Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands
NASA Astrophysics Data System (ADS)
Boon, J.; Smits, J. G.
2006-12-01
There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.
Assessment and management of the performance risk of a pilot reclaimed water disinfection process.
Zhou, Guangyu; Zhao, Xinhua; Zhang, Lei; Wu, Qing
2013-10-01
Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the influent would mean better downstream quality.
Spahr, N.E.; Boulger, R.W.
1997-01-01
Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.
Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing
2015-08-01
To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.
40 CFR 35.603 - Competitive process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Water Quality Cooperative Agreements (section 104(b)(3)) § 35.603 Competitive process. EPA will award water quality cooperative agreement funds... a Performance Partnership Grant, the water quality work plan commitments must be included in the...
40 CFR 35.603 - Competitive process.
Code of Federal Regulations, 2014 CFR
2014-07-01
... a Performance Partnership Grant, the water quality work plan commitments must be included in the... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Water Quality Cooperative Agreements (section 104(b)(3)) § 35.603 Competitive process. EPA will award water quality cooperative agreement funds...
40 CFR 35.603 - Competitive process.
Code of Federal Regulations, 2012 CFR
2012-07-01
... a Performance Partnership Grant, the water quality work plan commitments must be included in the... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Water Quality Cooperative Agreements (section 104(b)(3)) § 35.603 Competitive process. EPA will award water quality cooperative agreement funds...
40 CFR 35.603 - Competitive process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a Performance Partnership Grant, the water quality work plan commitments must be included in the... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Water Quality Cooperative Agreements (section 104(b)(3)) § 35.603 Competitive process. EPA will award water quality cooperative agreement funds...
40 CFR 35.603 - Competitive process.
Code of Federal Regulations, 2013 CFR
2013-07-01
... a Performance Partnership Grant, the water quality work plan commitments must be included in the... STATE AND LOCAL ASSISTANCE Environmental Program Grants for Tribes Water Quality Cooperative Agreements (section 104(b)(3)) § 35.603 Competitive process. EPA will award water quality cooperative agreement funds...
Guidelines for preparation of the 1996 state water quality assessments (305(b) reports)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
The Federal Water Polluton Control Act (PL92-500, commonly known as the Clean Water Act), establishes a process for States to use to develop information on the quality of the Nation`s water resources and to report this information to the U.S. Environmental Protection Agency (EPA), the U.S. Congress, and the citizens of this country. Each State must develop a program to monitor the quality of its surface and ground waters and prepare a report every 2 years describing the status of its water quality. EPA compiles the data from the State reports, summarizes them, and transmits the summaries to Congress alongmore » with an analysis of the status of water quality nationwide. This process, referred to as the 305(b) process, is an essential aspect of the Nation`s water pollution control effort.« less
Water-quality assessment of the Smith River drainage basin, California and Oregon
Iwatsubo, Rick T.; Washabaugh, Donna S.
1982-01-01
A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)
The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams
Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance
2010-01-01
We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...
Cinque, Kathy; Jayasuriya, Niranjali
2010-12-01
To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.
Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center
Francy, Donna S.; Shaffer, Kimberly H.
2008-01-01
In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.
Franklin, Marvin A.
2000-01-01
The U.S. Geological Survey, Water Resources Division, has a policy that requires each District office to prepare a Surface Water Quality-Assurance Plan. The plan for each District describes the policies and procedures that ensure high quality in the collection, processing, analysis, computer storage, and publication of surface-water data. The North Florida Program Office Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the North Florida Program office for activities related to the collection, processing, storage, analysis, and publication of surface-water data.
USDA-ARS?s Scientific Manuscript database
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...
Lambing, John H.
2006-01-01
In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less
EPA Region 7 and Four States Water Quality Standards Review Process Kaizen Event
The submittal, review and approval process of the EPA–State process for developing and revising Water Quality Standards (WQS) was the focus of a Lean business process improvement kaizen event in June 2007.
Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia
2017-05-08
In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.
Influence of water quality on the embodied energy of drinking water treatment.
Santana, Mark V E; Zhang, Qiong; Mihelcic, James R
2014-01-01
Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.
ANALYTICAL EQUATIONS OF STORAGE RESERVOIR WATER QUALITY
Distribution system water quality protection is an integral aspect of public water supply management. Effective regulatory compliance requires a thorough understanding of the transport and mixing processes in storage reservoirs and their impacts on effluent water quality. This ...
Potential impacts of changing supply-water quality on drinking water distribution: A review.
Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter
2017-06-01
Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Blackwell, R. J.
1982-01-01
Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.
40 CFR 35.362 - Competitive process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Quality Cooperative Agreements (section 104(b)(3)) § 35.362 Competitive process. EPA will award Water Quality Cooperative Agreement funds...
40 CFR 35.362 - Competitive process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Quality Cooperative Agreements (section 104(b)(3)) § 35.362 Competitive process. EPA will award Water Quality Cooperative Agreement funds...
Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dan Neary
2016-01-01
Forested catchments throughout the world are known for producing high quality water for human use. In the 20th Century, experimental forest catchment studies played a key role in studying the processes contributing to high water quality. The hydrologic processes investigated on these paired catchments have provided the science base for examining water quality...
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
NASA Astrophysics Data System (ADS)
Selle, B.; Schwientek, M.
2012-04-01
Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables and environmental tracers indicating groundwater age were analysed for deep groundwater from production wells. For deep groundwater, we found that microbial turnover was stronger influenced by local availability of energy sources than by travel times of groundwater to the wells. Groundwater quality primarily reflected the input of pollutants determined by landuse, e.g. agrochemicals. We concluded that for water quality in the Ammer catchment, conservative mixing of waters with different origin is more important than reactive transport processes along the flow path.
[Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].
Dong, Wen; Li, Huai-En; Li, Jia-Ke
2013-02-01
In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.
WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER
Water quality changes along hyporheic flow paths may have
important effects on river water quality and aquatic habitat. Previous
studies on the Willamette River, Oregon, showed that river water follows
hyporheic flow paths through highly porous deposits created by river...
Hot spots and hot moments in riparian zones: potential for improved water quality management
USDA-ARS?s Scientific Manuscript database
Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...
NASA Technical Reports Server (NTRS)
Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.
1989-01-01
The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.
Bennett, Trudy J.; Graham, Jennifer L.; Foster, Guy M.; Stone, Mandy L.; Juracek, Kyle E.; Rasmussen, Teresa J.; Putnam, James E.
2014-01-01
A quality-assurance plan for use in conducting continuous water-quality monitoring activities has been developed for the Kansas Water Science Center in accordance with guidelines set forth by the U.S. Geological Survey. This quality-assurance plan documents the standards, policies, and procedures used by the U.S. Geological Survey in Kansas for activities related to the collection, processing, storage, analysis, and release of continuous water-quality monitoring data. The policies and procedures that are documented in this quality-assurance plan for continuous water-quality monitoring activities complement quality-assurance plans for surface-water and groundwater activities in Kansas.
Berndt, Marian P.; Katz, Brian G.
2000-01-01
In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan was created for use by the Florida District's North Florida Program Office in conducting water-quality activities. This plan documents the standards, policies, and procedures used by the North Florida Program Office for activities related to the collection, processing, storage, analysis, and publication of water-quality data.
Adam N. Johnson; David R. Spildie
2014-01-01
Clean water is essential for ecosystem processes and for the maintenance of human populations. However, fresh water accounts for less than three percent of the worldâs total water volume. Numerous anthropogenic and natural processes impact the quality and quantity of the available resource. The value of high-quality water will likely increase as threats to water...
2012-01-09
utilize LID techniques to enable greater on-site infiltration of storm water to improve storm water quality and restore natural water quality conditions...systems and conveyed through above- and below-ground piping to concrete roadside ditches. Stonn Water Quality Storm water quality monitoring has been...process of being awarded and implemented. The results of all referenced storm water quality and septic inspection reports is available upon request to
Chemical quality of public water supplies of the United States and Puerto Rico, 1962
Durfor, Charles N.; Becker, Edith
1964-01-01
Municipal water systems in the United States and Puerto Rico supply water for many commercial and industrial uses as well as for domestic wells. It is generally known that our water resources are unequally distributed throughout the country, but it is not quite so well understood that the quality of our water resources is also variable. This hydrologic investigations atlas shows, State by State, some of the chemical quality aspects of our public water supplies. This information can be used to evaluate the suitability of the public supplies for many uses – among them, manufacturing processes, food processing, cooling water, and domestic use.
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Cuffney, T.F.; Gurtz, M.E.; Meador, M.R.
1993-01-01
Benthic invertebrate samples are collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This is a perennial, multidisciplinary program that integrates biological, physical, and chemical indicators of water quality to evaluate status and trends and to develop an understanding of the factors controlling observed water quality. The Program examines water quality in 60 study units (coupled ground- and surface-water systems) that encompass most of the conterminous United States and parts of Alaska and Hawaii. Study-unit teams collect and process qualitative and semi-quantitative invertebrate samples according to standardized procedures. These samples are processed (elutriated and subsampled) in the field to produce as many as four sample components: large-rare, main-body, elutriate, and split. Each sample component is preserved in 10-percent formalin, and two components, large-rare and main-body, are sent to contract laboratories for further processing. The large-rare component is composed of large invertebrates that are removed from the sample matrix during field processing and placed in one or more containers. The main-body sample component consists of the remaining sample materials (sediment, detritus, and invertebrates) and is subsampled in the field to achieve a volume of 750 milliliters or less. The remaining two sample components, elutriate and split, are used for quality-assurance and quality-control purposes. Contract laboratories are used to identify and quantify invertebrates from the large-rare and main-body sample components according to the procedures and guidelines specified within this document. These guidelines allow the use of subsampling techniques to reduce the volume of sample material processed and to facilitate identifications. These processing procedures and techniques may be modified if the modifications provide equal or greater levels of accuracy and precision. The intent of sample processing is to determine the quantity of each taxon present in the semi-quantitative samples or to list the taxa present in qualitative samples. The processing guidelines provide standardized laboratory forms, sample labels, detailed sample processing flow charts, standardized format for electronic data, quality-assurance procedures and checks, sample tracking standards, and target levels for taxonomic determinations. The contract laboratory (1) is responsible for identifications and quantifications, (2) constructs reference collections, (3) provides data in hard copy and electronic forms, (4) follows specified quality-assurance and quality-control procedures, and (5) returns all processed and unprocessed portions of the samples. The U.S. Geological Survey's Quality Management Group maintains a Biological Quality-Assurance Unit, located at the National Water-Quality Laboratory, Arvada, Colorado, to oversee the use of contract laboratories and ensure the quality of data obtained from these laboratories according to the guidelines established in this document. This unit establishes contract specifications, reviews contractor performance (timeliness, accuracy, and consistency), enters data into the National Water Information System-II data base, maintains in-house reference collections, deposits voucher specimens in outside museums, and interacts with taxonomic experts within and outside the U.S. Geological Survey. This unit also modifies the existing sample processing and quality-assurance guidelines, establishes criteria and testing procedures for qualifying potential contract laboratories, identifies qualified taxonomic experts, and establishes voucher collections.
DEVELOPING WATER QUALITY CRITERIA FOR SUSPENDED AND BEDDED SEDIMENTS
The U.S. EPA’s Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) is a nationally-consistent process for developing ambient sediment quality criteria for surface waters. The SABS Framework accommodates natural variation among wa...
40 CFR 125.3 - Technology-based treatment requirements in permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...
40 CFR 125.3 - Technology-based treatment requirements in permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...
40 CFR 125.3 - Technology-based treatment requirements in permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...
40 CFR 125.3 - Technology-based treatment requirements in permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...
Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.
1994-01-01
Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.
Hot spots and hot moments in riparian zones: Potential for improved water quality management
Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen
2010-01-01
Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...
NASA Astrophysics Data System (ADS)
Kołaska, Sylwia; Jeż-Walkowiak, Joanna; Dymaczewski, Zbysław
2018-02-01
The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.
Numerical Simulation of Sediment-Associated Water Quality Processes for a Mississippi Delta Lake
USDA-ARS?s Scientific Manuscript database
Three major sediment-associated processes were presented to describe the effects of sediment on lake water quality processes: the effect of suspended sediment on the light intensity for the growth of phytoplankton (PHYTO), the adsorption–desorption of nutrients by sediment, and the release of nutrie...
40 CFR 240.204 - Water quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...
40 CFR 240.204 - Water quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...
40 CFR 240.204 - Water quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...
40 CFR 240.204 - Water quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...
40 CFR 240.204 - Water quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...
[Study of long-term water quality of stocked drinking water].
Kataoka, Hiromi; Kanaoka, Miki; Yamamura, Sayo; Mine, Takanori; Nishikawa, Jun-ichi; Semma, Masanori
2013-01-01
We examined changes in the quality of drinking water stockpiled under various conditions for emergency use. The results indicated that the change in the quality of the stocked water was influenced mainly by the preservation period and not by the amount of water in the bottle. To maintain water quality, the amount of residual chlorine is less important than using sufficiently sterilized water, bottles and caps in the bottling process. Washing the bottles with a small amount of boiling water was not sufficient to ensure complete inhibition of microbial growth.
2007-03-01
standards. As such, the reservoir is to be maintained suitable for drinking, culinary , and food processing purposes, after conventional treatment; bathing...to the Montana/North Dakota state line. Both B-2 and B-3 waters are to be maintained suitable for drinking, culinary and food processing purposes...QUAL-W2 is a “state-of-the- art ” water quality model that can greatly facilitate addressing reservoir water quality management issues. CE-QUAL-W2 is a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less
Surface-Water Quality-Assurance Plan for the Tallahassee Office, U.S. Geological Survey
Tomlinson, Stewart A.
2006-01-01
This Tallahassee Office Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Tallahassee Office for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all Tallahassee Office personnel involved in surface-water data activities, and changes as the needs and requirements of the Tallahassee Office, Florida Integrated Science Center, and Water Discipline change. Reg-ular updates to this Plan represent an integral part of the quality-assurance process. In the Tallahassee Office, direct oversight and responsibility by the employee(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure high-quality data, analyses, reviews, and reports for cooperating agencies and the public.
The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Croomes, Scott D. (Technical Monitor)
2002-01-01
Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.
The U. S. EPA's Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) provides a consistent process, technical methods, and supporting materials to enable resource managers to develop ambient water quality criteria for one of the m...
A national-scale analysis of the impacts of drought on water quality in UK rivers
NASA Astrophysics Data System (ADS)
Coxon, G.; Howden, N. J. K.; Freer, J. E.; Whitehead, P. G.; Bussi, G.
2015-12-01
Impacts of droughts on water quality qre difficult to quanitify but are essential to manage ecosystems and maintain public water supply. During drought, river water quality is significantly changed by increased residence times, reduced dilution and enhanced biogeochemical processes. But, the impact severity varies between catchments and depends on multiple factors including the sensitivity of the river to drought conditions, anthropogenic influences in the catchment and different delivery patterns of key nutrient, contaminant and mineral sources. A key constraint is data availability for key water quality parameters such that impacts of drought periods on certain determinands can be identified. We use national-scale water quality monitoring data to investigate the impacts of drought periods on water quality in the United Kingdom (UK). The UK Water Quality Sampling Harmonised Monitoring Scheme (HMS) dataset consists of >200 UK sites with weekly to monthly sampling of many water quality variables over the past 40 years. This covers several major UK droughts in 1975-1976, 1983-1984,1989-1992, 1995 and 2003, which cover severity, spatial and temporal extent, and how this affects the temporal impact of the drought on water quality. Several key water quality parameters, including water temperature, nitrate, dissolved organic carbon, orthophosphate, chlorophyll and pesticides, are selected from the database. These were chosen based on their availability for many of the sites, high sampling resolution and importance to the drinking water function and ecological status of the river. The water quality time series were then analysed to investigate whether water quality during droughts deviated significantly from non-drought periods and examined how the results varied spatially, for different drought periods and for different water quality parameters. Our results show that there is no simple conclusion as to the effects of drought on water quality in UK rivers; impacts are diverse both in terms of timing, magnitude and duration. We consider several scenarios in which management interventions may alleviate water quality pressures, and discuss how the many interacting factors need to be better characterised to support detailed mechanistic models to improve our process understanding.
NASA Astrophysics Data System (ADS)
Kim, S.; Seo, D. J.
2017-12-01
When water temperature (TW) increases due to changes in hydrometeorological conditions, the overall ecological conditions change in the aquatic system. The changes can be harmful to human health and potentially fatal to fish habitat. Therefore, it is important to assess the impacts of thermal disturbances on in-stream processes of water quality variables and be able to predict effectiveness of possible actions that may be taken for water quality protection. For skillful prediction of in-stream water quality processes, it is necessary for the watershed water quality models to be able to reflect such changes. Most of the currently available models, however, assume static parameters for the biophysiochemical processes and hence are not able to capture nonstationaries seen in water quality observations. In this work, we assess the performance of the Hydrological Simulation Program-Fortran (HSPF) in predicting algal dynamics following TW increase. The study area is located in the Republic of Korea where waterway change due to weir construction and drought concurrently occurred around 2012. In this work we use data assimilation (DA) techniques to update model parameters as well as the initial condition of selected state variables for in-stream processes relevant to algal growth. For assessment of model performance and characterization of temporal variability, various goodness-of-fit measures and wavelet analysis are used.
Water-Quality Assessment of the High Plains Aquifer, 1999-2004
McMahon, Peter B.; Dennehy, Kevin F.; Bruce, Breton W.; Gurdak, Jason J.; Qi, Sharon L.
2007-01-01
Water quality of the High Plains aquifer was assessed for the period 1999-2004 as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This effort represents the first systematic regional assessment of water quality in this nationally important aquifer. A stratified, nested group of studies was designed to assess linkages between the quality of water recharging the aquifer, the effect of transport through the hydrologic system on water quality, and the quality of the resource used for human consumption and agricultural applications. The stratified, nested design facilitated upscaling of monitoring results to unmonitored areas of the aquifer as well as upscaling of process understanding from local to regional scales.
Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems
NASA Astrophysics Data System (ADS)
Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard
2017-12-01
Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.
Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center
Mastin, Mark C.
2016-02-19
This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.
Literature relevant to remote sensing of water quality
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Marcell, R. F.
1983-01-01
References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.
Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry.
Ako, Andrew Ako; Shimada, Jun; Hosono, Takahiro; Kagabu, Makoto; Ayuk, Akoachere Richard; Nkeng, George Elambo; Eyong, Gloria Eneke Takem; Fouepe Takounjou, Alain L
2012-10-01
Groundwater is the only reliable water resource for drinking, domestic, and agricultural purposes for the people living in the Mount Cameroon area. Hydrogeochemical and R-mode factor analysis were used to identify hydrogeochemical processes controlling spring water quality and assess its usability for the above uses. Main water types in the study area are Ca-Mg-HCO(3) and Na-HCO(3). This study reveals that three processes are controlling the spring water quality. CO(2)-driven silicate weathering and reverse cation exchange are the most important processes affecting the hydrochemistry of the spring waters. While tropical oceanic monsoon chloride-rich/sulfate-rich rainwater seems to affect spring water chemistry at low-altitude areas, strong correlations exist between major ions, dissolved silica and the altitude of springs. In general, the spring waters are suitable for drinking and domestic uses. Total hardness (TH) values indicate a general softness of the waters, which is linked to the development of cardiovascular diseases. Based on Na %, residual sodium carbonate, sodium adsorption ratio, and the USSL classification, the spring waters are considered suitable for irrigation. Though there is wide spread use of chemical fertilizers and intense urban settlements at the lower flanks of the volcano, anthropogenic activities for now seem to have little impact on the spring water quality.
Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.
Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G
2010-01-01
To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.
Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei
2018-07-15
As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sorenson, S.K.; Porter, S.D.; Akers, K.B.; Harris, M.A.; Kalkhoff, S.J.; Lee, K.E.; Roberts, L.; Terrio, P.J.
1999-01-01
Water-chemistry, biological, and habitat data were collected from 70 sites on Midwestern streams during August 1997 as part of an integrated, regional water-quality assessment by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. The study area includes the Corn Belt region of southern Minnesota, eastern Iowa, and west-central Illinois, one of the most intensive and productive agricultural regions of the world. The focus of the study was to evaluate the condition of woodedriparian zones and the influence of basin soildrainage characteristics on water quality and biological-community responses. This report includes a description of the study design and site-characterization process, sample-collection and processing methods, laboratory methods, quality-assurance procedures, and summaries of data on nutrients, herbicides and metabolites, stream productivity and respiration, biological communities, habitat conditions, and agriculturalchemical and land-use information.
A Hybrid Interval-Robust Optimization Model for Water Quality Management.
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-05-01
In water quality management problems, uncertainties may exist in many system components and pollution-related processes ( i.e. , random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval-robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements.
Monitoring surface-water quality in Arizona: the fixed-station network
Tadayon, Saeid
2000-01-01
Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).
Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)
NASA Astrophysics Data System (ADS)
Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad
2017-03-01
The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.
40 CFR 131.12 - Antidegradation policy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... minimum, be consistent with the following: (1) Existing instream water uses and the level of water quality... waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in... continuing planning process, that allowing lower water quality is necessary to accommodate important economic...
Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu
2015-05-01
Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.
Comparative evaluation of urban storm water quality models
NASA Astrophysics Data System (ADS)
Vaze, J.; Chiew, Francis H. S.
2003-10-01
The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.
Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.
2010-01-01
As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L
NASA Astrophysics Data System (ADS)
Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.
2015-12-01
Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to develop coupled salt loading and GIS-based hydrological modelling tool that will be able to simulate the salt loadings under various user defined scenarios in the regions undergoing CBM development. Therefore, the findings from this study will be used to formulate the predominant processes responsible for solute loading.
Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.
1997-01-01
The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.
40 CFR 130.5 - Continuing planning process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... QUALITY PLANNING AND MANAGEMENT § 130.5 Continuing planning process. (a) General. Each State shall... the Act. Each State is responsible for managing its water quality program to implement the processes... quality standards in effect under authority of section 303 of the Act. (2) The process for incorporating...
40 CFR 130.5 - Continuing planning process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... QUALITY PLANNING AND MANAGEMENT § 130.5 Continuing planning process. (a) General. Each State shall... the Act. Each State is responsible for managing its water quality program to implement the processes... quality standards in effect under authority of section 303 of the Act. (2) The process for incorporating...
40 CFR 130.5 - Continuing planning process.
Code of Federal Regulations, 2014 CFR
2014-07-01
... QUALITY PLANNING AND MANAGEMENT § 130.5 Continuing planning process. (a) General. Each State shall... the Act. Each State is responsible for managing its water quality program to implement the processes... quality standards in effect under authority of section 303 of the Act. (2) The process for incorporating...
Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota
NASA Astrophysics Data System (ADS)
Woznicki, S. A.; Wickham, J.
2017-12-01
Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.
Water quantity and quality at the urban-rural interface
Ge Sun; B. Graeme Lockaby
2012-01-01
Population growth and urban development dramatically alter natural watershed ecosystem structure and functions and stress water resources. We review studies on the impacts of urbanization on hydrologic and biogeochemical processes underlying stream water quantity and water quality issues, as well as water supply challenges in an urban environment. We conclude that...
Spatial and Temporal Water Quality Patterns in Open-Water Lake Michigan from the 2015 CSMI
Water quality patterns in the Laurentian Great Lakes broadly reflect climate, surficial geography, and landuse but are also shaped by limnological and biological processes. Open-water sampling conducted as part of the 2015 Lake Michigan interagency coordinated science and monito...
EPA Region 7 and Four States Water Quality Standards Review Process Kaizen Event Case Study
In June, 2007, participants from EPA headquarters, EPA Region 7, and the four States in EPA Region 7 (IA, KS, MO, and NE) conducted a Lean business kaizen event on the EPA–State process for developing and revising water quality standards (WQS).
Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality
USDA-ARS?s Scientific Manuscript database
Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...
Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology
Smith, Kirk P.; Granato, Gregory E.
1998-01-01
Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.
,
2003-01-01
The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.
Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.
2017-01-01
Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.
Physical/chemical closed-loop water-recycling
NASA Technical Reports Server (NTRS)
Herrmann, Cal C.; Wydeven, Theodore
1991-01-01
Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.
Brooks, Emma; Freeman, Christopher; Gough, Rachel; Holliman, Peter J
2015-12-15
Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced. Copyright © 2015. Published by Elsevier B.V.
Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario
2015-11-01
Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min-1h) over selected time scales. In addition, the stable isotopes of water (δD and δ(18)O-H2O) as well as those of nitrate (δ(15)N-NO3(-) and δ(18)O-NO3(-)) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes--mainly photosynthesis and respiration--were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal changes. High frequency daily monitoring of key water quality parameters over different seasons is shown to be essential in evaluating river restoration success. Copyright © 2015 Elsevier B.V. All rights reserved.
Water quality and resource management in the dairy industry.
Boguniewicz-Zablocka, Joanna; Klosok-Bazan, Iwona; Naddeo, Vincenzo
2017-11-03
Food industry is one of the most important and fastest growing sectors of economy in Poland. This sector is also characterized by high demand for the resources, particularly for water. Polish food industrial plants consumed 793 hm 3 of water in 2014. Dairy branch had a combined 35% share of the above consumption. As shown by the data obtained from the Polish Central Statistical Office, the majority of dairy plants use its own source of water, so this branch is also important water producer in Poland. Water used for dairy industry should meet the requirements of at least drinking water quality, so the factories need to treat the water. This paper analyses the correlations between selected technical process, equipment profiles and water quality, and consumption in two types of dairy factories (DF). The first one DF-1 processes approx. 50,000 L of milk, and the second, DF-2 processes approx. 330,000 L of milk per day. The water taken from the wells needs to be pre-treated because of iron and manganese concentration and due to specific requirements in various industrial processes. As a result of this work, we have managed to propose technological solutions in the context of water consumption rationalization. The proposed solutions aim at improving water and wastewater management by reducing the amount of consumed water by industry.
Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor
NASA Astrophysics Data System (ADS)
Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.
2016-07-01
The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.
NASA Astrophysics Data System (ADS)
Kim, Chan Moon; Parnichkun, Manukid
2017-11-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system ( k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
The American-Soviet Symposium on Use of Mathematical Models to Optimize Water Quality Management examines methodological questions related to simulation and optimization modeling of processes that determine water quality of river basins. Discussants describe the general state of ...
U.S. Geological Survey quality-assurance plan for surface-water activities in Kansas, 2015
Painter, Colin C.; Loving, Brian L.
2015-01-01
This Surface Water Quality-Assurance Plan documents the standards, policies, and procedures used by the Kansas Water Science Center (KSWSC) of the U.S. Geological Survey (USGS) for activities related to the collection, processing, storage, analysis, and publication of surface-water data.
Sadiq, Rehan; Rodriguez, Manuel J
2005-04-01
Interpreting water quality data routinely generated for control and monitoring purposes in water distribution systems is a complicated task for utility managers. In fact, data for diverse water quality indicators (physico-chemical and microbiological) are generated at different times and at different locations in the distribution system. To simplify and improve the understanding and the interpretation of water quality, methodologies for aggregation and fusion of data must be developed. In this paper, the Dempster-Shafer theory also called theory of evidence is introduced as a potential methodology for interpreting water quality data. The conceptual basis of this methodology and the process for its implementation are presented by two applications. The first application deals with the interpretation of spatial water quality data fusion, while the second application deals with the development of water quality index based on key monitored indicators. Based on the obtained results, the authors discuss the potential contribution of theory of evidence as a decision-making tool for water quality management.
Granato, G.E.; Smith, K.P.
1999-01-01
Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.
Impact of RO-desalted water on distribution water qualities.
Taylor, J; Dietz, J; Randall, A; Hong, S
2005-01-01
A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.
Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin
2017-04-01
To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.
A Hybrid Interval–Robust Optimization Model for Water Quality Management
Xu, Jieyu; Li, Yongping; Huang, Guohe
2013-01-01
Abstract In water quality management problems, uncertainties may exist in many system components and pollution-related processes (i.e., random nature of hydrodynamic conditions, variability in physicochemical processes, dynamic interactions between pollutant loading and receiving water bodies, and indeterminacy of available water and treated wastewater). These complexities lead to difficulties in formulating and solving the resulting nonlinear optimization problems. In this study, a hybrid interval–robust optimization (HIRO) method was developed through coupling stochastic robust optimization and interval linear programming. HIRO can effectively reflect the complex system features under uncertainty, where implications of water quality/quantity restrictions for achieving regional economic development objectives are studied. By delimiting the uncertain decision space through dimensional enlargement of the original chemical oxygen demand (COD) discharge constraints, HIRO enhances the robustness of the optimization processes and resulting solutions. This method was applied to planning of industry development in association with river-water pollution concern in New Binhai District of Tianjin, China. Results demonstrated that the proposed optimization model can effectively communicate uncertainties into the optimization process and generate a spectrum of potential inexact solutions supporting local decision makers in managing benefit-effective water quality management schemes. HIRO is helpful for analysis of policy scenarios related to different levels of economic penalties, while also providing insight into the tradeoff between system benefits and environmental requirements. PMID:23922495
ERIC Educational Resources Information Center
Glazer, Richard B.; And Others
This learner's guide is designed to meet the training needs for technicians involved in monitoring activities related to the Federal Water Pollution Act and the Safe Drinking Water Act. In addition it will assist technicians in learning how to perform process control laboratory procedures for drinking water and wastewater treatment plant…
de la Mare, William; Ellis, Nick; Pascual, Ricardo; Tickell, Sharon
2012-04-01
Simulation models have been widely adopted in fisheries for management strategy evaluation (MSE). However, in catchment management of water quality, MSE is hampered by the complexity of both decision space and the hydrological process models. Empirical models based on monitoring data provide a feasible alternative to process models; they run much faster and, by conditioning on data, they can simulate realistic responses to management actions. Using 10 years of water quality indicators from Queensland, Australia, we built an empirical model suitable for rapid MSE that reproduces the water quality variables' mean and covariance structure, adjusts the expected indicators through local management effects, and propagates effects downstream by capturing inter-site regression relationships. Empirical models enable managers to search the space of possible strategies using rapid assessment. They provide not only realistic responses in water quality indicators but also variability in those indicators, allowing managers to assess strategies in an uncertain world. Copyright © 2012 Elsevier Ltd. All rights reserved.
A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado
Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.
2007-01-01
Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.
Direction of the Rational Use of Water at the Facilities for Growing Poultry
NASA Astrophysics Data System (ADS)
Potseluev, A. A.; Nazarov, I. V.; Porotkova, A. K.; Volovikova, N. V.
2018-01-01
The article notes the effect of water use in the technological process of automatic drinking agricultural poultry on the quality and the quantity of outputs. At the same time, the requirements to the quality of the used water, the regimes of its consumption by the poultry and the role of mechanization of the process of automatic drinking in the rational use of the water resource, the processing and the reuse of contaminated wastes are disclosed. Within the framework of this concept, we propose constructively technological solutions of systems and means of automatic drinking agricultural poultry, providing the rational use of water as one of the important products of vital activity of agricultural poultry.
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2013 CFR
2013-07-01
... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2011 CFR
2011-07-01
... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2012 CFR
2012-07-01
... lower water quality is necessary to accommodate important economic or social development in the area in... concern are subject to best technology in process and treatment requirements. Lake Superior Basin... to the Lake Superior Basin shall identify the best technology in process and treatment to eliminate...
An Excel Workbook for Identifying Redox Processes in Ground Water
Jurgens, Bryant C.; McMahon, Peter B.; Chapelle, Francis H.; Eberts, Sandra M.
2009-01-01
The reduction/oxidation (redox) condition of ground water affects the concentration, transport, and fate of many anthropogenic and natural contaminants. The redox state of a ground-water sample is defined by the dominant type of reduction/oxidation reaction, or redox process, occurring in the sample, as inferred from water-quality data. However, because of the difficulty in defining and applying a systematic redox framework to samples from diverse hydrogeologic settings, many regional water-quality investigations do not attempt to determine the predominant redox process in ground water. Recently, McMahon and Chapelle (2008) devised a redox framework that was applied to a large number of samples from 15 principal aquifer systems in the United States to examine the effect of redox processes on water quality. This framework was expanded by Chapelle and others (in press) to use measured sulfide data to differentiate between iron(III)- and sulfate-reducing conditions. These investigations showed that a systematic approach to characterize redox conditions in ground water could be applied to datasets from diverse hydrogeologic settings using water-quality data routinely collected in regional water-quality investigations. This report describes the Microsoft Excel workbook, RedoxAssignment_McMahon&Chapelle.xls, that assigns the predominant redox process to samples using the framework created by McMahon and Chapelle (2008) and expanded by Chapelle and others (in press). Assignment of redox conditions is based on concentrations of dissolved oxygen (O2), nitrate (NO3-), manganese (Mn2+), iron (Fe2+), sulfate (SO42-), and sulfide (sum of dihydrogen sulfide [aqueous H2S], hydrogen sulfide [HS-], and sulfide [S2-]). The logical arguments for assigning the predominant redox process to each sample are performed by a program written in Microsoft Visual Basic for Applications (VBA). The program is called from buttons on the main worksheet. The number of samples that can be analyzed is only limited by the number of rows in Excel (65,536 for Excel 2003 and XP; and 1,048,576 for Excel 2007), and is therefore appropriate for large datasets.
This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...
Harvested rainwater quality before and after treatment in six ...
Rainwater harvesting (RWH) is an alternative method of providing water for indoor domestic use, but the water quality after treatment and distribution at individual residences is not well documented. In this study, water quality parameters were measured at the cistern and indoor cold-water taps of six residential RWH systems that use various treatment processes. Potential human pathogens (Mycobacterium avium, Mycobacterium intracellulare, Aspergillus flavus, Aspergillus fumigatus, and Aspergillus niger) were found frequently in cisterns and in treated rainwater delivered at the tap; Legionella pneumophila was not detected as frequently, but it persisted in a system after its first detection. The observed decreases in bacterial concentrations from the cistern to the tap after filtration/ ultraviolet (UV) treatment and distribution were less than expected; this suggests deficiencies in the effectiveness of the filtration/UV processes employed and/or degradation in water quality in the distribution system due to the absence of a disinfectant residual. Determination of the disinfection efficiency occuring in home treatment processes. Molecular analysis of rainwater before and after treatment. First study to include the monitoring of opportunistic fungal pathogens.
Wagner, Richard J.; Boulger, Robert W.; Oblinger, Carolyn J.; Smith, Brett A.
2006-01-01
The U.S. Geological Survey uses continuous water-quality monitors to assess the quality of the Nation's surface water. A common monitoring-system configuration for water-quality data collection is the four-parameter monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data. Such systems also can be configured to measure other properties, such as turbidity or fluorescence. Data from sensors can be used in conjunction with chemical analyses of samples to estimate chemical loads. The sensors that are used to measure water-quality field parameters require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. This report provides guidelines for site- and monitor-selection considerations; sensor inspection and calibration methods; field procedures; data evaluation, correction, and computation; and record-review and data-reporting processes, which supersede the guidelines presented previously in U.S. Geological Survey Water-Resources Investigations Report WRIR 00-4252. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.
Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...
Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...
Adjustment of the water treatment process to changes in the water quality has been an area of focus for engineers and managers of water treatment plants. This desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of tot...
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1974-01-01
The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.
Griffin, M.S.; Martin, G.R.; White, K.D.
1994-01-01
This report describes selected data-collection activities and the associated data collected during the Kentucky River Basin pilot study of the U.S. Geological Survey's National Water-Quality Assessment Program. The data are intended to provide a nationally consistent description and improved understanding of current water quality in the basin. The data were collected at seven fixed stations that represent stream cross sections where constituent transport and water-quality trends can be evaluated. The report includes descriptions of (1) the basin; (2) the design of the fixed-station network; (3) the fixed-station sites; (4) the physical and chemical measurements; (5) the methods of sample collection, processing, and analysis; and (6) the quality-assurance and quality-control procedures. Water-quality data collected at the fixed stations during routine periodic sampling and supplemental high-flow sampling from April 1987 to August 1991 are presented.
Foster, Guy M.; Graham, Jennifer L.
2016-04-06
The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes in water-quality conditions through time, characterizing potentially harmful cyanobacterial events, and indicating changes in water-quality conditions that may affect drinking-water treatment processes.
Technology Transfer Opportunities: Automated Ground-Water Monitoring
Smith, Kirk P.; Granato, Gregory E.
1997-01-01
Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.
Towards Sustainable Water Quality In Estuarine Impoundments: The Current State.
NASA Astrophysics Data System (ADS)
Wright, J.; Worrall, F.
Several estuarine impoundment schemes have been built or are proposed in the UK and worldwide. The impounding of estuaries is currently a popular approach to urban regeneration in the UK. By creation of an aesthetically pleasing amenity impound- ment, including the drowning of "unsightly" tidal mud flats, it is hoped that prestige development will be encouraged in the estuarine area. Impounding fundamentally alters the dynamics of estuaries, with consequences in terms of sedimentation patterns and rates, and water quality. The SIMBA Project at- tempts to understand the controls on water quality in impoundments, with a view to- wards long term and sustainable high water quality through good barrage design and management practice. Detailed water quality surveys have been carried out on a total of 79 dates on the Tees, Tawe, Wansbeck and Blyth estuaries. Water quality parameters which have been determined are pH, Eh, dissolved oxygen (DO), biochemical oxygen demand (BOD), conductivity, transparency, suspended solids, alkalinity, temperature, nutri- ents (nitrate+nitrite, ammonium and orthophosphate), and a large range of dissolved metals. Statistical analyses are used to demonstrate the major controls on water qual- ity in impoundments. A distinction is made between total tidal exclusion (freshwater) systems, in which water quality is primarily influenced by external/catchment factors, and partial tidal exclusion systems, in which water quality is processed internally. This internal processing is due to density stratification creating compartments of saline wa- ter in contact with oxygen demanding sediments and isolated from the atmosphere, which leads to conditions of low DO and changes in redox conditions which may lead to release of metals and phosphate from the sediment.
UTILIZATION OF LANDSCAPE INDICATORS TO MODEL WATER QUALITY
Many water-bodies within the United States are contaminated by, non-point source (NFS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollu...
The effect of sea-water and fresh-water soaking on the quality of Eucheuma sp. syrup and pudding
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Eucheuma alvarezii is one of marine commodity with great opportunities to be developed in Indonesia. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study was to observe the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. The results showed that panelist prefered the fresh-water drained products of syrup and pudding. The hedonic scores were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
A random optimization approach for inherent optic properties of nearshore waters
NASA Astrophysics Data System (ADS)
Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng
2016-10-01
Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
Analyzers Provide Water Security in Space and on Earth
NASA Technical Reports Server (NTRS)
2012-01-01
Resourcefulness is a key quality for living in space, and on the International Space Station (ISS), that means making the most of water supplies. In 2008, the installation of the Water Processing Assembly (WPA) onboard the ISS allowed the space station s crew to do just that. The WPA purifies moisture from nearly every possible source - sweat, water vapor, wastewater, and even urine - for drinking and oxygen generation. Capable of producing 35 gallons of potable, recycled water a day, the system has reduced the need for water delivered to the ISS by over 1,000 gallons a year, saving significant payload costs in the process. As with any drinking water, quality is a concern, particularly when that water has been recycled. This is an issue of particular interest in space, where ISS crewmembers would have to deal with any illness far from the nearest medical personnel and facilities. The WPA employs sensors that monitor water quality by measuring its conductivity, and rounding out the system s quality assurance methods is a device developed for NASA by a private industry partner. That company has now made the technology available for ensuring the purity of water for consumption and industrial uses on Earth.
An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets
NASA Astrophysics Data System (ADS)
Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.
2016-02-01
Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Verdesio, J. J.
1981-01-01
The relationship existing between Guanabara Bay water quality ground truth parameters and LANDSAT MSS video data was investigated. The parameters considered were: chorophyll content, water transparency usng the Secchi disk, salinity, and dissolved ammonia. Data from two overflights was used, and methods of processing digital data were compared. Linear and nonlinear regression analyses were utilized, comparing original data with processed data by using the correlation coefficient and the estimation mean error. It was determined that better quality data are obtained by using radiometric correction programs with a physical basis, contrast ratio, and normalization. Incidental locations of floating vegetation, changes in bottom depth, oil slicks, and ships at anchor were made.
New methods to monitor emerging chemicals in the drinking water production chain.
van Wezel, Annemarie; Mons, Margreet; van Delft, Wouter
2010-01-01
New techniques enable a shift in monitoring chemicals that affect water quality from mainly at the end product, tap water, towards monitoring during the whole process along the production chain. This is congruent with the 'HACCP' system (hazard analysis of critical control points) that is fairly well integrated into food production but less well in drinking water production. This shift brings about more information about source quality, the efficiency of treatment and distribution, and understanding of processes within the production chain, and therefore can lead to a more pro-active management of drinking water production. At present, monitoring is focused neither on emerging chemicals, nor on detection of compounds with chronic toxicity. We discuss techniques to be used, detection limits compared to quality criteria, data interpretation and possible interventions in production.
Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel J D
2012-01-01
Monitoring the quality of drinking water from the treatment plant to the consumers tap is critical to ensure compliance with national standards and/or WHO guideline levels. There are a number of processes and factors affecting the water quality during transmission and distribution which are little understood. A significant obstacle for gaining a detailed knowledge of various physical and chemical processes and the effect of the hydraulic conditions on the water quality deterioration within water supply systems is the lack of reliable and low-cost (both capital and O & M) water quality sensors for continuous monitoring. This paper has two objectives. The first one is to present a detailed evaluation of the performance of a novel in-pipe multi-parameter sensor probe for reagent- and membrane-free continuous water quality monitoring in water supply systems. The second objective is to describe the results from experimental research which was conducted to acquire continuous water quality and high-frequency hydraulic data for the quantitative assessment of the water quality changes occurring under steady and unsteady-state flow conditions. The laboratory and field evaluation of the multi-parameter sensor probe showed that the sensors have a rapid dynamic response, average repeatability and unreliable accuracy. The uncertainties in the sensor data present significant challenges for the analysis and interpretation of the acquired data and their use for water quality modelling, decision support and control in operational systems. Notwithstanding these uncertainties, the unique data sets acquired from transmission and distribution systems demonstrated the deleterious effect of unsteady state flow conditions on various water quality parameters. These studies demonstrate: (i) the significant impact of the unsteady-state hydraulic conditions on the disinfectant residual, turbidity and colour caused by the re-suspension of sediments, scouring of biofilms and tubercles from the pipe and increased mixing, and the need for further experimental research to investigate these interactions; (ii) important advances in sensor technologies which provide unique opportunities to study both the dynamic hydraulic conditions and water quality changes in operational systems. The research in these two areas is critical to better understand and manage the water quality deterioration in ageing water transmission and distribution systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Water quality degradation effects on freshwater availability: Impacts to human activities
Peters, N.E.; Meybeck, Michel
2000-01-01
The quality of freshwater at any point on the landscape reflects the combined effects of many processes along water pathways. Human activities on all spatial scales affect both water quality and quantity. Alteration of the landscape and associated vegetation has not only changed the water balance, but typically has altered processes that control water quality. Effects of human activities on a small scale are relevant to an entire drainage basin. Furthermore, local, regional, and global differences in climate and water flow are considerable, causing varying effects of human activities on land and water quality and quantity, depending on location within a watershed, geology, biology, physiographic characteristics, and climate. These natural characteristics also greatly control human activities, which will, in turn, modify (or affect) the natural composition of water. One of the most important issues for effective resource management is recognition of cyclical and cascading effects of human activities on the water quality and quantity along hydrologic pathways. The degradation of water quality in one part of a watershed can have negative effects on users downstream. Everyone lives downstream of the effects of some human activity. An extremely important factor is that substances added to the atmosphere, land, and water generally have relatively long time scales for removal or clean up. The nature of the substance, including its affinity for adhering to soil and its ability to be transformed, affects the mobility and the time scale for removal of the substance. Policy alone will not solve many of the degradation issues, but a combination of policy, education, scientific knowledge, planning, and enforcement of applicable laws can provide mechanisms for slowing the rate of degradation and provide human and environmental protection. Such an integrated approach is needed to effectively manage land and water resources.
The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...
Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...
Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Physical/chemical closed-loop water-recycling for long-duration missions
NASA Technical Reports Server (NTRS)
Herrmann, Cal C.; Wydeven, Ted
1990-01-01
Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.
The river absorption capacity determination as a tool to evaluate state of surface water
NASA Astrophysics Data System (ADS)
Wilk, Paweł; Orlińska-Woźniak, Paulina; Gębala, Joanna
2018-02-01
In order to complete a thorough and systematic assessment of water quality, it is useful to measure the absorption capacity of a river. Absorption capacity is understood as a pollution load introduced into river water that will not cause permanent and irreversible changes in the aquatic ecosystem and will not cause a change in the classification of water quality in the river profile. In order to implement the method, the Macromodel DNS/SWAT basin for the Middle Warta pilot (central Poland) was used to simulate nutrient loads. This enabled detailed analysis of water quality in each water body and the assessment of the size of the absorption capacity parameter, which allows the determination of how much pollution can be added to the river without compromising its quality class. Positive values of the calculated absorption capacity parameter mean that it is assumed that the ecosystem is adjusted in such a way that it can eliminate pollution loads through a number of self-purification processes. Negative values indicate that the load limit has been exceeded, and too much pollution has been introduced into the ecosystem for it to be able to deal with through the processes of self-purification. Absorption capacity thus enables the connection of environmental standards of water quality and water quality management plans in order to meet these standards.
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.
NASA Astrophysics Data System (ADS)
Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.
2016-12-01
The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites, spatial variations in water quality are likely from the agricultural inputs (fertilises) and for the Cluster 2 sites, the differences in hydrological transport is responsible for large spatial variations in water quality. These findings can be applied to water quality assessment along with establish effective water and land management in the future.
The role of headwater streams in downstream water quality
Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. ?? 2007 American Water Resources Association.
Influences of management of Southern forests on water quantity and quality
Ge Sun; Mark Riedel; Rhett Jackson; Randy Kolka; Devendra Amatya; Jim Shepard
2004-01-01
Water is a key output of southern forests and is critical to other processes, functions, and values of forest ecosystems. This chapter synthesizes published literature about the effects of forest management practices on water quantity and water quality across the Southern United States region. We evaluate the influences of forest management at different temporal and...
Quality characteristics and safety of smoke-flavoured water.
Tano-Debrah, Kwaku; Amamoo-Otchere, Joanne; Karikari, A Y; Diako, Charles
2007-06-01
Smoke-flavoured water is produced in Ghana by filling a previously smoked container with potable water and allowing the water to condition with the smoke to attain a characteristic rain water flavour. Owing to the current knowledge on the toxicity, carcinogenicity and other safety issues of some smoke-constituents, the commercial production of the product is becoming a public health concern. This study sought to determine the effects of the smoke-flavouring process on the quality characteristics of smoke-flavoured water to predict the safety of the product. A traditional and a commercial protocol for the production of smoke-flavoured water were simulated in the laboratory and at the site of a company which used to produce the product, respectively. Samples of the flavoured water produced were analyzed for pH, colour, turbidity, conductivity, total hardness, dissolved oxygen content (DO), biochemical oxygen demand (BOD), the polycyclic aromatic hydrocarbon constituents (PAHs), coliform count, and flavour acceptability. Data obtained were evaluated in reference to data on control samples prepared during the investigations. The results obtained suggested that the smoke-flavouring process may not significantly change most of the physico-chemical and microbiological characteristics of the water processed, and thus not affect the drinking quality characteristics of the water. The process however has the potential of adding some organic compounds, which could include polycyclic aromatic hydrocarbons (PAHs), the group that may have the toxicity and carcinogenic effects. The types of PAHs and their concentrations are expected to vary with the process characteristics, but could be insignificantly low to affect the safety of the water. The results suggest a need for some standardization of the process.
Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center
Garn, H.S.
2007-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.
The Role of Headwater Streams in Downstream Water Quality1
Alexander, Richard B; Boyer, Elizabeth W; Smith, Richard A; Schwarz, Gregory E; Moore, Richard B
2007-01-01
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters. PMID:22457565
Adapting water treatment design and operations to the impacts of global climate change
NASA Astrophysics Data System (ADS)
Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.
2011-12-01
It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.
NASA Astrophysics Data System (ADS)
Retnaningdyah, Catur
2017-11-01
The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.
Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang
2018-01-01
This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David
2015-11-15
Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.
SYSTEMATIC PROCESS TO SELECT CHEMICALS FOR NEW AND REVISED AMBIENT WATER QUALITY CRITERIA
The U.S. Environmental Protection Agency (EPA) publishes and periodically updates ambient water quality criteria (AWQC) for the protection of human health and aquatic life through its authority under Section 304(a) of the Clean Water Act. The number of toxic chemicals generated ...
USDA-ARS?s Scientific Manuscript database
This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...
NASA Astrophysics Data System (ADS)
Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Lazogiannis, Konstantinos; Botsou, Fotini; Dassenakis, Manos; Ghionis, George; Alexopoulos, John D.; Poulos, Serafim E.
2018-06-01
River deltas sustain important ecosystems with rich biodiversity and large biomass, as well as human populations via the availability of water and food sources. Anthropogenic activities, such as urbanization, tourism and agriculture, may pose threats to river deltas. The knowledge of the factors controlling the regional water quality regime in these areas is important for planning sustainable use and management of the water resources. Here, hydrochemical methods and multivariate statistical techniques were combined to investigate the shallow aquifer of the Pinios River (Thessaly) deltaic plain with respect to water quality, hydrogeochemical evolution and interactions between groundwater and surface water bodies. Water quality assessment indicated that most of the river and groundwater samples fully comply with the criteria set by the Drinking Water Directive (98/83/EC). The river is recharged mainly from springs of the Tempi valley and the shallow aquifer, and to a lesser degree from precipitation, throughout the year. The hydrogeochemical characteristics indicated a cation (Ca, Mg, and Na) bicarbonate water type, which evolves to calcium-chloride, sodium-bicarbonate and sodium-chloride water type, in the northern part of the delta. Calcite and dolomite dissolution determined the major ion chemistry, but other processes, such as silicate weathering and cation exchange reactions, also contributed. In the northern part of the plain, the interaction with the deeper aquifer enriched the shallow aquifer with Na and Cl ions. Principal Component Analysis showed that five components (PCs) explain 77% of the total variance of water quality parameters; these are: (1) salinity; (2) water-silicate rocks interaction; (3) hardness due to calcite dissolution, and cation exchange processes; (4) nitrogen pollution; and (5) non-N-related artificial fertilizers. This study demonstrated that the variation of water hydrochemistry in the deltaic plain could be attributed to natural and anthropogenic processes. The interpretation of the PCA results dictated the parameters used for the development of a modified Water Quality Index (WQI), to provide a more comprehensive spatial representation of the water quality of the river delta.
USDA-ARS?s Scientific Manuscript database
In poultry processing plants, chicken carcasses were processed through a succession of steps including their immersion in scalder and chiller water tanks. Water tank microbiota may impact the microbiological quality of carcasses and the occurrence of pathogens or spoilage bacteria may lead to their ...
The Role of Reliability, Vulnerability and Resilience in the Management of Water Quality Systems
NASA Astrophysics Data System (ADS)
Lence, B. J.; Maier, H. R.
2001-05-01
The risk based performance indicators reliability, vulnerability and resilience provide measures of the frequency, magnitude and duration of the failure of water resources systems, respectively. They have been applied primarily to water supply problems, including the assessment of the performance of reservoirs and water distribution systems. Applications to water quality case studies have been limited, although the need to consider the length and magnitude of violations of a particular water quality standard has been recognized for some time. In this research, the role of reliability, vulnerability and resilience in water quality management applications is investigated by examining their significance as performance measures for water quality systems and assessing their potential for assisting in decision making processes. The importance of each performance indicator is discussed and a framework for classifying such systems, based on the relative significance of each of these indicators, is introduced and illustrated qualitatively with various case studies. Quantitative examples drawn from both lake and river water quality modeling exercises are then provided.
Safe drinking water in regional NSW, Australia.
Byleveld, Paul M; Leask, Sandy D; Jarvis, Leslie A; Wall, Katrina J; Henderson, Wendy N; Tickell, Joshua E
2016-04-15
The New South Wales (NSW) Public Health Act 2010 requires water suppliers to implement a drinking water quality assurance program that addresses the 'Framework for management of drinking water quality' in the Australian drinking water guidelines. NSW Health has recognised the importance of a staged implementation of this requirement and the need to support regional water utilities. To date, NSW Health has assisted 74 regional utilities to develop and implement their management systems. The Public Health Act 2010 has increased awareness of drinking water risk management, and offers a systematic process to identify and control risks. This has benefited large utilities, smaller suppliers, and remote and Aboriginal communities. Work is continuing to ensure implementation of the process by private suppliers and water carters.
Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.
2009-01-01
Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.
Real-time control of combined surface water quantity and quality: polder flushing.
Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S
2010-01-01
In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.
Drinking Water Quality in Hospitals and Other Buildings ...
Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.
Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration...
NASA Astrophysics Data System (ADS)
Rachmatika, Ratih; Adriyanto, Feri
2017-09-01
Current sensors to monitor water quality are made of manual sensors, which reported to have good performance. However, the major problems, which manual process to get the data. In addition, the data interpretation takes a long time. Due to these problems, a new approach needs to be introduced into the process to prevent a long data acquisition. Therefore, the SIAGA application was proposed. The application of SIAGA is divided into two main applications which are SIBA (Siaga Banjir) and SIAB (Siaga Air Bersih). We using WiFi system which is located at points along the flow of river.. The result can be monitored in the online application based on smartphone which is divided into the river water quality, potential sources of pollution and flood area. Each WiFi point is completed with the instruments which are divided into the sensors that can do the identification of parameters to determine the water quality such as temperature, pH, water level and turbidity. This instrument completed using GPS (Global Positioning System), Full Map menu. The instrument was succesfully monitoredthe flood distribution and water quality in Bengawan Solo river.
NASA Astrophysics Data System (ADS)
Ensink, J.; Scott, C. A.; Cairncross, S.
2006-05-01
Wastewater discharge from expanding urban centers deteriorates the quality of receiving waters, a trend that has management and investment implications for cities around the world. This paper presents the results of a 14-month water quality evaluation over a 40-km longitudinal profile downstream of the city of Hyderabad, India (population 7 million) on the Musi River, a tributary to the Krishna River. Upstream to downstream improvements in Musi water quality for microbial constituents (nematode egg, faecal coliform), dissolved oxygen, and nitrate are attributed to natural attenuation processes (dilution, die-off, sedimentation and biological processes) coupled with the effects of in-stream hydraulic infrastructure (weirs and reservoirs). Conversely, upstream to downstream increases in total dissolved solids concentrations are caused by off- stream infrastructure and agricultural water use resulting in crop evapotranspiration and increased solute concentration in the return flow of irrigation diverted upstream in the wastewater system. Future water quality management challenges resulting from rampant urban growth, particularly in developing countries, are discussed.
Wagner, Richard J.; Mattraw, Harold C.; Ritz, George F.; Smith, Brett A.
2000-01-01
The U.S. Geological Survey uses continuous water-quality monitors to assess variations in the quality of the Nation's surface water. A common system configuration for data collection is the four-parameter water-quality monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data, although systems can be configured to measure other properties such as turbidity or chlorophyll. The sensors that are used to measure these water properties require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. Data from sensors can be used in conjunction with collected samples and chemical analyses to estimate chemical loads. This report provides guidelines for site-selection considerations, sensor test methods, field procedures, error correction, data computation, and review and publication processes. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.
[Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].
Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei
2013-01-01
Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.
Kozar, Mark D.; Kahle, Sue C.
2013-01-01
This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data collected as part of long-term water-level monitoring networks.
Assessment and speciation of chlorine demand in fresh-cut produce wash water
USDA-ARS?s Scientific Manuscript database
Production of high quality, fresh-cut produce is a key driver for the produce industry. A critical area of concern is the chlorinated wash water used during post-harvest processing in large industrial processing facilities. Predominantly using a batch process, wash water is recycled over 8hr shift...
Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.
Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando
2018-01-01
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.
Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-01-01
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results. PMID:25689998
Dynamic assessment of water quality based on a variable fuzzy pattern recognition model.
Xu, Shiguo; Wang, Tianxiang; Hu, Suduan
2015-02-16
Water quality assessment is an important foundation of water resource protection and is affected by many indicators. The dynamic and fuzzy changes of water quality lead to problems for proper assessment. This paper explores a method which is in accordance with the water quality changes. The proposed method is based on the variable fuzzy pattern recognition (VFPR) model and combines the analytic hierarchy process (AHP) model with the entropy weight (EW) method. The proposed method was applied to dynamically assess the water quality of Biliuhe Reservoir (Dailan, China). The results show that the water quality level is between levels 2 and 3 and worse in August or September, caused by the increasing water temperature and rainfall. Weights and methods are compared and random errors of the values of indicators are analyzed. It is concluded that the proposed method has advantages of dynamism, fuzzification and stability by considering the interval influence of multiple indicators and using the average level characteristic values of four models as results.
A Water Quality Study in Rutherford County, Tennessee: Student Group Project
ERIC Educational Resources Information Center
James, Rebecca R.; Ogden, Albert E.; DiVincenzo, John P.
2006-01-01
Undergraduate research is the most rewarding way for science students to become exposed to the process of scientific investigation. Water quality studies offer the unique advantages of being easily designed by the students and analytically approachable. This two-part, 14-month study involved several students in the delineation of ground water flow…
General introduction for the “National Field Manual for the Collection of Water-Quality Data”
,
2018-02-28
BackgroundAs part of its mission, the U.S. Geological Survey (USGS) collects data to assess the quality of our Nation’s water resources. A high degree of reliability and standardization of these data are paramount to fulfilling this mission. Documentation of nationally accepted methods used by USGS personnel serves to maintain consistency and technical quality in data-collection activities. “The National Field Manual for the Collection of Water-Quality Data” (NFM) provides documented guidelines and protocols for USGS field personnel who collect water-quality data. The NFM provides detailed, comprehensive, and citable procedures for monitoring the quality of surface water and groundwater. Topics in the NFM include (1) methods and protocols for sampling water resources, (2) methods for processing samples for analysis of water quality, (3) methods for measuring field parameters, and (4) specialized procedures, such as sampling water for low levels of mercury and organic wastewater chemicals, measuring biological indicators, and sampling bottom sediment for chemistry. Personnel who collect water-quality data for national USGS programs and projects, including projects supported by USGS cooperative programs, are mandated to use protocols provided in the NFM per USGS Office of Water Quality Technical Memorandum 2002.13. Formal training, for example, as provided in the USGS class, “Field Water-Quality Methods for Groundwater and Surface Water,” and field apprenticeships supplement the guidance provided in the NFM and ensure that the data collected are high quality, accurate, and scientifically defensible.
After reviewing existing water quality criteria and consulting stakeholders, EPA developed a process that states, tribes, and regions can use to develop scientifically defensible SABS criteria. The process is flexible, can be adapted to utilize existing data sets, and can be gea...
NASA Astrophysics Data System (ADS)
Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.
2017-04-01
An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple objective functions. The relationships between indicators of hydrological catchment similarity, physical catchment characteristics and nitrate and phosphorus concentrations in rivers are then investigated using multivariate statistics. This understanding of the relationship between catchment characteristics, hydrological processes and water quality will allow us to implement more efficient regulatory water quality monitoring strategies, to improve existing water quality models and to model mitigation and adaptation scenarios to global change in data-sparse catchments.
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
Shreve, Elizabeth A.; Downs, Aimee C.
2005-01-01
This report describes laboratory procedures used by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory for the processing and analysis of fluvial-sediment samples for concentration of sand and finer material. The report details the processing of a sediment sample through the laboratory from receiving the sediment sample, through the analytical process, to compiling results of the requested analysis. Procedures for preserving sample integrity, calibrating and maintaining of laboratory and field instruments and equipment, analyzing samples, internal quality assurance and quality control, and validity of the sediment-analysis results also are described. The report includes a list of references cited and a glossary of sediment and quality-assurance terms.
[Review on HSPF model for simulation of hydrology and water quality processes].
Li, Zhao-fu; Liu, Hong-Yu; Li, Yan
2012-07-01
Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.
Early warning risk assessment for drinking water production: decoding subtle evidence
NASA Astrophysics Data System (ADS)
Merz, Christoph; Lischeid, Gunnar; Böttcher, Steven
2016-04-01
Due to increasing demands for high quality water for drinking water supply all over the world there is acute need for methods to detect possible threats to groundwater resources early. Especially drinking water production in complex geologic settings has a particularly high risk for unexpected degradation of the groundwater quality due to the unknown interplay between anthropogenically induced hydraulic changes and geochemical processes. This study investigates the possible benefit of the Principal Component Analysis (PCA) for groundwater and drinking water management using common sets of physicochemical monitoring data. The approach was used to identify the prevailing processes driving groundwater quality shifts and related threats, which might be masked in anthropogenically impacted aquifer systems. The approach was applied to a data set from a waterworks located in the state of Brandenburg, NE Germany, which has been operating since nearly four decades. The region faces confronting and increasing demands due to rising peri-urban settlements. The PCA subdivided the data set according to different strengths of effects induced by differing geochemical processes at different sites in the capture zone of the waterworks and varying in time. Thus a spatial assessment of these processes could be performed as well as a temporal assessment of long-term groundwater quality shifts in the extracted water. The analysis revealed that over the period of 16 years of water withdrawal the geochemistry of the extracted groundwater had become increasingly more dissimilar compared to the characteristics found at the majority of observation wells. This component could be identified as highly mineralized CaSO4 dominated water from unexamined deeper zones of the aquifer system. Due to the complex geochemical and hydraulic interactions in the system, this process was masked and was not evident in the data set without validation by the applied statistical analysis. The findings give a clear indication of a potential threat to the groundwater resources in this region with danger for drinking water contamination in a medium-term period.
Water quality at a biosolids-application area near Deer Trail, Colorado, 1993-1999
Yager, Tracy J.B.
2014-01-01
The Metro Wastewater Reclamation District (Metro District) in Denver, Colo., applied biosolids resulting from municipal sewage treatment to farmland in eastern Colorado beginning in December 1993. In mid-1993, the U.S. Geological Survey in cooperation with the Metro District began monitoring water quality at the biosolids-application area about 10 miles east of Deer Trail, Colo., to evaluate baseline water quality and the combined effects of natural processes, land uses, and biosolids applications on water quality of the biosolids application area. Water quality was characterized by baseline and post-biosolids-application sampling for selected inorganic and bacteriological constituents during 1993 through 1998, with some additional specialized sampling in 1999. The study included limited sampling of surface water and the unsaturated zone, but primarily focused on groundwater. See report for complete abstract.
NASA Astrophysics Data System (ADS)
Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus
2010-05-01
Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.
The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...
Shelton, Larry R.
1994-01-01
The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.
NASA Astrophysics Data System (ADS)
Sammartano, G.; Spanò, A.
2017-09-01
Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.
García-Ávila, Fernando; Ramos-Fernández, Lía; Pauta, Damián; Quezada, Diego
2018-06-01
This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values of LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.
Garn, H.S.
2002-01-01
This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin District of the U.S. Geological Survey, Water Resources Division, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of District personnel in following these policies and procedures including those related to safety and training are presented.
Investigation of priorities in water quality management based on correlations and variations.
Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal
2013-04-15
The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Early warning of changing drinking water quality by trend analysis.
Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko
2016-06-01
Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.
Reduce oil and grease content in wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capps, R.W.; Matelli, G.N.; Bradford, M.L.
Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less
Long Term Trend Analysis and Assessment of Water Quality in the Penchala River, Malaysia
NASA Astrophysics Data System (ADS)
Chow, M. F.; Haris, H. B.; Mohd Sidek, L. B.
2014-12-01
Rapid urban expansion produces negative impacts on the natural environment, especially river water quality. Studies assessing long term changes of water quality have been recognized as a key tool for understanding ongoing processes in watersheds and for providing an essential background for evaluation of rapid changes within industrialized and populated urban areas. Unfortunately, only limited studies are available for developing countries such as Malaysia. Thus, a long term study was conducted to evaluate water quality trends at Pencala river basin that has undergone extensive land use changes related to industrial, agricultural and urban activities. Fifteen physical and chemical variables were analysed in river water samples collected every month over a period of 13 years, between 1997 and 2009. The trend study was performed using the Mann-Kendall Seasonal test and the Sen's Slope estimator. Results revealed that most water quality parameters showed a downward trend for yearly average concentration. The water quality index (WQI) for Pencala River was improved from Class V to Class IV, according to National Water Quality Standards for Malaysia. BOD, COD, NH3-N and SS show trends toward decreasing concentrations over time. The improvements seen in water quality appear to be the result of improved wastewater treatment and other water quality improvement efforts achieved through government initiative. Continued long-term and high frequency monitoring is necessary to establish plans and policies for effective water resources management.
NASA Astrophysics Data System (ADS)
Kudo, K.; Hasegawa, H.; Nakatsugawa, M.
2017-12-01
This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will conduct similar simulations for a larger area that includes the mouth of Abashiri River. The accuracy of flow field simulation for Lake Abashiri will increase when calculations incorporate the effects of climate change on tide level, water temperature and salinity at the river mouth.
Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process.
Wei, Xiao Lu; Liu, Shuang Ping; Yu, Jian Shen; Yu, Yong Jian; Zhu, Sheng Hu; Zhou, Zhi Lei; Hu, Jian; Mao, Jian
2017-04-01
As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Riparian buffer restorations are used as management tools to produce favorable water quality impacts, moreover the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...
How Do Our Actions Affect Water Quantity and Quality?
ERIC Educational Resources Information Center
Gordon, Jessica
2008-01-01
Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…
Correlations of water quality parameters with mutagenicity of chlorinated drinking water samples.
Schenck, Kathleen M; Sivaganesan, Mano; Rice, Glenn E
2009-01-01
Adverse health effects that may result from chronic exposure to mixtures of disinfection by-products (DBPs) present in drinking waters may be linked to both the types and concentrations of DBPs present. Depending on the characteristics of the source water and treatment processes used, both types and concentrations of DBPs found in drinking waters vary substantially. The composition of a drinking-water mixture also may change during distribution. This study evaluated the relationships between mutagenicity, using the Ames assay, and water quality parameters. The study included information on treatment, mutagenicity data, and water quality data for source waters, finished waters, and distribution samples collected from five full-scale drinking water treatment plants, which used chlorine exclusively for disinfection. Four of the plants used surface water sources and the fifth plant used groundwater. Correlations between mutagenicity and water quality parameters are presented. The highest correlation was observed between mutagenicity and the total organic halide concentrations in the treated samples.
Management of the water balance and quality in mining areas
NASA Astrophysics Data System (ADS)
Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani
2015-04-01
Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to systematically integrate all water balance components (groundwater, surface water, infiltration, precipitation, mine water facilities and operations etc.) into overall dynamic mine site considerations. After coupling the surface and ground water models (e.g. Feflow and WSFS) with each other, they are compared with Goldsim. The third objective is to integrate the monitoring and modelling tools into the mine management system and process control. The modelling and predictive process control can prevent flood situations, ensure water adequacy, and enable the controlled mine water treatment. The project will develop a constantly updated management system for water balance including both natural waters and process waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heistand, R.N.; Atwood, R.A.; Richardson, K.L.
1980-06-01
From 1973 to 1978, Development Engineering, Inc. (DEI), a subsidiary of Paraho Development Corporation, demostrated the Paraho technology for surface oil shale retorting at Anvil Points, Colorado. A considerable amount of environmentally-related research was also conducted. This body of data represents the most comprehensive environmental data base relating to surface retorting that is currently available. In order to make this information available, the DOE Office of Environment has undertaken to compile, assemble, and publish this environmental data. The compilation has been prepared by DEI. This report includes the process characterization, air quality, and water quality categories.
NASA Astrophysics Data System (ADS)
Styani, E.; Dja'var, N.; Irawan, C.; Hanafi
2018-01-01
This study focuses on making equipment which is useful to process paddy water to be consumable as drinking water by using ozone-UVC and ultrafiltration. The equipment which is made by the process of ozone-UVC and ultrafiltration or reverse osmosis is driven by electric power generated from solar panels. In the experiment, reverse osmosis system with ozone-UVC reactor proves to be good enough in producing high quality drinking water.
Water quality modelling of Jadro spring.
Margeta, J; Fistanic, I
2004-01-01
Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... projects using innovative processes and techniques. (d) Reserve for water quality management. Each State... water quality management planning under § 35.2023, except that in the case of Guam, the Virgin Islands... State management assistance grants. Each State may request that the Regional Administrator reserve, from...
Solid Wastes and Water Quality.
ERIC Educational Resources Information Center
DeWalle, F. B.; Chian, E. S. K.
1978-01-01
Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)
An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.
Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P
2013-01-01
The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.
Buffer zone monitoring plan for the Dos Rios subdivision, Gunnison, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This report presents a plan for water quality monitoring at the Dos Rios subdivision (Units 2, 3, and the Island Unit) that is intended to satisfy the informational needs of residents who live southwest (downgradient) of the former Gunnison processing site. Water quality monitoring activities described in this report are designed to protect the public from residual contamination that entered the ground water as a result of previous uranium milling operations. Requirements presented in this monitoring plan are also included in the water sampling and analysis plan (WSAP) for the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project site. Themore » Gunnison WSAP is a site-specific document prepared by the U.S. Department of Energy (DOE) that provides background, guidance, and justification for future ground water sampling and analysis activities for the UMTRA Project Gunnison processing and disposal sites. The WSAP will be updated annually, as additional water quality data are collected and interpreted, to provide ongoing protection for public health and the environment.« less
Tidal Influence on Water Quality of Kapuas Kecil River Downstream
NASA Astrophysics Data System (ADS)
Purnaini, Rizki; Sudarmadji; Purwono, Suryo
2018-02-01
The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767
Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I
2017-01-01
Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.
What's a stream without water? Disproportionality in headwater regions impacting water quality.
Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J
2012-11-01
Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.
Banach, Jennifer L.; Sampers, Imca; Van Haute, Sam; van der Fels-Klerx, H.J. (Ine)
2015-01-01
The potential cross-contamination of pathogens between clean and contaminated produce in the washing tank is highly dependent on the water quality. Process wash water disinfectants are applied to maintain the water quality during processing. The review examines the efficacy of process wash water disinfectants during produce processing with the aim to prevent cross-contamination of pathogens. Process wash water disinfection requires short contact times so microorganisms are rapidly inactivated. Free chlorine, chlorine dioxide, ozone, and peracetic acid were considered suitable disinfectants. A disinfectant’s reactivity with the organic matter will determine the disinfectant residual, which is of paramount importance for microbial inactivation and should be monitored in situ. Furthermore, the chemical and worker safety, and the legislative framework will determine the suitability of a disinfection technique. Current research often focuses on produce decontamination and to a lesser extent on preventing cross-contamination. Further research on a sanitizer’s efficacy in the washing water is recommended at the laboratory scale, in particular with experimental designs reflecting industrial conditions. Validation on the industrial scale is warranted to better understand the overall effects of a sanitizer. PMID:26213953
Redox processes and water quality of selected principal aquifer systems
McMahon, P.B.; Chapelle, F.H.
2008-01-01
Reduction/oxidation (redox) conditions in 15 principal aquifer (PA) systems of the United States, and their impact on several water quality issues, were assessed from a large data base collected by the National Water-Quality Assessment Program of the USGS. The logic of these assessments was based on the observed ecological succession of electron acceptors such as dissolved oxygen, nitrate, and sulfate and threshold concentrations of these substrates needed to support active microbial metabolism. Similarly, the utilization of solid-phase electron acceptors such as Mn(IV) and Fe(III) is indicated by the production of dissolved manganese and iron. An internally consistent set of threshold concentration criteria was developed and applied to a large data set of 1692 water samples from the PAs to assess ambient redox conditions. The indicated redox conditions then were related to the occurrence of selected natural (arsenic) and anthropogenic (nitrate and volatile organic compounds) contaminants in ground water. For the natural and anthropogenic contaminants assessed in this study, considering redox conditions as defined by this framework of redox indicator species and threshold concentrations explained many water quality trends observed at a regional scale. An important finding of this study was that samples indicating mixed redox processes provide information on redox heterogeneity that is useful for assessing common water quality issues. Given the interpretive power of the redox framework and given that it is relatively inexpensive and easy to measure the chemical parameters included in the framework, those parameters should be included in routine water quality monitoring programs whenever possible.
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a...
The purpose of this report is to describe the outputs of the Data Quality Objectives (DQOs) Process and discussions about developing a statistical design that will be used to implement the research study of recreational beach waters.
A flexible framework has been created for modeling multi-dimensional hydrological and water quality processes within stormwater green infrastructures (GIs). The framework models a GI system using a set of blocks (spatial features) and connectors (interfaces) representing differen...
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT
Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.
2011-01-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.
Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T
2012-02-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.
Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)
NASA Astrophysics Data System (ADS)
Ng, L. Y.; Ng, C. Y.
2017-06-01
The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.
Berkas, W.R.; Lodderhose, J.R.
1985-01-01
The quality of water in the 15 mile downstream reach of Dardenne Creek in St. Charles County, Missouri, was assessed to determine if it met the Missouri water quality standards. Concentrations of dissolved oxygen and total ammonia failed to meet water quality standards downstream from the Harvester-Dardenne and St. Peters Wastewater-Treatment Plants. The QUAL-II SEMCOG water quality model was calibrated and verified using two independent data sets from Dardenne Creek. Management alternatives using current, design capacity, and future expansion wastewater discharges from the St. Peters Wastewater-Treatment Plant were evaluated. Results of the computer simulation indicate that a nitrification-type advanced-treatment facility installed at the plant would produce a 5-day carbonaceous biochemical oxygen demand of 10 mg/L. An effluent limit of 5.0 mg/L of 5-day carbonaceous biochemical oxygen demand would further improve the water quality of Dardenne Creek; however, an additional treatment process, such as sand filtration, would be needed to meet this criterion. (USGS)
Reconnaissance Report on Papillion Creek Reservoirs.
1981-03-01
The appearance of the reservoir and production of malodors are nonaesthetic. The general charateristics of the flood control reservoirs near Lincoln...characteristic of extremely unproductive soft transparent waters to extremely productive hard waters turbid with plankton. A more current trend in lake...quality and biological productivity . The process of nutrient enrichment does not always result in the degradation of water quality. Whether or not the
The Writing of the Scientific Paper To Help Students Process Water Quality Data.
ERIC Educational Resources Information Center
Friday, Gerald
This paper describes how a water monitoring program uses a science research paper to help students apply knowledge learned from the field, the lab, and class discussion. The application consists of examining water quality data of a river and determining what factors had an impact on the river, either biotic or abiotic. Students are asked to…
Ground-water geochemistry of the Albuquerque-Belen Basin, central New Mexico
Anderholm, S.K.
1988-01-01
The purpose of this study was to define the areal distribution of different water types, use the distribution to help define the groundwater flow system, and identify processes resulting in differences in groundwater quality in the Albuquerque-Belen Basin in central New Mexico. The chemistry of surface water inflow from adjacent areas, which infiltrates and recharges the aquifer along the basin margin, affects the groundwater quality in the eastern and southeastern areas of the basin. Groundwater in the eastern area generally has a specific conductance less than 400 microsiemens, and calcium and bicarbonate are the dominant ions. Mixing of recharge, groundwater inflow, and surface inflow from adjacent areas, which have different chemical compositions, is the major process affecting groundwater quality in the southwestern, western, and northern areas of the basin. In these areas, there is a large range in specific conductance and distribution of dissolved ions. Groundwater quality in the Rio Grande valley is affected by the infiltration of excess irrigation water. The excess irrigation water generally has a larger specific conductance than other groundwater in the valley, so mixing of these waters results in shallow groundwater generally having larger specific conductance than the deeper groundwater. (USGS)
40 CFR 130.15 - Processing application for Indian tribes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Processing application for Indian tribes. 130.15 Section 130.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.15 Processing application for Indian tribes. The...
NASA Astrophysics Data System (ADS)
1980-11-01
The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.
Golberg, Alexander; Linshiz, Gregory; Kravets, Ilia; Stawski, Nina; Hillson, Nathan J; Yarmush, Martin L; Marks, Robert S; Konry, Tania
2014-01-01
We report an all-in-one platform - ScanDrop - for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a "cloud" network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2-4 days for other currently available standard detection methods.
Kravets, Ilia; Stawski, Nina; Hillson, Nathan J.; Yarmush, Martin L.; Marks, Robert S.; Konry, Tania
2014-01-01
We report an all-in-one platform – ScanDrop – for the rapid and specific capture, detection, and identification of bacteria in drinking water. The ScanDrop platform integrates droplet microfluidics, a portable imaging system, and cloud-based control software and data storage. The cloud-based control software and data storage enables robotic image acquisition, remote image processing, and rapid data sharing. These features form a “cloud” network for water quality monitoring. We have demonstrated the capability of ScanDrop to perform water quality monitoring via the detection of an indicator coliform bacterium, Escherichia coli, in drinking water contaminated with feces. Magnetic beads conjugated with antibodies to E. coli antigen were used to selectively capture and isolate specific bacteria from water samples. The bead-captured bacteria were co-encapsulated in pico-liter droplets with fluorescently-labeled anti-E. coli antibodies, and imaged with an automated custom designed fluorescence microscope. The entire water quality diagnostic process required 8 hours from sample collection to online-accessible results compared with 2–4 days for other currently available standard detection methods. PMID:24475107
The development of a land use inventory for regional planning using satellite imagery
NASA Technical Reports Server (NTRS)
Hessling, A. H.; Mara, T. G.
1975-01-01
Water quality planning in Ohio, Kentucky, and Indiana is reviewed in terms of use of land use data and satellite imagery. A land use inventory applicable to water quality planning and developed through computer processing of LANDSAT-1 imagery is described.
The water quality of the LOCAR Pang and Lambourn catchments
NASA Astrophysics Data System (ADS)
Neal, C.; Jarvie, H. P.; Wade, A. J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N.
The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and "uniform pattern" characteristic of aquifer drainage with, superimposed, a series of "flashier" spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the "flashier" responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.
40 CFR 123.35 - As the NPDES Permitting Authority for regulated small MS4s, what is my role?
Code of Federal Regulations, 2013 CFR
2013-07-01
... MS4 storm water program.) (b) You must develop a process, as well as criteria, to designate small MS4s... under the NPDES storm water discharge control program. This process must include the authority to... storm water discharge results in or has the potential to result in exceedances of water quality...
40 CFR 123.35 - As the NPDES Permitting Authority for regulated small MS4s, what is my role?
Code of Federal Regulations, 2012 CFR
2012-07-01
... MS4 storm water program.) (b) You must develop a process, as well as criteria, to designate small MS4s... under the NPDES storm water discharge control program. This process must include the authority to... storm water discharge results in or has the potential to result in exceedances of water quality...
40 CFR 123.35 - As the NPDES Permitting Authority for regulated small MS4s, what is my role?
Code of Federal Regulations, 2014 CFR
2014-07-01
... MS4 storm water program.) (b) You must develop a process, as well as criteria, to designate small MS4s... under the NPDES storm water discharge control program. This process must include the authority to... storm water discharge results in or has the potential to result in exceedances of water quality...
Modelling raw water quality: development of a drinking water management tool.
Kübeck, Ch; van Berk, W; Bergmann, A
2009-01-01
Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.
NASA Astrophysics Data System (ADS)
Salha, A. A.; Stevens, D. K.
2013-12-01
This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System. Processing, assessment of validity, and distribution of time-series data was explored using the GNU R language (statistical computing and graphics environment). Physical, chemical, and biological processes equations were written in FORTRAN codes (High Performance Fortran) in order to compute and solve their hyperbolic and parabolic complexities. Post analysis of results conducted using GNU R language. High performance computing (HPC) will be introduced to expedite solving complex computational processes using parallel programming. It is expected that the model will assess nonpoint sources and specific point sources data to understand pollutants' causes, transfer, dispersion, and concentration in different locations of Bear River. Investigation the impact of reduction/removal in non-point nutrient loading to Bear River water quality management could be addressed. Keywords: computer modeling; numerical solutions; sensitivity analysis; uncertainty analysis; ecosystem processes; high Performance computing; water quality.
Production of a water quality map of Saginaw Bay by computer processing of LANDSAT-2 data
NASA Technical Reports Server (NTRS)
Mckeon, J. B.; Rogers, R. H.; Smith, V. E.
1977-01-01
Surface truth and LANDSAT measurements collected July 31, 1975, for Saginaw Bay were used to demonstrate a technique for producing a color coded water quality map. On this map, color was used as a code to quantify five discrete ranges in the following water quality parameters: (1) temperature, (2) Secchi depth, (3) chloride, (4) conductivity, (5) total Kjeldahl nitrogen, (6) total phosphorous, (7)chlorophyll a, (8) total solids and (9) suspended solids. The LANDSAT and water quality relationship was established through the use of a set of linear regression equations where the water quality parameters are the dependent variables and LANDSAT measurements are the independent variables. Although the procedure is scene and surface truth dependent, it provides both a basis for extrapolating water quality parameters from point samples to unsampled areas and a synoptic view of water mass boundaries over the 3000 sq. km bay area made from one day's ship data that is superior, in many ways, to the traditional machine contoured maps made from three day's ship data.
Water recovery by catalytic treatment of urine vapor
NASA Technical Reports Server (NTRS)
Budininkas, P.; Quattrone, P. D.; Leban, M. I.
1980-01-01
The objective of this investigation was to demonstrate the feasibility of water recovery on a man-rated scale by the catalytic processing of untreated urine vapor. For this purpose, two catalytic systems, one capable of processing an air stream containing low urine vapor concentrations and another to process streams with high urine vapor concentrations, were designed, constructed, and tested to establish the quality of the recovered water.
NASA Astrophysics Data System (ADS)
Mokarram, Marzieh; Sathyamoorthy, Dinesh
2016-10-01
In this study, the fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking water quality based on content of inorganic components and landform classes in the south of Firozabad, west of Fars province, Iran. For determination of drinking water quality based on content of inorganic components, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical conductivity (EC), sulfate (SO4), and total dissolved solids (TDS) were used. It was found that 8.29 % of the study area has low water quality; 64.01 %, moderate; 23.33 %, high; and 4.38 %, very high. Areas with suitable drinking water quality based on content of inorganic components are located in parts of the south-eastern and south-western parts of the study area. The relationship between landform class and drinking water quality based on content of inorganic components shows that drinking water quality based on content of inorganic components is high in the stream, valleys, upland drainages, and local ridge classes, and low in the plain small and midslope classes. In fact we can predict water quality using extraction of landform classes from a digital elevation model (DEM) by the Topographic Position Index (TPI) method, so that streams, valleys, upland drainages, and local ridge classes have more water quality than the other classes. In the study we determined that without measurement of water sample characteristics, we can determine water quality by landform classes.
Stable isotopes of water and organic material can be very useful in monitoring programs because stable isotopes integrate information about ecological processes and record this information. Most ecological processes of interest for water quality (i.e. denitrification) require si...
Migration of Water in Litopenaeus Vannamei Muscle Following Freezing and Thawing.
Deng, Qi; Wang, Yaling; Sun, Lijun; Li, Jianrong; Fang, Zhijia; Gooneratne, Ravi
2018-06-15
Water and protein are major constituents of shrimp, any changes in protein and the state of water influence the quality of shrimp. Therefore, a study to examine the law of moisture migration and protein denaturation under different freezing and thawing conditions is important. The proton density images of thawed frozen-shrimp revealed that the water loss during quick-freezing was much greater than that during slow freezing or microfreezing. At room temperature (25 °C), the water loss from brine-thawing was more than still-water thawing and still-water thawing was more than thawing spontaneously. Freezing-thawing resulted in uniform water redistribution in shrimp muscle. Nuclear magnetic resonance technology (low field magnetic imaging) was used to directly monitor the dynamic processes of fluidity state in shrimp and indirectly monitor protein denaturation and thereby determine the optimal method of freezing-thawing shrimp. Our research showed that microfreezing preservation minimized weight loss, juice leakage and protein denaturation in shrimp muscle during thawing. Water is one of the major components in most organs and is an important factor that influences the shrimp muscle quality. Water migration patterns and subsequent effects on the shrimp muscle under different freezing and thawing conditions were examined using low field nuclear magnetic resonance (NMR) technology. This research provides a theoretical foundation for shrimp processing plants to improve the freezing and thawing process to obtain optimal quality and flavor of shrimp products. © 2018 Institute of Food Technologists®.
Whitehead, Paul G; Jin, Li; Macadam, Ian; Janes, Tamara; Sarkar, Sananda; Rodda, Harvey J E; Sinha, Rajiv; Nicholls, Robert J
2018-09-15
The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Ding, D.; Rapolu, U.
2012-12-01
Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. On this context, this team has investigated connections among agriculture, policy, climate, land use/land cover, and water quality in Iowa over the past couple of years. To help explore these connections the team is developing a variety of cyber infrastructure tools that facilitate the collection, analysis and visualization of data, and the simulation of system dynamics. In an ongoing effort, the prototype system is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa in the US Midwest, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. The primary aim of this research is to understand the connections that exist among the agricultural and biofuel economy, land use/land cover change, and water quality. To help explore these connections an agent-based model (ABM) of land use change has been developed that simulates the decisions made by farmers given alternative assumptions about market forces, farmer characteristics, and water quality regulations. The SWAT model was used to simulate the impact of these decisions on the movement of sediment, nitrogen, and phosphorus across the landscape. The paper also demonstrate how through the use of this system researchers can, for example, search for scenarios that lead to desirable socio-economic outcomes as well as preserve water quantity and quality.
Yang, Liyang; Hur, Jin; Zhuang, Wane
2015-05-01
Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.
da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela
2012-01-01
This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.
NASA Astrophysics Data System (ADS)
Herojeet, Rajkumar; Rishi, Madhuri S.; Lata, Renu; Dolma, Konchok
2017-09-01
Sirsa River flows through the central part of the Nalagarh valley, belongs to the rapid industrial belt of Baddi, Barotiwala and Nalagarh (BBN). The appraisal of surface water quality to ascertain its utility in such ecologically sensitive areas is need of the hour. The present study envisages the application of multivariate analysis, water utility class and conventional graphical representation to reveal the hidden factor responsible for deterioration of water quality and determine the hydrochemical facies and its evolution processes of water types in Nalagarh valley, India. The quality assessment is made by estimating pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness, major ions (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, SO4 2-, NO3 - and PO4 3-), dissolved oxygen (DO), biological oxygen demand (BOD) and total coliform (TC) to determine its suitability for drinking and domestic purposes. The parameters like pH, TDS, TH, Ca2+, HCO3 -, Cl-, SO4 2-, NO3 - are within the desirable limit as per Bureau of Indian Standards (Indian Standard Drinking Water Specification (Second Edition) IS:10500. Indian Standard Institute, New Delhi, pp 1-18, 2012). Mg2+, Na+ and K+ ions for pre monsoon and EC during pre and post monsoon at few sites and approx 40% samples of BOD and TC for both seasons exceeds the permissible limits indicate organic contamination from human activities. Water quality classification for designated use indicates that maximum surface water samples are not suitable for drinking water source without conventional treatment. The result of piper trillinear and Chadha's diagram classified majority of surface water samples for both seasons fall in the fields of Ca2+-Mg2+-HCO3 - water type indicating temporary hardness. PCA and CA reveal that the surface water chemistry is influenced by natural factors such as weathering of minerals, ion exchange processes and anthropogenic factors. Thus, the present paper illustrates the importance of multivariate techniques for reliable quality characterization of surface water quality to develop effective pollution reduction strategies and maintain a fine balance between the industrialization and ecological integrity.
USDA-ARS?s Scientific Manuscript database
Diffuse nutrient pollution from agricultural landscapes is a priority water quality concern and the cause of mitigation activities worldwide. Climate change and climate variability impact hydrology, nutrient cycling, and ultimately water quality, which can complicate mitigation measures. Climate cha...
Microbiological Quality of the Water used in Agriculture in Sardinia.
Sanna, A; Meloni, B; Ruggeri, A; Succa, S; Sanna, C; Carraro, V; Coroneo, V
2016-01-01
The microbiological quality of the water used in irrigation is crucial for the safety of products, such as fruit and vegetables, especially when destined to be consumed raw. However, the microbiological quality of this water is not defined at a community regulatory level or at a national level. With our present work, we wanted to investigate the microbiological quality of the water used for crop irrigation in various Sardinian provinces. Since in most fields the irrigation water is filtered to remove any impurities, the sample was processed twice - both before and after the filtering process. Furthermore, with the purpose of hypothesising the potential health risks attributable to the consumption of crops from the tested fields, samples of horticultural product were collect. Any eventual seasonal differences in the values of microbial concentration were assessed. Microorganism faecal contamination indicators (Escherichia coli, total coliform and faecal streptococci), but even the presence of the opportunistic pathogen such as Pseudomonas aeruginosa were researched in irrigation water. Total mesophilic counts (TMC) were assessed at 36°C and 22°C. On horticultural products we researched both the indicators of process parameters, such as Escherichia coli, Total mesophilic counts at 30°C, Enterobacteriaceae, Total Psychrophilic counts and Pseudomonas aeruginosa, and pathogens, such as Salmonella spp, Listeria monocytogenes and Yersinia enterocolitica. The number of target microorganisms, when present in irrigation water, was very limited: Escherichia coli, total coliform and faecal streptococci, were detected respectively in 48% and 67% of the water samples tested with average concentration values of 0.9, 1.2 and 1.4 log respectively. In fresh vegetable products, the total mesophilic counts (TMC) were found to have average values of 6.6x107 CFU/g. The average values of Enterobacteriaceae totalled 6.1x105 CFU/g; Escherichia coli was detected in only one sample (curly endive) with a value of 180 CFU/g. The data highlights the high quality of the water and how this contributed to achieving satisfactory quality on prime material. However the use of filters, to eliminate impurities, and reservoirs, may represent a crucial issue, if not managed correctly.
Sanches, Sandra; Rodrigues, Alexandre; Cardoso, Vitor V; Benoliel, Maria J; Crespo, João G; Pereira, Vanessa J
2016-06-01
A sequential water treatment combining low pressure ultraviolet direct photolysis with nanofiltration was evaluated to remove hormones from water, reduce endocrine disrupting activity, and overcome the drawbacks associated with the individual processes (production of a nanofiltration-concentrated retentate and formation of toxic by-products). 17β-Estradiol, 17α-ethinylestradiol, estrone, estriol, and progesterone were spiked into a real water sample collected after the sedimentation process of a drinking water treatment plant. Even though the nanofiltration process alone showed similar results to the combined treatment in terms of the water quality produced, the combined treatment offered advantage in terms of the load of the retentate and decrease in the endocrine-disrupting activity of the samples. Moreover, the photolysis by-products produced, with higher endocrine disrupting activity than the parent compounds, were effectively retained by the membrane. The combination of direct LP/UV photolysis with nanofiltration is promising for a drinking water utility that needs to cope with sudden punctual discharges or deterioration of the water quality and wants to decrease the levels of chemicals in the nanofiltration retentate.
Issues to consider in the derivation of water quality benchmarks for the protection of aquatic life.
Schneider, Uwe
2014-01-01
While water quality benchmarks for the protection of aquatic life have been in use in some jurisdictions for several decades (USA, Canada, several European countries), more and more countries are now setting up their own national water quality benchmark development programs. In doing so, they either adopt an existing method from another jurisdiction, update on an existing approach, or develop their own new derivation method. Each approach has its own advantages and disadvantages, and many issues have to be addressed when setting up a water quality benchmark development program or when deriving a water quality benchmark. Each of these tasks requires a special expertise. They may seem simple, but are complex in their details. The intention of this paper was to provide some guidance for this process of water quality benchmark development on the program level, for the derivation methodology development, and in the actual benchmark derivation step, as well as to point out some issues (notably the inclusion of adapted populations and cryptic species and points to consider in the use of the species sensitivity distribution approach) and future opportunities (an international data repository and international collaboration in water quality benchmark development).
Artificial neural network modeling of the water quality index using land use areas as predictors.
Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin
2015-02-01
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Wang, Tieyu; Zhou, Yunqiao; Bi, Cencen; Lu, Yonglong; He, Guizhen; Giesy, John P
2017-07-01
There is a need to formulate water environment standards (WESs) from the current water quality criteria (WQC) in China. To this end, we briefly summarize typical mechanisms applied in several countries with longer histories of developing WESs, and three limitations to formulating WESs in China were identified. After analyzing the feasibility factors including economic development, scientific support capability and environmental policies, we realized that China is still not ready for a complete change from its current nation-wide unified WES system to a local-standard-based system. Thus, we proposed a framework for transformation from WQC to WESs in China. The framework consists of three parts, including responsibilities, processes and policies. The responsibilities include research authorization, development of guidelines, and collection of information, at both national and local levels; the processes include four steps and an impact factor system to establish water quality standards; and the policies include seven specific proposals. Copyright © 2016. Published by Elsevier B.V.
Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze-Aurich, Jochen
2014-01-15
The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Nödler, Karsten; Licha, Tobias; Sauter, Martin
2010-05-01
Supplementing existing water resources with alternative sources of water is a challenge in semi-arid areas, as deterioration of water quality must be avoided. Soil aquifer treatment (SAT) can greatly improve the quality of the injected water by attenuation of organic pollutants via sorption and degradation processes. However, only little is known about the specific transport processes of organic micropollutants under artificial recharge conditions. Organic micropollutants such as pharmaceuticals and their metabolites exhibit a wide range of chemical properties and may undergo very different environmental processes resulting in specific reactions within specified environments. In the presented study fate and transport processes of 25 organic micropollutants (iodinated contrast media, antihypertensive agents, antibiotics, anticonvulsants, lipid regulators, anti-inflammatories, antihistamines and analgesics) were investigated under SAT conditions in a controlled field experiment. Secondary treated effluent (STE) containing the compounds of interest was introduced into the aquifer by an infiltration pond and shallow wells in the vicinity were used for water quality monitoring. By means of strategic sampling procedure and a specialized multi-residue analytical method based on high-performance liquid chromatography / tandem mass spectrometry (LC/MS-MS) 3 main transport processes were identified: 1. Transport of non-polar compounds according to their respective octanol-water distribution coefficient (Kow) 2. Cation exchange 3. Colloidal transport Identification of transport processes 2 & 3 was not expected to act as a transport controlling process. Results of the positively charged beta-blockers sotalol, atenolol and metoprolol gave clear evidence for cation exchange processes of the compounds with the aquifer material. Correlation of turbidity and concentrations of macrolide antibiotics (clarithromycin, erythromycin and roxithromycin) demonstrated the colloidal transport of the respective compounds. Concentrations of almost all micropollutants decreased with increasing soil passage. However, since compounds transported by processes 2 & 3 can be re-mobilized by changing water chemistry, the importance of a diligent characterisation of aquifer material and raw water is apparent for risk assessment. The experiments were conducted within the context of the project GABARDINE, funded by the European Commission.
NASA Technical Reports Server (NTRS)
Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.
1983-01-01
Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.
Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L
2013-02-01
The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Operation of a pond-cooler: the case of Berezovskaya GRES-1
NASA Astrophysics Data System (ADS)
Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.
2017-08-01
Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.
WQEP - a computer spreadsheet program to evaluate water quality data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liddle, R.G.
1996-12-31
A flexible spreadsheet Water Quality Evaluation Program (WQEP) has been developed for mining companies, consultants, and regulators to interpret the results of water quality sampling. In order properly to evaluate hydrologic data, unit conversions and chemical calculations are done, quality control checks are needed, and a complete and up-to-date listing of water quality standards is necessary. This process is time consuming and tends not to be done for every sample. This program speeds the process by allowing the input of up to 115 chemical parameters from one sample. WQEP compares concentrations with EPA primary and secondary drinking water MCLs ormore » MCLG, EPA warmwater and Coldwater acute and chronic aquatic life criteria, irrigation criteria, livestock criteria, EPA human health criteria, and several other categories of criteria. The spreadsheet allows the input of State or local water standards of interest. Water quality checks include: anion/cations, TDS{sub m}/TDS{sub c} (where m=measured and c=calculated), EC{sub m}/EC{sub c}, EC{sub m}/ion sums, TDS{sub c}/EC ratio, TDS{sub m}/EC, EC vs. alkalinity, two hardness values, and EC vs. {Sigma} cations. WQEP computes the dissolved transport index of 23 parameters, computes ratios of 26 species for trend analysis, calculates non-carbonate alkalinity to adjust the bicarbonate concentration, and calculates 35 interpretive formulas (pE, SAR, S.I., unionized ammonia, ionized sulfide HS-, pK{sub x} values, etc.). Fingerprinting is conducted by automatic generation of stiff diagrams and ion histograms. Mass loading calculations, mass balance calculations, conversions of concentrations, ionic strength, and the activity coefficient and chemical activity of 33 parameters is calculated. This program allows a speedy and thorough evaluation of water quality data from metal mines, coal mining, and natural surface water systems and has been tested against hand calculations.« less
[Drinking water quality and safety].
Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier
2016-11-01
The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Dionne, Shannon G.; Granato, Gregory E.; Tana, Cameron K.
1999-01-01
A readily accessible archive of information that is valid, current, and technically defensible is needed to make informed highway-planning, design, and management decisions. The National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS) is a cataloging and assessment of the documentation of information relevant to highway-runoff water quality available in published reports. The report review process is based on the NDAMS review sheet, which was designed by the USGS with input from the FHWA, State transportation agencies, and the regulatory community. The report-review process is designed to determine the technical merit of the existing literature in terms of current requirements for data documentation, data quality, quality assurance and quality control (QA/QC), and technical issues that may affect the use of historical data. To facilitate the review process, the NDAMS review sheet is divided into 12 sections: (1) administrative review information, (2) investigation and report information, (3) temporal information, (4) location information (5) water-quality-monitoring information, (6) sample-handling methods, (7) constituent information, (8) sampling focus and matrix, (9) flow monitoring methods, (10) field QA/QC, (11) laboratory, and (12) uncertainty/error analysis. This report describes the NDAMS report reviews and metadata documentation methods and provides an overview of the approach and of the quality-assurance and quality-control program used to implement the review process. Detailed information, including a glossary of relevant terms, a copy of the report-review sheets, and reportreview instructions are completely documented in a series of three appendixes included with this report. Therefore the reviews are repeatable and the methods can be used by transportation research organizations to catalog new reports as they are published.
NASA Astrophysics Data System (ADS)
SHI, J.
2014-12-01
Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.
Utilization of LANDSAT data for water quality surveys in the Choptank River
NASA Technical Reports Server (NTRS)
Johnson, J. M.; Cressy, P.; Dallam, W. C.
1975-01-01
Computer processing of LANDSAT-1 multispectral digital data demonstrated the applicability of remotely sensed data to water quality survey in the Choptank River. Water classes derived by automated analysis correlate to river nuisance levels of chlorophyll a and sediment loading as defined by the Maryland Department of Water Resources and the U.S. Corps of Engineers. Results indicate that an increase in chlorophyll a concentration corresponds, relative to MSS 5, to decreases in 4 and increases in 6 relative to the trends with increasing sediment load. It appears that for the purpose of water quality analysis, under favorable atmospheric conditions, only MSS 4, 5 and 6 are necessary.
Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.
Meneses, B M; Reis, R; Vale, M J; Saraiva, R
2015-09-15
To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Overview of the National Water-Quality Assessment Program
Leahy, P.P.; Thompson, T.H.
1994-01-01
The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.
OVERVIEW: CCL PATHOGENS RESEARCH AT NRMRL
The Microbial Contaminants Control Branch (MCCB), Water Supply and Water Resources Division, National Risk Management Research Laboratory, conducts research on microbiological problems associated with source water quality, treatment processes, distribution and storage of drin...
What Medical Directors Need to Know about Dialysis Facility Water Management.
Kasparek, Ted; Rodriguez, Oscar E
2015-06-05
The medical directors of dialysis facilities have many operational clinic responsibilities, which on first glance, may seem outside the realm of excellence in patient care. However, a smoothly running clinic is integral to positive patient outcomes. Of the conditions for coverage outlined by the Centers for Medicare and Medicaid Services, one most critical to quality dialysis treatment is the provision of safe purified dialysis water, because there are many published instances where clinic failure in this regard has resulted in patient harm. As the clinical leader of the facility, the medical director is obliged to have knowledge of his/her facility's water treatment system to reliably ensure that the purified water used in dialysis will meet the standards for quality set by the Association for the Advancement of Medical Instrumentation and used by the Centers for Medicare and Medicaid Services for conditions for coverage. The methods used to both achieve and maintain these quality standards should be a part of quality assessment and performance improvement program meetings. The steps for water treatment, which include pretreatment, purification, and distribution, are largely the same, regardless of the system used. Each water treatment system component has a specific role in the process and requires individualized maintenance and monitoring. The medical director should provide leadership by being engaged with the process, knowing the facility's source water, and understanding water treatment system operation as well as the clinical significance of system failure. Successful provision of quality water will be achieved by those medical directors who learn, know, and embrace the requirements of dialysis water purification and system maintenance. Copyright © 2015 by the American Society of Nephrology.
Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun
2007-01-01
Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.
Chapter A5. Processing of Water Samples
Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.
1999-01-01
The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses methods to be used in processing water samples to be analyzed for inorganic and organic chemical substances, including the bottling of composite, pumped, and bailed samples and subsamples; sample filtration; solid-phase extraction for pesticide analyses; sample preservation; and sample handling and shipping. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http:/ /water.usgs.gov/lookup/get?newpubs.
NASA Astrophysics Data System (ADS)
De Dreuzy, J. R.; Marçais, J.; Moatar, F.; Minaudo, C.; Courtois, Q.; Thomas, Z.; Longuevergne, L.; Pinay, G.
2017-12-01
Integration of hydrological and biogeochemical processes led to emerging patterns at the catchment scale. Monitoring in rivers reflects the aggregation of these effects. While discharge time series have been measured for decades, high frequency water quality monitoring in rivers now provides prominent measurements to characterize the interplay between hydrological and biogeochemical processes, especially to infer the processes that happen in the heterogeneous subsurface. However, we still lack frameworks to relate observed patterns to specific processes, because of the "organized complexity" of hydrological systems. Indeed, it is unclear what controls, for example, patterns in concentration-discharge (C/Q) relationships due to non-linear processes and hysteresis effects. Here we develop a non-intensive process-based model to test how the integration of different landforms (i.e. geological heterogeneities and structures, topographical features) with different biogeochemical reactivity assumptions (e.g. reactive zone locations) can shape the overall water quality time series. With numerical experiments, we investigate typical patterns in high frequency C/Q relationships. In headwater basins, we found that typical hysteretic patterns in C/Q relationships observed in data time series can be attributed to differences in water and solute locations stored across the hillslope. At the catchment scale though, these effects tend to average out by integrating contrasted hillslopes' landforms. Together these results suggest that information contained in headwater water quality monitoring can be used to understand how hydrochemical processes determine downstream conditions.
Rigol, A; Latorre, A; Lacorte, S; Barceló, D
2002-07-19
Three analytical methods were developed for the determination of toxic compounds in recirculating waters of a paper-recycling industry. Three main groups of compounds were considered: (i) wood extractives originated from the raw material; (ii) biocides added during the production process and (iii) surfactants and other adjuvants present in the formulates of these biocides. Wood extractives considered in this study included fatty and resin acids. They were analysed by liquid-liquid extraction using methyl tert.-butyl ether, followed by gas chromatography-mass spectrometry for previous formation of the respective trimethylsilyl esters. Water samples were also extracted with Oasis HLB (copolymer [poly(divinylbenzene-co-N-vinylpyrrolidone]) solid-phase extraction cartridges of 60 mg and analysed by liquid chromatography-electrospray mass spectrometry for the determination of additives and biocides. Using these two approaches levels up to 15 mg/l for total resin and fatty acids, 5 mg/l for alkylbenzene sulfonates and 2-(thiocyanomethylthio)benzotiazol, 100 microg/l for bisphenol A and 2,2-dibromo-3-nitrilepropionamide, and 300 microg/l for nonylphenol ethoxycarboxylate were detected in process waters at different production treatment stages. These levels are of relevance since poor water quality affects the paper-recycling process, the primary water treatment process and eventually, the environmental water quality.
Nanomaterials and Water Purification: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Savage, Nora; Diallo, Mamadou S.
2005-10-01
Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.
2018-04-01
Seaweed is a non-fishery marine commodity that has great opportunities to be developed in Indonesia. One of the seaweed with a high economic value is Eucheuma alvarezii. This seaweed can be used as an additional material in cosmetic and pharmaceutical products or directly used for syrup and pudding. Post-harvest technique conducted by the seaweed farmers will affects the quality of dried and processed products. The purpose of this study is to see the effect of post harvest technique on the quality of dried seaweed and hedonic test (favorable test) of processed product (syrup and pudding). This study was conducted using descriptive method. The study compared dried, syrup, and puddings from two differents post-harvest technique, between salt and fresh-water draining products. The results showed that fresh-water draining technique obtained better quality results organoleptic test. Supported by hedonic test, that showed more panelists were prefered the fresh-water drained products of syrup and pudding. The preference were much higher for the fresh-water drained products in all three catagories of color, taste, and smell.
Damschen, William C.; Hansel, John A.; Nustad, Rochelle A.
2008-01-01
From January through October 2006, six sets of water-quality samples were collected at 28 sites, which included inflow and outflow from seven major municipal water-treatment plants (14 sites) and influent and effluent samples from seven major municipal wastewater treatment plants (14 sites) along the Red River of the North in North Dakota and Minnesota. Samples were collected in cooperation with the Bureau of Reclamation for use in the development of return-flow boundary conditions in a 2006 water-quality model for the Red River of the North. All samples were analyzed for nutrients and major ions. For one set of effluent samples from each of the wastewater-treatment plants, water was analyzed for Eschirichia coli, fecal coliform, 20-day biochemical oxygen demand, 20-day nitrogenous biochemical oxygen demand, total organic carbon, and dissolved organic carbon. In general, results from the field equipment blank and replicate samples indicate that the overall process of sample collection, processing, and analysis did not introduce substantial contamination and that consistent results were obtained.
Eutrophication of lakes and reservoirs: A framework for making management decisions
Rast, W.; Holland, M.
1988-01-01
The development of management strategies for the protection of environmental quality usually involves consideration both of technical and nontechnical issues. A logical, step-by-step framework for development of such strategies is provided. Its application to the control of cultured eutrophication of lakes and reservoirs illustrates its potential usefulness. From the perspective of the policymaker, the main consideration is that the eutrophication-related water quality of a lake or reservoir can be managed for given water uses. The approach presented here allows the rational assessment of relevant water-quality parameters and establishment of water-quality goals, consideration of social and other nontechnical issues, the possibilities of public involvement in the decision-making process, and a reasonable economic analysis within a management framework.
Environmental Flow for Sungai Johor Estuary
NASA Astrophysics Data System (ADS)
Adilah, A. Kadir; Zulkifli, Yusop; Zainura, Z. Noor; Bakhiah, Baharim N.
2018-03-01
Sungai Johor estuary is a vital water body in the south of Johor and greatly affects the water quality in the Johor Straits. In the development of the hydrodynamic and water quality models for Sungai Johor estuary, the Environmental Fluid Dynamics Code (EFDC) model was selected. In this application, the EFDC hydrodynamic model was configured to simulate time varying surface elevation, velocity, salinity, and water temperature. The EFDC water quality model was configured to simulate dissolved oxygen (DO), dissolved organic carbon (DOC), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), phosphate (PO4), and Chlorophyll a. The hydrodynamic and water quality model calibration was performed utilizing a set of site specific data acquired in January 2008. The simulated water temperature, salinity and DO showed good and fairly good agreement with observations. The calculated correlation coefficients between computed and observed temperature and salinity were lower compared with the water level. Sensitivity analysis was performed on hydrodynamic and water quality models input parameters to quantify their impact on modeling results such as water surface elevation, salinity and dissolved oxygen concentration. It is anticipated and recommended that the development of this model be continued to synthesize additional field data into the modeling process.
The important role of water in growth of monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Kastl, Christoph; Chen, Christopher T.; Kuykendall, Tevye; Shevitski, Brian; Darlington, Thomas P.; Borys, Nicholas J.; Krayev, Andrey; Schuck, P. James; Aloni, Shaul; Schwartzberg, Adam M.
2017-06-01
2D transition metal dichalcogenides (TMDs) are commonly grown by chemical vapor deposition using transition metal oxides as solid precursors. Despite the widespread use of this technique, challenges in reproducibility, coverage, and material quality are pervasive, suggestive of unknown and uncontrolled process parameters. In this communication, we demonstrate the impact of water vapor on this growth process. Our results show a direct correlation between gas phase water content and the morphology of TMD films. In particular, we show that the presence of water enhances volatilization, and therefore the vapor transport of tungsten and molybdenum oxide. Surprisingly, we find that water not only plays an important role in volatilization but is also compatible with TMD growth. In fact, carefully controlled humidity can consistently produce high quality, luminescent materials.
Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range
Writer, Jeffrey H.; McCleskey, R. Blaine; Murphy, Sheila F.; Stone, Mike; Collins, Adrian; Thoms, Martin C.
2012-01-01
Watershed erosion can dramatically increase after wildfire, but limited research has evaluated the corresponding influence on source-water quality. This study evaluated the effects of the Fourmile Canyon wildfire (Colorado Front Range, USA) on source-water quality and aquatic ecosystems using high- frequency sampling. Dissolved organic carbon (DOC) and nutrient loads in stream water were evaluated for a one-year period during different types of runoff events, including spring snowmelt, and both frontal and summer convective storms. DOC export from the burned watershed did not increase relative to the unburned watershed during spring snowmelt, but substantial increases in DOC export were observed during summer convective storms. Elevated nutrient export from the burned watershed was observed during spring snowmelt and summer convective storms, which increased the primary productivity of stream biofilms. Wildfire effects on source-water quality were shown to be substantial following high-intensity storms, with the potential to affect drinking-water treatment processes.
Standardised survey method for identifying catchment risks to water quality.
Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A
2016-06-01
This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.
Wu, Yiping; Chen, Ji
2013-01-01
Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.
Holbach, Andreas; Wang, Lijing; Chen, Hao; Hu, Wei; Schleicher, Nina; Zheng, Binghui; Norra, Stefan
2013-10-01
Increasing eutrophication and algal bloom events in the Yangtze River Three Gorges Reservoir, China, are widely discussed with regard to changed hydrodynamics and nutrient transport and distribution processes. Insights into water exchange and interaction processes between water masses related to large-scale water level fluctuations in the reservoir are crucial to understand water quality and eutrophication dynamics. Therefore, confluence zones of tributaries with the Yangtze River main stream are dedicated key interfaces. In this study, water quality data were recorded in situ and on-line in varying depths with the MINIBAT towed underwater multi-sensor system in the confluence zone of the Daning River and the Yangtze River close to Wushan City during 1 week in August 2011. Geostatistical evaluation of the water quality data was performed, and results were compared to phosphorus contents of selective water samples. The strongly rising water level throughout the measurement period caused Yangtze River water masses to flow upstream into the tributary and supply their higher nutrient and particulate loads into the tributary water body. Rapid algal growth and sedimentation occurred immediately when hydrodynamic conditions in the confluence zone became more serene again. Consequently, water from the Yangtze River main stream can play a key role in providing nutrients to the algal bloom stricken water bodies of its tributaries.
Nitrification in Water and Wastewater Treatment
This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...
Emergency Beach-Fill Procedures: Lessons Learned From 2004 Hurricane Season
2010-07-01
Puerto Rico and Virgin Islands) South Atlantic Fisheries Management) Clean Water Act (Section 401) Obtain Water Quality Certi- fication (WQC...Challenges Faced during Recovery Process Bulk funding for Project Information Report Preparation; funding process to disburse funds Over-time/ Holiday
Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H
2008-01-01
Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.
Use of soft data for multi-criteria calibration and validation of APEX: Impact on model simulations
USDA-ARS?s Scientific Manuscript database
It is widely known that the use of soft data and multiple model performance criteria in model calibration and validation is critical to ensuring the model capture major hydrologic and water quality processes. The Agricultural Policy/Environmental eXtender (APEX) is a hydrologic and water quality mod...
Water quality modeling based on landscape analysis: Importance of riparian hydrology
Thomas Grabs
2010-01-01
Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...
Math Problems for Water Quality Control Personnel, Instructor's Manual. Second Edition.
ERIC Educational Resources Information Center
Delvecchio, Fred; Brutsch, Gloria
This document is the instructor's manual for a course in mathematics for water quality control personnel. It is designed so a program may be designed for a specific facility. The problem structures are arranged alphabetically by treatment process. Charts, graphs and/or drawings representing familiar data forms contain the necessary information to…
Math Problems for Water Quality Control Personnel, Student Workbook. Second Edition.
ERIC Educational Resources Information Center
Delvecchio, Fred; Brutsch, Gloria
This document is the student workbook for a course in mathematics for water quality control personnel. This version contains complete problems, answers and references. Problems are arranged alphabetically by treatment process. Charts, graphs, and drawings represent data forms an operator might see in a plant containing information necessary for…
Phytoplankton, zooplankton and water quality parameters were monitored monthly along a 5-station transect in Escambia Bay (Pensacola, FL) from fall 1999 to fall 2000. To provide insight into nutrient processing in Escambia Bay and effects of grazers on phytoplankton community st...
Haijoubi, El Houcine; Benyahya, Fatiha; Bendahou, Abdrezzak; Essadqui, Faima Zahra; Behhari, Mohammed El; El Mamoune, Ahmed Fouad; Ghailani, Naima Nourouti; Mechita, Mohcine Bennani; Barakat, Amina
2017-01-01
Water is used predominantly in food manufacturing process. Northern morocco agro-food industries use different sources of water, but public water and wells water are the main sources of water used. This water can be the main source of possible food contaminations and alterations. This study aims is to assess the bacteriological quality of water used in the agro-food industries in the Northern region of Morocco, to identify the different types of germs responsible for the pollution of these waters and to establish the main causes of this pollution. Water samples taken from taps or wells were analyzed to detect pollution indicator germs (total coliform (TC), fecal coliform (FC), intestinal enterococci (E), revivable microorganisms (RM), sulphite-reducing anaerobes) and pathogens (Salmonella, Staphylococci, Pseudomonas aeruginosa). The enumeration of the bacteria was performed by filtration technique and incorporation obtained through supercooled solid state. The results showed that public-supply waters were of satisfactory bacteriological quality while 40% of the wells water was non-compliant with water quality standards due to the presence of TC, FC, E and RM pollution indicators. In contrast, pathogens, particularly Salmonellae, were absent in all the wells water analyzed. Well water pollution was generally due to failure to meet hygienic requirements for water pumping. Bacteriological quality of these wells water could be improved by adequate protection.
Marine geophysical data collected in a shallow back-barrier estuary, Barnegat Bay, New Jersey
Andrews, Brian D.; Miselis, Jennifer L.; Danforth, William W.; Irwin, Barry J.; Worley, Charles R.; Bergeron, Emile M.; Blackwood, Dann S.
2015-06-26
In 2011, the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, began a multidisciplinary research project to better understand the water quality in Barnegat Bay, New Jersey. This back-barrier estuary is experiencing degraded water quality, algal blooms, loss of seagrass, and increases in oxygen stress, macroalgae, stinging nettles, and brown tide. The spatial scale of the estuary and the scope of challenges within it necessitate a multidisciplinary approach that includes establishing the regional geology and the estuary’s physical characteristics and modeling how the estuary’s morphology interacts to affect its water quality. This report presents the data collected during this project for use in understanding the morphology and the distribution of sea-floor and sub-sea-floor sediments within Barnegat Bay, describes the methods used to collect and process those data, and includes links to the final processed datasets. These data can be used by scientists to understand the links between geomorphology, geologic framework, sediment transport, and estuarine water quality and circulation.
Holvoet, Kevin; Jacxsens, Liesbeth; Sampers, Imca; Uyttendaele, Mieke
2012-04-01
This study provided insight into the degree of microbial contamination in the processing chain of prepacked (bagged) lettuce in two Belgian fresh-cut produce processing companies. The pathogens Salmonella and Listeria monocytogenes were not detected. Total psychrotrophic aerobic bacterial counts (TPACs) in water samples, fresh produce, and environmental samples suggested that the TPAC is not a good indicator of overall quality and best manufacturing practices during production and processing. Because of the high TPACs in the harvested lettuce crops, the process water becomes quickly contaminated, and subsequent TPACs do not change much throughout the production process of a batch. The hygiene indicator Escherichia coli was used to assess the water management practices in these two companies in relation to food safety. Practices such as insufficient cleaning and disinfection of washing baths, irregular refilling of the produce wash baths with water of good microbial quality, and the use of high product/water ratios resulted in a rapid increase in E. coli in the processing water, with potential transfer to the end product (fresh-cut lettuce). The washing step in the production of fresh-cut lettuce was identified as a potential pathway for dispersion of microorganisms and introduction of E. coli to the end product via cross-contamination. An intervention step to reduce microbial contamination is needed, particularly when no sanitizers are used as is the case in some European Union countries. Thus, from a food safety point of view proper water management (and its validation) is a critical point in the fresh-cut produce processing industry.
Mouri, Goro; Oki, Taikan
2010-01-01
Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also modelling systems to enable the user to link the effect of changes in urban sewage systems with specific quality, energy consumption, CO(2) emission, and ecological improvements of the receiving water.
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.
Water recovery and solid waste processing for aerospace and domestic applications
NASA Technical Reports Server (NTRS)
Murawczyk, C.
1973-01-01
The work is described accomplished in compiling information needed to establish the current water supply and waste water processing requirements for dwellings, and for developing a preliminary design for a waste water to potable water management system. Data generated was used in formulation of design criteria for the preliminary design of the waste water to potable water recycling system. The system as defined was sized for a group of 500 dwelling units. Study tasks summarized include: water consumption, nature of domestic water, consumer appliances for low water consumption, water quality monitoring, baseline concept, and current and projected costs.
Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan
2017-08-23
Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.
South Platte River Basin - Colorado, Nebraska, and Wyoming
Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.
1993-01-01
The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.
Microbiological monitoring for the US Geological Survey National Water-Quality Assessment Program
Francy, Donna S.; Myers, Donna N.; Helsel, Dennis R.
2000-01-01
Data to characterize the microbiological quality of the Nation?s fresh, marine, and estuarine waters are usually collected for local purposes, most often to judge compliance with standards for protection of public health in swimmable or drinkable waters. Methods and procedures vary with the objectives and practices of the parties collecting data and are continuously being developed or modified. Therefore, it is difficult to provide a nationally consistent picture of the microbial quality of the Nation?s waters. Study objectives and guidelines for a national microbiological monitoring program are outlined in this report, using the framework of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. A national program is designed to provide long-term data on the presence of microbiological pathogens and indicators in ground water and surface water to support effective water policy and management. Three major groups of waterborne pathogens affect the public health acceptability of waters in the United States?bacteria, protozoa, and viruses. Microbiological monitoring in NAWQA would be designed to assess the occurrence, distribution, and trends of pathogenic organisms and indicators in surface waters and ground waters; relate the patterns discerned to factors that help explain them; and improve our understanding of the processes that control microbiological water quality.
Jayasumana, Channa; Ranasinghe, Omesh; Ranasinghe, Sachini; Siriwardhana, Imalka; Gunatilake, Sarath; Siribaddana, Sisira
2016-11-01
Chronic Interstitial Nephritis in Agricultural Communities (CINAC) causes major morbidity and mortality for farmers in North-Central province (NCP) of Sri Lanka. To prevent the CINAC, reverse osmosis (RO) plants are established to purify the water and reduce the exposure to possible nephrotoxins through drinking water. We assessed RO plant maintenance and efficacy in NCP. We have interviewed 10 RO plant operators on plant establishment, maintenance, usage and funding. We also measured total dissolved solids (TDS in ppm) to assess the efficacy of the RO process. Most RO plants were operated by community-based organizations. They provide clean and sustainable water source for many in the NCP for a nominal fee, which tends to be variable. The RO plant operators carry out RO plant maintenance. However, maintenance procedures and quality management practices tend to vary from an operator to another. RO process itself has the ability to lower the TDS of the water. On average, RO process reduces the TDS to 29 ppm. The RO process reduces the impurities in water available to many individuals within CINAC endemic regions. However, there variation in maintenance, quality management, and day-to-day care between operators can be a cause for concern. This variability can affect the quality of water produced by RO plant, its maintenance cost and lifespan. Thus, uniform regulation and training is needed to reduce cost of maintenance and increase the efficacy of RO plants.
Viljoen, F C
2010-01-01
South Africa is a country of contrasts with far ranging variations in climate, precipitation rates, cultures, demographics, housing levels, education, wealth and skills levels. These differences have an impact on water services delivery as do expectations, affordability and available resources. Although South Africa has made much progress in supplying drinking water, the same cannot be said regarding water quality throughout the country. A concerted effort is currently underway to correct this situation and as part of this drive, water safety plans (WSP) are promoted. Rand Water, the largest water services provider in South Africa, used the World Health Organization (WHO) WSP framework as a guide for the development of its own WSP which was implemented in 2003. Through the process of implementation, Rand Water found the WHO WSP to be much more than just another integrated quality system.
Modelling the effect of wildfire on forested catchment water quality using the SWAT model
NASA Astrophysics Data System (ADS)
Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.
2016-12-01
Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.
Pires, Nayara Luiz; Muniz, Daphne Heloisa de Freitas; Kisaka, Tiago Borges; Simplicio, Nathan de Castro Soares; Bortoluzzi, Lilian; Lima, Jorge Enoch Furquim Werneck; Oliveira-Filho, Eduardo Cyrino
2015-08-31
The release of domestic sewage in water resources is a practical feature of the urbanization process, and this action causes changes that may impair the environmental balance and the water quality for several uses. The aim of this study was to evaluate the influence of urbanization on the surface water quality of the Preto River throughout the town of Formosa, Goiás, Brazil. Samples were collected at five points along the river, spatially distributed from one side to the other of the town of Formosa, from May to October of 2012. Data were subjected to descriptive statistics, as well as variance and cluster analysis. Point P2, the first point after the city, showed the worst water quality indicators, mainly with respect to the total and fecal coliform parameters, as well as nitrate concentrations. These results may be related to the fact that this point is located on the outskirts of the town, an area under urbanization and with problems of sanitation, including absence of sewage collection and treatment. The data observed in this monitoring present a public health concern because the water body is used for bathing, mainly in parts of Feia Lagoon. The excess of nutrients is a strong indicator of water eutrophication and should alert decision-makers to the need for preservation policies.
Perceptions of drinking water quality and risk and its effect on behaviour: a cross-national study.
Doria, Miguel de França; Pidgeon, Nick; Hunter, Paul R
2009-10-15
There is a growing effort to provide drinking water that has the trust of consumers, but the processes underlying the perception of drinking water quality and risks are still not fully understood. This paper intends to explore the factors involved in public perception of the quality and risks of drinking water. This purpose was addressed with a cross-national mixed-method approach, based on quantitative (survey) and qualitative (focus groups) data collected in the UK and Portugal. The data were analysed using several methods, including structural equation models and generalised linear models. Results suggest that perceptions of water quality and risk result from a complex interaction of diverse factors. The estimation of water quality is mostly influenced by satisfaction with organoleptic properties (especially flavour), risk perception, contextual cues, and perceptions of chemicals (lead, chlorine, and hardness). Risk perception is influenced by organoleptics, perceived water chemicals, external information, past health problems, and trust in water suppliers, among other factors. The use of tap and bottled water to drink was relatively well explained by regression analysis. Several cross-national differences were found and the implications are discussed. Suggestions for future research are provided.
Bechy-Loizeau, Anne-Laure; Flandrois, Jean-Pierre; Abaibou, Hafid
2015-07-01
On the ISS, as on Earth, water is an essential element for life and its quality control on a regular basis allows to ensure the health of the crew and the integrity of equipment. Currently, microbial water analysis onboard ISS still relies on the traditional culture-based microbiology methods. Molecular methods based on the amplification of nucleic acids for microbiological analysis of water quality show enormous potential and are considered as the best alternative to culture-based methods. For this reason, the Midass, a fully integrated and automated prototype was designed conjointly by ESA and bioMérieux for a rapid monitoring of the microbiological quality of air. The prototype allows air sampling, sample processing and the amplification/detection of nucleic acids. We describe herein the proof of principle of an analytical approach based on molecular biology that could fulfill the ESA's need for a rapid monitoring of the microbiological quality of recycled water onboard ISS. Both concentration and recovery of microorganisms are the main critical steps when the microfiltration technology is used for water analysis. Among filters recommended standards for monitoring the microbiological quality of the water, the polycarbonate filter was fully in line with the requirements of the ISO 7704-1985 standard in terms of efficacy of capture and recovery of bacteria. Moreover, this filter does not retain nucleic acids on the surface and has no inhibitory effect on their downstream processing steps such as purification and amplification/detection. Although the Midass system was designed for the treatment of air samples, the first results on the integration of PC filters were encouraging. Nevertheless, system modifications are needed to better adapt the Midass system for the monitoring of the microbiological water quality. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow
NASA Astrophysics Data System (ADS)
Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.
1997-12-01
Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.
Water-quality monitoring and process understanding in support of environmental policy and management
Peters, N.E.
2008-01-01
The quantity and quality of freshwater at any point on the landscape reflect the combined effects of many processes operating along hydrological pathways within a drainage basin/watershed/catchment. Primary drivers for the availability of water are landscape changes and patterns, and the processes affecting the timing, magnitude, and intensity of precipitation, including global climate change. The degradation of air, land, and water in one part of a drainage basin can have negative effects on users downstream; the time and space scales of the effects are determined by the residence time along the various hydrological pathways. Hydrology affects transport, deposition, and recycling of inorganic materials and sediment. These components affect biota and associated ecosystem processes, which rely on sustainable flows throughout a drainage basin. Human activities on all spatial scales affect both water quantity and quality, and some human activities can have a disproportionate effect on an entire drainage basin. Aquatic systems have been continuously modified by agriculture, through land-use change, irrigation and navigation, disposal of urban, mining, and industrial wastes, and engineering modifications to the environment. Interdisciplinary integrated basin studies within the last several decades have provided a more comprehensive understanding of the linkages among air, land, and water resources. This understanding, coupled with environmental monitoring, has evolved a more multidisciplinary integrated approach to resource management, particularly within drainage basins.
SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES
Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...
Development of water quality standards criteria. [for consumables (spacecrew supplies)
NASA Technical Reports Server (NTRS)
1976-01-01
Qualitative and semiquantitative analyses were made of volatile organic compounds in water supplies collected at various stages of processing in the space station prototype vacuum compression distillation unit to evaluate the process and the product water. Additional evaluation was made of specific ingredients required to adequately enhance the taste of the reclaimed water. A concept for the in-flight addition of these ingredients was developed. Revisions to previously recommended potable water criteria and specifications are included.
Magner, J A; Brooks, K N
2008-03-01
Section 303(d) of the Clean Water Act requires States and Tribes to list waters not meeting water quality standards. A total maximum daily load must be prepared for waters identified as impaired with respect to water quality standards. Historically, the management of pollution in Minnesota has been focused on point-source regulation. Regulatory effort in Minnesota has improved water quality over the last three decades. Non-point source pollution has become the largest driver of conventional 303(d) listings in the 21st century. Conventional pollutants, i.e., organic, sediment and nutrient imbalances can be identified with poor land use management practices. However, the cause and effect relationship can be elusive because of natural watershed-system influences that vary with scale. Elucidation is complex because the current water quality standards in Minnesota were designed to work best with water quality permits to control point sources of pollution. This paper presents a sentinel watershed-systems approach (SWSA) to the monitoring and assessment of Minnesota waterbodies. SWSA integrates physical, chemical, and biological data over space and time using advanced technologies at selected small watersheds across Minnesota to potentially improve understanding of natural and anthropogenic watershed processes and the management of point and non-point sources of pollution. Long-term, state-of-the-art monitoring and assessment is needed to advance and improve water quality standards. Advanced water quality or ecologically-based standards that integrate physical, chemical, and biological numeric criteria offer the potential to better understand, manage, protect, and restore Minnesota's waterbodies.
Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.
2005-01-01
Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.
Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.
1994-01-01
The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and phosphorus. A negative or positive bias condition was indicated in three of five nutrient constituents. There was acceptable precision and no indication of bias for the 14 low ionic-strength analytical procedures tested in the National Water Quality Laboratory program and for the 32 inorganic and 5 nutrient analytical procedures tested in the Quality of Water Service Unit during water year 1991.
NASA Technical Reports Server (NTRS)
Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.
1998-01-01
Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.
Parliman, D.J.
1987-01-01
The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications of organic wastewater and organic solute loading rates on subsurface water quality is not feasible at this time.
New Perspectives in Monitoring Drinking Water Microbial Quality
Figueras, Ma José; Borrego, Juan J.
2010-01-01
The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002
Francy, D.S.; Jones, A.L.; Myers, Donna N.; Rowe, G.L.; Eberle, Michael; Sarver, K.M.
1998-01-01
The U.S. Geological Survey (USGS), Water Resources Division (WRD), requires that quality-assurance/quality-control (QA/QC) activities be included in any sampling and analysis program. Operational QA/QC procedures address local needs while incorporating national policies. Therefore, specific technical policies were established for all activities associated with water-quality project being done by the Ohio District. The policies described in this report provide Ohio District personnel, cooperating agencies, and others with a reference manual on QA/QC procedures that are followed in collecitng and analyzing water-quality samples and reporting water-quality information in the Ohio District. The project chief, project support staff, District Water-Quality Specialist, and District Laboratory Coordinator are all involved in planning and implementing QA/QC activities at the district level. The District Chief and other district-level managers provide oversight, and the Regional Water-Quality Specialist, Office of Water Quality (USGS headquarters), and the Branch of Quality Systems within the Office of Water Quality create national QA/QC polices and provide assistance to District personnel. In the literature, the quality of all measurement data is expressed in terms of precision, variability, bias, accuracy, completeness, representativeness, and comparability. In the Ohio District, bias and variability will be used to describe quality-control data generated from samples in the field and laboratory. Each project chief must plan for implementation and financing of QA/QC activities necessary to achieve data-quality objectives. At least 15 percent of the total project effort must be directed toward QA/QC activities. Of this total, 5-10 percent will be used for collection and analysis of quality-control samples. This is an absolute minimum, and more may be required based on project objectives. Proper techniques must be followed in the collection and processing of surface-water, ground-water, biological, precipitation, bed-sediment, bedload, suspended-sediment, and solid-phase samples. These techniques are briefly described in this report and are extensively documented. The reference documents listed in this report will be kept by the District librarian and District Water-Quality Specialist and updated regularly so that they are available to all District staff. Proper handling and documentation before, during, and after field activities are essential to ensure the integrity of the sample and to correct erroneous reporting of data results. Field sites are to be properly identified and entered into the data base before field data-collection activities begin. During field activities, field notes are to be completed and sample bottles appropriately labeled a nd stored. After field activities, all paperwork is to be completed promptly and samples transferred to the laboratory within allowable holding times. All equipment used by District personnel for the collection and processing of water-quality samples is to be properly operated, maintained, and calibrated by project personnel. This includes equipment for onsite measurement of water-quality characteristics (temperature, specific conductance, pH, dissolved oxygen, alkalinity, acidity, and turbidity) and equipment and instruments used for biological sampling. The District Water-Quality Specialist and District Laboratory Coordinator are responsible for preventive maintenance and calibration of equipment in the Ohio District laboratory. The USGS National Water Quality Laboratory in Arvada, Colo., is the primary source of analytical services for most project work done by the Ohio District. Analyses done at the Ohio District laboratory are usually those that must be completed within a few hours of sample collection. Contract laboratories or other USGS laboratories are sometimes used instead of the NWQL or the Ohio District laboratory. When a contract laboratory is used, the projec
NASA Astrophysics Data System (ADS)
Spangemacher, Lars; Fröhlich, Siegmund; Buse, Hauke
2017-11-01
Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.
Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol
1993-01-01
The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)
NASA Astrophysics Data System (ADS)
Liu, X.; Liu, J.; Peng, W.; Wang, Y.
2007-05-01
In recent years, eutrophication has become one of the most serious of global water pollution problems, especially in reservoirs, which is menacing the security of domestic water supplies. As the unique drinking water source of Tianjin within the Haihe River basin of Hebei Province, China, YuQiao Reservoir has been polluted and its eutrophic state is serious. To make clear the physical and chemical relationship between transport and transformation of the polluted water, a model package was developed to compute the hydrodynamic field and mass transport processes including total nitrogen (TN) and total phosphorus (TP) for YuQiao Reservoir. The hydrodynamic model was driven by observed winds and daily measured flow data to simulate the seasonal water cycle of the reservoir. The mass transport and transformation processes of TN and TP was based on the unsteady diffusion equations, driven by observed meteorological forcings and external loadings, with the fluxes through the bottom of the reservoir, plant (algal) photosynthesis, and respiration as internal sources and sinks. The solution of these equations uses the finite volume method and alternating direction implicit (ADI) scheme. The model was calibrated and verified by using the data observed from YuQiao Reservoir in two different years. The results showed that in YuQiao Reservoir, the wind-driven current is an important style of lake current, while the water quality is decreasing from east to west because of the external polluted loadings. There was good agreement between the simulated and measured values. Advection is the main process driving the water quality impacts from the inflow river, and diffusion and biochemical processes dominate in center of the reservoir. So it is necessary to build a pre-pond to reduce the external loadings into the reservoir.
NASA Astrophysics Data System (ADS)
Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.
2015-04-01
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Investigation of Pearl River data collection system
NASA Technical Reports Server (NTRS)
1976-01-01
The reliability of employing NASA developed remote sensing for in situ near real time monitoring of water quality in the Pearl River is evaluated. The placement, operation and maintenance of a number of NASA developed data collection platforms (DCP's) on the Pearl River are described. The reception, processing, and retransmission of water quality data from an ERTS satellite to the Mississippi Air and Water Pollution Control Commission (MAWPCC) via computer linkup are assessed.
Choi, D J; Park, H
2001-11-01
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.
Rahmati, Mitra; Mirás-Avalos, José M; Valsesia, Pierre; Lescourret, Françoise; Génard, Michel; Davarynejad, Gholam H; Bannayan, Mohammad; Azizi, Majid; Vercambre, Gilles
2018-01-01
Climate change projections predict warmer and drier conditions. In general, moderate to severe water stress reduce plant vegetative growth and leaf photosynthesis. However, vegetative and reproductive growths show different sensitivities to water deficit. In fruit trees, water restrictions may have serious implications not only on tree growth and yield, but also on fruit quality, which might be improved. Therefore, it is of paramount importance to understand the complex interrelations among the physiological processes involved in within-tree carbon acquisition and allocation, water uptake and transpiration, organ growth, and fruit composition when affected by water stress. This can be studied using process-based models of plant functioning, which allow assessing the sensitivity of various physiological processes to water deficit and their relative impact on vegetative growth and fruit quality. In the current study, an existing fruit-tree model (QualiTree) was adapted for describing the water stress effects on peach ( Prunus persica L. Batsch) vegetative growth, fruit size and composition. First, an energy balance calculation at the fruit-bearing shoot level and a water transfer formalization within the plant were integrated into the model. Next, a reduction function of vegetative growth according to tree water status was added to QualiTree. Then, the model was parameterized and calibrated for a late-maturing peach cultivar ("Elberta") under semi-arid conditions, and for three different irrigation practices. Simulated vegetative and fruit growth variability over time was consistent with observed data. Sugar concentrations in fruit flesh were well simulated. Finally, QualiTree allowed for determining the relative importance of photosynthesis and vegetative growth reduction on carbon acquisition, plant growth and fruit quality under water constrains. According to simulations, water deficit impacted vegetative growth first through a direct effect on its sink strength, and; secondly, through an indirect reducing effect on photosynthesis. Fruit composition was moderately affected by water stress. The enhancements performed in the model broadened its predictive capabilities and proved that QualiTree allows for a better understanding of the water stress effects on fruit-tree functioning and might be useful for designing innovative horticultural practices in a changing climate scenario.
Putnam, James E.; Hansen, Cristi V.
2014-01-01
As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.
NASA Astrophysics Data System (ADS)
Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping
2016-05-01
To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.
Linked Hydrologic-Hydrodynamic Model Framework to Forecast Impacts of Rivers on Beach Water Quality
NASA Astrophysics Data System (ADS)
Anderson, E. J.; Fry, L. M.; Kramer, E.; Ritzenthaler, A.
2014-12-01
The goal of NOAA's beach quality forecasting program is to use a multi-faceted approach to aid in detection and prediction of bacteria in recreational waters. In particular, our focus has been on the connection between tributary loads and bacteria concentrations at nearby beaches. While there is a clear link between stormwater runoff and beach water quality, quantifying the contribution of river loadings to nearshore bacterial concentrations is complicated due to multiple processes that drive bacterial concentrations in rivers as well as those processes affecting the fate and transport of bacteria upon exiting the rivers. In order to forecast potential impacts of rivers on beach water quality, we developed a linked hydrologic-hydrodynamic water quality framework that simulates accumulation and washoff of bacteria from the landscape, and then predicts the fate and transport of washed off bacteria from the watershed to the coastal zone. The framework includes a watershed model (IHACRES) to predict fecal indicator bacteria (FIB) loadings to the coastal environment (accumulation, wash-off, die-off) as a function of effective rainfall. These loadings are input into a coastal hydrodynamic model (FVCOM), including a bacteria transport model (Lagrangian particle), to simulate 3D bacteria transport within the coastal environment. This modeling system provides predictive tools to assist local managers in decision-making to reduce human health threats.
Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5
Loperfido, John
2013-01-01
A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality in rivers. Concepts presented in this chapter will provide a backdrop that other chapters in this book will explore further, including water quality in the following riverine systems: the Mississippi River (see Chapter 4.9), Hudson River (see Chapter 4.6), and rivers in India (see Chapter 4.10).
National water-quality assessment program : the Albemarle- Pamlico drainage
Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.
1991-01-01
In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of water in Albemarle-Pamlico Sounds, the second largest estuarine system in the United States.
Impacts of extreme flooding on riverbank filtration water quality.
Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I
2016-06-01
Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
Gil, K I; Choi, E
2004-01-01
The recycle water from sludge processing in municipal wastewater treatment plants causes many serious problems in the efficiency and stability of the mainstream process. Thus, the design approach for recycle water is an important part of any biological nutrient removal system design when a retrofit technology is required for upgrading an existing plant. Moreover, the application of nitrogen removal from recycle water using the nitritation process has recently increased due to economic reasons associated with an effective carbon allocation as well as the minimization of aeration costs. However, for the actual application of recycle water nitritation, it has not been fully examined whether or not additional volume would be required in an existing plant. In this paper, the addition of recycle water nitritation to an existing plant was evaluated based on a volume analysis and estimation of final effluent quality. It was expected that using the reserve volume of the aeration tank in existing plants, recycle water nitritation could be applied to a plant without any enlargement. With the addition of recycle water nitritation, it was estimated that the final effluent quality would be improved and stabilized, especially in the winter season.
A proposed ground-water quality monitoring network for Idaho
Whitehead, R.L.; Parliman, D.J.
1979-01-01
A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)
Framework and tools for agricultural landscape assessment relating to water quality protection.
Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine
2009-05-01
While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.
Coordination and standardization of federal sedimentation activities
Glysson, G. Douglas; Gray, John R.
1997-01-01
- precipitation information critical to water resources management. Memorandum M-92-01 covers primarily freshwater bodies and includes activities, such as "development and distribution of consensus standards, field-data collection and laboratory analytical methods, data processing and interpretation, data-base management, quality control and quality assurance, and water- resources appraisals, assessments, and investigations." Research activities are not included.
Fire and fish: A synthesis of observation and experience
Bruce Rieman; Robert Gresswell; John Rinne
2012-01-01
The effects of wildfire on aquatic systems and fishes occurring in them has been linked to the direct or immediate influence of the fire on water quality and the indirect or subsequent effects on watershed characteristics and processes that influence water quality and quantity, stream channels, and aquatic biota (Gresswell 1999). Early research linking fire and aquatic...
The total maximum daily load (TMDL) process is ineffective and inappropriate for improving stream water quality in the rural areas of the northern Great Basin, and likely in many areas throughout the country. Important pollutants (e.g., sediment and nutrients) come from the stre...
NASA Astrophysics Data System (ADS)
Nguyen, L. H.; Wildman, R.
2012-12-01
This study characterizes quantitatively the flow and mixing regimes of a water supply reservoir, while also conducting numerical tracer experiments on different operation scenarios. We investigate the effects of weather events on water quality via storm water inflows. Our study site the Kensico Reservoir, New York, the penultimate reservoir of New York City's water supply, is never filtered and thus dependent on stringent watershed protection. This reservoir must meet federal drinking water standards under changing conditions such as increased suburban, commercial, and highway developments that are much higher than the rest of the watershed. Impacts from these sources on water quality are magnified by minor tributary flows subject to contaminants from development projects as other tributaries providing >99% of water to this reservoir are exceedingly clean due to management practices upstream. These threats, coupled with possible changes in the frequency/intensity of weather events due to climate change, increase the potential for contaminants to enter the reservoir and drinking water intakes. This situation provides us with the unique ability to study the effects of weather events on water quality via insignificant storm water inflows, without influence from the major tributaries due to their pristine water quality characteristics. The concentration of contaminants at the drinking water intake depends partially on transport from their point of entry in the reservoir. Thus, it is crucial to understand water circulation in this reservoir and to estimate residence times and water ages at different locations and under different hydrologic scenarios. We described water age, residence time, thermal structure, and flow dynamics of tributary plumes in Kensico Reservoir during a 22-year simulation period using a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Our estimates of water age can reach a maximum of ~300 days in deep-reservoir-cells, with stratification lasting ~6 months. The two primary inflows located in separate branches tend to consistently enter as overflow and interflow plumes, respectively, and travel upstream towards the opposing inflow. We then conducted numerical tracer experiments to monitor water age and residence time during experimental hydrologic scenarios that simulate management scenarios based on extreme versions of past reservoir operations. Experiments focused on tracking inputs from the minor tributaries that drain areas of different land use immediately around the reservoir and determining the flow conditions that promote transport of potentially impacted tributary water to the drinking water outlets. These include dry periods or storms paired with variations of common, low, or high flow in either of two aqueducts that feed the reservoir. This study provides us with the ability to learn about insignificant tributaries affecting water quality in large bodies of water. The in-reservoir interactions between water from these tributaries and other natural processes help meet water quality standards before transport to urban environments. Thus, understanding these dynamic processes is crucial to maintaining and improving drinking water quality as it relates to public health.
Influences of water and sediment quality and hydrologic processes on mussels in the Clinch River
Johnson, Gregory C.; Krstolic, Jennifer L.; Ostby, Brett J.K.
2014-01-01
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water-quality data showed higher turbidity and specific conductance in the reaches with low-quality mussel assemblages compared to reaches with high-quality mussel assemblages. Discrete water-quality samples showed higher major ions and metals concentrations in the low-quality reach. Base-flow samples contained high major ion and metal concentrations coincident to low-quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high-quality mussel populations occur.
Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models
NASA Astrophysics Data System (ADS)
Debele, B.; Srinivasan, R.; Parlange, J.
2004-12-01
Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.
Azimi, Sam; Rocher, Vincent
2016-01-15
Over the past 20 years, rules concerning wastewater treatment and quality of water discharged into the environment have changed considerably. Huge investments have been made in Paris conurbation to improve waste water treatment processes in accordance with the European Water Framework Directive. The interdepartmental association for sewage disposal in Paris conurbation (SIAAP) carried out a monitoring of both fish assemblages and water quality in the Seine River around the Paris conurbation (France) since the early 90's. The main goal of this study was to estimate the influence of the water quality improvement on fish. On one hand, the study confirmed the improvement of the water quality (dissolved oxygen, ammonia nitrogen, organic matter) in the Seine River, mostly focused downstream of Paris conurbation. On the other hand, an increase of the number of species occurred from 1990 (14) to 2013 (21). Moreover, changes in the river Seine assemblages happened over that 23-year period with emergence of sensitive species (ruffe, scalpin and pike-perch). The improvement of the water quality was also reported with respect to the Index of Biotic Integrity (IBI). However, no variation of pollutant concentrations in roach, eel and chub muscles has been observed. An exceedance of the environmental quality standards have even been reported all over this period as regards mercury and organochlorine.
Chen, T K; Chen, J N
2004-01-01
In TFT-LCD industry, water plays a variety of roles as a cleaning agent and reaction solvent. As good quality water is increasingly a scarce resource and wastewater treatment costs rises, the once-through use of industrial water is becoming uneconomical and environmentally unacceptable. Instead, recycling of TFT-LCD industrial wastewater is become more attractive from both an economic and environmental perspective. This research is mainly to explore the capacity of TFT-LCD industrial wastewater recycling by the process combined with membrane bioreactor and reverse osmosis processes. Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 97.3%. For TOC and BOD5 items, the average removal efficiencies were 97.8 and 99.4% respectively. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of the UF membrane device incorporated with biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After treatment of RO, excellent water quality of permeate were under 5 mg/l, 2.5 mg/l and 150 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled for the cooling tower make-up water or other purposes.
A statistical model for water quality predictions from a river discharge using coastal observations
NASA Astrophysics Data System (ADS)
Kim, S.; Terrill, E. J.
2007-12-01
Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.
Waste water processing technology for Space Station Freedom - Comparative test data analysis
NASA Technical Reports Server (NTRS)
Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.
1991-01-01
Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, Robin; Kingsley, Mark T.
An apparatus and process of using existing process water sources such as cooling towers, fountains, and waterfalls is provided in which the water sources are utilized as monitoring system for the detection of environmental agents which may be present in the environment. The process water is associated with structures and have an inherent filtering or absorbing capability available in the materials and therefore can be used as a rapid screening tool for quality and quantitative assessment of environmental agents.
van Lier, J B; Boncz, M A
2002-01-01
The pulp and paper industry uses significant amounts of water and energy for the paper production process. Closing the water cycles in this industry, therefore, promises large benefits for the environment and has the potential of huge cost savings for the industry. Closing the water cycle on the other hand also introduces problems with process water quality, quality of the end-product and scaling, owing to increased water contamination. An inline treatment system is discussed in which anaerobic-aerobic bioreactors perform a central role for removing both organic and inorganic pollutants from the process water cycle. In the proposed set-up, the organic compounds are converted to methane gas and reused for energy supply, while sulphur compounds are stripped from the process cycle and calcium carbonate is removed by precipitation. Improved control of the treatment system will direct the inorganic precipitates to a location where it does not adversely affect paper production and process water treatment. A simulation program for triggering and controlling CaCO3 precipitation was developed that takes both biological conversions and all relevant chemical equilibria in the system into account. Simulation results are in good agreement with data gathered in a full-scale "zero-emission" paper plant and indicate that control of CaCO3 precipitation can be improved, e.g. in the aerobic post-treatment. Alternatively, a separate precipitation unit could be considered.
Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models
NASA Astrophysics Data System (ADS)
Starn, J. J.; Belitz, K.
2014-12-01
National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions. Convolution with age distributions can be used to quickly ascertain likely future water-quality conditions. Although these models are admittedly very general and are still being tested, the hope is that they will be useful for answering questions related to water quality at the regional scale.
NASA Astrophysics Data System (ADS)
Carey, Richard O.; Migliaccio, Kati W.
2009-08-01
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.
NASA Astrophysics Data System (ADS)
Neville, J.; Vose, J. M.; Nichols, E. G.; Jass, T. L.; Emanuel, R. E.; McRae, J.
2016-12-01
Water quality and land use/land cover (LULC) are linked intimately in many watersheds, although exact relationships are often nonlinear and sometimes complex. Together with watershed topography, LULC can affect water quality in various ways. As such, attributing water quality characteristics to LULC variations (either in space or time) can be difficult. Many studies seek to understand these relationships from a Eulerian reference frame, which typically involves many samples or observations through time at a fixed location. Here we explore an alternative approach to understanding relationships between LULC and water quality that relies on a Lagrangian, or moving, reference frame, in which the effects of LULC and watershed topography on water quality can be observed through a different lens. We studied three reaches of the Lumber River, a blackwater stream in North Carolina's Coastal Plain, to assess relationships between LULC and water quality in a watershed that is a patchwork of agriculture, forests, wetlands and developed land. Our study combines spatially intensive water quality measurements (temperature, specific conductance, dissolved oxygen, pH and nitrate concentration), collected by boat, with geospatial analyses of LULC to understand influences on the spatial evolution of reach-scale water quality. In particular, we investigate relationships between spatial patterns in nitrate and the changing spatial characteristics of the watershed integrated at sampling points along each reach. We also assess relationships between nitrate and other water quality variables, such as pH, temperature, and dissolved oxygen to better understand the potential role of in-stream nutrient processing in observed spatial patterns. This work has implications for the regulation and management of agriculture, wetlands, and forests in a region that has long struggled to balance agriculture, a major economic driver, with water quality, a major concern for recreation and cultural practices locally and for nutrient sensitive coastal environments downstream.
Implications of Modeling Uncertainty for Water Quality Decision Making
NASA Astrophysics Data System (ADS)
Shabman, L.
2002-05-01
The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications of the adaptive implementation for setting of water quality standards, for design of watershed monitoring programs and for the regulatory rules governing the TMDL program implementation.
33 CFR 385.21 - Quality control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Quality control. 385.21 Section... Processes § 385.21 Quality control. (a) The Corps of Engineers and the non-Federal sponsor shall prepare a quality control plan, in accordance with applicable Corps of Engineers regulations, for each product that...
33 CFR 385.21 - Quality control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Quality control. 385.21 Section... Processes § 385.21 Quality control. (a) The Corps of Engineers and the non-Federal sponsor shall prepare a quality control plan, in accordance with applicable Corps of Engineers regulations, for each product that...
33 CFR 385.21 - Quality control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Quality control. 385.21 Section... Processes § 385.21 Quality control. (a) The Corps of Engineers and the non-Federal sponsor shall prepare a quality control plan, in accordance with applicable Corps of Engineers regulations, for each product that...
NASA Astrophysics Data System (ADS)
Johnston, J. M.
2013-12-01
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.
NASA Astrophysics Data System (ADS)
Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin
2014-05-01
As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.
Pathogen transport in groundwater systems: contrasts with traditional solute transport
NASA Astrophysics Data System (ADS)
Hunt, Randall J.; Johnson, William P.
2017-06-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
NASA Astrophysics Data System (ADS)
Schmidt, F.; Liu, S.
2016-12-01
Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties addressed in this study include the source and the format of the OI. This project tries to add to the ongoing research into algorithms for CED. It provides ideas for how results from the binary classification of time series could be evaluated in a more realistic fashion and shows what the advantages and limitations of such a method would be.
Veilleux, Éloïse; de Lafontaine, Yves; Thomas, Olivier
2016-04-01
This study assessed the usefulness of UV spectrophotometry for the monitoring of a yeast-based deoxygenation process proposed for ships' ballast water treatment to prevent the transfer of aquatic invasive species. Ten-day laboratory experiments using three treatment concentrations and different water types were conducted and resulted in complete oxygen depletion of treated waters. The treatment performance and quality of treated waters were determined by measuring the UV-visible absorbance spectra of water samples taken over time. Samples were also used for laboratory analysis of water quality properties. The UV absorbance spectra values were strongly correlated (r = 0.96) to yeast cell density in treated waters. The second-order derivative (D (2)) of the spectra varied greatly over time, and the spectrum profiles could be divided into two groups corresponding to the oxygenated and anoxic phases of the treatment. The D (2) value at 215 nm was strongly correlated (r = 0.94) to ammonia levels, which increased over time. The D (2) value at 225 nm was strongly correlated (r > 0.97) to DO concentration. Our results showed that UV spectrophotometry may provide a rapid assessment of the behavior and performance of the yeast bioreactor over time by quantifying (1) the density of yeast cells, (2) the time at which anoxic conditions were reached, and (3) a water quality index of the treated water related to the production of ammonia. We conclude that the rapidity of the technique confers a solid advantage over standard methods used for water quality analysis in laboratory and would permit the direct monitoring of the treatment performance on-board ships.
D'Acunzo, Francesca; Del Cimmuto, Angela; Marinelli, Lucia; Aurigemma, Caterina; De Giusti, Maria
2012-01-01
We evaluated the microbiological impact of low-level chlorination (1 ppm free chlorine) on the production of ready-to-eat (RTE) vegetables by monitoring the microbiological quality of irrigation and processing water in two production plants over a 4-season period, as well as the microbiological quality of unprocessed vegetables and RTE product. Water samples were also characterized in terms of some chemical and physico-chemical parameters of relevance in chlorination management. Both producers use water with maximum 1 ppm free chlorine for vegetables rinsing, while the two processes differ by the number of washing cycles. Salmonella spp and Campylobacter spp were detected once in two different irrigation water samples out of nine from one producer. No pathogens were found in the vegetable samples. As expected, the procedure encompassing more washing cycles performed slightly better in terms of total mesophilic count (TMC) when comparing unprocessed and RTE vegetables of the same batch. However, data suggest that low-level chlorination may be insufficient in preventing microbial build-up in the washing equipment and/or batch-to batch cross-contamination.
1989-01-01
at rates sufficient to bring about increased production of algae and rooted plants and decreased reservoir volume. Associated with this process are...manganese, hydrogen sulfide, ammonia, and carbon dioxide. Further, the production and death of plants throughout the reservoir, followed by...increase in biological production and a decrease in volume or storage capacity. Figure 4 illustrates these incomes and some of the major in-reservoir
Occurrence and exposures to disinfectants and disinfection by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumming, R.B.; Jolley, R.L.
1992-12-31
Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBPmore » precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of ``new`` DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.« less
Occurrence and exposures to disinfectants and disinfection by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumming, R.B.; Jolley, R.L.
1992-01-01
Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBPmore » precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of new'' DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.« less
Yu, Xiaodong; Li, Yang; Gu, Xiaofeng; Bao, Jiming; Yang, Huizhong; Sun, Li
2014-12-01
Water quality monitoring is a critical part of environmental management and protection, and to be able to qualitatively and quantitatively determine contamination and impurity levels in water is especially important. Compared to the currently available water quality monitoring methods and techniques, laser-induced breakdown spectroscopy (LIBS) has several advantages, including no need for sample pre-preparation, fast and easy operation, and chemical free during the process. Therefore, it is of great importance to understand the fundamentals of aqueous LIBS analysis and effectively apply this technique to environmental monitoring. This article reviews the research conducted on LIBS analysis for liquid samples, and the article content includes LIBS theory, history and applications, quantitative analysis of metallic species in liquids, LIBS signal enhancement methods and data processing, characteristics of plasma generated by laser in water, and the factors affecting accuracy of analysis results. Although there have been many research works focusing on aqueous LIBS analysis, detection limit and stability of this technique still need to be improved to satisfy the requirements of environmental monitoring standard. In addition, determination of nonmetallic species in liquid by LIBS is equally important and needs immediate attention from the community. This comprehensive review will assist the readers to better understand the aqueous LIBS technique and help to identify current research needs for environmental monitoring of water quality.
NASA Astrophysics Data System (ADS)
Muench, R.; Jones, M.; Herndon, K. E.; Bell, J. R.; Anderson, E. R.; Markert, K. N.; Molthan, A.; Adams, E. C.; Shultz, L.; Cherrington, E. A.; Flores, A.; Lucey, R.; Munroe, T.; Layne, G.; Pulla, S. T.; Weigel, A. M.; Tondapu, G.
2017-12-01
On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of images to analysts who could focus on manipulating thresholds and quality control checks for maximum accuracy within the time constraints. The combined results of the radar- and optical-derived value-added products through the coordination of multiple organizations provided timely information for emergency response and recovery efforts
NASA Technical Reports Server (NTRS)
Muench, Rebekke; Jones, Madeline; Herndon, Kelsey; Schultz, Lori; Bell, Jordan; Anderson, Eric; Markert, Kel; Molthan, Andrew; Adams, Emily; Cherrington, Emil;
2017-01-01
On August 25, 2017, Hurricane Harvey made landfall between Port Aransas and Port O'Connor, Texas, bringing with it unprecedented amounts of rainfall and record flooding. In times of natural disasters of this nature, emergency responders require timely and accurate information about the hazard in order to assess and plan for disaster response. Due to the extreme flooding impacts associated with Hurricane Harvey, delineations of water extent were crucial to inform resource deployment. Through the USGS's Hazards Data Distribution System, government and commercial vendors were able to acquire and distribute various satellite imagery to analysts to create value-added products that can be used by these emergency responders. Rapid-response water extent maps were created through a collaborative multi-organization and multi-sensor approach. One team of researchers created Synthetic Aperture Radar (SAR) water extent maps using modified Copernicus Sentinel data (2017), processed by ESA. This group used backscatter images, pre-processed by the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3), to identify and apply a threshold to identify water in the image. Quality control was conducted by manually examining the image and correcting for potential errors. Another group of researchers and graduate student volunteers derived water masks from high resolution DigitalGlobe and SPOT images. Through a system of standardized image processing, quality control measures, and communication channels the team provided timely and fairly accurate water extent maps to support a larger NASA Disasters Program response. The optical imagery was processed through a combination of various band thresholds and by using Normalized Difference Water Index (NDWI), Modified Normalized Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI), and cloud masking. Several aspects of the pre-processing and image access were run on internal servers to expedite the provision of images to analysts who could focus on manipulating thresholds and quality control checks for maximum accuracy within the time constraints. The combined results of the radar- and optical-derived value-added products through the coordination of multiple organizations provided timely information for emergency response and recovery efforts.
NASA Astrophysics Data System (ADS)
Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.
2017-12-01
Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.
Parra, Lorena; García, Laura
2018-01-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €. PMID:29494560
Parra, Lorena; Sendra, Sandra; García, Laura; Lloret, Jaime
2018-03-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Emerging micropollutants (EMPs) are ubiquitous in aquatic systems and are associated with a wide range of eco-toxicological effects worldwide. There remains a lack of scientific understanding of the major underlying hydrochemical factors behind variations in concentration heterogeneities of EMPs in time and space. This study was therefore conducted to determine major hydrochemical processes controlling water quality and the occurrence of EMPs mainly, carbamazepine (CBZ), tonalide (AHTN), galaxolide (HHCB), caffeine (CAF), technical 4-nonylphenol (NP) and bisphenol A (BPA) in water from Mpumalanga, Gauteng and North West Provinces in South Africa. Grab water samples were collected bi-monthly between June 2014 and April 2016 from 44 water sources using standard sampling procedures. BPA, NP, CAF, HHCB, AHTN, CBZ were extracted, cleaned and enriched using autotrace-SPE at neutral pH and analyzed using GC × GC-TOFMS. Kruskal Wallis-test was used to test for temporal variations in occurrence of the analytes. The Geochemist's Workbench® Release 11 software, Surfer Golden Graphics for surface mapping, PHREEQC software and bivariate ion plots were used determine the major hydrogeochemical processes. The mean concentrations of EMPs varied from 3.48 μg/L for CAF to 421.53 μg/L for HHCB. Although the Kruskal Wallis test revealed no any statistically significant temporal variations in concentrations of the analytes in water samples at 95% confidence level, their occurrence and distribution vary spatially with BPA being the most widely distributed EMP and was present in 62% of the sampled sites. Municipal waste water inputs, agricultural pollution, ion-exchange reactions, carbonate and silicate weathering were the major processes controlling water quality in the study area. This study may assist water resource managers to ably address and manage water pollution resulting from a number of natural and anthropogenic hydrochemical processes in the study area.
Georgia's Stream-Water-Quality Monitoring Network, 2006
Nobles, Patricia L.; ,
2006-01-01
The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.
Hyperspectral imaging of water quality - past applications and future directions.
NASA Astrophysics Data System (ADS)
Ross, M. R. V.; Pavelsky, T.
2017-12-01
Inland waters control the delivery of sediment, carbon, and nutrients from land to ocean by transforming, depositing, and transporting constituents downstream. However, the dominant in situ conditions that control these processes are poorly constrained, especially at larger spatial scales. Hyperspectral imaging, a remote sensing technique that uses reflectance in hundreds of narrow spectral bands, can be used to estimate water quality parameters like sediment and carbon concentration over larger water bodies. Here, we review methods and applications for using hyperspectral imagery to generate near-surface two-dimensional models of water quality in lakes and rivers. Further, we show applications using newly available data from the National Ecological Observation Network aerial observation platform in the Black Warrior and Tombigbee Rivers, Alabama. We demonstrate large spatial variation in chlorophyll, colored dissolved organic matter, and turbidity in each river and uneven mixing of water quality constituents for several kilometers. Finally, we demonstrate some novel techniques using hyperspectral imagery to deconvolve dissolved organic matter spectral signatures to specific organic matter components.
Portable water quality monitoring system
NASA Astrophysics Data System (ADS)
Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.
2017-09-01
Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.
Green Infrastructure Research at NRMRL’s Urban Watershed Research Facility
USEPA’s National Risk Management Research Laboratory (NRMRL) examined several options for completing water quality research supporting the Clean Water Act and the Safe Drinking Water Act. NRMRL concluded that developing and understanding the engineering unit processes within gre...
Water technology for specific water usage.
Frimmel, Fritz H
2003-01-01
Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.
NASA Astrophysics Data System (ADS)
Roy, Kushal; Karim, Md. Rezaul; Akter, Farjana; Islam, Md. Safiqul; Ahmed, Kousik; Rahman, Masudur; Datta, Dilip Kumar; Khan, M. Shah Alam
2018-05-01
Despite its complexity and importance in managing water resources in populous deltas, especially in tidal areas, literatures on tidal rivers and their land use linkage in connection to water quality and pollution are rare. Such information is of prior need for Integrated Water Resource Management in water scarce and climate change vulnerable regions, such as the southwestern coast of Bangladesh. Using water quality indices and multivariate analysis, we present here the land use signatures of a dying tidal river due to anthropogenic perturbation. Correlation matrix, hierarchical cluster analysis, factor analysis, and bio-geo-chemical fingerprints were used to quantify the hydro-chemical and anthropogenic processes and identify factors influencing the ionic concentrations. The results show remarkable spatial and temporal variations ( p < 0.05) in water quality parameters. The lowest solute concentrations are observed at the mid reach of the stream where the agricultural and urban wastewater mix. Agricultural sites show higher concentration of DO, Na+ and K+ reflecting the effects of tidal spill-over and shrimp wastewater effluents nearby. Higher level of Salinity, EC, Cl-, HCO3 -, NO3 -, PO4 3- and TSS characterize the urban sites indicating a signature of land use dominated by direct discharge of household organic waste into the waters. The spatial variation in overall water quality suggests a periodic enhancement of quality especially for irrigation and non-drinking purposes during monsoon and post-monsoon, indicating significant influence of amount of rainfall in the basin. We recommend that, given the recent trend of increasing precipitation and ground water table decrease, such dying tidal river basins may serve as excellent surface water reservoir to supplement quality water supply to the region.
NASA Astrophysics Data System (ADS)
Geris, Josie; Wilkinson, Mark; Stutter, Marc; Guenther, Daniel; Soulsby, Chris
2016-04-01
Many communities across the world face the increasing challenge of balancing water quantity and quality protection and improvement with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). Current mitigation solutions are typically based on isolated design strategies used at specific small scale sites and for storm water only. More holistic catchment scale approaches are urgently required to effectively manage the amount of water flows and protect the raw water quality in peri-urban landscapes. This project aims to provide a better understanding of the connectivity between natural and managed flow pathways, storage, and biogeochemical processes in the peri-urban landscape to eventually aid a more integrated water quantity and quality control design. For an actively urbanising catchment in NE Scotland we seek to understand the spatio-temporal character of the natural flow pathways and associated water quality, and how these may be used to support the design of nature based solutions during urbanisation. We present preliminary findings from a dense and multiscale monitoring network that includes hydrometric, tracer (stable water isotopes) and water quality (turbidity (sediment), nitrate, phosphate) data during a range of contrasting hydroclimatological conditions and at different stages of the development of urban infrastructure. These demonstrate a highly variable nature, both temporally and spatially, with water quality dynamics out of sync with storm responses and depending on management practices. This highlights potential difficulties for managing water quantity and quality simultaneously at the catchment scale, and suggests that a treatment train approach may be required. Well-designed nature based solutions that tackle both water quantity and quality issues will require adaptability and a focus on the whole spectrum of the flow regime.
Tenbus, F.J.; Phillips, S.W.
1996-01-01
Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.
Effects of peatland burning on hydrology, water quality and aquatic ecosystems
NASA Astrophysics Data System (ADS)
Brown, L. E.; Holden, J.; Palmer, S. M.
2009-04-01
Controlled burning is used worldwide for the management of vegetation, yet there is serious concern about the environmental implications of such practices. Across the UK many peatlands are burned to encourage and maintain heather growth. However, detailed evaluations of the costs, benefits and sustainability of burning are hampered by a lack of basic scientific data. This paper will present the outline of a new three year NERC-funded project called EMBER which provides the first co-ordinated evaluation of vegetation burning on peatland hydrological and ecological processes. Case study sites influenced by prescribed burns will be established in internationally important sites in the Peak District and North Pennines, UK. EMBER will increase understanding of the processes linking prescribed peat vegetation fires, hydrology, water quality and stream invertebrate communities in upland peat dominated catchments. Four work packages will aim to: 1) increase understanding of the effects of moorland patch burning on the hydrology and physicochemistry of peat, through examination of changes in soil hydrology and water quality; 2) provide a better understanding of the effects of moorland patch burning on basin runoff quantity and quality, through examination of river flow regimes, suspended sediment concentration and water chemistry; 3) assess the influence of changes in stream hydrology, water quality and sediment fluxes on stream ecosystems through examination of stream invertebrate community biodiversity and fish abundance and 4) gain a more fundamental understanding of some environmental drivers of upland aquatic community response to burning by experimentally manipulating fine sediment flux under controlled conditions using a series of streamside mesocosms. Taken together these packages will provide a holistic patch- to basin-scale evaluation of burning from the perspective of peat hydrology, chemistry, river water quantity and quality, and stream ecosystems, thus providing the balanced knowledge base which is currently lacking for peatlands.
NASA Technical Reports Server (NTRS)
Correll, D. L.
1978-01-01
Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.
Changes in water quality in the Owabi water treatment plant in Ghana
NASA Astrophysics Data System (ADS)
Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex
2017-03-01
The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.
75 FR 4173 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
.... 2009. What Is in Our Drinking Water. United States Environmental Protection Agency, Office of Research and Development. http://www.epa.gov/extrmurl/research/process/drinkingwater.html . Accessed December... and fauna.\\7\\ \\7\\ National Research Council, 2000. Clean Coastal Waters: Understanding and Reducing...
Water Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Water Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) atmosphere (highlighting the processes of evaporation, condensation, convection, wind movement and air pollution); (2) water (examining the properties of liquids, water distribution, use, and quality, and the water…
NASA Astrophysics Data System (ADS)
Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.
2014-03-01
Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.
Herson, M R; Hamilton, K; White, J; Alexander, D; Poniatowski, S; O'Connor, A J; Werkmeister, J A
2018-04-25
Current regulatory requirements demand an in-depth understanding and validation of protocols used in tissue banking. The aim of this work was to characterize the quality of split thickness skin allografts cryopreserved or manufactured using highly concentrated solutions of glycerol (50, 85 or 98%), where tissue water activity (a w ), histology and birefringence changes were chosen as parameters. Consistent a w outcomes validated the proposed processing protocols. While no significant changes in tissue quality were observed under bright-field microscopy or in collagen birefringence, in-process findings can be harnessed to fine-tune and optimize manufacturing outcomes in particular when further radiation sterilization is considered. Furthermore, exposing the tissues to 85% glycerol seems to derive the most efficient outcomes as far as a w and control of microbiological growth.
Chuck Rhoades; Susan Miller; Tim Covino; Alex Chow; Frank McCormick
2017-01-01
Large, high-severity wildfires alter the ecological processes that determine how watersheds retain and release nutrients and affect stream water quality. These changes usually abate a few years after a fire but recent studies indicate they may persist longer than previously expected. Wildfires are a natural disturbance agent, but due to the increased frequency and...
USDA-ARS?s Scientific Manuscript database
To determine the effects of feed pellet processing (extrusion and expansion-steam pelleting) and on feed physico-chemical characteristics, fecal stability, water quality, and growth performance in rainbow trout, three types of trout feed pellets (compressed sinking, extruded sinking, and extruded fl...
Introduction to Field Water-Quality Methods for the Collection of Metals - 2007 Project Summary
Allen, Monica L.
2008-01-01
The U.S. Geological Survey (USGS), Region VI of the U.S. Environmental Protection Agency (USEPA), and the Osage Nation presented three 3-day workshops, in June-August 2007, entitled ?Introduction to Field Water-Quality Methods for the Collection of Metals.? The purpose of the workshops was to provide instruction to tribes within USEPA Region VI on various USGS surface-water measurement methods and water-quality sampling protocols for the collection of surface-water samples for metals analysis. Workshop attendees included members from over 22 tribes and pueblos. USGS instructors came from Oklahoma, New Mexico, and Georgia. Workshops were held in eastern and south-central Oklahoma and New Mexico and covered many topics including presampling preparation, water-quality monitors, and sampling for metals in surface water. Attendees spent one full classroom day learning the field methods used by the USGS Water Resources Discipline and learning about the complexity of obtaining valid water-quality and quality-assurance data. Lectures included (1) a description of metal contamination sources in surface water; (2) introduction on how to select field sites, equipment, and laboratories for sample analysis; (3) collection of sediment in surface water; and (4) utilization of proper protocol and methodology for sampling metals in surface water. Attendees also were provided USGS sampling equipment for use during the field portion of the class so they had actual ?hands-on? experience to take back to their own organizations. The final 2 days of the workshop consisted of field demonstrations of current USGS water-quality sample-collection methods. The hands-on training ensured that attendees were exposed to and experienced proper sampling procedures. Attendees learned integrated-flow techniques during sample collection, field-property documentation, and discharge measurements and calculations. They also used enclosed chambers for sample processing and collected quality-assurance samples to verify their techniques. Benefits of integrated water-quality sample-collection methods are varied. Tribal environmental programs now have the ability to collect data that are comparable across watersheds. The use of consistent sample collection, manipulation, and storage techniques will provide consistent quality data that will enhance the understanding of local water resources. The improved data quality also will help the USEPA better document the condition of the region?s water. Ultimately, these workshops equipped tribes to use uniform sampling methods and to provide consistent quality data that are comparable across the region.
Geologic processes influence the effects of mining on aquatic ecosystems
Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stan E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.
2012-01-01
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.
2012-01-01
The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.
Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine
2012-12-09
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.
Writer, Jeffrey H.; Murphy, Sheila F.
2012-01-01
Forested watersheds provide high-quality source water for many communities in the western United States. These watersheds are vulnerable to wildfires, and wildfire size, fire severity, and length of fire season have increased since the middle 1980s (Westerling and others, 2006). Burned watersheds are prone to increased flooding and erosion, which can impair water-supply reservoirs, water quality, and drinking-water treatment processes. Limited information exists on the degree, timing, and duration of the effects of wildfire on water quality, making it difficult for drinking-water providers to evaluate the risk and develop management options. In order to evaluate the effects of wildfire on water quality and downstream ecosystems in the Colorado Front Range, the U.S. Geological Survey initiated a study after the 2010 Fourmile Canyon fire near Boulder, Colorado. Hydrologists frequently sampled Fourmile Creek at monitoring sites upstream and downstream of the burned area to study water-quality changes during hydrologic conditions such as base flow, spring snowmelt, and summer thunderstorms. This fact sheet summarizes principal findings from the first year of research. Stream discharge and nitrate concentrations increased downstream of the burned area during snowmelt runoff, but increases were probably within the treatment capacity of most drinking-water plants, and limited changes were observed in downstream ecosystems. During and after high-intensity thunderstorms, however, turbidity, dissolved organic carbon, nitrate, and some metals increased by 1 to 4 orders of magnitude within and downstream of the burned area. Increases of such magnitude can pose problems for water-supply reservoirs, drinking-water treatment plants, and downstream aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu
2007-03-01
Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu
2007-01-01
Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain‐fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ∼90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater‐fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain‐fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade‐offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
[Influence of water source switching on water quality in drinking water distribution system].
Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da
2007-10-01
This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.
Comparison of drinking water treatment process streams for optimal bacteriological water quality.
Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary
2012-08-01
Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.
Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations
NASA Astrophysics Data System (ADS)
Chen, X.; Chen, L.; Zhao, J.
2015-12-01
Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.
Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang
2014-01-01
This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.
Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion
NASA Astrophysics Data System (ADS)
Kim, C.
2016-12-01
A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.
Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine
NASA Astrophysics Data System (ADS)
Zlinszky, András; Supan, Peter; Koma, Zsófia
2017-04-01
Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean but also inland lake situations for MODIS and MERIS satellite sensor data. In addition to being relatively robust and less sensitive to atmospheric influence, this algorithm is also very simple, being based on the height of the 680 nm peak above the linear interpolation of the two neighbouring bands. However, not all satellite datasets suitable for FLH are catalogued for GoogleEarth Engine. In the current testing phase, Landsat 7, Landsat 8 (30 m resolution), and Sentinel 2 (20 m) are being tested. Landsat 7 has suitable band configuration, but has a strip error due to a sensor problem. Landsat 8 and Sentinel 2 lack a single spectral optimal for FLH. Sentinel 3 would be an optimal data source and has shown good performace during small-scale initial tests, but is not distributed globally for GoogleEarth Engine. In addition to FLH data from these satellites, our system delivers cloud and ice masking, qualitative suspended sediment data (based on the band closest to 600 nm) and true colour images, all within an easy-to-use Google Maps background. This allows on-demand understanding and interpretation of water quality patterns and processes in near real time. While the system is still under development, we believe it could significantly contribute to lake water quality management and monitoring worldwide.
NASA Astrophysics Data System (ADS)
Boubakri, S.; Rhinane, H.
2017-11-01
The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.
Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad
2016-01-01
Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se foliar spray (40 mg L-1) is a handy, feasible and cost-effective approach to improve maize fodder yield and quality in arid and semi-arid regions of the world facing acute shortage of water. PMID:27729917
NASA Astrophysics Data System (ADS)
Prayogo; Rahardja, B. S.; Asshanti, A. N.; Dewi, N. N.; Santanumurti, M. B.
2018-04-01
Intensive African catfish culture in tarpaulin pond was popular in Banyuwangi, Indonesia since the government supported the fisheries sector. Unfortunately, the failure of African catfish culture still occurred since the waste from fish metabolite process and feed residue decreased the water quality. Bacteria in the water could be the solution to increase the success rate of aquaculture by improving the water quality. This study purpose was to obtained indigenous bacteria in intensive aquaculture system of African catfish to improve water quality. This study successfully isolated bacteria contained with amylase, protease and lipase characteristic. Isolated bacteria in this study were identified as Pseudomonas pseudomallei (97.81%), Bacillus subtilis (95.81%) and Pseudomonas stutzeri (61.21%).
Nonstarch polysaccharides in wheat flour wire-cut cookie making.
Guttieri, Mary J; Souza, Edward J; Sneller, Clay
2008-11-26
Nonstarch polysaccharides in wheat flour have significant capacity to affect the processing quality of wheat flour dough and the finished quality of wheat flour products. Most research has focused on the effects of arabinoxylans (AX) in bread making. This study found that water-extractable AX and arabinogalactan peptides can predict variation in pastry wheat quality as captured by the wire-cut cookie model system. The sum of water-extractable AX plus arabinogalactan was highly predictive of cookie spread factor. The combination of cookie spread factor and the ratio of water-extractable arabinose to xylose predicted peak force of the three-point bend test of cookie texture.
Stark, James R.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.
1999-01-01
This report describes the design, site-selection, and implementation of the study. Methods used to collect, process, and analyze samples; characterize sites; and assess habitat are described. A comprehensive list of sample sites is provided. Sample analyses for water-quality studies included chlorophyll a, major inorganic constituents, nutrients, trace elements, tritium, radon, environmental isotopes, organic carbon, pesticides, volatile organic compounds, and other synthetic and naturallyoccurring organic compounds. Aquatic-biological samples included fish, benthic macroinvertebrates, and algal enumeration and identification, as well as synthetic-organic compounds and trace elements in fish tissue.
Software Quality Assurance and Verification for the MPACT Library Generation Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuxuan; Williams, Mark L.; Wiarda, Dorothea
This report fulfills the requirements for the Consortium for the Advanced Simulation of Light-Water Reactors (CASL) milestone L2:RTM.P14.02, “SQA and Verification for MPACT Library Generation,” by documenting the current status of the software quality, verification, and acceptance testing of nuclear data libraries for MPACT. It provides a brief overview of the library generation process, from general-purpose evaluated nuclear data files (ENDF/B) to a problem-dependent cross section library for modeling of light-water reactors (LWRs). The software quality assurance (SQA) programs associated with each of the software used to generate the nuclear data libraries are discussed; specific tests within the SCALE/AMPX andmore » VERA/XSTools repositories are described. The methods and associated tests to verify the quality of the library during the generation process are described in detail. The library generation process has been automated to a degree to (1) ensure that it can be run without user intervention and (2) to ensure that the library can be reproduced. Finally, the acceptance testing process that will be performed by representatives from the Radiation Transport Methods (RTM) Focus Area prior to the production library’s release is described in detail.« less
Wang, Peng; Chung, Tai-Shung
2012-09-01
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling
2014-05-01
The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.
Drinking Water Quality Surveillance in a Vulnerable Urban Ward of Ahmedabad.
Iyer, Veena; Choudhury, Nandini; Azhar, Gulrez Shah; Somvanshi, Bhushan
2014-05-01
The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of quality, quantity, accessibility, affordability and continuity were assessed in one vulnerable ward of Ahmedabad-a fast growing city in Western India. Interviews with key informants of the ward office, health centre and water supply department, secondary analysis and mapping of field test reports and a questionnaire-based survey of different household types were conducted. We found that Ahmedabad Municipal Corporation (AMC) supplies water to the ward intermittently for two hours during the day. Housing society clusters supplement their AMC water supply with untested bore-well water. The water quality surveillance system is designed for a twenty-four-hour piped distribution of treated surface water. However, in order to maintain surveillance over an intermittent supply that includes ground water, the sampling process should include periodic surveys of water actually consumed by the citizens. The laboratory capacity of the Central Water Testing Laboratory should expand to include more refined tests for microbial and chemical contamination.
Quality control of bottled and vended water in California: A review and comparison to tap water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, J.L.; Allen, L.
1994-04-01
Current regulations and compliance for quality control of bottled and vended water in California are compared with that of the tap water industry in this research. Over 35% of the bottled water sold in the US is consumed in California where a third of the residents use such water as a primary source of drinking water. California is one of several states that regulates bottled water more rigorously than the federal government. In California, water quality standards for the two industries are comparable except that many of the organic standards for bottled water are applicable only to the source water,more » a concern due to potential organic contamination during processing. Reporting requirements, significantly less stringent for bottled water, allow considerable latitude in assessing risks and make assessment of compliance difficult. Based on available statistics, compliance for the two industries is comparable; the majority of violations posed no health risks. For both industries, small systems comprised the majority of violations whereas large systems had excellent compliance rates.« less
NASA Astrophysics Data System (ADS)
Tang, C.; Lynch, J. A.; Dennis, R. L.
2016-12-01
The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.
Optimum operation of restoration techniques for eutrophic water bodies
NASA Astrophysics Data System (ADS)
Hagen, N. M.; Kleeberg, H.-B.
1994-05-01
Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.
Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)
NASA Astrophysics Data System (ADS)
Saghi, H.; Karimi, L.; Javid, A. H.
2015-06-01
Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.
Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul
2011-01-01
A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt
COMPUTER PROGRAM FOR CALCULATING THE COST OF DRINKING WATER TREATMENT SYSTEMS
This FORTRAN computer program calculates the construction and operation/maintenance costs for 45 centralized unit treatment processes for water supply. The calculated costs are based on various design parameters and raw water quality. These cost data are applicable to small size ...
Vandenberghe, V; Goethals, P L M; Van Griensven, A; Meirlaen, J; De Pauw, N; Vanrolleghem, P; Bauwens, W
2005-09-01
During the summer of 1999, two automated water quality measurement stations were installed along the Dender river in Belgium. The variables dissolved oxygen, temperature, conductivity, pH, rain-intensity, flow and solar radiation were measured continuously. In this paper these on-line measurement series are presented and interpreted using also additional measurements and ecological expert-knowledge. The purpose was to demonstrate the variability in time and space of the aquatic processes and the consequences of conducting and interpreting discrete measurements for river quality assessment and management. The large fluctuations of the data illustrated the importance of continuous measurements for the complete description and modelling of the biological processes in the river.
Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.
Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie
2016-03-01
Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.
Geophysical characterisation of the groundwater-surface water interface
NASA Astrophysics Data System (ADS)
McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.
2017-11-01
Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.
Jiang, Yulin; Zhao, Jianfu; Li, Penghui; Huang, Qinghui
2016-10-12
Because of the significance in photosynthesis, nutrient dynamics, trophodynamics and biological activity, dissolved organic matter (DOM) is important to the microbial community in the coastal plume zone. In this study, we investigated the hydrodynamic processes, photodegradation and biodegradation of DOM at the Yangtze River plume in the East China Sea through analyzing water quality and optical properties of DOM. Surface water samples were collected to examine water quality and fluorescence properties of fluorescent dissolved organic matter (FDOM). The results indicated that dilution was the key factor in the multiple processes, and the mixing process gradually increased from nearshore to offshore in coastal water. Four components of FDOM representing humic-like substances (C1 & C4) and protein-like substances (C2 & C3) were identified, and all components showed nearly conservative behaviors. Protein-like substances were more mutable compared to humic-like substances. The photodegradation of humic-like substances caused brown algae blooms to some extent. The molecular weight of humic substances gradually decreased along the mixing process. FDOM in the plume zone was both of terrigenous and autochthonous origins, and the characteristic of terrigenous origin was obvious compared to that of autochthonous origin.
NASA Astrophysics Data System (ADS)
Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois
2016-04-01
Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several pollutant typologies. Different rainfall products are tested: 1) Block kriging of a single reliable rain gauge, 2) Block kriging product from a network of 13 rain gauges and, 3) Universal block kriging with 13 rain gauges and KNMI weather radar estimates as a covariate. Different temporal accumulation levels are compared ranging from 10min to 1h. A geostatistical approach is used to allocate the prediction of the rainfall input in each of the urban hydrological units composing the model. The change in model performance is then assessed by contrasting it with dissolved oxygen monitoring data in a series of events.
Water quality and irrigation [Chapter 10
Thomas D. Landis; Kim M. Wilkinson
2009-01-01
Water is the single most important biological factor affecting plant growth and health. Water is essential for almost every plant process: photosynthesis, nutrient transport, and cell expansion and development. In fact, 80 to 90 percent of a seedling's weight is made up of water. Therefore, irrigation management is the most critical aspect of nursery operations....
Effect of aquifer storage and recovery (ASR) on recovered stormwater quality variability.
Page, D W; Peeters, L; Vanderzalm, J; Barry, K; Gonzalez, D
2017-06-15
Aquifer Storage and Recovery (ASR) is increasingly being considered as a means of reusing urban stormwater to supplement available urban water resources. Storage of stormwater in an aquifer has been shown to affect water quality but it has also been claimed that storage will also decrease the stormwater quality variability making for improved predictability and management. This study is the first to document the changes in stormwater quality variability as a result of subsurface storage at four full scale ASR sites using advanced statistical techniques. New methods to examine water quality are required as data is often highly left censored and so traditional measures of variability such as the coefficient of variation are inappropriate. It was observed that for some water quality parameters (most notably E. coli) there was a marked improvement of water quality and a significant decrease in variability at all sites. This means that aquifer storage prior to engineered treatment systems may be advantageous in terms of system design to avoid over engineering. For other parameters such as metal(loids)s and nutrients the trend was less clear due to the numerous processes occurring during storage leading to an increase in variability, especially for geogenic metals and metalloids such as iron and arsenic. Depending upon the specific water quality parameters and end use, use of ASR may not have a dampening effect on stormwater quality variability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
A. Dennis Lemly
1997-01-01
This paper describes a method for deriving site-specific water quality criteria for selenium using a two-step process: (1) gather information on selenium residues and biological effects at the site and in down-gradient systems and (2) examine criteria based on the degree of bioaccumulation, the relationship between mea-sured residues and threshold concentrations for...
Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System
NASA Technical Reports Server (NTRS)
Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay
2016-01-01
The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.
Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.
2015-01-01
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948
Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon
Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.
2013-01-01
The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.
Estimation of urban runoff and water quality using remote sensing and artificial intelligence.
Ha, S R; Park, S Y; Park, D H
2003-01-01
Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.
Forward osmosis niches in seawater desalination and wastewater reuse.
Valladares Linares, R; Li, Z; Sarp, S; Bucs, Sz S; Amy, G; Vrouwenvelder, J S
2014-12-01
This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, E.
2015-12-01
Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.
Crawford, Charles G.; Wangsness, David J.
1993-01-01
The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the number of river-quality samples that failed to meet the water-quality standards for ammonia and dissolved oxygen that apply to the White River decreased substantially.
Pathogen transport in groundwater systems: Contrasts with traditional solute transport
Hunt, Randall J.; Johnson, William P.
2017-01-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Pope, Larry M.; Rosner, Stacy M.; Hoffman, Darren C.; Ziegler, Andrew C.
2004-01-01
The investigation described in this report summarized data from State ambient stream-water-quality monitoring sites for 10 water-quality constituents or measurements (suspended solids, fecal coliform bacteria, ammonia as nitrogen, nitrite plus nitrate as nitrogen, total phosphorus, total arsenic, dissolved solids, chloride, sulfate, and pH). These 10 water-quality constituents or measurements commonly are listed nationally as major contributors to degradation of surface water. Water-quality data were limited to that electronically accessible from the U.S. Environmental Protection Agency Storage and Retrieval System (STORET), the U.S. Geological Survey National Water Information System (NWIS), or individual State databases. Forty-two States had ambient stream-water-quality data electronically accessible for some or all of the constituents or measurements summarized during this investigation. Ambient in this report refers to data collected for the purpose of evaluating stream ecosystems in relation to human health, environmental and ecological conditions, and designated uses. Generally, data were from monitoring sites assessed for State 305(b) reports. Comparisons of monitoring data among States are problematic for several reasons, including differences in the basic spatial design of monitoring networks; water-quality constituents for which samples are analyzed; water-quality criteria to which constituent concentrations are compared; quantity and comprehensiveness of water-quality data; sample collection, processing, and handling; analytical methods; temporal variability in sample collection; and quality-assurance practices. Large differences among the States in number of monitoring sites precluded a general assumption that statewide water-quality conditions were represented by data from these sites. Furthermore, data from individual monitoring sites may not represent water-quality conditions at the sites because sampling conditions and protocols are unknown. Because of these factors, a high level of uncertainty exists in a national assessment of water quality. The purpose of this report is to present a summary of electronically available State ambient stream-water-quality data for 10 selected constituents and measurements from monitoring sites with nine or more analyses for 199098 and to discuss limitations for use of the data for national assessment. These analyses were statistiscally summarized by monitoring site and State, and the results presented in tabular format. Most of the selected constituents or measurements have U.S. Environmental Protection Agency criteria or guidelines for aquatic-life or drinking-water purposes. A significant finding of this investigation is that for a large percentage of monitoring sites in the Nation, there are insufficient data to meet U.S. Environmental Protection Agency recommendations for determining if water-quality conditions are degraded and for making informed decisions regarding total maximum daily loads.
Monitoring water quality from LANDSAT. [satellite observation of Virginia
NASA Technical Reports Server (NTRS)
Barker, J. L.
1975-01-01
Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.
Detecting Potential Water Quality Issues by Mapping Trophic Status Using Google Earth Engine
NASA Astrophysics Data System (ADS)
Nguy-Robertson, A. L.; Harvey, K.; Huening, V.; Robinson, H.
2017-12-01
The identification, timing, and spatial distribution of recurrent algal blooms and aquatic vegetation can help water managers and policy makers make better water resource decisions. In many parts of the world there is little monitoring or reporting of water quality due to the required costs and effort to collect and process water samples. We propose to use Google Earth Engine to quickly identify the recurrence of trophic states in global inland water systems. Utilizing Landsat and Sentinel multispectral imagery, inland water quality parameters (i.e. chlorophyll a concentration) can be estimated and waters can be classified by trophic state; oligotrophic, mesotrophic, eutrophic, and hypereutrophic. The recurrence of eutrophic and hypereutrophic observations can highlight potentially problematic locations where algal blooms or aquatic vegetation occur routinely. Eutrophic and hypereutrophic waters commonly include many harmful algal blooms and waters prone to fish die-offs from hypoxia. While these maps may be limited by the accuracy of the algorithms utilized to estimate chlorophyll a; relative comparisons at a local scale can help water managers to focus limited resources.
Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges
NASA Astrophysics Data System (ADS)
Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile
2015-04-01
Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils
NASA Astrophysics Data System (ADS)
Gomo, M.; Masemola, E.
2016-04-01
The investigation aims to identify and describe hydrogeochemical processes controlling the evolution of groundwater chemistry in rehabilitated coalmine spoils and their overall influence on groundwater quality at a study area located in the Karoo basin of South Africa. A good understanding of the processes that controls the evolution of the mine water quality is vital for the planning, application and management of post-mining remedial actions. The study utilises scatter plots, statistical analysis, PHREEQC hydrogeochemical modelling, stoichiometric reaction ratios analysis, and the expanded Durov diagram as complimentary tools to interpret the groundwater chemistry data collected from monitoring boreholes from 1995 to 2014. Measured pH ranging between 6-8 and arithmetic mean of 7.32 shows that the groundwater system is characterised by circumneutral hydrogeochemical conditions period. Comparison of measured groundwater ion concentrations to theoretical reaction stoichiometry identifies Dolomite-Acid Mine Drainage (AMD) neutralisation as the main hydrogeochemical process controlling the evolution of the groundwater chemistry. Hydrogeochemical modelling shows that, the groundwater has temporal variations of calcite and dolomite saturation indices characterised by alternating cycles of over-saturation and under-saturation that is driven by the release of sulphate, calcium and magnesium ions from the carbonate-AMD neutralization process. Arithmetic mean concentrations of sulphate, calcium and magnesium are in the order of 762 mg/L, 141 mg/L and 108 mg/L. Calcium and magnesium ions contribute to very hard groundwater quality conditions. Classification based on total dissolved solids (TDS), shows the circumneutral water is of poor to unacceptable quality for drinking purposes. Despite its ability to prevent AMD formation and leaching of metals, the dolomite-AMD neutralisation process can still lead to problems of elevated TDS and hardness which mines should be aware of when developing water quality management plans.
South Asia transboundary water quality monitoring workshop summary report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.
2003-04-01
The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regionalmore » Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of sites within the region at which water quality data are to be collected; (4) instituting a data and information collection and sharing process; and, (5) training of partners in the use of water quality monitoring equipment.« less
Walton-Day, Katherine; Mills, Taylor J.
2015-01-01
The Dinero mine drainage tunnel is an abandoned, draining mine adit near Leadville, Colorado, that has an adverse effect on downstream water quality and aquatic life. In 2009, a bulkhead was constructed (creating a mine pool and increasing water-table elevations behind the tunnel) to limit drainage from the tunnel and improve downstream water quality. The goal of this study was to document changes to hydrology and water quality resulting from bulkhead emplacement, and to understand post-bulkhead changes in source water and geochemical processes that control mine-tunnel discharge and water quality. Comparison of pre-and post-bulkhead hydrology and water quality indicated that tunnel discharge and zinc and manganese loads decreased by up to 97 percent at the portal of Dinero tunnel and at two downstream sites (LF-537 and LF-580). However, some water-quality problems persisted at LF-537 and LF-580 during high-flow events and years, indicating the effects of the remaining mine waste in the area. In contrast, post-bulkhead water quality degraded at three upstream stream sites and a draining mine tunnel (Nelson tunnel). Water-quality degradation in the streams likely occurred from increased contributions of mine-pool groundwater to the streams. In contrast, water-quality degradation in the Nelson tunnel was likely from flow of mine-pool water along a vein that connects the Nelson tunnel to mine workings behind the Dinero tunnel bulkhead. Principal components analysis, mixing analysis, and inverse geochemical modeling using PHREEQC indicated that mixing and geochemical reactions (carbonate dissolution during acid weathering, precipitation of goethite and birnessite, and sorption of zinc) between three end-member water types generally explain the pre-and post-bulkhead water composition at the Dinero and Nelson tunnels. The three end members were (1) a relatively dilute groundwater having low sulfate and trace element concentrations; (2) mine pool water, and (3) water that flowed from a structure in front of the bulkhead after bulkhead emplacement. Both (2) and (3) had high sulfate and trace element concentrations. These results indicate how analysis of monitoring information can be used to understand hydrogeochemical changes resulting from bulkhead emplacement. This understanding, in turn, can help inform future decisions on the disposition of the remaining mine waste and water-quality problems in the area.
Redox Conditions in Selected Principal Aquifers of the United States
McMahon, P.B.; Cowdery, T.K.; Chapelle, F.H.; Jurgens, B.C.
2009-01-01
Reduction/oxidation (redox) processes affect the quality of groundwater in all aquifer systems. Redox processes can alternately mobilize or immobilize potentially toxic metals associated with naturally occurring aquifer materials, contribute to the degradation or preservation of anthropogenic contami-nants, and generate undesirable byproducts, such as dissolved manganese (Mn2+), ferrous iron (Fe2+), hydrogen sulfide (H2S), and methane (CH4). Determining the kinds of redox processes that occur in an aquifer system, documenting their spatial distribution, and understanding how they affect concentrations of natural or anthropogenic contaminants are central to assessing and predicting the chemical quality of groundwater. This Fact Sheet extends the analysis of U.S. Geological Survey authors to additional principal aquifer systems by applying a framework developed by the USGS to a larger set of water-quality data from the USGS national water databases. For a detailed explanation, see the 'Introduction' in the Fact Sheet.
NASA Astrophysics Data System (ADS)
Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.
2016-12-01
To extract methane from unminable seams of coal in the Powder River Basin of Montana and Wyoming, coalbed methane (CBM) water has to be pumped and kept in retention ponds rather than discharged to the vadose zone to mix with the ground water. The water areal coverage of these ponds changes due to evaporation and repetitive refilling. The water quality also changes due to growing of microalgae (unicellular or filamentous including green algae and diatoms), evaporation, and refilling. To estimate the water coverage changes and monitor water quality becomes important for monitoring the CBM water retention ponds to provide timely management plan for the newly pumped CBM water. Conventional methods such as various water indices based on multi-spectral satellite data such as Landsat because of the small pond size ( 100mx100m scale) and low spatial resolution ( 30m scale) of the satellite data. In this study we will present new methods to estimate water coverage and water quality changes using Google Earth images and images collected from an unmanned aircraft system (UAS) (Phantom 2 plus). Because these images have only visible bands (red, green, and blue bands), the conventional water index methods that involve near-infrared bands do not work. We design a new method just based on the visible bands to automatically extract water pixels and the intensity of the water pixel as a proxy for water quality after a series of image processing such as georeferencing, resampling, filtering, etc. Differential GPS positions along the water edges were collected the same day as the images collected from the UAS. Area of the water area was calculated from the GPS positions and used for the validation of the method. Because of the very high resolution ( 10-30 cm scale), the water areal coverage and water quality distribution can be accurately estimated. Since the UAS can be flied any time, water area and quality information can be collected timely.
Yang, Qingchun; Li, Zijun; Ma, Hongyun; Wang, Luchen; Martín, Jordi Delgado
2016-11-01
Insufficient understanding of the hydrogeochemistry of aquifers makes it necessary to conduct a preliminary water quality assessment in the southern region of Ordos Basin, an arid area in the world. In this paper, the major ions of groundwater have been studied aiming at evaluating the hydrogeochemical processes that probably affect the groundwater quality using 150 samples collected in 2015. The two prevalent hydrochemical facies, HCO 3 Mg·Na·Ca and HCO 3 Mg·Ca·Na type water, have been identified based on the hydrochemical analysis from Piper trilinear diagram. Compositional relations have been used to assess the origin of solutes and confirm the predominant hydrogeochemical processes responsible for the various ions in the groundwater. The results show that the ions are derived from leaching effect, evaporation and condensation, cation exchange, mixing effect and human activities. Finally groundwater quality was assessed with single factor and set pair methods, the results indicate that groundwater quality in the study region is generally poor in terms of standard of national groundwater quality. The results obtained in this study will be useful to understand the groundwater quality status for effective management and utilization of the groundwater resource. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maymandi, Nahal; Kerachian, Reza; Nikoo, Mohammad Reza
2018-03-01
This paper presents a new methodology for optimizing Water Quality Monitoring (WQM) networks of reservoirs and lakes using the concept of the value of information (VOI) and utilizing results of a calibrated numerical water quality simulation model. With reference to the value of information theory, water quality of every checkpoint with a specific prior probability differs in time. After analyzing water quality samples taken from potential monitoring points, the posterior probabilities are updated using the Baye's theorem, and VOI of the samples is calculated. In the next step, the stations with maximum VOI is selected as optimal stations. This process is repeated for each sampling interval to obtain optimal monitoring network locations for each interval. The results of the proposed VOI-based methodology is compared with those obtained using an entropy theoretic approach. As the results of the two methodologies would be partially different, in the next step, the results are combined using a weighting method. Finally, the optimal sampling interval and location of WQM stations are chosen using the Evidential Reasoning (ER) decision making method. The efficiency and applicability of the methodology are evaluated using available water quantity and quality data of the Karkheh Reservoir in the southwestern part of Iran.
NASA Astrophysics Data System (ADS)
Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika
2018-05-01
Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.
Tyler, Andrew N; Hunter, Peter D; Spyrakos, Evangelos; Groom, Steve; Constantinescu, Adriana Maria; Kitchen, Jonathan
2016-12-01
The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea systems including the Danube-Black Sea is considerable. Copyright © 2016. Published by Elsevier B.V.
Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.
2007-01-01
Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.
Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F
2008-11-15
Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.
Queiroz, Ana Carolina Lanza; Cardoso, Laís Santos de Magalhães; Heller, Léo; Cairncross, Sandy
2015-12-01
The Brazilian Ministry of Health proposed a research study involving municipal professional staff conducting both epidemiological and water quality surveillance to facilitate the integration of the data which they collected. It aimed to improve the intersectoral collaboration and health promotion activities in the municipalities, especially regarding drinking-water quality. We then conducted a study using the action-research approach. At its evaluation phase, a technique which we called 'the tree analogy' was applied in order to identify both possibilities and challenges related to the proposed interlinkage. Results showed that integrating the two data collection systems cannot be attained without prior institutional adjustments. It suggests therefore the necessity to unravel issues that go beyond the selection and the interrelation of indicators and compatibility of software, to include political, administrative and personal matters. The evaluation process led those involved to re-think their practice by sharing experiences encountered in everyday practice, and formulating constructive criticisms. All this inevitably unleashes a process of empowerment. From this perspective, we have certainly gathered some fruit from the Tree, but not necessarily the most visible.
[Processing and characterization of fried beans varieties Pinto 114, Suave 85 and Tórtola Inia].
Hurtado, M L; Escobar, B; Estévez, A M
2001-06-01
The objective of this study was develop a snack product based on fried beans. For this purpose, three bean varieties were used: Pinto 114, Suave 85 and Tórtola Inia. The beans were treated with two soaking solutions, EDTA disodium salt and a mixture of NaOH/water, to determine if they had some effect on the product's final quality. On the other hand, before the beans were fried, some grains were given thermal treatment (blanched), leaving the other ones without this process (raw); this also had an effect on the final quality of the fried beans. Physical, chemical and sensory characteristics of the final fried products were determined. For three beans varieties, the blanched products had higher water content, higher oil absorption, lower protein content and larger water activity. The soaking solutions had no effect on the quality of manufactured products. The sensory analysis determined that the best treatment for Pinto 114 and Tórtola Inia was NaOH/water-raw grain, and EDTA raw grain for Suave 85.
Temporal and Spatial Variation of Chemical Water Quality in a Contour Canal.
NASA Astrophysics Data System (ADS)
Swanson, L. A.; Lunn, R. J.
2004-12-01
Chemical water quality is a highly variable aspect of any water body. Historically numerous researchers have investigated the chemical variability of rivers, streams and wetlands, artificial water bodies such as canals have been largely neglected. Canals are typically hydraulically characterised by low flows and a lack of mixing processes. This can potentially lead to significant spatial variability in water chemistry, and as a result many canals in the UK regularly fail water quality targets at specific locations. Recent changes to UK legislation, following the European Water Framework Directive (2000/60/EC), have resulted in canals being subject to achieving `good ecological status'. In the case of canals, what constitutes `good ecological status' is largely unknown and little expertise is available since historically canal management has not been driven by chemical and ecological quality targets. Consequently, there is an urgent need for new research to determine the main factors influencing canal water quality and their ecological status. This research presents results from a study based on a UK contour canal, the Union Canal in central Scotland. The Union Canal typically demonstrates spatially and temporally variable levels of dissolved oxygen (DO) and orthophosphate (PO4-P): simultaneously, seasonal and diel fluctuations of DO and PO4-P are pronounced at a small number of locations. During 1995, minimum levels of DO along the canal length ranged from 9mgl-1 in Edinburgh to as low as 2mgl-1 approximately 20kms away, this then rose again to 8mgl-1 after a further distance of 2km. These acutely low levels of DO are coupled with events of excessive PO4-P up to 0.235mgl-1:10 times greater than those normally found in rivers, causing localised eutrophication and extensive fish kills. To determine the cause of the `hot spots' of poor water quality found on the Union Canal, simultaneous investigations of the hydraulic regime, spatial and temporal water quality variation and the canal's biological status were carried out. Velocity metering in the canal identified extremely low flow rates ~0.15m3s-1. A tracer testing procedure for the canal's low flow conditions was designed and implemented which identified a lack of rapid dispersion processes with D~0.133m3s-1. Water quality sampling consisted of a year-long programme of high frequency temporal and spatial sampling along the canal length. Observations demonstrate significant variability, with widely differing measurements of DO as little as 5m apart. In addition, spot samples of water quality taken from individual incoming field drains showed PO4-P concentrations up to 2mgl-1, with a predominance of nutrient bound clay and silt sediments that ultimately settle on the canal bed. Due to low dispersion rates, residence times for pollutants are long and field drains, in combination with navigational activity, may well be one of the primary causes of raised nutrient levels at some locations. This research has shown that canal water quality is highly spatially and temporally variable; far in excess of the variability normally found in river systems. This is mainly determined by a lack of hydraulic mixing and the presence of small quantities of incoming runoff water of very low quality. Whilst low in volume, incoming sediment from the drains appears to strongly influence the nearby canal water quality. These results have important consequences both for future monitoring strategies of canals and management of their gradual ecological improvement.
Beyene, Abebe; Kassahun, Yared; Addis, Taffere; Assefa, Fassil; Amsalu, Aklilu; Legesse, Worku; Kloos, Helmut; Triest, Ludwig
2012-11-01
Although waste from coffee processing is a valuable resource to make biogas, compost, and nutrient-rich animal food, it is usually dumped into nearby water courses. We carried out water quality assessment at 44 sampling sites along 18 rivers that receive untreated waste from 23 coffee pulping and processing plants in Jimma Zone, Ethiopia. Twenty upstream sampling sites free from coffee waste impact served as control, and 24 downstream sampling sites affected by coffee waste were selected for comparison. Physicochemical and biological results revealed a significant river water quality deterioration as a result of disposing untreated coffee waste into running water courses. During coffee-processing (wet) season, the highest organic load (1,900 mg/l), measured as biochemical oxygen demand, depleted dissolved oxygen (DO) to a level less than 0.01 mg/l, and thus curtailed nitrification. During off season, oxygen started to recuperate and augmented nitrification. The shift from significantly elevated organic load and reduced DO in the wet season to increased nitrate in the off season was found to be the determining factor for the difference in macroinvertebrate community structure as verified by ordination analysis. Macroinvertebrate diversity was significantly reduced in impacted sites during the wet season contrary to the off season. However, there was a significant difference in the ratio of sensitive to pollution-tolerant taxa in the off season, which remained depreciated in the longer term. This study highlights the urgency of research exploring on the feasibility of adopting appropriate pollution abatement technologies to implement ecologically sound coffee-processing systems in coffee-growing regions of Ethiopia.
NASA Astrophysics Data System (ADS)
Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.
2014-12-01
The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.
Innovative biological approaches for monitoring and improving water quality
Aracic, Sanja; Manna, Sam; Petrovski, Steve; Wiltshire, Jennifer L.; Mann, Gülay; Franks, Ashley E.
2015-01-01
Water quality is largely influenced by the abundance and diversity of indigenous microbes present within an aquatic environment. Physical, chemical and biological contaminants from anthropogenic activities can accumulate in aquatic systems causing detrimental ecological consequences. Approaches exploiting microbial processes are now being utilized for the detection, and removal or reduction of contaminants. Contaminants can be identified and quantified in situ using microbial whole-cell biosensors, negating the need for water samples to be tested off-site. Similarly, the innate biodegradative processes can be enhanced through manipulation of the composition and/or function of the indigenous microbial communities present within the contaminated environments. Biological contaminants, such as detrimental/pathogenic bacteria, can be specifically targeted and reduced in number using bacteriophages. This mini-review discusses the potential application of whole-cell microbial biosensors for the detection of contaminants, the exploitation of microbial biodegradative processes for environmental restoration and the manipulation of microbial communities using phages. PMID:26322034
Water quality management library. 2. edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckenfelder, W.W.; Malina, J.F.; Patterson, J.W.
1998-12-31
A series of ten books offered in conjunction with Water Quality International, the Biennial Conference and Exposition of the International Association on Water Pollution Research and Control (IAWPRC). Volume 1, Activated Sludge Process, Design and Control, 2nd edition, 1998: Volume 2, Upgrading Wastewater Treatment Plants, 2nd edition, 1998: Volume 3, Toxicity Reduction, 2nd edition, 1998: Volume 4, Municipal Sewage Sludge Management, 2nd edition, 1998: Volume 5, Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, 1st edition, 1992: Volume 6, Dynamics and Control of the Activated Sludge Process, 2nd edition, 1998: Volume 7: Design of Anaerobic Processes formore » the Treatment of Industrial and Municipal Wastes, 1st edition, 1992: Volume 8, Groundwater Remediation, 1st edition, 1992: Volume 9, Nonpoint Pollution and Urban Stormwater Management, 1st edition, 1995: Volume 10, Wastewater Reclamation and Reuse, 1st edition, 1998.« less
Johnson, Steven M.; Swanson, Robert B.
1994-01-01
Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.
Application of a structured decision making process for nitrogen pollution management on Cape Cod
Significant release of reactive nitrogen into coastal water bodies has resulted in declining water quality in Southern New England. The Three Bays Preservation Association, in collaboration with the Cape Cod Commission, U.S. Environmental Protection Agency, and local water resou...
Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders
The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...
30 CFR 922.773 - Requirements for permits and permit processing.
Code of Federal Regulations, 2010 CFR
2010-07-01
....211; Michigan Sand Dune Protection and Management Act of 1976, MCL section 281.651; Michigan Solid... 323.1; Michigan Water Resources Commission General Rules, R-323.1001 et seq.; Michigan Water Quality...
International water and steam quality standards on thermal power plants at all-volatile treatment
NASA Astrophysics Data System (ADS)
Petrova, T. I.; Orlov, K. A.; Dooley, R. B.
2016-12-01
One of the methods for the improvement of reliability and efficiency of the equipment at heat power plants is the decrease in the rate of corrosion of structural materials and sedimentation in water/steam circuit. These processes can be reduced to minimum by using the water with low impurity content and coolant treatment. For many years, water and steam quality standards were developed in various countries (United States, Germany, Japan, etc.) for specific types of equipment. The International Association for the Properties of Water and Steam (IAPWS), which brings together specialists from 21 countries, developed the water and steam quality standards for various types of power equipment based on theoretical studies and long-term operating experience of power equipment. Recently, various water-chemistry conditions are applied on heatpower equipment including conventional boilers and HRSGs with combined cycle power plants (Combined Cycle Power Plants (CCPP)). In paper, the maintenance conditions of water chemistry with ammonia or volatile amine dosing are described: reducing AVT(R), oxidizing AVT(O), and oxygen OT. Each of them is provided by the water and steam quality standards and recommendations are given on their maintenance under various operation conditions. It is noted that the quality control of heat carrier must be carried out with a particular care on the HPPs with combined cycle gas turbine units, where frequent starts and halts are performed.
NASA Astrophysics Data System (ADS)
Morgan, E. L.; Eagleson, K. W.; Hermann, R.; McCollough, N. D.
1981-05-01
Maintaining adequate water quality in a multipurpose drainage system becomes increasingly important as demands on resources become greater. Real-time water quality monitoring plays a crucial role in meeting this objective. In addition to remote automated physical monitoring, developments at the end of the 1970's allow simultaneous real-time measurements of fish breathing response to water quality changes. These advantages complement complex in-stream surveys typically carried out to evaluate the environmental quality of a system. Automated biosensing units having remote capabilities are designed to aid in the evaluation of subtle water quality changes contributing to undesirable conditions in a drainage basin. Using microprocessor-based monitors to measure fish breathing rates, the biosensing units are interfaced to a U.S. National Aeronautics and Space Administration (N.A.S.A.) remote data collection platform for National Oceanic and Atmospheric Administration (N.O.A.A.) GOES satellite retrieval and transmission of data. Simultaneously, multiparameter physical information is collected from site-specific locations and recovered in a similar manner. Real-time biological and physical data received at a data processing center are readily available for interpretation by resource managers. Management schemes incorporating real-time monitoring networks into on-going programs to simultaneously retrieve biological and physical data by satellite, radio and telephone cable give added advantages in maintaining water quality for multipurpose needs.
Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation
NASA Technical Reports Server (NTRS)
Ferner, Kathleen M.
1994-01-01
Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.
Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.
Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu
2012-04-01
The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.
Optimizing coagulation-adsorption for haloform and TOC (Total Organic Carbon) reduction
NASA Astrophysics Data System (ADS)
Semmens, M. J.; Hohenstein, G.; Staples, A.; Norgaard, G.; Ayers, K.; Tyson, M. P.
1983-05-01
The removal of organic matter from Mississippi River water by coagulation and softening processes and the influence of operating parameters upon the removal process are examined. Furthermore, since activated carbon is typically employed to reduce organic concentrations, the effectiveness of various pretreatments are evaluated for their impact upon carbon bed life and the product water quality.
Comparative study on the processing of armour steels with various unconventional technologies
NASA Astrophysics Data System (ADS)
Herghelegiu, E.; Schnakovszky, C.; Radu, M. C.; Tampu, N. C.; Zichil, V.
2017-08-01
The aim of the current paper is to analyse the suitability of three unconventional technologies - abrasive water jet (AWJ), plasma and laser - to process armour steels. In view of this, two materials (Ramor 400 and Ramor 550) were selected to carry out the experimental tests and the quality of cuts was quantified by considering the following characteristics: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), inclination angle (a), deviation from perpendicularity (u), surface roughness (Ra) and surface hardness. It was fond that in terms of cut quality and environmental impact, the best results are offered by abrasive water jet technology. However, it has the lowest productivity comparing to the other two technologies.
NASA Astrophysics Data System (ADS)
Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz
2017-04-01
We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river. Sediment-attached nutrients correlated better to aboveground standing biomass than dissolved nutrients. These findings further reduce the spatial zone where significant nutrient input is influenced by transport from the river, compared to the zone influenced by dissolved nutrients. Our findings indicate the need for a revision of the Flood Pulse Concept for temperate river with multiple water sources, as peatland hydrological processes significantly influence spatial floodplain vegetation distribution.
NASA Astrophysics Data System (ADS)
Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew
2014-05-01
Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with less reliance on chemical treatment. This will in turn contribute to the reduction in the cost of operation, but more importantly reduce the impact on the environment (i.e., discharge, GHGs), and increase water quality and the potential for water reuse worldwide.
NASA Astrophysics Data System (ADS)
Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal
Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the model was 0.05. A better understanding of these relationships will help the water utilities or plant operators to minimize the THM formation, providing a healthier and better drinking water quality as well as optimizing the chlorine dosage in the disinfection process.
River water quality assessment using environmentric techniques: case study of Jakara River Basin.
Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar
2013-08-01
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
Lestander, Ragna; Löfgren, Stefan; Henrikson, Lennart; Ågren, Anneli M
2015-04-01
Forestry may cause adverse impacts on water quality, and the forestry planning process is a key factor for the outcome of forest operation effects on stream water. To optimise environmental considerations and to identify actions needed to improve or maintain the stream biodiversity, two silvicultural water management tools, BIS+ (biodiversity, impact, sensitivity and added values) and Blue targeting, have been developed. In this study, we evaluate the links between survey variables, based on BIS+ and Blue targeting data, and water chemistry in 173 randomly selected headwater streams in the hemiboreal zone. While BIS+ and Blue targeting cannot replace more sophisticated monitoring methods necessary for classifying water quality in streams according to the EU Water Framework Directive (WFD, 2000/60/EC), our results lend support to the idea that the BIS+ protocol can be used to prioritise the protection of riparian forests. The relationship between BIS+ and water quality indicators (concentrations of nutrients and organic matter) together with data from fish studies suggests that this field protocol can be used to give reaches with higher biodiversity and conservation values a better protection. The tools indicate an ability to mitigate forestry impacts on water quality if the operations are adjusted to this knowledge in located areas.
Drinking water for dairy cattle: always a benefit or a microbiological risk?
Van Eenige, M J E M; Counotte, G H M; Noordhuizen, J P T M
2013-02-01
Drinking water can be considered an essential nutrient for dairy cattle. However, because it comes from different sources, its chemical and microbiological quality does not always reach accepted standards. Moreover, water quality is not routinely assessed on dairy farms. The microecology of drinking water sources and distribution systems is rather complex and still not fully understood. Water quality is adversely affected by the formation of biofilms in distribution systems, which form a persistent reservoir for potentially pathogenic bacteria. Saprophytic microorganisms associated with such biofilms interact with organic and inorganic matter in water, with pathogens, and even with each other. In addition, the presence of biofilms in water distribution systems makes cleaning and disinfection difficult and sometimes impossible. This article describes the complex dynamics of microorganisms in water distribution systems. Water quality is diminished primarily as a result of faecal contamination and rarely as a result of putrefaction in water distribution systems. The design of such systems (with/ without anti-backflow valves and pressure) and the materials used (polyethylene enhances biofilm; stainless steel does not) affect the quality of water they provide. The best option is an open, funnel-shaped galvanized drinking trough, possibly with a pressure system, air inlet, and anti-backflow valves. A poor microbiological quality of drinking water may adversely affect feed intake, and herd health and productivity. In turn, public health may be affected because cattle can become a reservoir of microorganisms hazardous to humans, such as some strains of E. coli, Yersinia enterocolitica, and Campylobacter jejuni. A better understanding of the biological processes in water sources and distribution systems and of the viability of microorganisms in these systems may contribute to better advice on herd health and productivity at a farm level. Certain on-farm risk factors for water quality have been identified. A practical approach will facilitate the control and management of these risks, and thereby improve herd health and productivity.
Whitehead, P G; Sarkar, S; Jin, L; Futter, M N; Caesar, J; Barbour, E; Butterfield, D; Sinha, R; Nicholls, R; Hutton, C; Leckie, H D
2015-06-01
This study investigates the potential impacts of future climate and socio-economic change on the flow and nitrogen fluxes of the Ganga river system. This is the first basin scale water quality study for the Ganga considering climate change at 25 km resolution together with socio-economic scenarios. The revised dynamic, process-based INCA model was used to simulate hydrology and water quality within the complex multi-branched river basins. All climate realizations utilized in the study predict increases in temperature and rainfall by the 2050s with significant increase by the 2090s. These changes generate associated increases in monsoon flows and increased availability of water for groundwater recharge and irrigation, but also more frequent flooding. Decreased concentrations of nitrate and ammonia are expected due to increased dilution. Different future socio-economic scenarios were found to have a significant impact on water quality at the downstream end of the Ganga. A less sustainable future resulted in a deterioration of water quality due to the pressures from higher population growth, land use change, increased sewage treatment discharges, enhanced atmospheric nitrogen deposition, and water abstraction. However, water quality was found to improve under a more sustainable strategy as envisaged in the Ganga clean-up plan.
Fusillo, Thomas V.; Schornick, J.C.; Koester, H.E.; Harriman, D.A.
1980-01-01
Water-quality data collected in the upper Oyster Creek drainage basin, Ocean County, N.J., indicate that the stream has excellent water quality except for a persistently low pH. The mean concentrations of the major inorganic ions were all less than 6.0 milligrams per liter. Mean concentrations of total nitrogen and total phosphorus were 0.15 mg/L and 0.01 mg/L, respectively. Dissolved oxygen averaged 8.7 mg/L and 81% saturation. Low pH levels are typical of streams draining cedar swamps. In Oyster Creek, the pH tended to decrease downstream due to chemical and biological processes. The pH levels in swamps were one-half unit or more lower than the pH levels in the adjacent stream. Sharp declines in stream pH were noted during runoff periods as the result of the mixing of poorly-buffered stream water with more highly acidic water from surrounding swamp areas. The quality of ground water within the study area was similar to the quality of streamflow, except for higher iron and ammonia-nitrogen concentrations and a higher pH range of 4.9 to 6.5. Precipitation represented a major source of many chemical constituents in the ground- and surface-waters of the Oyster Creek basin. (USGS)
SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality
Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.
2009-01-01
The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.
Liu, Mei; Lu, Jun
2014-09-01
Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, L.M.; Bartholomay, R.C.; Campbell, L.J.
1998-10-01
The U.S. Geological (USGS) and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, collected and analyzed water samples to monitor the water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering and Environmental Laboratory to the Hagerman area, Idaho. Concurrently, replicate samples and blank samples were collected and analyzed as part of the quality-assurance/quality-control program. Samples were analyzed from inorganic constituents, gross radioactivity and radionuclides, organic constituents, and stable isotopes. To evaluate the precision of field and laboratory methods, analytical results of the water-quality and replicate samplesmore » were compared statistically for equivalence on the basis of the precision associated with each result. Statistical comparisons of the data indicated that 95 percent of the results of the replicate pairs were equivalent. Blank-sample analytical results indicated th at the inorganic blank water and volatile organic compound blank water from the USGS National Water Quality Laboratory and the distilled water from the Idaho Department of Water Resources were suitable for blanks; blank water from other sources was not. Equipment-blank analytical results were evaluated to determine if a bias had been introduced and possible sources of bias. Most equipment blanks were analyzed for trace elements and volatile organic compounds; chloroform was found in one equipment blank. Two of the equipment blanks were prepared after collection and analyses of the water-quality samples to determine whether contamination had been introduced during the sampling process. Results of one blank indicated that a hose used to divert water away from pumps and electrical equipment had contaminated the samples with some volatile organic compounds. Results of the other equipment blank, from the apparatus used to filter dissolved organic carbon samples, indicated that the filtering apparatus did not affect water-quality samples.« less
Igbeneghu, Oluwatoyin A; Lamikanra, Adebayo
2014-11-28
The upsurge in the demand for bottled water has prompted the interest of many manufacturers in the production of bottled water and very many water bottling companies are therefore involved in its production. These range from large scale multinational companies to medium scale business enterprises, institutional and government business investment companies as well as small scale entrepreneurs. There is however little information on the comparative quality of bottled water brands produced by different classes of water bottling companies in Nigeria. This study was undertaken to determine the bacteriological quality of brands of bottled water available to consumers in Ile-Ife. Forty-three samples of bottled water comprising of three batches each of thirteen bottled water brands and two batches of two brands were purchased and analyzed for total bacterial count, presence of coliform and the presence of other bacterial indicators of drinking water quality. Only 67.4% of the water samples representing the products of 10 companies or 66.7% of the brands had heterotrophic counts within the acceptable limits. Coliforms present in 100 ml of water were detected in 26.7% of the bottled water brands. Other indicator organisms detected included Staphylococci isolated from 27.9% of the samples (33.3% of the brands) and specifically Staphylococcus aureus found in four brands constituting 14% of the samples. Pseudomonas strains were consistently detected in consecutive batches of three brands of the water samples. Bottled water samples produced by the large scale multinational producers were of acceptable bacteriological quality unlike those produced by most small companies. There is need for a greater control of water bottling processes carried out by commercial bottled water producers in Nigeria.
NASA Astrophysics Data System (ADS)
Raseman, W. J.; Kasprzyk, J. R.; Rosario-Ortiz, F.; Summers, R. S.; Stewart, J.; Livneh, B.
2016-12-01
To promote public health, the United States Environmental Protection Agency (US EPA), and similar entities around the world enact strict laws to regulate drinking water quality. These laws, such as the Stage 1 and 2 Disinfectants and Disinfection Byproducts (D/DBP) Rules, come at a cost to water treatment plants (WTPs) which must alter their operations and designs to meet more stringent standards and the regulation of new contaminants of concern. Moreover, external factors such as changing influent water quality due to climate extremes and climate change, may force WTPs to adapt their treatment methods. To grapple with these issues, decision support systems (DSSs) have been developed to aid WTP operation and planning. However, there is a critical need to better address long-term decision making for WTPs. In this poster, we propose a DSS framework for WTPs for long-term planning, which improves upon the current treatment of deep uncertainties within the overall potable water system including the impact of climate on influent water quality and uncertainties in treatment process efficiencies. We present preliminary results exploring how a multi-objective evolutionary algorithm (MOEA) search can be coupled with models of WTP processes to identify high-performing plans for their design and operation. This coupled simulation-optimization technique uses Borg MOEA, an auto-adaptive algorithm, and the Water Treatment Plant Model, a simulation model developed by the US EPA to assist in creating the D/DBP Rules. Additionally, Monte Carlo sampling methods were used to study the impact of uncertainty of influent water quality on WTP decision-making and generate plans for robust WTP performance.
Progress toward a ground-water-quality monitoring network for Idaho
Whitehead, R.L.
1978-01-01
The potential for pollution of the aquifers is expected to be greatest in areas of greatest development. In Idaho, population centers and industries tend to be in areas of privately owned irrigated and arable · land. Therefore, these areas are of primary concern for monitoring ground-water quality. Other areas requiring monitoring include those with second-home development, mining and its related processes, and radioactive-waste disposal.
Design of wireless communication system for environmental monitoring
NASA Astrophysics Data System (ADS)
Jiang, Li; Zhang, Xiaoyang; Sun, Zhixiang; Tian, Youcheng; Wang, Juan; Guo, Jianghua
2017-05-01
This paper introduces the basic principle and advantages of GPRS data transmission, and discusses in detail about the hardware structure of the GPRS module, the connection mode and the research process of GPRS application in the device. The feasibility and superiority of GPRS data transmission in wireless water quality monitoring device have been tested and proved, which provides great convenience for water quality monitoring, and has good application prospect.
A study in Canada by Payment et al. found that up to 35% of gastrointestinal illness in a community served by surface water was associated with drinking water that met current drinking water standards. A similar follow-up study by the same investigators tended to repeat the resul...
NASA Astrophysics Data System (ADS)
Kostyuchenko, Yuriy V.; Sztoyka, Yulia; Kopachevsky, Ivan; Artemenko, Igor; Yuschenko, Maxim
2017-10-01
Multi-model approach for remote sensing data processing and interpretation is described. The problem of satellite data utilization in multi-modeling approach for socio-ecological risks assessment is formally defined. Observation, measurement and modeling data utilization method in the framework of multi-model approach is described. Methodology and models of risk assessment in framework of decision support approach are defined and described. Method of water quality assessment using satellite observation data is described. Method is based on analysis of spectral reflectance of aquifers. Spectral signatures of freshwater bodies and offshores are analyzed. Correlations between spectral reflectance, pollutions and selected water quality parameters are analyzed and quantified. Data of MODIS, MISR, AIRS and Landsat sensors received in 2002-2014 have been utilized verified by in-field spectrometry and lab measurements. Fuzzy logic based approach for decision support in field of water quality degradation risk is discussed. Decision on water quality category is making based on fuzzy algorithm using limited set of uncertain parameters. Data from satellite observations, field measurements and modeling is utilizing in the framework of the approach proposed. It is shown that this algorithm allows estimate water quality degradation rate and pollution risks. Problems of construction of spatial and temporal distribution of calculated parameters, as well as a problem of data regularization are discussed. Using proposed approach, maps of surface water pollution risk from point and diffuse sources are calculated and discussed.
Technology development for lunar base water recycling
NASA Technical Reports Server (NTRS)
Schultz, John R.; Sauer, Richard L.
1992-01-01
This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Mafalda T., E-mail: mafaldatcosta@gmail.com; Carolino, Elisabete, E-mail: lizcarolino@gmail.com; Oliveira, Teresa A., E-mail: teresa.oliveira@uab.pt
In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T{sup 2}more » charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected.« less
Modeling Benthic Sediment Processes to Predict Water Quality and Ecology in Narragansett Bay
The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal ...
Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)
The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...
Code of Federal Regulations, 2010 CFR
2010-04-01
... CONSUMPTION PROCESSING AND BOTTLING OF BOTTLED DRINKING WATER General Provisions § 129.3 Definitions. For the... inspected and the water sampled, analyzed, and found to be of a safe and sanitary quality according to... means all water which is sealed in bottles, packages, or other containers and offered for sale for human...
USDA-ARS?s Scientific Manuscript database
In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources all...
Water quality mitigation banking : final report, December 2009.
DOT National Transportation Integrated Search
2009-12-01
Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...
Oelsner, Gretchen P.; Sprague, Lori A.; Murphy, Jennifer C.; Zuellig, Robert E.; Johnson, Henry M.; Ryberg, Karen R.; Falcone, James A.; Stets, Edward G.; Vecchia, Aldo V.; Riskin, Melissa L.; De Cicco, Laura A.; Mills, Taylor J.; Farmer, William H.
2017-04-04
Since passage of the Clean Water Act in 1972, Federal, State, and local governments have invested billions of dollars to reduce pollution entering rivers and streams. To understand the return on these investments and to effectively manage and protect the Nation’s water resources in the future, we need to know how and why water quality has been changing over time. As part of the National Water-Quality Assessment Project, of the U.S. Geological Survey’s National Water-Quality Program, data from the U.S. Geological Survey, along with multiple other Federal, State, Tribal, regional, and local agencies, have been used to support the most comprehensive assessment conducted to date of surface-water-quality trends in the United States. This report documents the methods used to determine trends in water quality and ecology because these methods are vital to ensuring the quality of the results. Specific objectives are to document (1) the data compilation and processing steps used to identify river and stream sites throughout the Nation suitable for water-quality, pesticide, and ecology trend analysis, (2) the statistical methods used to determine trends in target parameters, (3) considerations for water-quality, pesticide, and ecology data and streamflow data when modeling trends, (4) sensitivity analyses for selecting data and interpreting trend results with the Weighted Regressions on Time, Discharge, and Season method, and (5) the final trend results at each site. The scope of this study includes trends in water-quality concentrations and loads (nutrient, sediment, major ion, salinity, and carbon), pesticide concentrations and loads, and metrics for aquatic ecology (fish, invertebrates, and algae) for four time periods: (1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. In total, nearly 12,000 trends in concentration, load, and ecology metrics were evaluated in this study; there were 11,893 combinations of sites, parameters, and trend periods. The final trend results are presented with examples of how to interpret the results from each trend model. Interpretation of the trend results, such as causal analysis, is not included.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
[Watershed water environment pollution models and their applications: a review].
Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang
2013-10-01
Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.
Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.
2016-01-01
Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.
Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.
2018-06-07
As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide concentrations. The continuum of water quality from unconfined rural groundwater sites (least affected by anthropogenic contamination) to unconfined urban groundwater sites (most affected by anthropogenic contamination) demonstrates enhanced vulnerability of urban versus rural land cover. Differences in contaminant occurrences and concentration among unconfined urban wells indicate that the urban parts of the aquifer are not uniformly vulnerable, but rather are affected by spatial differences in the sources of nutrients and pesticides. In urban areas, the shallow, unconfined groundwater sites showed greater temporal variability in both nutrient and pesticide concentrations, as well as a greater degree of contamination, than did deeper, confined groundwater sites. In comparison to that of the shallow, unconfined groundwater sites, the water quality of the deeper, confined groundwater sites was relatively invariant during this multiyear study. Although aquifer hydrogeology is an important factor related to aquifer vulnerability, land cover likely has a greater influence on pesticide contamination of groundwater. Temporal variability in hydrologic conditions for the Edwards aquifer is apparent in data for surface water as a source of groundwater recharge, water-level altitude in wells, spring discharge, and groundwater quality. This temporal variability affects recharge sources, recharge amounts, groundwater traveltimes, flow routing, water-rock interaction processes, dilution, mixing, and, in turn, water quality. Relations of land cover, aquifer hydrogeology, and changing hydrologic conditions to water quality are complex but provide insight into the vulnerability of Edwards aquifer groundwater—a vital drinking-water resource.
Performance Qualification Test of the ISS Water Processor Assembly (WPA) Expendables
NASA Technical Reports Server (NTRS)
Carter, Layne; Tabb, David; Tatara, James D.; Mason, Richard K.
2005-01-01
The Water Processor Assembly (WPA) for use on the International Space Station (ISS) includes various technologies for the treatment of waste water. These technologies include filtration, ion exchange, adsorption, catalytic oxidation, and iodination. The WPA hardware implementing portions of these technologies, including the Particulate Filter, Multifiltration Bed, Ion Exchange Bed, and Microbial Check Valve, was recently qualified for chemical performance at the Marshall Space Flight Center. Waste water representing the quality of that produced on the ISS was generated by test subjects and processed by the WPA. Water quality analysis and instrumentation data was acquired throughout the test to monitor hardware performance. This paper documents operation of the test and the assessment of the hardware performance.
NASA Astrophysics Data System (ADS)
Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.
2014-12-01
The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.
NASA Astrophysics Data System (ADS)
Dietrich, Jörg; Funke, Markus
Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.
NASA Astrophysics Data System (ADS)
Hanor, Jeffrey S.
1982-06-01
Interest in artificially recharging selected shallow sands in South Louisiana with fresh water has been stimulated by the desire to retard contamination of municipal groundwater supplies by brackish water, to retard ground subsidence and decrease pumping lifts, and to develop emergency subsurface supplies of potable water for communities dependent on surface waters susceptible to contamination. Results of field experiments, laboratory work, and model calculations demonstrate that ion exchange reactions involving clays dispersed in aquifer sands can be expected to modify significantly the composition of waters injected into Gulf Coast sediments. As little as 0.1 weight percent smectite (montmorillonite) can remove, by exchange with absorbed Na, a significant fraction of the dissolved Ca and Mg present in the injected water. The hardness of the water is thus reduced, which may be a desirable modification in water quality. Exchange occurs as fast as the fluids can be pumped into or out of the aquifer, and the water-softening capacity of the aquifer can be restored by allowing sodium-rich native pore waters to sweep back over the dispersed clays. Each acre of an aquifer 50 feet thick and containing 0.1 wt % smectite could soften half a million gallons of injected Mississippi River water. Many individual Gulf Coast aquifers underlie tens of thousands of acres, and their potential softening capacity is thus enormous. Additional exchange processes involving adjacent aquitard shales presumably will operate over long-term periods. It is possible that Gulf Coast aquifers will be used at some point in the future as processing plants to treat injected water to improve its quality for a variety of municipal and industrial purposes.
MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.
Chen, T K; Ni, C H; Chan, Y C; Lu, M C
2005-01-01
This research is mainly to explore the treatment capacity for TFT-LCD industrial wastewater recycling by the processes combined with membrane bioreactor (MBR), reverse osmosis (RO) and ozone(O3). The organic wastewater from the TFT-LCD industry was selected as the target. MBR, RO and ozone plants were established for evaluation. An MBR plant consisted of a 2-stage anoxic/aerobic bioreactor and an immersed UF membrane unit was employed. The effluent of MBR was conducted into the RO system then into the ozone system. The RO system consisted of a spiral membrane in the vessel. One bubble column, 75 cm high and diameter 5 cm, were used as the ozonation reactor. On the bottom of ozonation reactor is a porous diffuser for releasing gas, with an aperture of 100 microm (0.1 cm). Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 98.5%. For the TOC item, the average removal efficiency was 97.4%. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of an immersed UF membrane device incorporated with the biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After the treatment of RO, excellent water quality was found. The water quality of permeate was under 5 mg/I, 2 mg/l and 50 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled and reused for the cooling tower make-up water or other purposes. After the treatment of ozone, the treated water quality was under 5 mg/l and 0.852 mg/l for COD and TOC respectively. The test results of MBR, MBR/RO and MBR/RO/ozone processes were compared as possible appropriate treatment technologies applied in TFT-LCD industrial wastewater reuse and recycling.
Pietrasik, Z; Gaudette, N J; Klassen, M
2016-03-01
The effect of hot water treatment of beef trimmings on the processing characteristics, shelf-life and consumer acceptability of ground beef was evaluated. Hot water treatment (85°C for 40s) substantially enhanced the microbial quality of trimmings during refrigerated storage and this was independent of the fat level of the trimmings. Treatment had no effect on the oxidative stability of trimmings stored up to 7days, ground beef displayed in a retail cabinet for up to 3days, and had minimal effect on textural properties. Instrumental results demonstrate that ground beef from hot water treated trimmings was slightly lighter and tended to have less red color compared to non-treated beef. These color differences did not impact the consumer acceptance of raw patties, and in addition, hot water treatment did not significantly affect the consumer acceptability of cooked patty attributes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Scott, Andrew B; Frost, Paul C
2017-08-15
From 2013 to 2015, citizen scientist volunteers in Toronto, Canada were trained to collect and analyze water quality in urban stormwater ponds. This volunteer sampling was part of the research program, FreshWater Watch (FWW), which aimed to standardize urban water sampling efforts from around the globe. We held training sessions for new volunteers twice yearly and trained a total of 111 volunteers. Over the course of project, ~30% of volunteers participated by collecting water quality data after the training session with 124 individual sampling events at 29 unique locations in Toronto, Canada. A few highly engaged volunteers were most active, with 50% of the samples collected by 5% of trainees. Stormwater ponds generally have poor water quality demonstrated by elevated phosphate concentrations (~30μg/L), nitrate (~427μg/L), and turbidity relative to Canadian water quality standards. Compared to other urban waterbodies in the global program, nutrient concentrations in Toronto's urban stormwater ponds were lower, while turbidity was not markedly different. Toronto FWW (FWW-TO) data was comparable to that measured by standard lab analyses and matched results from previous studies of stormwater ponds in Toronto. Combining observational and chemical data acquired by citizen scientists, macrophyte dominated ponds had lower phosphate concentrations while phytoplankton dominated ponds had lower nitrate concentrations, which indicates a potentially important and unstudied role of internal biogeochemical processes on pond nutrient dynamics. This experience in the FWW demonstrates the capabilities and constraints of citizen science when applied to water quality sampling. While analytical limits on in-field analyses produce higher uncertainty in water quality measurements of individual sites, rapid data collection is possible but depends on the motivation and engagement of the group of volunteers. Ongoing efforts in citizen science will thus need to address sampling effort and analytical limits to fully realize the potential value of engaging citizen scientists in water quality sampling. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen
2012-01-01
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699
Massoud, May A; Al-Abady, Abdolmonim; Jurdi, Mey; Nuwayhid, Iman
2010-06-01
Adequate and safe water is important for human health and well-being, economic production, and sustainable development. Failure to ensure the safety of drinking water may expose the community to the risk of outbreaks of waterborne and infectious diseases. Although drinking water is a basic human right, many people do not have access to safe and adequate drinking water or proper sanitation facilities. The authors conducted a study to assess the quantity, cost, continuity, coverage, and quality of drinking water in the village of Zawtar El-Charkieh, Lebanon. Their aim was to identify the challenges of sustainable access to safe drinking water in order to determine the short-term management actions and long-term strategies to improve water quality. Results revealed that contamination of the source, absence of any disinfection method or insufficient dose, poor maintenance operations, and aging of the networks are significant factors contributing to water contamination during the storage and distribution process. Establishing a comprehensive drinking water system that integrates water supply, quality, and management as well as associated educational programs in order to ensure the safety and sustainability of drinking water supplies is essential.
NASA Astrophysics Data System (ADS)
Petrova, T. I.; Orlov, K. A.; Dooley, R. B.
2017-01-01
One of the ways for improving the operational reliability and economy of thermal power station equipment, including combined-cycle equipment, is to decrease the rates of the corrosion of constructional materials and the formation of scales in the water-steam circuit. These processes can be reduced to a minimum via the use of water with a minimum content of admixtures and the correction treatment of a heat-transfer fluid. The International Association for the Properties of Water and Steam (IAPWS), which unites specialists from every country of the world, has developed water and steam quality standards for power station equipment of different types on the basis of theoretical studies and long-term experience in the operation of power plants in 21 countries. Different water chemistry regimes are currently used at conventional and combined-cycle thermal power stations. This paper describes the conditions for the implementation of water chemistry regimes with the use of sodium salts of phosphoric acid and NaOH for the quality correction of boiler water. Water and steam quality standards and some recommendations for their maintenance under different operational conditions are given for each of the considered water chemistry regimes. The standards are designed for the water-steam circuit of conventional and combined-cycle thermal power stations. It is pointed out that the quality control of a heat-transfer fluid must be especially careful at combined-cycle thermal power stations with frequent startups and shutdowns.
NASA Astrophysics Data System (ADS)
Berggren, Martin; Klaus, Marcus; Panneer Selvam, Balathandayuthabani; Ström, Lena; Laudon, Hjalmar; Jansson, Mats; Karlsson, Jan
2018-01-01
Dissolved organic carbon (DOC) may be removed, transformed, or added during water transit through lakes, resulting in changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume noncolored DOC, while photochemical processing removes colored fractions, the overall changes in DOC color upon water passage through a lake depend on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photochemical) and the loss of color during water transit time (WTT) through the lakes. We found that influence from photo-decay dominated changes in DOC quality in the epilimnia of relatively clear headwater lakes, resulting in systematic and selective net losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m-1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Moreover, in situ data and dark experiments supported our hypothesis on the selective microbial removal of nonpigmented DOC, mainly of low molecular weight, leading to persistent water color in these highly colored lakes. Our study shows that brown headwater lakes may not conform to the commonly reported pattern of the selective removal of colored constituents in freshwaters, as DOC can show a sustained degree of pigmentation upon transit through these lakes.
Meneses, Yulie E; Flores, Rolando A
2016-05-01
Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Budiyanto, Slamet; Anies; Purnaweni, Hartuti; Sunoko, Henna Rya
2018-02-01
The city of Pekalongan known as "Kota Batik" is one of Batik Industrial Centers in Indonesia with 917 batik industry. There are 203 batik industries located in Jenggot Village, which is the biggest batik industrial center in Pekalongan City. The process of making batik requires a dye derived from synthetic dyes containing heavy metals. Most of the waste is directly discharged into the environment without going through the processing first. This is due to the lack of optimal management of existing WWTP as well as lack of public awareness of environmental conservation. This condition has a negative impact on the surrounding community, especially in terms of environmental health. The result of measurement of 5 (five) batik industrial waste outlets and 5 point of batik waste water in residential sewer shows almost equal number for 3 (three) parameters of heavy metals Cd, Cr and Pb with average number: Cd 0.07 Mg / L, Cr 0.76 mg / L and Pb 0.78 mg / L. These three parameters exceed the maximum level of quality standard established by Government Regulation No.82 of 2001 on Water Quality Management and Water Pollution Control. The average result of the water quality measurement of the well digging population to the heavy metal content are: Cd 0,001 mg / L, Cr 0,002 mg / L and Pb 0.04 mg / L. Of the three parameters of heavy metals, heavy metals of Pb are on average higher than the maximum level of quality standards established by Decree of the Minister of Health Number. 492 / Menkes / Per / IV / 2010 regarding Water Quality Requirements. Potential occurrence of dug well water contamination due to infiltration of batik waste water is big enough. Survey results of 15 dug wells show that the construction of dug wells is not sufficient. There is a dug well with a damaged outer wall of 16.1%, damaged inner wall of 17.9% and a damaged well floor of 19.7%. Improper well construction impacts on the infiltration of batik waste water into the well. Survey results of physical well water quality showed 3.6% snoring, 16.1% smelly, 9.8% color and 10.7% taste. Pollution to dug well water can affect public health because it is used for daily use to drink, cook, bathe and wash because> 65% do not have other sources of clean water. The recommendation of this research is the need for waste water treatment batik starting from source through WWTP both on the household and communal scale with the role of local government as a facilitator. Society and batik industry players need to be involved in managing environmentally friendly batik industrial center.
USDA-ARS?s Scientific Manuscript database
Pasta is a simple food made from water and durum wheat (Triticum turgidum subsp. durum) semolina. As pasta increases in popularity, studies have endeavored to analyze the attributes that contribute to high quality pasta. Despite being a simple food, the laboratory scale analysis of pasta quality is ...