to report the authors‧ research approach to the estimation of benefits of water quality improvements in the South Platte River of northeastern Colorado. Benefits included a “consumer surplus” from enhanced enjoyment of water-based recreation, an “option value” of assured choice of future recreation use, and a “preservation value” of the ecosystem and its bequest to future generations. Concepts such as preservation and option value benefits have been often mentioned but seldom estimated in natural resources research. The authors have met their objective by providing the reader with a detailed description of their research without being tedious.

  6. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response. Ultimately, improved understanding of post-fire response and related drivers will advance potential mitigation and treatment strategies as well as aid in the parametrization of post-fire models of water quality.

  7. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from conserving water and from the impact of climate change on head flows and thus helps planning for the future of our water resources and ecosystem.

  8. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  9. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water quality benefits due to land use change were generally greater than the effects of climate change variability.

  10. Longevity of acid discharges from underground mines located above the regional water table.

    PubMed

    Demchak, J; Skousen, J; McDonald, L M

    2004-01-01

    The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as easily predicted. In total, the drainage from 34 out of 44 (77%) above-drainage underground mines showed significant improvement in acidity over time, some exponentially and some linearly. Ten discharges showed no improvement and three of these got much worse.

  11. Recommendations for assessing water quality and safety on board merchant ships.

    PubMed

    Grappasonni, Iolanda; Cocchioni, Mario; Degli Angioli, Rolando; Saturnino, Andrea; Sibilio, Fabio; Scuri, Stefania; Amenta, Francesco

    2013-01-01

    Health and diseases on board ships may depend on water. Interventions to improve the quality of water may bring to significant benefits to health and water stores/supply and should be controlledto protect health. This paper has reviewed the main regulations for the control of water safety and qualityon board ships and presents some practical recommendations for keeping water healthy and safe in passenger and cargo merchant ships. The main international regulations and guidelines on the topic were analysed. Guidelines forWater Quality on Board Merchant Ships Including Passenger Vessels of Health Protection Agency, World Health Organisation (WHO) Guide to Ship Sanitation, WHO Guidelines for Drinking Water Quality, WHO Water Safety Plan and the United States Center for Disease Control and Prevention Vessel Sanitation Program were examined. Recommendations for passenger and, if available, for cargo ships were collected and compared. Recommended questionnaire: A questionnaire summarising the main information to collect for assessingthe enough quality of water for the purposes it should be used on board is proposed. The need of havinga crew member with water assessment duties on board, trained for performing these activities properlyis discussed. Water quality on board ships should be monitored routinely. Monitoring should be directedto chemical and microbiological parameters for identifying possible contamination sources, using specifickits by a designed crew member. More detailed periodic assessments should be under the responsibility ofspecialised personnel/laboratories and should be based on sample collection from all tanks and sites of waterdistribution. It is important to select a properly trained crew member on board for monitoring water quality.

  12. [TEIS--a system for public health offices for assessing, presenting, evaluating and communicating data on the quality of drinking water].

    PubMed

    Henke, A; Overath, H; Heinzke, J

    1999-05-01

    Monitoring the quality of drinking water is a cardinal task of German Public Health Offices and of the relevant Ministries of Health of the German Federal states ("Länder"). Today this can be tackled on a large scale and economically only with computer assistance. A system has been developed in North Rhine Westphalia on behalf of the Ministry of Health, for data assessment and communication which is suitable for practical work and user friendly. It aims at supporting the Public Health Offices in their daily work and at improving and simplifying the monitoring of drinking water supply systems and of drinking water quality control.

  13. Clean Water Act (CWA) Action Plan Implementation Priorities: Changes to Improve Water Quality, Increase Compliance and Expand Transparency

    EPA Pesticide Factsheets

    The Clean Water Act (CWA) Action Plan Implementation Priorities describes the new approaches to revamp the National Pollutant Discharge Elimination System (NPDES) permitting, compliance and enforcement program.Issued May 11, 2011

  14. Management and modeling: Tools to improve water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural, urban and suburban sources contribute to the contamination of surface waters, which has been observed by the detection of pesticides, excess nutrients, industrial pollutants, antibiotics, pharmaceuticals, and personal care products in both natural waters and treated wastewaters. The us...

  15. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  16. 36 CFR 230.7 - Program practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... productivity, vigor, and health, and the value and quality of wood products. (4) Windbreak and Hedgerow... improvement of water quality and soil productivity on forest land. (6) Riparian and Wetland Protection and...

  17. Sodium Dichloroisocyanurate Tablets for Routine Treatment of Household Drinking Water in Periurban Ghana: A Randomized Controlled Trial

    PubMed Central

    Jain, Seema; Sahanoon, Osman K.; Blanton, Elizabeth; Schmitz, Ann; Wannemuehler, Kathleen A.; Hoekstra, Robert M.; Quick, Robert E.

    2010-01-01

    We conducted a randomized, placebo-controlled, triple-blinded trial to determine the health impact of daily use of sodium dichloroisocyanurate (NaDCC) tablets for household drinking water treatment in periurban Ghana. We randomized 240 households (3,240 individuals) to receive either NaDCC or placebo tablets. All households received a 20-liter safe water storage vvessel. Over 12 weeks, 446 diarrhea episodes (2.2%) occurred in intervention and 404 (2.0%) in control households (P = 0.38). Residual free chlorine levels indicated appropriate tablet use. Escherichia coli was found in stored water at baseline in 96% of intervention and 88% of control households and at final evaluation in 8% of intervention and 54% of control households (P = 0.002). NaDCC use did not prevent diarrhea but improved water quality. Diarrhea rates were low and water quality improved in both groups. Safe water storage vessels may have been protective. A follow-up health impact study of NaDCC tablets is warranted. PMID:20064989

  18. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality.

    PubMed

    Wang, Pei; Tao, Han; Jin, Zhengyu; Xu, Xueming

    2016-06-01

    Impact of water extractable arabinoxylan from rye bran on frozen steamed bread dough quality was investigated in terms of the bread characteristics, ice crystallization, yeast activity as well as the gluten molecular weight distribution and glutenin macropolymer content in the present study. Results showed that water extractable arabinoxylan significantly improved bread characteristics during the 60-day frozen storage. Less water was crystallized in the water extractable arabinoxylan dough during storage, which could explain the alleviated yeast activity loss. For all the frozen dough samples, more soluble high molecular weight (Mw ≈ 91,000-688,000) and low molecular weight (Mw ≈ 91,000-16,000) proteins were derived from glutenin macropolymer depolymerization. Nevertheless, water extractable arabinoxylan dough developed higher glutenin macropolymer content with lowered level of soluble low molecular weight proteins throughout the storage. This study suggested water extractable arabinoxylan from rye bran had great potential to be served as an effective frozen steamed bread dough improver. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  20. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    PubMed

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many factors such as temperature, water salinity, and physiological limitations of the plant. Low temperature, high concentration of salts, and low concentration of nutrients may reduce the performance of this plant in removing nutrients. The results from this study indicate that water lettuce has a great potential in removing N and P from eutrophic stormwaters and improving other water quality properties.

Top