Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle.
Shue, Meei-Fang; Chen, Ting-Chien; Bellotindos, Luzvisminda M; Lu, Ming-Chun
2014-01-01
This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L(-1) and from 2.44 to 29.7 ng Sn g(-1) weight per weight (w/w), respectively. Concentrations in the TBT-contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g(-1) w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg(-1). Additionally, the water samples were assessed for androgenic activity with an MCF7-AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng-dihydrotestosterone per litre water (ng-DHT L(-1)). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.
Hladik, Michelle; Smalling, Kelly L.; Kuivila, Kathryn
2009-01-01
A method for the determination of 14 pyrethroid insecticides in environmental water and sediment samples is described. The method was developed by the U.S. Geological Survey in response to increasing concern over the effects of pyrethroids on aquatic organisms. The pyrethroids included in this method are ones that are applied to many agricultural and urban areas. Filtered water samples are extracted for pyrethroids using solid-phase extraction (SPE) with no additional cleanup steps. Sediment and soil samples are extracted using a microwave-assisted extraction system, and the pyrethroids of interest are separated from co-extracted matrix interferences by passing the extracts through stacked graphitized carbon and alumina SPE cartridges, along with the use of high-performance liquid chromatography and gel-permeation chromatography (HPLC/GPC). Quantification of the pyrethroids from the extracted water and sediment samples is done using gas chromatography with mass spectrometry (GC/MS) or gas chromatography with tandem mass spectrometry (GC/MS/MS). Recoveries in test water samples fortified at 10 ng/L ranged from 83 to 107 percent, and recoveries in test sediment samples fortified at 10 ug/kg ranged from 82 to 101 percent; relative standard deviations ranged from 5 to 9 percent in the water samples and 3 to 9 percent in the sediment samples. Method detection limits (MDLs), calculated using U.S. Environmental Protection Agency procedures (40 CFR 136, Appendix B), in water ranged from 2.0 to 6.0 ng/L using GC/MS and 0.5 to 1.0 ng/L using GC/MS/MS. For sediment, the MDLs ranged from 1.0 to 2.6 ug/kg dry weight using GC/MS and 0.2 to 0.5 ug/kg dry weight using GC/MS/MS. The matrix-spike recoveries for each compound, when averaged for 12 environmental water samples, ranged from 84 to 96 percent, and when averaged for 27 environmental sediment samples, ranged from 88 to 100 percent.
Miller, K.F.; Walters, D.A.
2001-01-01
Dioxin is a toxic chemical that, when present in the environment, can cause cancer and birth defects in humans. Dioxin is of particular concern because concentrations of dioxin that were released into the environment many years ago remain a contributing factor to current exposure. Dioxin exposure often occurs in surface-water systems downstream from contaminated sites and is detrimental to aquatic life. For these reasons and because the U.S. Geological Survey has expertise in conducting high-volume dioxin sampling, the U.S. Environmental Protection Agency and the State of North Carolina asked the U.S. Geological Survey to collect water samples in the lower Roanoke River to be analyzed for the presence of dioxin. Water quality of the lower Roanoke River Basin in North Carolina was assessed at eight sites during February 26-March 7, 2001. Water- quality samples were collected for analysis of suspended-sediment and dioxin concentrations; high-volume (750-liter) water samples were collected for dioxin analysis. Discharge measurements were made at or near the high-volume sampling sites. Suspended-sediment sampling and water-quality measurements of specific conductance, pH, water temperature, and dissolved-oxygen concentrations made at each sampling site included multidepth measurements at two cross-section transects and hourly measurements at the point of high-volume sampling. Multidepth measurements were made near the surface, mid-depth, and near the bottom of the water column. These values were averaged for each cross section. During the sampling period, all sites sampled had dioxin concentrations above detection limits (1 part per quintillion) for both suspended and dissolved dioxin. Suspended dioxin ranged from 5.1 to 900 femtograms per liter, and dissolved dioxin values ranged from 0.31 to 41 femtograms per liter. Suspended-sediment concentrations ranged from 1.1 to 14 milligrams per liter. Specific conductance values ranges from 111 to 340 microsiemens per centimeter at 25 degrees Celsius. The range of pH values at the sampling sites was from 6.6 to 7.7. Water temperatures ranged from 8.9 to 13 degrees Celsius. Dissolved-oxygen concentrations ranged from 7.3 to 10.9 milligrams per liter.
Damrau, D.L.
1993-01-01
Increased awareness of the quality of water in the United States has led to the development of a method for determining low levels (0.2-5.0 microg/L) of silver in water samples. Use of graphite furnace atomic absorption spectrophotometry provides a sensitive, precise, and accurate method for determining low-level silver in samples of low ionic-strength water, precipitation water, and natural water. The minimum detection limit determined for low-level silver is 0.2 microg/L. Precision data were collected on natural-water samples and SRWS (Standard Reference Water Samples). The overall percent relative standard deviation for natural-water samples with silver concentrations more than 0.2 microg/L was less than 40 percent throughout the analytical range. For the SRWS with concentrations more than 0.2 microg/L, the overall percent relative standard deviation was less than 25 percent throughout the analytical range. The accuracy of the results was determined by spiking 6 natural-water samples with different known concentrations of the silver standard. The recoveries ranged from 61 to 119 percent at the 0.5-microg/L spike level. At the 1.25-microg/L spike level, the recoveries ranged from 92 to 106 percent. For the high spike level at 3.0 microg/L, the recoveries ranged from 65 to 113 percent. The measured concentrations of silver obtained from known samples were within the Branch of Quality Assurance accepted limits of 1 1/2 standard deviations on the basis of the SRWS program for Inter-Laboratory studies.
Lee, Edward Alan; Strahan, Alex P.; Thurman, Earl Michael
2002-01-01
An analytical method for the determination of 7 triazine and phenylurea herbicides and 12 of their degradation products in natural water samples using solid-phase extraction and liquid chromatography/mass spectrometry is presented in this report. Special consideration was given during the development of the method to prevent the formation of degradation products during the analysis. Filtered water samples were analyzed using 0.5 gram graphitized carbon as the solid-phase extraction media followed by liquid chromatography/mass spectrometry. Three different water-sample matrices?ground-water, surface-water, and reagent-water samples?spiked at 0.2 and 2.0 micrograms per liter were analyzed. Method detection limits ranged from 0.013 to 0.168 microgram per liter for the parent triazine herbicides and the triazine degradation products. Method detection limits ranged from 0.042 to 0.141 microgram per liter for the parent phenylurea herbicides and their degradation products. Mean recoveries for the triazine compounds in the ground- and surface-water samples generally ranged from 72.6 to 117.5 percent, but deethyl-cyanazine amide was recovered at 140.5 percent. Mean recoveries from the ground- and surface-water samples for the phenylurea compounds spiked at the 2.0-micrograms-per-liter level ranged from 82.1 to 114.4 percent. The mean recoveries for the phenylureas spiked at 0.2-microgram per liter were less consistent, ranging from 87.0 to 136.0 percent. Mean recoveries from reagent-water samples ranged from 87.0 to 109.5 percent for all compounds. The triazine compounds and their degradation products are reported in concentrations ranging from 0.05 to 2.0 micrograms per liter, with the exception of deethylcyanazine and deethylcyanazine amide which are reported at 0.20 to 2.0 micrograms per liter. The phenylurea compounds and their degradation products are reported in concentrations ranging from 0.20 to 2.0 micrograms per liter. The upper concentration limit was 2.0 micrograms per liter for all compounds without dilution.
Kelly, Brian P.
2002-01-01
A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a
Hladik, Michelle; Calhoun, Daniel L.
2012-01-01
A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.
Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia
2013-02-01
The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential. Copyright © 2012 Elsevier Ltd. All rights reserved.
Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M
2012-06-15
This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.
Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1991
Kalkhoff, S.J.; Kuzniar, R.L.
1994-01-01
Stream discharge, specific conductance, pH, and water temperature were monitored continuously, and monthly water-quality samples were collected at a site on Roberts Creek and at Big Spring. Nitrite plus nitrate as nitrogen concentrations in 27 samples from Roberts Creek at the point where it leaves the study area ranged from 1.8 to 22 mg/L. Herbicide concentrations in 26 samples from the Roberts Creek site ranged from less than 0.10 μg/L (micrograms per liter) to 43 μg/L. Alachlor was detected in 42 percent of the samples; atrazine in 92 percent; and cyanazine and metolachlor in 35 percent of the samples. The total suspended-sediment load discharged in Roberts Creek was about 160,000 tons. At Big Spring, the ground-water discharge point, the daily mean specific conductance ranged from 414 to 788 microsiemens per centimeter at 25 degrees Celsius, the daily median pH ranged from 6.7 to 7.1, and the daily mean water temperature ranged from 8.5 to 13.0 degrees Celsius. Concentrations of nitrite plus nitrate as nitrogen in 23 samples ranged from 4.2 to 17 mg/L. The total measured suspended-sediment discharged from Big Spring was about 17,000 tons. Alachlor was detected in 26 percent; atrazine in 100 percent; cyanazine in 26 percent, and metolachlor in 9 percent of the samples. The maximum atrazine concentration was 16 μg/L.
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... considering the number of samples in the background data base, the data distribution, and the range of the... the background data base, the data distribution, and the range of the concentration values for each... samples collected to establish ground-water quality data must be consistent with the appropriate...
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... considering the number of samples in the background data base, the data distribution, and the range of the... the background data base, the data distribution, and the range of the concentration values for each... samples collected to establish ground-water quality data must be consistent with the appropriate...
Jha, Virendra K.; Wydoski, Duane S.
2002-01-01
A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.
Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples
NASA Astrophysics Data System (ADS)
Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.
2016-03-01
In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.
Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.
2010-01-01
The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms
Clark, Stewart F.; Chalmers, Ann; Mack, Thomas J.; Denner, Jon C.
2005-01-01
The Ethan Allen Firing Range of the Vermont Army National Guard is a weapons-testing and training facility in a mountainous region of Vermont that has been in operation for about 80 years. The hydrologic framework and water quality of the facility were assessed between October 2002 and December 2003. As part of the study, streamflow was continuously measured in the Lee River and 24 observation wells were installed at 19 locations in the stratified drift and bedrock aquifers to examine the hydrogeology. Chemical analyses of surface water, ground water, streambed sediment, and fish tissue were collected to assess major ions, trace elements, nutrients, and volatile and semivolatile compounds. Sampling included 5 surface-water sites sampled during moderate and low-flow conditions; streambed-sediment samples collected at the 5 surface-water sites; fish-tissue samples collected at 3 of the 5 surface-water sites; macroinvertebrates collected at 4 of the 5 surface-water sites; and ground-water samples collected from 10 observation wells, and samples collected at all surface- and ground-water sites. The hydrogeologic framework at the Ethan Allen Firing Range is dominated by the upland mountain and valley setting of the site. Bedrock wells yield low to moderate amounts of water (0 to 23 liters per minute). In the narrow river valleys, layered stratified-drift deposits of sand and gravel of up to 18 meters thick fill the Lee River and Mill Brook Valleys. In these deposits, the water table is generally within 3 meters below the land surface and overall ground-water flow is from east to west. Streamflow in the Lee River averaged 0.72 cubic meters per second (25.4 cubic feet per second) between December 2002 and December 2003. Streams are highly responsive to precipitation events in this mountainous environment and a comparison with other nearby watersheds shows that Lee River maintains relatively high streamflow during dry periods. Concentrations of trace elements and nutrients in surface-water samples are well below freshwater-quality guidelines for the protection of aquatic life. Brook-trout samples collected in 1992 and 2003 show trace-metal concentrations have decreased over the past 11 years. concentrations in water samples are well below levels that restrict swimming at all five stream sites at moderate and low-flow conditions and in all observation wells. Comparisons among surface-water, streambed-sediment, and biological samples collected in 2003 to earlier studies at the Ethan Allen Firing Range indicate water-quality conditions are similar or have improved over the past 15 years. Ground water in the stratified-drift aquifers at the facility is well buffered with relatively high alkalinities and pH greater than 6. Concentrations of arsenic, cadmium, chromium, lead, nickel, uranium, and zinc were below detection levels in ground-water samples. Barium, cobalt, copper, iron, manganese, molybdenum, and strontium were the only trace elements detected in ground-water samples. Cobalt and iron were detected at low levels in two wells near Mill Brook, and copper was detected at the detection limit in one of these wells. These same two wells had concentrations of barium and manganese 2 to 10 times greater than other ground-water samples. Concentrations of nutrients are at or below detection levels in most ground-water samples. Volatile organic compounds and semivolatile organic compounds were not detected in any water samples from the Ethan Allen Firing Range.
Anderholm, Scott K.
2002-01-01
As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th
Heavy metal hazards of sachet water in Nigeria.
Orisakwe, Orish Ebere; Igwilo, Innocent O; Afonne, Onyenmechi Johnson; Maduabuchi, John-Moses Ugwuona; Obi, Ejeatuluchukwu; Nduka, John C
2006-01-01
The authors assessed sachet water samples sold in Eastern Nigeria. Using an atomic absorption spectrophotometer, they analyzed levels of lead, cadmium, copper, and nickel. They also analyzed other parameters, such as nitrates, sulfates, chlorides, salinity, total hardness, biological oxygen demand, total dissolved solids, and pH level. Lead levels ranged from 0.002 to 0.036 mg/L in the samples; 5 samples (12.2%) had lead levels above the maximum contaminant level (MCL; 0.015 mg/L). Lead was not detectable in 20 samples (48.8%). Cadmium levels ranged from 0.002 to 0.036 mg/L and exceeded the MCL of 0.005 mg/L in 8 samples (19.5%); it was not detectable in 23 samples (56.1%). Copper was not detected in 2 (0.05%) of the samples. Its range was between 0.018 and 1.401 mg/L. Two samples (0.05%) had copper levels above the MCL (1.30 mg/L). Nickel levels ranged from 0.003 to 0.050 mg/l. The biological oxygen demand of the samples ranged from 3.20 to 36.80 mg/L. Other parameters were normal. The authors found that some of the sachet waters contain heavy metals, and consumers may be exposed to hazards.
Lee, E.A.; Strahan, A.P.
2003-01-01
An analytical method for the determination of 6 acetamide herbicides (acetochlor, alachlor, dimethenamid, flufenacet, metolachlor, and propachlor) and 16 of their degradation products in natural water samples using solid-phase extraction and liquid chromatography/mass spectrometry is described in this report. Special consideration was given during the development of the method to prevent the formation of degradation products during the analysis. Filtered water samples were analyzed using octadecylsilane as the solid-phase extraction media on online automated equipment followed by liquid chromatography/mass spectrometry. The method uses only 10 milliliters of sample per injection. Three different water-sample matrices, a reagent-water, a ground-water, and a surface-water sample spiked at 0.10 and 1.0 microgram per liter, were analyzed to determine method performance. Method detection limits ranged from 0.004 to 0.051 microgram per liter for the parent acetamide herbicides and their degradation products. Mean recoveries for the acetamide compounds in the ground- and surface-water samples ranged from 62.3 to 117.4 percent. The secondary amide of acetochlor/metolachlor ethanesulfonic acid (ESA) was recovered at an average rate of 43.5 percent. The mean recoveries for propachlor and propachlor oxanilic acid (OXA) were next lowest, ranging from 62.3 to 95.5 percent. Mean recoveries from reagent-water samples ranged from 90.3 to 118.3 percent for all compounds. Overall the mean of the mean recoveries of all compounds in the three matrices spiked at 0.10 and 1.0 microgram per liter ranged from 89.9 to 100.7 percent, including the secondary amide of acetochlor/metolachlor ESA and the propachlor compounds. The acetamide herbicides and their degradation products are reported in concentrations ranging from 0.05 to 2.0 micrograms per liter. The upper concentration limit is 2.0 micrograms per liter for all compounds without dilution. With the exception of the secondary amide of acetochlor/metolachlor ESA, good precision and accuracy for the chloroacetanalide herbicides and their degradation compounds were demonstrated for the method in buffered reagent water, ground water, and surface water. The extraction method as used did not optimize the recovery of the secondary amide of acetochlor/metolachlor ESA.
NASA Astrophysics Data System (ADS)
Bindeman, I. N.; Dixon, J. E.; Langmuir, C. H.; Palandri, J. L.
2015-12-01
The advent and calibration of the Thermal Combustion Element Analyzer (TCEA) continuous flow system coupled with the large-radius mass spectrometer MAT253 permits precise (±0.02 wt.% H2O, ±1-3‰ D/H) measurements in 1-10 mg of volcanic glass (0.1 wt.% H2O requires ~10 mg glass), which permits the targeting of small amounts of the freshest concentrate. This is a >100 factor reduction in sample size over conventional methods, four times over more common Delta series instruments. We investigated in triplicate 115 samples of submarine MORB glasses ranging from water-poor (0.1-0.2wt%) to water-rich (1.2-1.5wt%). These samples were previously investigated for major and trace elements, radiogenic isotopes; a large subset of these samples coming from the FAZAR expedition were studied previously by FTIR for water concentration. We also ran samples previously studied by the conventional off-line technique: MORB glass including those from the Easter Platform and the Alvin 526-1 standard (0.2wt% H2O). We observe excellent 1:1 correspondence (1.02x+0.02, R2=0.94) of wt% water by FTIR and TCEA suggesting complete extraction of water and no dependence on water concentration. We measure 51‰ total range in D/H that correlates with all other chemical and isotopic indicators of mantle enrichment, with the heaviest values occurring in the most enriched samples. When used uncorrected values of H2 gas run against H2 gas of known composition, this range agrees nicely with previous D/H range for MORB (-30 to -90‰), measured for samples run conventionally. Uncorrected analyses of Alvin glass 526-1 gives -66‰. When run against SMOW, SLAP and -41‰ water sealed in silver cups, the range is shifted by -15‰; when standardization is done by with three commonly used mica standards as is done most commonly in different labs, the range is shifted downward by -30-32‰. There are no isotopic offsets related to total water or D/H range requiring different slope or non-linear correction. The NBS30 mica standard has been recently shown to be heavier and more heterogeneous than previously thought, and older conventional methods that relied on Pt reduction unreliable. Based on these new TCEA results, the D/H values of MORB and mantle samples may need to be revised to lighter values by 15‰.
Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.
D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto
2012-05-01
Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).
Schaap, Bryan D.; Bartholomay, Roy C.
2006-01-01
During June and July 2005, water and bottom-sediment samples were collected from selected Yankton Sioux Tribe wetlands within the historic Reservation area of eastern Charles Mix County as part of a reconnaissance-level assessment by the U.S. Geological Survey and Yankton Sioux Tribe. The water samples were analyzed for pesticides and mercury species. In addition, the water samples were analyzed for physical properties and chemical constituents that might help further characterize the water quality of the wetlands. The bottom-sediment samples were analyzed for mercury species. During June 2005, water samples were collected from 19 wetlands and were analyzed for 61 widely used pesticide compounds. Many pesticides were not detected in any of the water samples and many others were detected only at low concentrations in a few of the samples. Thirteen pesticides were detected in water samples from at least one of the wetlands. Atrazine and de-ethyl atrazine were detected at each of the 19 wetlands. The minimum, maximum, and median dissolved atrazine concentrations were 0.056, 0.567, and 0.151 microgram per liter (?g/L), respectively. Four pesticides (alachlor, carbaryl, chlorpyrifos, and dicamba) were detected in only one wetland each. The number of pesticides detected in any of the 19 wetlands ranged from 3 to 8, with a median of 6. In addition to the results for this study, recent previous studies have frequently found atrazine in Lake Andes and the Missouri River, but none of the atrazine concentrations have been greater than 3 ?g/L, the U.S. Environmental Protection Agency's Maximum Contaminant Level for atrazine in drinking water. During June and July 2005, water and bottom-sediment samples were collected from 10 wetlands. Water samples from each of the wetlands were analyzed for major ions, organic carbon, and mercury species, and bottom-sediment samples were analyzed for mercury species. For the whole-water samples, the total mercury concentrations ranged from 1.11 to 29.65 nanograms per liter (ng/L), with a median of 10.56 ng/L. The methylmercury concentrations ranged from 0.45 to 14.03 ng/L, with a median of 2.28 ng/L. For the bottom-sediment samples, the total mercury concentration ranged from 21.3 to 74.6 nanograms per gram (ng/g), with a median of 54.2 ng/g. The methylmercury concentrations ranged from <0.11 to 2.04 ng/g, with a median of 0.78 ng/g. The total mercury concentrations in the water samples were all much less than 2 ?g/L (2,000 ng/L), the U.S. Environmental Protection Agency's Maximum Contaminant Level for mercury in drinking water. However, water samples from four of the wetlands had concentrations larger than 0.012 ?g/L (12 ng/L), the State of South Dakota's chronic standard for surface waters, including wetlands. Maximum methylmercury concentrations for this study are larger than reported concentrations for wetlands in North Dakota and concentrations reported for the Cheyenne River Indian Reservation in South Dakota.
Naus, C.A.; Myers, R.G.; Saleh, D.K.; Myers, N.C.
2014-01-01
The White Sands pupfish (Cyprinodon tularosa), listed as threatened by the State of New Mexico and as a Federal species of concern, is endemic to the Tularosa Basin, New Mexico. Because water quality can affect pupfish and the environmental conditions of their habitat, a comprehensive compilation of hydrologic data for pupfish habitat and nonhabitat areas in the northern Tularosa Basin was undertaken by the U.S. Geological Survey in cooperation with White Sands Missile Range. The four locations within the Tularosa Basin that are known pupfish habitat areas are the Salt Creek, Malpais Spring and Malpais Salt Marsh, Main Mound Spring, and Lost River habitat areas. Streamflow data from the Salt Creek near Tularosa streamflow-gaging station indicated that the average annual mean streamflow and average annual total streamflow for water years 1995–2008 were 1.35 cubic feet per second (ft3/s) and 983 acre-feet, respectively. Periods of no flow were observed in water years 2002 through 2006. Dissolved-solids concentrations in Salt Creek samples collected from 1911 through 2007 ranged from 2,290 to 66,700 milligrams per liter (mg/L). The average annual mean streamflow and average annual total streamflow at the Malpais Spring near Oscura streamflow-gaging station for water years 2003–8 were 6.81 ft3/s and 584 acre-feet, respectively. Dissolved-solids concentrations for 16 Malpais Spring samples ranged from 3,882 to 5,500 mg/L. Isotopic data for a Malpais Spring near Oscura water sample collected in 1982 indicated that the water was more than 27,900 years old. Streamflow from Main Mound Spring was estimated at 0.007 ft3/s in 1955 and 1957 and ranged from 0.02 to 0.07 ft3/s from 1996 to 2001. Dissolved-solids concentrations in samples collected between 1955 and 2007 ranged from an estimated 3,760 to 4,240 mg/L in the upper pond and 4,840 to 5,120 mg/L in the lower pond. Isotopic data for a Main Mound Spring water sample collected in 1982 indicated that the water was about 19,600 years old. Dissolved-solids concentrations of Lost River samples collected from 1984 to 1999 ranged from 8,930 to 118,000 (estimated) mg/L. Dissolved-solids concentrations in samples from nonhabitat area sites ranged from 1,740 to 54,200 (estimated) mg/L. In general, water collected from pupfish nonhabitat area sites tends to have larger proportions of calcium, magnesium, and sulfate than water from pupfish habitat area sites. Water from springs associated with mounds in pupfish nonhabitat areas was of a similar type (calcium-sulfate) to water associated with mounds in pupfish habitat areas. Alkali Spring had a sodium-chloride water type, but the proportions of sodium-chloride and magnesium-sulfate are unique as compared to samples from other sites.
Chowdhury, Alamgir Zaman; Jahan, Salina Akter; Islam, Mohammad Nazrul; Moniruzzaman, Mohammed; Alam, Mohammad Khorshed; Zaman, Mohammad A; Karim, Nurul; Gan, Siew Hua
2012-07-01
We report the presence of organophosphorus and carbamate residues in 24 surface water samples and five ground water samples from Pirgacha Thana, Rangpur district, Bangladesh using high-performance liquid chromatography. A number of samples of surface water from paddy fields were found to contain chlorpyriphos, carbofuran and carbaryl at concentrations ranging from 0-1.189, 0-3.395 and 0-0.163 μg/L, respectively. Surface water from the lakes had chlorpyriphos, carbofuran and carbaryl at concentrations ranging from 0.544-0.895, 0.949-1.671 and 0-0.195 μg/L, respectively. This result indicates that the general public living in the area of Rangpur is at high risk of pesticide exposure from contaminated waters in the environment.
Werner, Stephen L.; Burkhardt, Mark R.; DeRusseau, Sabrina N.
1996-01-01
In accordance with the needs of the National Water-Quality Assessment Program (NAWQA), the U.S. Geological Survey has developed and implemented a graphitized carbon-based solid-phase extraction and high-performance liquid chromatographic analytical method. The method is used to determine 41 pesticides and pesticide metabolites that are not readily amenable to gas chromatography or other high-temperature analytical techniques. Pesticides are extracted from filtered environmental water samples using a 0.5-gram graphitized carbon-based solid-phase cartridge, eluted from the cartridge into two analytical fractions, and analyzed using high-performance liquid chromatography with photodiode-array detection. The upper concentration limit is 1.6 micrograms per liter (=B5g/L) for most compounds. Single-operator method detection limits in organic-free water samples ranged from 0.006 to 0.032 =B5g/L= Recoveries in organic-free water samples ranged from 37 to 88 percent. Recoveries in ground- and surface-water samples ranged from 29 to 94 percent. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time of 7 days.
Macy, Jamie P.; Monroe, Stephen A.
2006-01-01
The National Park Service initiated a Level 1 Water-Quality Inventory program to provide water-quality data to park managers so informed natural resource management decisions could be made. Level 1 water-quality data were collected by the U.S. Geological Survey Arizona Water Science Center at 57 sites in 13 National Park units located in the Southern Colorado Plateau Inventory and Monitoring network in water years 2005 and 2006. These data describe the current water-quality at selected sites within the park units and provide information for monitoring future trends. Water samples were collected three times at each type of site including wells, springs, seeps, tinajas, rivers, a lake, and an irrigation ditch. Field measurements were taken at each site and they included pH, specific conductance, temperature, barometric pressure, dissolved oxygen, alkalinity, turbidity, and discharge rates where applicable. Water samples collected were sent to the U.S. Geological Survey National Water Quality Laboratory and analyzed for major ions, trace elements, and nutrients. The National Water Quality Laboratory also analyzed selected samples for mercury and petroleum hydrocarbons. Additional samples at selected sites were collected and analyzed for cyanide, radiochemistry, and suspended sediment by U.S. Geological Survey contract labs. Fecal-indicator bacteria (Escherichia coli) were sampled for at selected sites as another indicator of water quality. Quality control for this study was achieved through proper training of field personnel, use of standard U.S. Geological Survey field and laboratory protocols, collection of sample blanks and replicates, and a thorough review of the water-quality analyses. Measured field pH ranged from 6.0 to 8.8, within normal range for springs and rivers, at most sites. Concentrations of dissolved solids ranged from 48 to 8,680 mg/L and the majority of samples had concentrations of dissolved solids below 900 mg/L. Trace-element concentrations at most sites were at or near the laboratory reporting levels. The highest overall trace-element concentrations were found at U.S. Highway 160 Spring near Park Entrance to Mesa Verde National Park. Concentrations of uranium in samples at all sites ranged from below the detection limit to 55.7 ?g/L. Water samples from selected sites were analyzed for total petroleum hydrocarbons and concentrations of total petroleum hydrocarbons were at or above the laboratory detection limit in samples at six National Park units. Ten sites were sampled for Escherichia coli and positive counts were found at 9 out of the ten sites, the highest colony counts were found at Chinle Creek at Chinle, AZ in Canyon de Chelly National Monument. Measured concentrations of dissolved ammonia, nitrite, and nitrate were at or near laboratory reporting levels at most sites; nitrate concentrations ranged from below the reporting limit (0.047 mg/L) to 9.77 mg/L. Samples that were analyzed for mercury had concentrations below or at the laboratory reporting level. Concentrations of cyanide were less than the laboratory reporting level for all samples except two, Spruce Tree House Spring in Mesa Verde National Park and Pine Tree Canyon Tinaja in Canyon de Chelly National Monument, which had average concentrations of .042 and .011 ?g/L respectively. Gross alpha/beta radioactivity counts were below the U.S. Environmental Protection Agency maximum contaminant level except for samples from Casa Chiquita Well Middle at Chaco Culture National Historical Park which averaged 35 pCi/L. Suspended-sediment concentrations were variable and ranged from 10 to 150,000 mg/L.
Jha, Virendra K.; Wydoski, Duane S.
2003-01-01
A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.
Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.
2004-01-01
In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact Area indicates a likely connection with the deeper water-producing zone. No pesticides, explosives, volatile organic compounds, semivolatile organic compounds, organic halogens, or perchlorate were found in water samples from the Southern High Plains aquifer at the Range.
Ground-water data in the Baker County-northern Malheur County area, Oregon
Collins, C.A.
1979-01-01
Ground-water data for the Baker County-northern Malheur area, Oregon, are tabulated for the Bureau of Land Management. The data include well and spring records, a well-location map, drillers ' logs of wells, observation-well hydrographs, and chemical analyses of ground-water samples. The reported yields of wells and springs in the area ranged from less than 1 to 2 ,500 gallons per minute. Dissolved solids in ground-water samples ranged from 50 to 1,587 milligrams per liter, and arsenic ranged from 0.001 to 0.317 milligrams per liter. (Woodard-USGS)
Robertson, J.F.; Nagle, Douglas D.; Rhodes, Liesl C.
1994-01-01
Investigations to provide initial qualitative delineation of petroleum hydrocarbon contamination at three former underground storage tank locations at Fort Jackson, South Carolina, were made during March 1994. Ground-water and sediment samples were collected using direct-push technology and analyzed on-site with a gas chromatograph, which provided real-time, semi-quantitative data. In addition, ground-water and sediment samples were collected at selected sites for laboratory analyses to provide a confirmation of the on-site data. These analyses provided qualitative data on the lateral distri- bution of petroleum hydrocarbons. Petroleum hydrocarbons were detected by on-site analysis in ground-water samples from nine locations at Site 1062, suggesting the presence of a contaminant plume. Concentrations ranged from less than the minimum detection limit to 4,511 mg/L (micrograms per liter) for benzene, 15,594 mg/L for toluene, 16,501 mg/L for ethylbenzene, and 19,391 mg/L for total xylenes. Concentrations of Total Petroleum Hydrocarbons-Gasoline Range Organics ranged from 323 mg/L to 3,364 mg/L; Total Petroleum Hydrocarbons-Diesel Range Organics were not detected. Three samples from this site were analyzed for benzene, toluene, ethylbenzene, and total xylenes at a laboratory and results showed concentrations ranging from less than the minimum detection limit to 1,070 mg/L for benzene, 7,930 mg/L for toluene, 6,890 mg/L for ethylbenzene, and 1,524 mg/L for total xylenes. Petroleum hydro- carbons were detected by on-site analysis in only one sample at Site 2438. A concentration of 131,000 micrograms per kilogram Total Petroleum Hydrocarbons-Diesel Range Organics was detected in sample number GP-2-4-13.5. Petroleum hydrocarbons were detected by on-site analysis in only one ground-water sample from Site 2444. A concentration of 3,145 mg/L Total Petroleum Hydrocarbons-Gasoline Range Organics was detected at sampling location GP-3-2.
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.
2016-04-01
This study reports on the water quality index (WQI) of wastewater and drinking water in the Mpumalanga and North West provinces of South Africa. The WQI is one of the most effective tools available to water sustainability researchers, because it provides an easily intelligible ranking of water quality on a rating scale from 0 to 100, based on the ascription of different weightings to several different parameters. In this study the WQI index ratings of wastewater and drinking water samples were computed according to the levels of pH, electrical conductivity (EC), biochemical oxygen demand (BOD), E. coli, temperature, turbidity and nutrients (nitrogen and phosphates) found in water samples collected from the two provinces between June and December, 2014. This study isolated three groups of WQ-rated waters, namely: fair (with a WQI range = 32.87-38.54%), medium (with a WQI range = 56.54-69.77%) and good (with a WQI range = 71.69-81.63%). More specifically, 23%, 23% and 54% of the sampled sites registered waters with fair, medium and good WQ ratings respectively. None of the sites sampled during the entire period of the project registered excellent or very good water quality ratings, which would ordinarily indicate that no treatment is required to make it fit for human consumption. Nevertheless, the results obtained by the Eerstehoek and Schoemansville water treatment plants in Mpumalanga and North West provinces, respectively, suggest that substantial improvement in the quality of water samples is possible, since the WQI values for all of the treated samples were higher than those for raw water. Presence of high levels of BOD, low levels of dissolved oxygen (DO), E. coli, nitrates and phosphates especially in raw water samples greatly affected their overall WQ ratings. It is recommended that a point-of-use system should be introduced to treat water intended for domestic purposes in the clean-water-deprived areas.
Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.
1992-01-01
This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.
Measurement of the Water Relaxation Time of ɛ-Polylysine Aqueous Solutions
NASA Astrophysics Data System (ADS)
Shirakashi, Ryo; Amano, Yuki; Yamada, Jun
2017-05-01
ɛ-Polylysine is an effective food preservative. In this paper, the β-relaxation time of ɛ-polylysine aqueous solutions, which represents the rotational speed of a single water molecule, was measured by broadband dielectric spectroscopy at various temperatures and concentrations. The broadband dielectric spectrum of each sample containing water ranging from 35 wt% to 75 wt% at temperatures ranging from 0°C to 25°C was measured using a co-axial semirigid cable probe. The measured dielectric spectra of the samples were composed of several Debye relaxation peaks, including a shortest single molecular rotational relaxation time of water, the β-relaxation time, longer than that of pure water. This result represents that ɛ-polylysine suppresses the molecular kinetics of water. It is also found that the β-relaxation time of an ɛ-polylysine solution that contained more than 35 wt% water showed a typical Arrhenius plot in the temperature range from 0°C to 25°C. The activation energy of each sample depends on the water content ratio of the sample. As indicated by its long β-relaxation time, ɛ-polylysine is expected to possess high abilities of suppressing freezing and ice coarsening.
A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida
Katz, B.G.; Hornsby, H.D.
1998-01-01
A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer range from 1985 to 1989.
Amiri, Amirhassan; Saadati-Moshtaghin, Hamid Reza; Zonoz, Farokhzad Mohammadi; Targhoo, Azadeh
2017-02-03
In this work, aminopropyl modified silica-coated magnetite nanoparticles with Wells-Dawson heteropoly acid (P 2 W 17 Fe@APSCMNPs) was first synthesized and underwent highly efficient magnetic solid-phase extraction (MSPE) of aromatic amines from aqueous samples. The resulted nanomaterials were characterized with different physicochemical techniques such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). Aniline, N,N-dimethylaniline, o-toluidine and 3-chloroaniline were selected as target compounds. The sample quantification was carried out using gas chromatography-flame ionization detector (GC-FID). Under optimal working conditions, the developed method showed good linearity (R>0.9912) in the range of 0.01-100ngmL -1 . The method displays detection limits (at an S/N ration of 3) in the range from 0.003 to 0.01ngmL -1 , and the limits of quantification (at an S/N ratio of 10) are between 0.01 and 0.04ngmL -1 . The enrichment factors (EFs) were in the range of 75-113. Relative standard deviations (RSDs) are 4.8-8.3%. The applicability of the developed method was examined by analyzing different water samples (river water, tap water, well water and wastewater) and the relative recovery values for the spiked water samples were found to be in the range of 90.7-99.8%. Copyright © 2016 Elsevier B.V. All rights reserved.
Ground- and Surface-Water Chemistry of Handcart Gulch, Park County, Colorado, 2003-2006
Verplanck, Philip L.; Manning, Andrew H.; Kimball, Briant A.; McCleskey, R. Blaine; Runkel, Robert L.; Caine, Jonathan S.; Adams, Monique; Gemery-Hill, Pamela A.; Fey, David L.
2008-01-01
As part of a multidisciplinary project to determine the processes that control ground-water chemistry and flow in mineralized alpine environments, ground- and surface-water samples from Handcart Gulch, Colorado were collected for analysis of inorganic solutes and water and dissolved sulfate stable isotopes in selected samples. The primary aim of this study was to document variations in ground-water chemistry in Handcart Gulch and to identify changes in water chemistry along the receiving stream of Handcart Gulch. Water analyses are reported for ground-water samples collected from 12 wells in Handcart Gulch, Colorado. Samples were collected between August 2003 and October 2005. Water analyses for surface-water samples are reported for 50 samples collected from Handcart Gulch and its inflows during a low-flow tracer injection on August 6, 2003. In addition, water analyses are reported for three other Handcart Gulch stream samples collected in September 2005 and March 2006. Reported analyses include field parameters (pH, specific conductance, temperature, dissolved oxygen, and Eh), major and trace constituents, oxygen and hydrogen isotopic composition of water and oxygen and sulfur isotopic composition of dissolved sulfate. Ground-water samples from this study are Ca-SO4 type and range in pH from 2.5 to 6.8. Most of the samples (75 percent) have pH values between 3.3 and 4.3. Surface water samples are also Ca-SO4 type and have a narrower range in pH (2.7?4.0). Ground- and surface-water samples vary from relatively dilute (specific conductance of 68 ?S/cm) to concentrated (specific conductance of 2,000 ?S/cm).
[Determination of biphenyl ether herbicides in water using HPLC with cloud-point extraction].
He, Cheng-Yan; Li, Yuan-Qian; Wang, Shen-Jiao; Ouyang, Hua-Xue; Zheng, Bo
2010-01-01
To determine residues of multiple biphenyl ether herbicides simultaneously in water using high performance liquid chromatography (HPLC) with cloud-point extraction. The residues of eight biphenyl ether herbicides (including bentazone, fomesafen, acifluorfen, aclonifen, bifenox, fluoroglycofenethy, nitrofen, oxyfluorfen) in water samples were extracted with cloud-point extraction of Triton X-114. The analytes were separated and determined using reverse phase HPLC with ultraviolet detector at 300 nm. Optimized conditions for the pretreatment of water samples and the parameters of chromatographic separation applied. There was a good linear correlation between the concentration and the peak area of the analytes in the range of 0.05-2.00 mg/L (r = 0.9991-0.9998). Except bentazone, the spiked recoveries of the biphenyl ether herbicides in the water samples ranged from 80.1% to 100.9%, with relative standard deviations ranging from 2.70% to 6.40%. The detection limit of the method ranged from 0.10 microg/L to 0.50 microg/L. The proposed method is simple, rapid and sensitive, and can meet the requirements of determination of multiple biphenyl ether herbicides simultaneously in natural waters.
NASA Astrophysics Data System (ADS)
Kreitler, Charles W.; Browning, Lawrence A.
1983-02-01
Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.
Abd Wahib, Siti Munirah; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Kamboh, Muhammad Afzal; Abdul Keyon, Aemi S
2018-01-12
A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L -1 whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L -1 . The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L -1 and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Baseline groundwater quality from 20 domestic wells in Sullivan County, Pennsylvania, 2012
Sloto, Ronald A.
2013-01-01
Concentrations of dissolved methane ranged from less than 0.001 to 51.1 mg/L. Methane was not detected in water samples from 13 wells, and the methane concentration was less than 0.07 mg/L in samples from five wells. The highest dissolved methane concentrations were 4.1 and 51.1 mg/L, and the pH of the water from both wells was greater than 8. Water samples from these wells were analyzed for isotopes of carbon and hydrogen in the methane. The isotopic ratio values fell in the range for a thermogenic (natural gas) source. The water samples from these two wells had the highest concentrations of arsenic, boron, bromide, chloride, fluoride, lithium, molybdenum, and sodium of the 20 wells sampled.
Li, Tiejun; Guo, Yuanming; Hu, Hongmei; Zhang, Xiaoning; Jin, Yanjian; Zhang, Xiaojun; Zhang, Yurong
2016-01-01
A simple, efficient, solvent-free, and commercial readily available approach for determination of five volatile chlorinated hydrocarbons in water samples using the static headspace sampling and gas chromatography with electron capture detection has been described. The proposed static headspace sampling method was initially optimized and the optimum experimental conditions found were 10 mL water sample containing 20% w/v sodium chloride placed in a 20 mL vial and stirred at 50ºC for 20 min. The linearity of the method was in the range of 1.2-240 μg/L for dichloromethane, 0.2-40 μg/L for trichloromethane, 0.005-1 μg/L for perchloromethane, 0.025-5 μg/L for trichloroethylene, and 0.01-2 μg/L for perchloroethylene, with coefficients of determination ranging between 0.9979 and 0.9990. The limits of detection were in the low μg/L level, ranging between 0.001 and 0.3 μg/L. The relative recoveries of spiked five volatile chlorinated hydrocarbons with external calibration method at different concentration levels in pure, tap, sea water of Jiaojiang Estuary, and sea water of waters of Xiaomendao were in the range of 91-116, 96-105, 86-112, and 80-111%, respectively, and with relative standard deviations of 1.9-3.6, 2.3-3.5, 1.5-2.7, and 2.3-3.7% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction on the real water samples (i.e., pure, tap, and sea water, etc.) and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of volatile chlorinated hydrocarbons in different water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of selected anions in water by ion chromatography
Fishman, Marvin J.; Pyen, Grace
1979-01-01
Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.
Geohydrology and water quality of the unconsolidated deposits in Erie County, Pennsylvania
Buckwalter, T.F.; Schreffler, C.L.; Gleichsner, R.E.
1996-01-01
Water in unconsolidated deposits is used for the water supplies of homes, farms, municipalities, and industries in Erie County. The unconsolidated deposits cover most of the bedrock of Erie County. Thickness of the unconsolidated deposits ranged from 60 to 400 feet at 30 sites surveyed by seismic refraction and reflection methods. Water wells, mostly in the unconsolidated deposits, provide adequate domestic supplies. Wells in fractured bedrock can generally provide small domestic supplies; however, droughts can affect some of the domestic water wells. Ground-water withdrawals accounted for 10 million gallons per day of the water used in Erie County in 1984. Mean annual precipitation ranged from 42 to 47 inches per year in Erie County from 1961 through 1990; the southeastern region of the county generally receives more precipitation than the lake shore region to the north. Overland runoff to three segments of the French Creek watershed in the upland area ranged from about 13 to 19 in. per year and base flow ranged from 14 to about 18 in. per year from 1975 to 1992. Evapotranspiration ranged from about 13 to 16 in. per year for those segments. Beach and outwash deposits generally provide the largest supplies of water to wells in Erie County. A median specific capacity of 17 (gal/min)/ft (gallons per minute per foot) of drawdown was determined from records of nondomestic wells in beach deposits and 9 (gal/min)/ft of drawdown in outwash. Mean specific capacity for wells in till deposits was 1.5 (gal/min)/ft. The range in yield and specific capacity, however, was great for the unconsolidated deposits and high yielding outwash deposits are sometimes difficult to locate beneath till and valley-fill deposits. Hydraulic conductivities from three aquifer tests of outwash deposits (sand and gravel) at separate sites ranged from 110 to 2,030 ft/d (feet per day). Hydraulic conductivities from another aquifer test of sand and silt in the water table at Presque Isle ranged from 120 to 215 ft/d. Transmissivities from a third aquifer test of beach sand and gravel ranged from 235 to 262 feet squared per day. Laboratory analyses of stream samples collected during base flows in 1987 and 1988 indicate that concentrations of arsenic, barium, cadmium, chromium, fluoride, lead, mercury, and selenium did not exceed the maximum contaminant levels (MCL's) established for drinking water by the U.S. Environmental Protection Agency (USEPA). Concentrations of two nontoxic elements, iron and manganese, exceeded USEPA secondary maximum contaminant levels (SMCL's) in samples from selected stream sites. Manganese concentrations exceeded the SMCL of 0.05 milligrams per liter at 19 of 30 stream sites sampled in the Upland Plateau Section of Erie County. Twenty-one wells were sampled for inorganic constituents and selected pesticides. Some samples from three of the wells exceeded the MCL for nitrate. Total arsenic concentrations above the MCL of 50 micrograms per liter were documented intermittently in three water wells in North East Township. Water from six of seven tile drains sampled in agricultural fields contained detectable concentrations of herbicides. These samples document the transport of the herbicides from the shallow ground-water system to local streams. Herbicide concentrations were at or more than minimum reporting levels for atrazine, cyanazine, prometone, and simazine. Atrazine concentrations in all seven samples from tile drains did not exceed the USEPA MCL of 3.0 micrograms per liter.
A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples.
Feo, M L; Eljarrat, E; Barceló, D
2010-04-09
A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, tau-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L(-1) with RSDs values < or =3-25% (n=5). The coefficients of estimation of the calibration curves obtained following the proposed methodology were > or =0.998. Recovery values were in the range of 45-106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L(-1). Copyright 2010 Elsevier B.V. All rights reserved.
Geology and ground-water resources of Winkler County, Texas
Garza, Sergio; Wesselman, John B.
1963-01-01
The chemical quality of the water in the principal aquifers is generally acceptable for industry and for public supply. About two-thirds of the samples collected from fresh-water wells had a dissolved-solids content of less than 1,000 ppm (parts per million) ; however, some samples in a few areas were hard and were high in fluoride and silica. Samples from wells in polluted areas contained dissolved solids ranging from about 1,400 to 71,100 ppm. Two comprehensive analyses of water samples from the Rustler formation showed a dissolved-solids content of 18,400 ppm. and 157,000 ppm. In most of the water produced with the oil in the Hendrick oil field, the content of dissolved solids ranged from about 4,000 to about 10,000 ppm. The water produced with the oil in the rest of the oil fields in Winkler County was mainly brine.
Ground-Water Age and Quality in the High Plains Aquifer near Seward, Nebraska, 2003-04
Stanton, Jennifer S.; Landon, Matthew K.; Turco, Michael J.
2007-01-01
The U.S. Geological Survey, in cooperation with the City of Seward, Nebraska, conducted a study of ground-water age and quality to improve understanding of: (1) traveltimes from recharge areas to public-supply wells, (2) the effects of geochemical reactions in the aquifer on water quality, and (3) how water quality has changed historically in response to land-use practices. Samples were collected from four supply wells in the Seward west well field and from nine monitoring wells along two approximate ground-water flow paths leading to the well field. Concentrations of three different chlorofluorocarbons (CFC-12, CFC-11, and CFC-113), sulfur hexafluoride (SF6), and ratios of tritium (3H) to helium-3 (3He) isotope derived from radioactive decay of 3H were used to determine the apparent recharge age of ground-water samples. Age interpretations were based primarily on 3H/3He and CFC-12 data. Estimates of apparent ground-water age from tracer data were complicated by mixing of water of different ages in 10 of the 13 ground-water samples collected. Apparent recharge dates of unmixed ground-water samples or mean recharge dates of young fractions of mixed water in samples collected from monitoring wells ranged from 1985 to 2002. For monitoring-well samples containing mixed water, the fraction of the sample composed of young water ranged from 26 to 77 percent of the sample. Apparent mean recharge dates of young fractions in samples collected from four supply wells in the Seward west well field ranged from about 1980 to 1990. Estimated fractions of the samples composed of young water ranged from 39 to 54 percent. It is implicit in the mixing calculations that the remainder of the sample that is not young water is composed of water that is more than 60 years old and contains no detectable quantities of modern atmospheric tracers. Estimated fractions of the mixed samples composed of 'old' water ranged from 23 to 74 percent. Although alternative mixing models can be used to interpret the results, the mean age and mixing fractions from the primary mixing models used were fairly similar. Relations of ground-water age and nitrate concentrations to depth were not consistent across the study area. In some well nests, more young water and nitrate were present near the bottom than in the middle of the aquifer. These results probably reflect pumping from irrigation and supply wells, which are screened primarily in the lower part of the aquifer, and draw younger water downward in the aquifer. Substantial mixing probably occurs because the aquifer is relatively thin (50 feet) and has a relatively high density of wells (about five pumping wells per square mile). The most reliable estimate of horizontal traveltimes based on differences in ground-water ages between a shallow monitoring well at the upgradient end of the northwest well transect and the deep well at the downgradient end of the well transect was 9 years to travel a distance of about 2 miles. The general similarity of ages at similar depths between different well nests is consistent with the fact that horizontal flow in the aquifer is relatively rapid. Concentrations of nitrate (as nitrogen) in untreated ground-water samples from supply wells in the well field were larger than the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 mg/L (milligrams per liter), ranging from 11.3 to 13.5 mg/L. It is unlikely that nitrate concentrations in the aquifer near the Seward west well field are decreased by denitrification in the aquifer due to oxic geochemical conditions that preclude this reaction. Nitrate concentrations coupled with water recharge dates were compared to historical estimated fertilizer application in an attempt to reconstruct historical trends in ground-water nitrate concentrations and their relation to land-use practices. Nitrate concentrations in young-water fractions, after adjustment for mixing, may be decreasing over apparent recharg
Berndt, M.P.; Galeone, D.R.; Spruill, T.B.; Crandall, C.A.
1998-01-01
Ground-water quality is generally good in three urban areas studied in the Coastal Plain of the southeastern United States?Ocala and Tampa, Florida, and Virginia Beach, Virginia. The hydrology of these areas differs in that Ocala has many karst depressions but virtually no surface-water features, and Tampa and Virginia Beach have numerous surface-water features, including small lakes, streams, and swamps. Samples were collected in early 1995 from 15 wells in Ocala (8 in the surficial aquifer and 7 in the Upper Floridan aquifer), 17 wells in Tamps (8 in the surficial aquifer and 9 in the Upper Floridan aquifer), and in the summer of 1995 from 15 wells in Virginia Beach (all in the surficial aquifer). In the surficial aquifer in Ocala, the major ion water type was calcium bicarbonate in five samples and mixed (no dominant ions) in three samples, with dissolved-solids concentrations ranging from 78 to 463 milligrams per liter. In Tampa, the water type was calcium bicarbonate in one sample and mixed in seven samples, with dissolved-solids concentrations ranging from 38 to 397 milligrams per liter. In Virginia Beach, water types were primarily calcium and sodium bicarbonate water, with dissolved-solids concentrations ranging from 89 to 740 milligrams per liter. The water types and dissolved-solids concentrations reflect the presence of carbonates in the surficial aquifer materials in the Ocala and Virginia Beach areas. The major ion water type was calcium bicarbonate for all 16 samples from the upper Floridan aquifer in both Florida cities. Dissolved-solids concentrations ranged from 210 to 551 milligrams per liter in Ocala, with a median of 287 milligrams per liter, and from 187 to 362 milligrams per liter in Tampa, with a median of 244 milligrams per liter. Concentrations of nitrate nitrogen were highest in the surficial aquifer in Ocala, and one sample exceeded 10 milligrams per liter, the U.S. Environmental Protection Agency maximum contaminant level for drinking water. Median nitrate concentrations were 1.2 milligrams per liter in Ocala and only 0.06 and 0.05 milligram per liter in Tampa and Virginia Beach, respectively. In Florida, some background water-quality data were available for comparison. The median nitrate concentration in Ocala was much higher than the median nitrate concentration of 0.05 milligram per liter in the background data. Median nitrate concentrations were 0.33 and 0.05 milligram per liter in samples from the Upper Floridan aquifer in Ocala and Tampa, respectively, and 0.05 milligram per liter in background samples. Of the 47 pesticides and 60 volatile organic compounds analyzed, only five pesticides and five volatile organic compounds were detected. The most commonly detected pesticide was prometon, a broad-scale herbicide, detected in samples from eight wells in Ocala (at concentrations ranging from 0.009 to 1.8 micrograms per liter), three wells in Virginia Beach (at concentrations ranging from 0.19 to 10 micrograms per liter), and from one well in Tampa (0.01 microgram per liter). The most commonly detected volatile organic compound was chloroform, which was detected four times at concentrations ranging from 0.3 to 2.2 micrograms per liter in Ocala and Tampa. Seven volatile organic compounds were detected in one sample in Virginia Beach; most were compounds associated with petroleum and coal tar.
Lee, Kathy E.; Langer, Susan K.; Menheer, Michael A.; Foreman, William T.; Furlong, Edward T.; Smith, Steven G.
2012-01-01
The U.S. Geological Survey (USGS) cooperated with the U.S. Environmental Protection Agency and the U.S. Fish and Wildlife Service on a study to identify the occurrence of chemicals of emerging concern (CECs) in water and bottom-sediment samples collected during 2010–11 at sites in seven areas of concern (AOCs) throughout the Great Lakes. Study sites include tributaries to the Great Lakes in AOCs located near Duluth, Minn.; Green Bay, Wis.; Rochester, N.Y.; Detroit, Mich.; Toledo, Ohio; Milwaukee, Wis.; and Ashtabula, Ohio. This report documents the collection methods, analyses methods, quality-assurance data and analyses, and provides the data for this study. Water and bottom-sediment samples were analyzed at the USGS National Water Quality Laboratory in Denver, Colo., for a broad suite of CECs. During this study, 135 environmental and 23 field duplicate samples of surface water and wastewater effluent, 10 field blank water samples, and 11 field spike water samples were collected and analyzed. Sixty-one of the 69 wastewater indicator chemicals (laboratory method 4433) analyzed were detected at concentrations ranging from 0.002 to 11.2 micrograms per liter. Twenty-eight of the 48 pharmaceuticals (research method 8244) analyzed were detected at concentrations ranging from 0.0029 to 22.0 micrograms per liter. Ten of the 20 steroid hormones and sterols analyzed (research method 4434) were detected at concentrations ranging from 0.16 to 10,000 nanograms per liter. During this study, 75 environmental, 13 field duplicate samples, and 9 field spike samples of bottom sediment were collected and analyzed for a wide variety of CECs. Forty-seven of the 57 wastewater indicator chemicals (laboratory method 5433) analyzed were detected at concentrations ranging from 0.921 to 25,800 nanograms per gram. Seventeen of the 20 steroid hormones and sterols (research method 6434) analyzed were detected at concentrations ranging from 0.006 to 8,921 nanograms per gram. Twelve of the 20 pharmaceuticals (research method 8244) analyzed were detected at concentrations ranging from 2.35 to 453.5 nanograms per gram. Six of the 11 antidepressants (research method 9008) analyzed were detected at concentrations ranging from 2.79 to 91.6 nanograms per gram.
Method for the determination of organophosphate insecticides in water, sediment and biota.
Tse, Hung; Comba, Michael; Alaee, Mehran
2004-01-01
A procedure for the determination of 13 organophosphate insecticides (OPs) in water, sediment and biota at low ppb levels is described. Samples were extracted with dichloromethane or acetone/hexane and cleaned up with micro-column silica gel chromatography. Measurements were made by dual capillary column gas chromatography using both nitrogen-phosphorus (NPD) and electron capture (ECD) detection. Recoveries from fortified water samples ranged from 76% to 102% for all sample types. Practical detection limits ranged between 0.003 and 0.029 microg/l in natural water samples, 0.0004-0.005 microg/g w.w. for sediments, and 0.001-0.005 microg/g w.w for biota using the NPD and ECD method. Losses in sediments were experienced when sulphur was removed. Precision and accuracy were not affected in sediment samples where sulphur was not removed.
Biannual water-resources review, White Sands Missile Range, New Mexico, 1986 and 1987
Myers, Robert G.; Sharp, Steven C.
1989-01-01
Hydrologic data were collected at White Sands Missile Range, New Mexico in 1986 and 1987. The total groundwater withdrawal in 1986 was 565,462,500 gal and in 1987 it was 620,492,000 gal. The total groundwater withdrawal was 110,971,300 gal less in 1986 than in 1985, but 55,029,500 gal more in 1987 than in 1986. Water samples from five Post Headquarters water supply wells were collected for chemical analysis in 1986. In 1987, water samples were collected from four test wells in the Post Headquarters area for analysis of selected volatile organic compounds. Twenty-eight water samples from wells were collected for analysis of specific conductance in 1986 and 1987. (USGS)
Williams, Shannon D.
2003-01-01
From November 2001 to January 2002, a study of the ground-water resources in the Crumpton Creek area of Middle Tennessee was conducted to determine whether volatile organic compounds (VOCs) from Arnold Air Force Base (AAFB) have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. VOC samples were collected from private wells that were not included in previous sampling efforts conducted in the Crumpton Creek area near AAFB. Ground-water-flow directions were investigated by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 68 private wells, 82 monitoring wells, and 1 cave during the period of study. Ground-water levels were determined for 42 of the private wells and for all 82 monitoring wells. Of the 82 monitoring wells, 81 withdraw water from the Manchester aquifer and 1 well withdraws water from the overlying shallow aquifer. The Manchester aquifer wells range in depth from 20 to 150 feet. Water-level altitudes for the Manchester aquifer ranged from 956 to 1,064 feet above the National Geodetic Vertical Datum of 1929. Water levels ranged from approximately 6 feet above land surface to 94 feet below land surface. Water-quality samples were collected from all 68 private wells, 8 of the monitoring wells, and the 1 cave. Of the 55 VOCs analyzed, 42 were not detected. Thirteen VOCs were detected; however, only tetrachloroethylene (PCE), methylene chloride, and toluene were detected at concentrations equal to or above reporting levels for the analytical method used. PCE was detected in water samples from 15 private wells and was the only VOC that exceeded drinking water maximum contaminant levels for public water systems. PCE concentrations in samples from five of the wells were below the reporting level and ranged from estimated concentrations of 0.46 to 0.80 microgram per liter (?g/L). Samples from 10 wells contained concentrations equal to or greater than the analytical reporting level of 1 ?g/L for PCE. Samples from one of these wells contained PCE concentrations (12 ?g/L and 11 ?g/L) exceeding the drinking water maximum contaminant level of 5 ?g/L for PCE. The spatial distribution of PCE detections and the relative concentrations of PCE and trichloroethylene suggest that the PCE detections are associated with a small and localized ground-water contamination plume unrelated to AAFB ground-water contamination.
Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria
2015-06-01
Artificial sweeteners are food additives employed as sugar substitutes which are now considered to be emerging organic contaminants. In the present study, a method is developed for the determination of a group of artificial sweeteners in environmental waters. Considering the polar and hydrophilic character of these compounds, hydrophilic interaction liquid chromatography is proposed for their separation as an alternative to traditional reversed-phase liquid chromatography. Two stationary phases with different chemistry were compared for this purpose. For the detection of the analytes, high-resolution mass spectrometry (Orbitrap) was employed to take advantage of its benefits in terms of reliable quantification and confirmation for the measurement of accurate masses. Solid-phase extraction was chosen as the sample treatment, in which the extract in a mixture of NH4OH:MeOH:ACN (1:4:15) was directly injected into the chromatographic system, simplifying the analytical procedure. The optimized method was validated on river and waste water samples. For example, in the case of effluent water samples, limits of detection ranged from 0.002 to 0.7 μg/L and limits of quantification ranged from 0.004 to 1.5 μg/L. Apparent (whole method) recoveries ranged from 57 to 74% with intra-day precision (%RSD, n = 5) ranging from 6 to 25%. The method was successfully applied to water samples from different rivers in Catalonia and different waste water treatment plants in Tarragona. Acesulfame, cyclamate, saccharine and sucralose were found in several samples.
Ludtke, Amy S.; Woodworth, Mark T.; Marsh, Philip S.
2000-01-01
The U.S. Geological Survey operates a quality-assurance program based on the analyses of reference samples for two laboratories: the National Water Quality Laboratory and the Quality of Water Service Unit. Reference samples that contain selected inorganic, nutrient, and low-level constituents are prepared and submitted to the laboratory as disguised routine samples. The program goal is to estimate precision and bias for as many analytical methods offered by the participating laboratories as possible. Blind reference samples typically are submitted at a rate of 2 to 5 percent of the annual environmental-sample load for each constituent. The samples are distributed to the laboratories throughout the year. The reference samples are subject to the identical laboratory handling, processing, and analytical procedures as those applied to environmental samples and, therefore, have been used as an independent source to verify bias and precision of laboratory analytical methods and ambient water-quality measurements. The results are stored permanently in the National Water Information System and the Blind Sample Project's data base. During water year 1998, 95 analytical procedures were evaluated at the National Water Quality Laboratory and 63 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic and low-level constituent data for water year 1998 indicated 77 of 78 analytical procedures at the National Water Quality Laboratory met the criteria for precision. Silver (dissolved, inductively coupled plasma-mass spectrometry) was determined to be imprecise. Five of 78 analytical procedures showed bias throughout the range of reference samples: chromium (dissolved, inductively coupled plasma-atomic emission spectrometry), dissolved solids (dissolved, gravimetric), lithium (dissolved, inductively coupled plasma-atomic emission spectrometry), silver (dissolved, inductively coupled plasma-mass spectrometry), and zinc (dissolved, inductively coupled plasma-mass spectrometry). At the National Water Quality Laboratory during water year 1998, lack of precision was indicated for 2 of 17 nutrient procedures: ammonia as nitrogen (dissolved, colorimetric) and orthophosphate as phosphorus (dissolved, colorimetric). Bias was indicated throughout the reference sample range for ammonia as nitrogen (dissolved, colorimetric, low level) and nitrate plus nitrite as nitrogen (dissolved, colorimetric, low level). All analytical procedures tested at the Quality of Water Service Unit during water year 1998 met the criteria for precision. One of the 63 analytical procedures indicated a bias throughout the range of reference samples: aluminum (whole-water recoverable, inductively coupled plasma-atomic emission spectrometry, trace).
Luo, Qian; Chen, Xichao; Wei, Zi; Xu, Xiong; Wang, Donghong; Wang, Zijian
2014-10-24
When iodide and natural organic matter are present in raw water, the formation of iodo-trihalomethanes (Iodo-THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs) pose a potential health risk because they have been reported to be more toxic than their brominated or chlorinated analogs. In the work, simultaneous analysis of Iodo-THMs, HANs, and HNMs in drinking water samples in a single cleanup and chromatographic analysis was proposed. The DVB/CAR/PDMS fiber was found to be the most suitable for all target compounds, although 75μm CAR/PDMS was better for chlorinated HANs and 65μm PDMS/DVB for brominated HNMs. After optimization of the SPME parameters (DVB/CAR/PDMS fiber, extraction time of 30min at 40°C, addition of 40% w/v of salt, (NH4)2SO4 as a quenching agent, and desorption time of 3min at 170°C), detection limits ranged from 1 to 50ng/L for different analogs, with a linear range of at least two orders of magnitude. Good recoveries (78.6-104.7%) were obtained for spiked samples of a wide range of treated drinking waters, demonstrating that the method is applicable for analysis of real drinking water samples. Matrix effects were negligible for the treated water samples with total organic carbon concentration of less than 2.9mg/L. An effective survey conducted by two drinking water treatment plants showed the highest proportion of Iodo-THMs, HANs, and HNMs occurred in treated water, and concentrations of 13 detected compounds ranged between the ng/L and the μg/L levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Echols, B S; Smith, A J; Gardinali, P R; Rand, G M
2015-02-01
The potential for the Deepwater Horizon MC-252 oil incident to affect ecosystems in the Gulf of Mexico (GOM) was evaluated using Americamysis bahia, Menidia beryllina and Vibrio fischeri (Microtox® assay). Organisms were exposed to GOM water samples collected in May-December 2010. Samples were collected where oil was visibly present on the water surface or the presence of hydrocarbons at depth was indicated by fluorescence data or reduced dissolved oxygen. Toxicity tests were conducted using water-accommodated fractions (WAFs), and oil-in-water dispersions (OWDs). Water samples collected from May to June 2010 were used for screening tests, with OWD samples slightly more acutely toxic than WAFs. Water samples collected in July through December 2010 were subjected to definitive acute testing with both species. In A. bahia tests, total PAH concentrations for OWD exposures ranged from non-detect to 23.0 μg L(-1), while WAF exposures ranged from non-detect to 1.88 μg L(-1). Mortality was >20% in five OWD exposures with A. bahia and three of the WAF definitive tests. Total PAH concentrations were lower for M. beryllina tests, ranging from non-detect to 0.64 μg L(-1) and non-detect to 0.17 μg L(-1) for OWD and WAF exposures, respectively. Only tests from two water samples in both the WAFs and OWDs exhibited >20% mortality to M. beryllina. Microtox® assays showed stimulatory and inhibitory responses with no relationship with PAH exposure concentrations. Most mortality in A. bahia and M. beryllina occurred in water samples collected before the well was capped in July 2010 with a clear decline in mortality associated with a decline in total PAH water concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters
NASA Astrophysics Data System (ADS)
Niemela, P.; Jaatinen, J.
1986-05-01
This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.
Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.
2003-01-01
Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.
[Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].
Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira
2014-01-01
To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.
Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.
2012-01-01
Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.
Ogle, K.M.; Lee, R.W.
1994-01-01
Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)
Fujii, Roger
1988-01-01
Trace element and major ion concentrations were measured in water samples collected monthly between March 1985 and March 1986 at the MD-1 pumping station at the Tulare Lake Drainage District evaporation ponds, Kings County, California. Samples were analyzed for selected pesticides several times during the year. Salinity, as measured by specific conductance, ranged from 11,500 to 37,600 microsiemens/centimeter; total recoverable boron ranged from 4,000 to 16,000 micrg/L; and total recoverable molybdenum ranged from 630 to 2,600 microg/L. Median concentrations of total arsenic and total selenium were 97 and 2 microg/L. Atrazine, prometone, propazine, and simazine were the only pesticides detected in water samples collected at the MD-1 pumping station. Major ions, trace elements, and selected pesticides also were analyzed in water and bottom-sediment samples from five of the southern evaporation ponds at Tulare Lake Drainage District. Water enters the ponds from the MD-1 pumping station at pond 1 and flows through the system terminating at pond 10. The water samples increased in specific conductance (21,700 to 90,200 microsiemens/centimeter) and concentrations of total arsenic (110 to 420 microg/L), total recoverable boron (12,000 to 80,000 microg/L) and total recoverable molybdenum (1,200 to 5,500 microg/L) going from pond 1 to pond 10, respectively. Pesticides were not detected in water from any of the ponds sampled. Median concentrations of total arsenic and total selenium in the bottom sediments were 4.0 and 0.9 microg/g, respectively. The only pesticides detected in bottom sediment samples from the evaporation ponds were DDD and DDE, with maximum concentration of 0.8 microg/kilogram. (Author 's abstract)
Senior, Lisa A.
2014-01-01
The June 2013 samples were also analyzed for radium-226 and age-dating dissolved gases. Activities of radium-226 ranged from 0.041 to 0.29 pCi/L in water samples from the six wells and were less than the drinking-water standard of 5 pCi/L for combined radium-226 and radium-228. Age-dating of groundwater using a method based on the presence of anthropogenic gases (chlorofluorocarbons and sulfur hexafluoride) released into the atmosphere yielded estimated recharge dates for water from these six wells that ranged from the 1940s to early 2000s. The oldest water was in samples from wells that had the highest methane concentrations and the youngest water was in samples from a continuously pumped 300-foot deep production well.
Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.; Taylor, Howard E.; Antweiler, Ronald C.; De Wild, John F.; Lawler, David A.
2005-01-01
In 1999, the U.S. Geological Survey (USGS) initiated studies of mercury and methylmercury occurrence, transformation, and transport in the Bear River and Yuba River watersheds of the northwestern Sierra Nevada. Because these watersheds were affected by large-scale, historical gold extraction using mercury amalgamation beginning in the 1850s, they were selected for a pilot study of mercury transport by the USGS and other cooperating agencies. This report presents data on methylmercury (MeHg) and total mercury (THg) concentrations in water, bed sediment, invertebrates, and frogs collected at 40 stations during 1999-2001 in the Greenhorn Creek drainage, a major tributary to Bear River. Results document several mercury contamination ?hot spots? that represent potential targets for ongoing and future remediation efforts at abandoned mine sites in the study area. Water-quality samples were collected one or more times at each of 29 stations. The concentrations of total mercury in 45 unfiltered water samples ranged from 0.80 to 153,000 nanograms per liter (ng/L); the median was 9.6 ng/L. Total mercury concentrations in filtered water (41 samples) ranged from less than 0.3 to 8,000 ng/L; the median was 2.7 ng/L. Concentrations of methylmercury in the unfiltered water (40 samples) ranged from less than 0.04 to 9.1 ng/L; the median was 0.07 ng/L. Methylmercury in filtered water (13 samples) ranged from less than 0.04 to 0.27 ng/L; the median was 0.04 ng/L. Acidic drainage with pH values as low as 3.4 was encountered in some of the mined areas. Elevated concentrations of aluminum, cadmium, copper, iron, manganese, nickel, and zinc were found at several stations, especially in the more acidic water samples. Total mercury concentrations in sediment were determined by laboratory and field methods. Total mercury concentrations (determined by laboratory methods) in ten samples from eight stations ranged from about 0.0044 to 12 ?g/g (microgram per gram, equivalent to parts per million). Methylmercury concentrations in these samples ranged from less than 0.00011 to 0.0095 ?g/g. A field panning method was used to determine the concentration of liquid elemental mercury in 22 samples from 14 stations. Measured quantities of elemental mercury recovered by panning ranged from a trace amount estimated at 100 milligrams per kilogram (equivalent to parts per million) to 45,000 milligrams per kilogram (equivalent to 4.5 per cent, by weight). In total, 194 invertebrate samples were collected at 31 stations; 78 of the samples were analyzed for concentrations of THg and MeHg and used to calculate MeHg to THg ratios. A total of 69 frog samples were collected at 19 stations, and all were analyzed only for THg. Ranges of MeHg concentrations (?g/g, wet weight) in invertebrate samples and number of samples (n) were 0.0012-0.048 for banana slugs (Arionidae, n = 27), 0.027-0.39 for dobsonflies (Corydalidae, n = 14), 0.029-0.50 for predaceous diving beetles (Dytiscidae, n = 31), 0.026-0.52 for predaceous stoneflies (Perlidae, n = 18), 0.011-1.6 for dragonflies (Odonata, n = 46), and 0.061-0.55 for water striders (Gerridae, n = 56). The ratio of MeHg to THg in invertebrates was greater than 50 percent for 74 of 78 samples. The data from this reconnaissance sampling effort have been used by land-management agencies in selecting abandoned mine sites for remediation. The Forest Service has remediated the Sailor Flat site, and the Bureau of Land Management has initiated plans to remediate the Boston Mine drainage tunnel.
Annual water-resources review, White Sands Missile Range, 1976: a basic-data report
Cruz, R.R.
1977-01-01
Information is presented on the water resources of the White Sands Missile Range, N. Mex., that was collected during the period December 1975 to December 1976 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality and precipitation, and miscellaneous items of interest are summarized. Water-level observations were made in 63 borehole, supply, test, and observation wells on the Range. Water samples were collected and analyzed for chemical quality from 8 test wells. (Woodard-USGS)
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal
2017-10-01
There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.
Verplanck, P.L.; McCleskey, R. Blaine; Nordstrom, D. Kirk
2006-01-01
As part of a multi-year project to infer the pre-mining ground-water quality at Molycorp's Questa mine site, surface-water samples of the Red River, some of its tributaries, seeps, and snow samples were collected for analysis of inorganic solutes and of water and sulfate stable isotopes in selected samples. The primary aim of this study was to document diel, storm event, and seasonal variations in water chemistry for the Red River and similar variations in water chemistry for Straight Creek, a natural analog site similar in topography, hydrology, and geology to the mine site for inferring pre-mining water-quality conditions. Red River water samples collected between 2000 and 2004 show that the largest variations in water chemistry occur during late summer rainstorms, often monsoonal in nature. Within hours, discharge of the Red River increased from 8 to 102 cubic feet per second and pH decreased from 7.80 to 4.83. The highest concentrations of metals (iron, aluminum, zinc, manganese) and sulfate also occur during such events. Low-pH and high-solute concentrations during rainstorm runoff are derived primarily from alteration 'scar' areas of naturally high mineralization combined with steep topography that exposes continually altered rock because erosion is too rapid for vegetative growth. The year 2002 was one of the driest on record, and Red River discharge reflected the low seasonal snow pack. No snowmelt peak appeared in the hydrograph record, and a late summer storm produced the highest flow for the year. Snowmelt was closer to normal during 2003 and demonstrated the dilution effect of snowmelt on water chemistry. Two diel sampling events were conducted for the Red River, one during low flow and the other during high flow, at two locations, at the Red River gaging station and just upstream from Molycorp's mill site. No discernible diel trends were observed except for dissolved zinc and manganese at the upstream site during low flow. Straight Creek drainage water was sampled periodically from 2001 to 2004 at the down stream end of surface drainage near the point at which it disappeared into the debris fan. This water has a minimal range in pH (2.7 to 3.2) but a substantial concentration range in many solutes; for example, sulfate concentrations varied from 525 to 2,660 mg/L. Many elements covary with sulfate suggesting that dilution is the primary control of the range in solute concentrations. A transect of water samples higher in the scar area were collected in October of 2003. They had a lower range in pH (2.44 to 3.05) and higher solute concentrations than those collected periodically from lower in the catchment. Water isotopes for the upper transect samples indicated slight evaporation, and in part, may account for the higher solute concentrations. Drainage waters also were collected from Hottentot, Junebug, Hansen, Little Hansen, and Goat Hill Gulch drainages. Most constituents from other scar drainage waters showed ranges of concentration similar to those of the Straight Creek waters. An exception was water collected from Goat Hill Gulch, which has some of the highest concentrations of any surface-water sample collected but also contained waste-rock leachates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, W.A.; LaDelfe, C.M.; Weaver, T.A.
1978-10-01
During the field seasons of 1976 and 1977, 1,060 natural water and 1,240 waterborne sediment samples were collected from 1,768 locations in the Trinidad, Colorado, NTMS quadrangle. The samples from this 19,600-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detection limit of 0.02 parts per billion (ppb) to 88.3 ppb, with a mean value of 4.05 ppb. The concentrations in sediments ranged from 1.3 parts per million (ppM) to 721.9 ppM, with a mean value of 5.55 ppM. Based on simple statistical analyses ofmore » these data, arbitrary anomaly thresholds were set at 20 ppb for water samples and 12 ppM for sediment samples. By this definition, fifty-eight water and 39 sediment samples were considered anomalous. At least five areas delineated by the data appear to warrant more detailed investigations. Twenty-six anomalous water samples outline a broad area corresponding to the axis of the Apishapa uplift, seven others form a cluster in Huerfano Park, and five others outline a small area in the northern part of the San Luis Valley. Twenty-three anomalous sediment samples outline an area corresponding generally to Precambrian metamorphic rocks in the Culebra Range, and seven anomalous sediment samples form a cluster near Crestone Peak in the Sangre de Cristo Mountains.« less
Bradfield, A.D.; Flexner, N.M.; Webster, D.A.
1993-01-01
An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated 43 to 420 micrograms per liter. Sediment elutriate samples were toxic to Ceriodaphnia dubta, Pimephales promelas, Photobacterium phosphoreum, and Salenastrum capricornulum.
Radioactivity in drinking water supplies in Western Australia.
Walsh, M; Wallner, G; Jennings, P
2014-04-01
Radiochemical analysis was carried out on 52 drinking water samples taken from public outlets in the southwest of Western Australia. All samples were analysed for Ra-226, Ra-228 and Pb-210. Twenty five of the samples were also analysed for Po-210, and 23 were analysed for U-234 and U-238. Ra-228 was found in 45 samples and the activity ranged from <4.000 to 296.1 mBq L(-1). Ra-226 was detected in all 52 samples and the activity ranged from 3.200 to 151.1 mBq L(-1). Po-210 was detected in 24 samples and the activity ranged from 0.000 to 114.2 mBq L(-1). These data were used to compute the annual radiation dose that persons of different age groups and also for pregnant and lactating females would receive from drinking this water. The estimated doses ranged from 0.001 to 2.375 mSv y(-1) with a mean annual dose of 0.167 mSv y(-1). The main contributing radionuclides to the annual dose were Ra-228, Po-210 and Ra-226. Of the 52 drinking water samples tested, 94% complied with the current Australian Drinking Water Guidelines, while 10% complied with the World Health Organization's radiological guidelines which many other countries use. It is likely that these results provide an overestimate of the compliance, due to limitations, in the sampling technique and resource constraints on the analysis. Because of the increasing reliance of the Western Australian community on groundwater for domestic and agricultural purposes, it is likely that the radiological content of the drinking water will increase in the future. Therefore there is a need for further monitoring and analysis in order to identify problem areas. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A comparison of legionella and other bacteria concentrations in cooling tower water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappabianca, R.M.; Jurinski, N.B.; Jurinski, J.B.
1994-05-01
A field study was conducted in which water samples collected from air conditioning cooling water reservoirs of high-rise buildings throughout an urban area were assayed for Legionella and for total bacteria. Buildings included within the study had ongoing biocidal treatment programs for the cooling towers. Separate sample analyses were performed to measure the viable colony concentrations of total bacteria and of Legionella in the process waters. The occurrence and viable counts of Legionella in 304 environmental water samples were determined by inoculating them onto plates of buffered charcoal yeast extract (BCYE) agar medium (a presumptive screening method). The samples weremore » collected during summer months between July and September. BCYE plate cultures of 50 (16.4%) of the samples yielded Legionella with viable counts ranging from 2 to 608 colony forming units per milliliter. In the water samples, 281 (92.4%) yielded viable counts of bacteria that ranged from 9 to 1.2 x 10{sup 6} per milliliter. This study demonstrates that Legionella are commonly present in the water of air conditioning cooling towers and that there is no significant correlation between concurrently sampled culture plate counts of Legionella and total bacteria plate counts. Correspondingly, there is no demonstrated validity for use of total bacterial counts as an inferential surrogate for the concentration of Legionella in the water. 19 refs., 3 figs., 1 tab.« less
Concentration of gold in natural waters
McHugh, J.B.
1988-01-01
The purpose of this paper is to investigate the amount of gold present in natural waters. One hundred and thirty-two natural water samples were collected from various sources and analyzed for gold by the latest techniques. Background values for gold in natural waters range from <0.001 to 0.005 ppb, and anomalous values range from 0.010 to 2.8 ppb. Waters collected from mineralized areas have a mean gold value of 0.101 ppb, whereas waters collected from unmineralized areas have a mean of 0.002 ppb. Some of the high gold values reported in the earlier literature were probably due to interferences by high salt content in the sample and/or lack of proper filter procedures. ?? 1988.
Robinson, Bret A.
2004-01-01
Biotic indices (indicators of water-quality conditions) were calculated from the macroinvertebrate data. Ephemeroptera, Plecoptera, Trichoptera Richness Index values calculated for 23 samples collected from 16 sites ranged from 5 to 15, with more than 75 percent of the values falling within the range of 7 to 11. Hilsenhoff Biotic Index scores and Invertebrate Community Index scores calculated for samples collected at three sites indicate that water quality at these sites ranged from good to poor. The one site with a poor water-quality index score had a small drainage area. The small drainage area and dry conditions during the sampling period may have contributed to the poor scores calculated for this site.
Leeth, David C.
2002-01-01
In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two samples from Site 16. Hypothesis testing, using the Wilcoxon rank-sum test (also known as the Mann-Whitney test), indicates no statistical difference between ground-water constituent concentrations from Sites 5 and 16, and background concentrations. Hypothesis testing, however, indicates the concentration of barium in background ground-water samples is greater than in ground-water samples collected at Site 16.
Anderholm, S.K.
1996-01-01
This report describes the quality of shallow ground water in an agricultural area in the San Luis Valley, Colorado, and discusses how natural and human factors affect the quality of shallow ground water. Thirty-five wells were installed, and water samples were collected from these wells and analyzed for selected dissolved common constituents, nutrients, trace elements, radionuclides, and synthetic organic compounds. The San Luis Valley is a high intermontane valley that is partially drained by the Rio Grande. The San Luis Valley land-use study area was limited to a part of the valley where the depth to water is generally less than 25 feet. The area where the 35 monitor wells were installed was further limited to the part of the study area where center-pivot overhead sprinklers are used to irrigate crops. Precipitation, runoff from adjacent mountainous areas, and ground-water inflow from the adjacent mountainous areas are the main sources of water to the aquifers in the San Luis Valley. Discharge of water from the shallow, unconfined aquifer in the valley is mainly from evapotranspiration. The dominant land use in the San Luis Valley is agriculture, although nonirrigated land and residential land are interspersed with agricultural land. Alfalfa, native hay, barley, wheat, potatoes, and other vegetables are the main crops. Dissolved-solids concentrations in shallow ground water sampled ranged from 75 to 1,960 milligrams per liter. The largest median concentration of cations was for calcium, and the largest median concentration of anions was for bicarbonate in shallow ground water in the San Luis Valley. Calcium concentrations ranged from 7.5 to 300 milligrams per liter, and bicarbonate concentrations ranged from 28 to 451 milligrams per liter. Nitrite plus nitrate concentrations ranged from less than 0.1 to 58 milligrams per liter as N; water from 11 wells had nitrite plus nitrate concentrations greater than 10 milligrams per liter as N. With the exception of the following trace elements--aluminum, barium, iron, manganese, molybdenum, and uranium--the concentrations of trace elements were less than 10 micrograms per liter in 90 percent of the samples. All trace-element concentrations measured were below the maximum contaminant levels set by the U.S. Environmental Protection Agency. Five samples exceeded the proposed maximum contaminant level of 0.02 milligram per liter for uranium. All samples collected exceeded the proposed maximum contaminant level for radon-222. The volatile organic compound methyltertbutylether was detected in one sample at a concentration of 0.6 microgram per liter. Of the pesticides analyzed for, one or more were detected in water from 5 of the 35 wells sampled. Metribuzin was the most commonly detected pesticide and was detected in water from three wells at concentrations ranging from an estimated 0.005 to 0.017 microgram per liter. Metolachlor (detected in one sample at a concentration of 0.072 microgram per liter), prometon (detected in one sample at a concentration of 0.01 microgram per liter), and p,p'-DDE (detected in one sample at an estimated concentration of 0.002 microgram per liter) were the other pesticides detected. The U.S. Environmental Protection Agency lifetime health advisory for metolachlor, metribuzin, and prometon is 100 micrograms per liter, which is much larger than the concentrations measured in the shallow ground water sampled for this study. The elevated nitrite plus nitrate concentrations in shallow ground water are indicative of leaching of fertilizers from the land surface. This conclusion is consistent with conclusions made in other investigations of the San Luis Valley. On the basis of areal distribution and range of trace-element concentrations, human activities have not caused widespread trace-element contamination in the shallow grou
Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001
Fahlquist, Lynne
2003-01-01
In 2001, the U.S. Geological Survey National Water-Quality Assessment Program collected water samples from 48 wells in the southern High Plains as part of a larger scientific effort to broadly characterize and understand factors affecting water quality of the High Plains aquifer across the entire High Plains. Water samples were collected primarily from domestic wells in Texas and eastern New Mexico. Depths of wells sampled ranged from 100 to 500 feet, with a median depth of 201 feet. Depths to water ranged from 34 to 445 feet below land surface, with a median depth of 134 feet. Of 240 properties or constituents measured or analyzed, 10 exceeded U.S. Environmental Protection Agency public drinking-water standards or guidelines in one or more samples - arsenic, boron, chloride, dissolved solids, fluoride, manganese, nitrate, radon, strontium, and sulfate. Measured dissolved solids concentrations in 29 samples were larger than the public drinking-water guideline of 500 milligrams per liter. Fluoride concentrations in 16 samples, mostly in the southern part of the study area, were larger than the public drinking-water standard of 4 milligrams per liter. Nitrate was detected in all samples, and concentrations in six samples were larger than the public drinking-water standard of 10 milligrams per liter. Arsenic concentrations in 14 samples in the southern part of the study area were larger than the new (2002) public drinking-water standard of 10 micrograms per liter. Radon concentrations in 36 samples were larger than a proposed public drinking-water standard of 300 picocuries per liter. Pesticides were detected at very small concentrations, less than 1 microgram per liter, in less than 20 percent of the samples. The most frequently detected compounds were atrazine and breakdown products of atrazine, a finding similar to those of National Water-Quality Assessment aquifer studies across the Nation. Four volatile organic compounds were detected at small concentrations in six water samples. About 70 percent of the 48 primarily domestic wells sampled contained some fraction of recently (less than about 50 years ago) recharged ground water, as indicated by the presence of one or more pesticides, or tritium or nitrate concentrations greater than threshold levels.
Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.
1996-01-01
Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.
Cui, Meiyu; Qiu, Jinxue; Li, Zhenghua; He, Miao; Jin, Mingshi; Kim, Jiman; Quinto, Maurizio; Li, Donghao
2015-01-01
In this study, a stainless steel wire/ionic liquid-solid phase microextraction technique was developed for the direct extraction of APs from water samples. Some parameters were optimised, such as selection of the substrate and ILs, extraction time, extraction temperature, stirring rate and sample pH, etc. The experimental data demonstrated that the etched stainless steel wire was a suitable substrate for IL-coated SPME. The coating was prepared by directly depositing the ILs onto the surface of the etched stainless steel wire, which exhibited a porous structure and a high surface area. The [C8MIM][PF6] IL exhibited maximum efficiency with an extraction time of 30 min, and the aqueous sample was maintained at 40 °C and adjusted to pH 2 under stirring conditions. The enrichment factor of the IL coating for the four APs ranged from 1382 to 4779, the detection limits (LOD, S/N=3) of the four APs ranged from 0.01 to 0.04 ng mL(-1) and the RSD values for purified water spiked with APs ranged from 4.0 to 11.8% (n=3). The calibration graphs were linear in the concentration range from 0.5 to 200 ng mL(-1) (R(2)>0.9569). The optimised method was successfully applied for the analysis of real water samples, and the method was suitable for the extraction of APs from water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul
2017-10-01
A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.
Christensen, Victoria G.; Esralew, Rachel A.; Allen, Monica L.
2008-01-01
The Eucha-Spavinaw basin is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the City of Tulsa. The City of Tulsa has received complaints of taste and odor in the finished drinking water because of deteriorating water quality. The deterioration is largely because of algal growth from the input of nutrients from the Eucha-Spavinaw basin. The U.S. Geological Survey, in cooperation with the City of Tulsa, implemented a continuous, real-time water-quality monitoring program in the Eucha-Spavinaw basin to better understand the source of the nutrient loading. This program included the manual collection of samples analyzed for nutrients and the collection of continuous, in-stream data from water-quality monitors. Continuous water-quality monitors were installed at two existing continuous streamflow-gaging stations - Spavinaw Creek near Colcord, Oklahoma, and Beaty Creek near Jay, Oklahoma, from October 2004 through September 2007. Total nitrogen concentrations for manually collected water samples ranged from 2.08 to 9.66 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord, Oklahoma, and from 0.67 to 5.12 milligrams per liter for manually collected water samples from Beaty Creek near Jay, Oklahoma. Total phosphorus concentrations ranged from 0.04 to 1.5 milligrams per liter for the water samples collected from Spavinaw Creek near Colcord and from 0.028 to 1.0 milligram per liter for the water samples collected from Beaty Creek near Jay. Data from water samples and in-stream monitors at Spavinaw and Beaty Creeks (specific conductance and turbidity) were used to develop linear regression equations relating in-stream water properties to total nitrogen and total phosphorus concentrations. The equations developed for the Spavinaw and Beaty sites are site specific and only valid for the concentration ranges of the explanatory variables used in the analysis. The range in estimated and measured phosphorus is not representative for the range of historic streamflow at the Beaty site and that regression equation would benefit from more high flow and high turbidity samples. In addition, all three study years had below average annual precipitation for the area, and streamflow was especially low in Water Year 2006. Average nutrient concentrations from October 2004 through September 2007, which were drier than others, may not be a good indication of conditions in future wetter years. The equations for the Spavinaw and Beaty sites may be used to estimate instantaneous nutrient concentrations, which can be used to compute loads and yields in real time in order to better characterize the effect of land-management practices in these watersheds on the transport of nutrients to Lake Eucha and Spavinaw Lake. The methods used in this study show promise for monitoring future effectiveness of implemented best management practices, development and monitoring of total maximum daily loads, early detection of taste-and-odor occurrences, and to anticipate treatment needs for water suppliers.
Occurrence of invertebrates at 38 stream sites in the Mississippi Embayment study unit, 1996-99
Caskey, Brian J.; Justus, B.G.; Zappia, Humbert
2002-01-01
A total of 88 invertebrate species and 178 genera representing 59 families, 8 orders, 6 classes, and 3 phyla was identified at 38 stream sites in the Mississippi Embayment Study Unit from 1996 through 1999 as part of the National Water-Quality Assessment Program. Sites were selected based on land use within the drainage basins and the availability of long-term streamflow data. Invertebrates were sampled as part of an overall sampling design to provide information related to the status and trends in water quality in the Mississippi Embayment Study Unit, which includes parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. Invertebrate sampling and processing was conducted using nationally standardized techniques developed for the National Water-Quality Assessment Program. These techniques included both a semi-quantitative method, which targeted habitats where invertebrate diversity is expected to be highest, and a qualitative multihabitat method, which samples all available habitat types possible within a sampling reach. All invertebrate samples were shipped to the USGS National Water-Quality Laboratory (NWQL) where they were processed. Of the 365 taxa identified, 156 were identified with the semi-quantitative method that involved sampling a known quantity of what was expected to be the richest habitat, woody debris. The qualitative method, which involved sampling all available habitats, identified 345 taxa The number of organisms identified in the semi-quantitative samples ranged from 74 to 3,295, whereas the number of taxa identified ranged from 9 to 54. The number of organisms identified in the qualitative samples ranged from 42 to 29,634, whereas the number of taxa ranged from 18 to 81. From all the organisms identified, chironomid taxa were the most frequently identified, and plecopteran taxa were among the least frequently identified.
Laser shock compression experiments on precompressed water in ``SG-II'' laser facility
NASA Astrophysics Data System (ADS)
Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu
2017-06-01
Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.
Organochlorine pesticide contamination of ground water in the city of Hyderabad.
Shukla, Gangesh; Kumar, Anoop; Bhanti, Mayank; Joseph, P E; Taneja, Ajay
2006-02-01
Organochlorine pesticides are ubiquitous and persistent organic pollutants used widely throughout the world. Due to the extensive use in agriculture, organic environmental contaminants such as HCH, DDT along with other organochlorine pesticides are distributed globally by transport through air and water. The main aim of present study is to determine contamination levels of organochlorine pesticides in the ground water of Hyderabad City. Water samples were collected from 28 domestic well supplies of the city. For this study, random sampling technique was applied, all the samples were collected in high purity glass bottles and refrigerated at 4 degrees C until analysis. Solid Phase Extraction (SPE) is used for the extraction of organochlorine pesticide residues in water sample. The collected water samples were pre-filtered through a 0.45 microg glass fiber filter (Wattman GF/F) to remove particulate matter and were acidified with hydrochloric acid (6N) to pH 2.5. Methanol modifier (BDH, for pesticide residue analysis, 10 mL) was added to water sample for better extraction. SPE using pre-packed reversed phase octadecyl (C-18 bonded silica) contained in cartridges was used for sample preparation. Prior to the extraction, the C-18 bonded phase, which contains 500 mg of bonded phase, was washed with 20 mL methanol. The sample was mixed well and allowed to percolate through the cartridges with flow rate of 10-15 mL/min under vacuum. After sample extraction, suction continued for 15 min to dry the packing material and pesticides trapped in the C-18 bonded phases were eluted by passing 10 mL hexane and fraction was evaporated in a gentle steam of Nitrogen. In all samples pesticide residues were analyzed by GC (Chemito-8510) with Ni63 ECD detector. Helium was used as carrier gas and nitrogen was used as make up gas. The injection technique was split/split less. All the samples analyzed were found to be contaminated with four pesticides i.e. DDT, beta-Endosulfan, alpha-Endosulfan and Lindane. DDT was found to range between 0.15 and 0.19 microg L(-1), beta-Endosulfan ranges between 0.21 and 0.87 microg L(-1), alpha-Endosulfan ranges between 1.34 and 2.14 microg L(-1) and Lindane ranges between 0.68 and 1.38 microg L(-1) respectively. These concentrations of pesticides in the water samples were found to be above their respective Acceptable Daily Intake (ADI) values for Humans.
The TraceDetect's SafeGuard is designed to automatically measure total arsenic concentrations in drinking water samples (including raw water and treated water) over a range from 1 ppb to over 100 ppb. Once the operator has introduced the sample vial and selected "measure&qu...
Guo, Yuanming; Hu, Hongmei; Li, Tiejun; Xue, Lijian; Zhang, Xiaoning; Zhong, Zhi; Zhang, Yurong; Jin, Yanjian
2017-08-01
A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid-liquid extracted with an automated Jipad-6XB vertical oscillator using n-hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid-phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85-112, 76-116, and 72-108%, respectively, and with relative standard deviations of 3.3-4.5, 3.4-5.6, and 3.1-4.8% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction and solid-phase extraction clean-up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yasin, Mohammed; Ketema, Tsige; Bacha, Ketema
2015-10-05
The quality of drinking water has always been a major health concern, especially in developing countries, where 80% of the disease cases are attributed to inadequate sanitation and use of polluted water. The inaccessibility of potable water to large segment of a population in the rural communities is the major health concern in most part of developing countries. This study was designed to evaluate the physico-chemical and bacteriological qualities of drinking water of different sources in the study area. The study was conducted at Serbo town and selected kebeles around the same town in Kersa district of Jimma Zone, southwest Ethiopia. Socio-demographic characteristics of the study populations were gathered using structured and pre-tested questionnaires. Standard microbiological methods were employed for determination of bacterial load and detection of coliforms. Physico-chemical analyses [including total dissolved substances (TDS), total suspended substances (TSS), biological oxygen demand (BOD), nitrate and phosphate concentrations, turbidity and electrical conductivities] were conducted following guidelines of American Public Health Association and WHO. Correlations among measured parameters of water samples collected from different water sources were computed using SPSS software (version 20). Only 18.1% (43/237) of the study population had access to tap water in the study area. More than 50% of the community relies on open field waste disposal. Members of the family Enterobacteriaceae, Bacillus and Pseudomonas were among dominant bacterial isolates in the water samples. All water samples collected from unprotected water sources were positive for total coliforms and fecal coliforms (FC). Accordingly, FC were detected in 80% of the total samples with counts ranging between 0.67 and 266.67 CFU/100 ml although 66.67% of tap water samples were negative for FC. The recorded temperature and pH ranged between 20.1-29.90 °C and 5.64-8.14, respectively. The lowest and highest mean TDS were 116 and 623 mg/l, respectively. Furthermore, the mean concentration of TSS ranged between 2.07 and 403.33 mg/l. Turbidity, electric conductivity, and nitrate concentration of the water samples ranged, respectively, between 0.01-65.4 NTU, 30.6-729 μS/cm, and below detection limit to 95.80 mg/l. In addition, the mean dissolved oxygen values were found to be between 1.62 and 10.71 mg/l; whereas BOD was within the range of 8-77 mg/l. In all water samples, the concentrations of zinc were within the WHO maximum permissible limits (3 mg/l) although the lead concentration in about 66.7% of the samples exceeded the maximum permissible limit (0.01 mg/l). The present study has revealed that some of the bacteriological data and physico-chemical parameters of the different water sources had values beyond the maximum tolerable limits recommended by WHO. Thus, it calls for appropriate intervention, including awareness development work and improving the existing infrastructure in order to minimize the potential health problems of those communities currently realizing of the available water sources.
Duris, Joseph W.; Beeler, Stephanie
2008-01-01
The U.S. Geological Survey, in cooperation with the Lenawee County Conservation District in Lenawee County, Mich., conducted a sampling effort over a single growing season (June to November 2007) to evaluate the microbiological water quality around a novel livestock reservoir wetland sub-irrigation system. Samples were collected and analyzed for fecal coliform bacteria, Escherichia coli (E. coli) bacteria, and six genes from pathogenic strains of E. coli.A total of 73 water-quality samples were collected on nine occasions from June to November 2007. These samples were collected within the surface water, shallow ground water, and the manure-treatment system near Bakerlads Farm near Clayton in Lenawee County, Mich. Fecal coliform bacteria concentrations ranged from 10 to 1.26 million colony forming units per 100 milliliters (CFU/100 mL). E. coli bacteria concentrations ranged from 8 to 540,000 CFU/100 mL. Data from the E. coli pathogen analysis showed that 73 percent of samples contained the eaeA gene, 1 percent of samples contained the stx2 gene, 37 percent of samples contained the stx1 gene, 21 percent of samples contained the rfbO157 gene, and 64 percent of samples contained the LTIIa gene.
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of chloroform was present in one spring-water sample. In springs sampled, nitrite plus nitrate concen- trations ranged from 1.4 to 7.0 milligrams per llter as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.2 to 0.49 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.07 milligrams per liter as phosphorus. Fecal colfform bacteria counts ranged from 3 to 200 colonies per 100 milliliters, with a median of 18 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 110 to more than 2,000 colonies per 100 milliliters with a median of 350 colonies per 100 milliliters. Large producing springs 1ocated in the mid to upper reaches of the basin contribute most of the flow to Yocum Creek. Streamflow increased an average of 29 percent on the mainstem of the stream. One losing reach was discovered on the mainstem of the stream and two losing reaches on tributaries to the mainstem. Surface flow steadily decreased along these reaches to the point where surface flow was not present, and the streambed became dry. These observations suggest that significant interaction exists between the underlying Springfield aquifer and surface flow in the Yocum Creek Basin.
Ramkumar, Abilasha; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2012-08-15
The present study demonstrates a simple, rapid and efficient method for the determination of chlorinated anilines (CAs) in environmental water samples using ultrasonication assisted emulsification microextraction technique based on solidification of floating organic droplet (USAEME-SFO) coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection. In this extraction method, 1-dodecanol was used as extraction solvent which is of lower density than water, low toxicity, low volatility, and low melting point (24 °C). After the USAEME, extraction solvent could be collected easily by keeping the extraction tube in ice bath for 2 min and the solidified organic droplet was scooped out using a spatula and transferred to another glass vial and allowed to thaw. Then, 10 μL of extraction solvent was diluted with mobile phase (1:1) and taken for HPLC-UV analysis. Parameters influencing the extraction efficiency, such as the kind and volume of extraction solvent, volume of sample, ultrasonication time, pH and salt concentration were thoroughly examined and optimized. Under the optimal conditions, the method showed good linearity in the concentration range of 0.05-500 ng mL(-1) with correlation coefficients ranging from 0.9948 to 0.9957 for the three target CAs. The limit of detection based on signal to noise ratio of 3 ranged from 0.01 to 0.1 ng mL(-1). The relative standard deviations (RSDs) varied from 2.1 to 6.1% (n=3) and the enrichment factors ranged from 44 to 124. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of environmental water samples ranged from 81.1 to 116.9%. Copyright © 2012 Elsevier B.V. All rights reserved.
Water-quality data for Walnut Canyon and Wupatki National Monuments, Arizona, 2001-02
Thomas, Blakemore E.
2003-01-01
Water-quality data are provided for four sites in Walnut Canyon and Wupatki National Monuments in north-central Arizona. These data describe the current water quality and provide baseline water-quality information for monitoring future trends. Water samples were collected from a ground-water seep and well in Walnut Canyon and from a spring and a river in Wupatki during September 2001 to September 2002. Water from the four sites is from four different sources. In Walnut Canyon, Cherry Canyon seep is in a shallow local aquifer, and the Little Colorado River contains ground-water discharge from several aquifers and runoff from a 22,000 square-mile drainage area. Concentrations of dissolved solids were similar within the two monuments; the range for water samples from Walnut Canyon was 203 to 248 milligrams per liter, and the range for water samples from Wupatki was 503 to 614 milligrams per liter. Concentrations of trace elements were generally low in water samples from the three ground-water sites--Cherry Canyon seep, Walnut Canyon headquarters well, and Heiser Spring. The water sample collected from the Little Colorado River, however, had high concentrations of aluminum (4,020 micrograms per liter), antimony (54 micrograms per liter), arsenic (14.3 micrograms per liter), and iron (749 micrograms per liter) relative to U.S. Environmental Protection Agency Primary and Secondary Maximum Contaminant Levels. Concentrations of nitrate (as nitrogen) in water samples from the four sites were generally low (0.11 to 1.8 milligrams per liter) and are within the upper 25 percent of nitrate concentrations measured in the regional aquifer near Flagstaff in 1996 and 1997. Water samples from Cherry Canyon seep, Heiser Spring, and the Little Colorado River contained total coliform bacteria. Fecal coliform and Escherichia coli bacteria were found in water samples from Cherry Canyon seep and the Little Colorado River.
Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2010
Oden, Jeannette H.; Brown, Dexter W.; Oden, Timothy D.
2011-01-01
Gross alpha-particle activities and beta-particle activities for all 47 samples were analyzed at 72 hours after sample collection and again at 30 days after sample collection, allowing for the measurement of the activity of short-lived isotopes. Gross alpha-particle activities reported in this report were not adjusted for activity contributions by radon or uranium and, therefore, are conservatively high estimates if compared to the U.S. Environmental Protection Agency National Primary Drinking Water Regulation for adjusted gross alpha-particle activity. The gross alpha-particle activities at 30 days in the samples ranged from R0.60 to 25.5 picocuries per liter and at 72 hours ranged from 2.58 to 39.7 picocuries per liter, and the "R" preceding the value of 0.60 picocuries per liter refers to a nondetected result less than the sample-specific critical level. Gross beta-particle activities measured at 30 days ranged from 1.17 to 14.4 picocuries per liter and at 72 hours ranged from 1.97 to 4.4 picocuries per liter. Filtered uranium was detected in quantifiable amounts in all of the 47 wells sampled. The uranium concentrations ranged from 0.03 to 42.7 micrograms per liter. One sample was analyzed for carbon-14, and the amount of modern atmospheric carbon was reported as 0.2 percent. Six source-water samples collected from municipal supply wells were analyzed for radium-226, and all of the concentrations were considered detectable concentrations (greater than their associated sample-specific critical level). Three source-water samples collected were analyzed for radon-222, and all of the concentrations were substantially greater than the associated sample-specific critical level.
Paulson, Anthony J.; Wagner, Richard J.; Sanzolone, Richard F.; Cox, Steven E.
2006-01-01
Twenty-eight composite and replicate sediment samples from 8 Lake Roosevelt sites were collected and analyzed for 10 alkali and alkaline earth elements, 2 non-metals, 20 metals, and 4 lanthanide and actinide elements. All elements were detected in all sediment samples except for silver (95 percent of the elements detected for 1,008 analyses), which was detected only in 4 samples. Sequential selective extraction procedures were performed on single composite samples from the eight sites. The percentage of detections for the 31 elements analyzed ranged from 76 percent for the first extraction fraction using a weak extractant to 93 percent for the four-acid dissolution of the sediments remaining after the third sequential selective extraction. Water samples in various degrees of contact with the sediment were analyzed for 10 alkali and alkaline earth elements, 5 non-metals, 25 metals, and 16 lanthanide and actinide elements. The filtered water samples included 10 samples from the reservoir water column at 8 sites, 32 samples of porewater, 55 samples from reservoir water overlying sediments in 8 cores from the site incubated in a field laboratory, and 24 water samples that were filtered after being tumbled with sediments from 8 sites. Overall, the concentrations of only 37 percent of the 6,776 analyses of the 121 water samples were greater than the reporting limit. Selenium, bismuth, chromium, niobium, silver, and zirconium were not detected in any water samples. The percentage of concentrations for the water samples that were above the reporting limit ranged from 14 percent for the lanthanide and actinide elements to 77 percent for the alkali and alkaline earth elements. Concentrations were greater than reporting limits in only 23 percent of the analyses of reservoir water and 29 percent of the analyses of reservoir water overlying incubation cores. In contrast, 47 and 48 percent of the concentrations of porewater and water samples tumbled with sediments, respectively, were greater than the reporting limit.
40 CFR 257.23 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... parameters shall be determined after considering the number of samples in the background data base, the data... considering the number of samples in the background data base, the data distribution, and the range of the... of § 257.22(a)(1). (f) The number of samples collected to establish ground-water quality data must be...
40 CFR 257.23 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... parameters shall be determined after considering the number of samples in the background data base, the data... considering the number of samples in the background data base, the data distribution, and the range of the... of § 257.22(a)(1). (f) The number of samples collected to establish ground-water quality data must be...
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Determination of six iodotrihalomethanes in drinking water in Korea.
Woo, Bomi; Park, Ju-Hyun; Kim, Seungki; Lee, Jeongae; Choi, Jong-Ho; Pyo, Heesoo
2018-06-02
Trihalomethanes (THMs) are chemicals regulated by Environmental Protection Agency's first drinking water regulation issued after the passage of the Safe Drinking Water Act. Among THMs, iodotrihalomethanes (I-THMs) are produced by treating water containing iodides ion with chlorine or ozone. I-THMs are more carcinogenic and biotoxic than chlorinated or brominated THMs. The purpose of this study was to analyze of I-THMs in drinking water using the liquid-liquid extraction (LLE) method with various extraction solvents. The calibration curves ranged from 0.01 to 20 ng/mL and the correlation coefficient showed a good linearity of 0.99 or more. The method detection limit ranged from 0.01 to 0.10 ng/mL. The accuracy of the LLE method ranged from 99.43 to 112.40%, and its precision ranged from 1.10 to 10.36%. Good recoveries (71.35-118.60%) were obtained for spiked drinking water samples, demonstrating that the LLE method is suitable for the analysis of drinking water samples. Dichloroiodomethane, bromochloroiodomethane, and dibromoiodomethane were identified in drinking water collected from 70 places of water purification plants in Korea. The samples were classified by disinfection systems, regions, seasons, and water sources. The concentration of I-THMs in pre-/postchlorination facilities owing to excess chlorine usage was higher than in ozonization/postchlorination facilities. Moreover, the concentrations of I-THMs were high in the coastal region, because of the large amount of halide ions from the sea. There was no seasonal difference; however, the concentration of I-THMs in pre-/postchlorination facilities increased in spring and summer. The concentration of I-THMs in water sources was high in samples from the Geum River and the Yeongsan and Sumjin River. The concentration and detection frequency of I-THMs in Han River and Nakdong River were high in the coastal region, because of numerous pre-/postchlorination facilities and the abundance of halide ions from the ocean. Copyright © 2018 Elsevier B.V. All rights reserved.
Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.
2014-01-01
Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample types were determined by use of the capillary-column gas chromatography/mass spectrometry. The performance of each method was assessed by using data on recoveries of compounds in fortified surface-water, wastewater, and reagent-water samples. These experiments (referred to as spike experiments) consist of fortifying (or spiking) samples with known amounts of target analytes. Surface-water-spike experiments were performed by using samples obtained from a stream in Colorado (unfiltered method) and a stream in New York (filtered method). Wastewater spike experiments for both the filtered and unfiltered methods were performed by using a treated wastewater obtained from a single wastewater treatment plant in New York. Surface water and wastewater spike experiments were fortified at both low and high concentrations and termed low- and high-level spikes, respectively. Reagent water spikes were assessed in three ways: (1) set spikes, (2) a low-concentration fortification experiment, and (3) a high-concentration fortification experiment. Set spike samples have been determined since 2009, and consist of analysis of fortified reagent water for target compounds included for each group of 10 to18 environmental samples analyzed at the NWQL. The low-concentration and high-concentration reagent spike experiments, by contrast, represent a one-time assessment of method performance. For each spike experiment, mean recoveries ranging from 60 to 130 percent indicate low bias, and relative standard deviations (RSDs) less than ( Of the compounds included in the filtered method, 21 had mean recoveries ranging from 63 to 129 percent for the low-level and high-level surface-water spikes, and had low ()132 percent]. For wastewater spikes, 24 of the compounds included in the filtered method had recoveries ranging from 61 to 130 percent for the low-level and high-level spikes. RSDs were 130 percent) or variable recoveries (RSDs >30 percent) for low-level wastewater spikes, or low recoveries ( Of the compounds included in the unfiltered method, 17 had mean spike recoveries ranging from 74 to 129 percent and RSDs ranging from 5 to 25 percent for low-level and high-level surface water spikes. The remaining compounds had poor mean recoveries (130 percent), or high RSDs (>29 percent) for these spikes. For wastewater, 14 of the compounds included in the unfiltered method had mean recoveries ranging from 62 to 127 percent and RSDs 130 percent), or low mean recoveries (33 percent) for the low-level wastewater spikes. Of the compounds found in wastewater, 24 had mean set spike recoveries ranging from 64 to 104 percent and RSDs Separate method detection limits (MDLs) were computed for surface water and wastewater for both the filtered and unfiltered methods. Filtered method MDLs ranged from 0.007 to 0.14 microgram per liter (μg/L) for the surface water matrix and from 0.004 to 0.62 μg/L for the wastewater matrix. Unfiltered method MDLs ranged from 0.014 to 0.33 μg/L for the surface water matrix and from 0.008 to 0.36 μg/L for the wastewater matrix.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Wild, John F.; Olsen, Mark L.; Olund, Shane D.
2002-01-01
A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations
Magana-Ordorica, Dalia; Mena, Kristina; Valdez-Torres, Jose B; Soto-Beltran, Marcela; Leon-Felix, Josefina; Chaidez, Cristobal
2010-12-01
Untreated sewage has adversely affected the quality of marine recreational waters worldwide. Exposure to marine recreational water with poor microbial quality may pose a threat to bathers. The objectives of this study were to assess the effect of physicochemical parameters on Cryptosporidium and Giardia presence in marine recreational water of Sinaloa, Mexico, by Logistic Regression Analyses. Thirty-two 10-litre water samples were collected from two tourist beaches, Altata and Mazatlan, between November 2006 and May 2007. Water samples were processed by the EPA 1623 method and pH, temperature, salinity and turbidity were also determined. Cryptosporidium and Giardia were present in 71 and 57% of the samples collected from Altata, respectively. In Mazatlan, Cryptosporidium and Giardia were found in 83 and 72% of the samples, respectively. The overall concentration of Cryptosporidium ranged from 150 to 2,050 oocysts/10 L with an average of 581 oocysts/10 L and Giardia ranged from 10 to 300 cysts/10 L with an average of 73 cysts/10 L. The occurrence of both parasites increased in water with decreasing temperatures and increasing turbidity of the water.
Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.
2004-01-01
To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-value<0.001), where concentrations in 43 samples ranged from 62 to 240 milligrams per liter, compared to the downstream site where concentrations in 33 samples ranged from 77 to 141 milligrams per liter. Major-ion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National Forest and the downstream sites near the Snake River; however, variations in the major ions and dissolved solids existed between basins. Variations probably result from differences in geology between the tributary basins. Concentrations of dissolved ammonia, nitrite, and nitrate in all samples collected from the Snake River and the five eastern tributaries were less than water-quality criteria for surface waters in Wyoming. Concentrations of total nitrogen and total phosphorus in samples from the Snake River and the tributaries generally were less than median concentrations determined for undeveloped streams in the United States; however, concentrations in some samples did exceed ambient total-nitrogen and total-phosphorus criteria for forested mountain streams in the Middle Rockies ecoregion recommended by the U.S. Environmental Protection Agency to address cultural eutrophication. Sources for the excess nitrogen and phosphorus probably are natural because these basins have little development and cultivation. Concentrations of trace metals and pesticides were low and less than water-quality criteria for surface waters in Wyoming in samples collected from the Snake River and the five eastern tributaries. Atrazine, dieldrin, EPTC, or tebuthiuron were detected in estimated concentrations of 0.003 microgram per liter or less in 5 of 27 samples collected from the Snake River. An estimated concentration of 0.008 microgram per liter of metolachlor was detected in one sample from the Buffalo Fork. The estimated concentrations were less than the reporting levels for the pesticide analytical method. Suspended-sediment concentrations in 43 samples from the upstream site on the Snake River ranged from 1 to 604 milligrams per liter and were similar to suspended-sediment concentrations in 33 samples from the downstream site, which ranged from 1 to 648 milligrams per liter. Suspended-sediment concentrations in 38 samples collected from the tributary streams ranged from 1 t
Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota
Norvitch, Ralph F.
1964-01-01
The quality of water in the Precambrian crystalline rocks, the Cretaceous strata, and the buried Pleistocene aquifers is poor. Chemical analyses of 22 water samples showed that dissolved solids ranged from 1,100 ppm (parts per million) to 3,050 ppm. Water from the surficial outwash deposits is good by comparison; dissolved solids in water from these aquifers ranged from 425 to 870 ppm.
Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.
Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A
2013-06-01
In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Water resources of Big Horn County, Wyoming
Plafcan, Maria; Cassidy, Earl W.; Smalley, Myron L.
1993-01-01
Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The aquifers with the most potential for development as a water supply, predominately composed of sandstone, are the Lance, Mesaverde, and Frontier Formations.The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison Bighorn aquifer. Reported yields from the aquifer ranged from 40 to 14,000 gal/min. Flowing wells from the Madison-Bighorn aquifer had shut-in pressures ranging from 41 to 212 pounds per square inch (95 to 490 feet above land surface).Shut-in pressures from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, as much as 390 feet. Flows have also decreased over time. Water samples from wells completed in unconsolidated aquifers have concentrations of dissolved solids less than 2,000 mg/L (milligrams per liter). Water from unconsolidated aquifers are classified as a calcium sulfate type, a sodium sulfate type, and sodium-calcium sulfate type. Water samples from wells completed in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Water samples from wells in Tertiary and Cretaceous rocks had a median concentration of dissolved solids ranging from 1,107 to 3,320 mg/L. Water types for these aquifers were usually sodium sulfate.Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. Irrigation return-flow to streams maintains perennial flow in what would otherwise be ephemeral streams. Streams that originate in the Bighorn Basin have specific conductance values generally greater than 1,000 mg/L, whereas streams that originate in the Bighorn Mountains have specific conductance values generally less than 1,000 mg/L. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate.Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USHPA) maximum contaminant levels. The detected concentrations of pesticides in streambed material in the organochlorine insecticide class ranged from 0.1 to 8.0 micrograms per kilogram. Pesticides detected in ground-water samples included dicamba and picloram at a concentration of 0.40 jig/L (micrograms per liter), atrazines (0.40 jig/L), aldicarb sulfone (1.44 |ig/L), aldicarb sulfoxide (0.52 |ig/L), and malathion (0.02 jig/L). Analyses of ground-water samples for radionuclides indicate that concentrations from four municipal wells exceeded the maximum contaminant level established by the USEPA. Of these four wells, concentrations in water samples from the municipal well at Frannie consistently exceeded the USEPA maximum contaminant level for dissolved gross alpha activity of 15 pCi/L (picocuries per liter) and radium-226 plus radium-228 (5 pCi/L). The source of the radioactivity is postulated to be the Madison Limestone.Surface water accounts for 96 percent and ground water accounts for 4 percent of total offstream water use in Big Horn County, Wyoming. Irrigation is the largest offstream use of both surface and ground water. About 99 percent of offstream surface water and 55 percent of ground water is used for irrigation. Eighty-two percent of the water used for irrigation is consumed, which includes a 37-percent conveyance loss and 45 percent consumed by the irrigated crops. Ground water supplies 89 percent of water used for domestic purposes and about 16 percent of water used for public supplies, which shows that ground water is a primary domestic water supply in rural areas where public supplies are not available.
Wanty, Richard B.; Shanks, Wayne C.; Lamothe, Paul; Meier, A.L.; Lichte, Fred; Briggs, Paul H.; Berger, Byron R.
2001-01-01
Water samples were collected in the Patagonia Mountains in February, 1997. Most of the samples were collected from portals of abandoned mines, or from stream drainages immediately downstream from abandoned mines. Most of the samples have low pH ( 1000 mg/L). Anion composition of the water samples is dominated by sulfate, while cation compositions range from calcium-dominated to mixed calcium-magnesium or calcium-sodium-dominated waters. Metals such as iron, manganese, copper, zinc, and aluminum contribute a significant portion (>10%) of the cation content to the water samples. Because of the low pH?s, protons contribute up to several percent of the cation character of the waters in some of the samples. The data are presented in tabular and graphical formats, with descriptions of data quality and brief descriptions of results.
Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994
Crandall, C.A.
1996-01-01
The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of agricultural activities on ground-water quality. Samples from 30 percent of the wells exceeded the maximum contaminant level (MCL) for nitrate in drinking water (10 mg/L as N). Nitrogen isotope ratios ranged from 2.4 to 9.0 parts per thousand and indicate that most nitrogen in shallow ground water is probably from inorganic fertilizer. In addition, nitrate concentrations were positively correlated (p-values all less than 0.01) with concentrations of some of the major ingredients in fertilizer, such as potassium, calcium, magnesium, manganese, and chloride, and with values of specific conductance. Concentrations of pesticides and volatile organic compounds, detected in samples from 11 wells, were all below the MCLs. Of these constituents, only alachlor, metolachlor, metribuzin, toluene, benzene, and methyl chloride were detected in ground water at concentrations that ranged from 0.01 to 1.0 mg/L (micrograms per liter). Maximum concentrations of 1.0 mg/L of metolachlor and toluene were detected in two wells. Radon concentrations ranged from 530 to 1,400 pCi/L (picocuries per liter), exceeding the proposed MCL of 300 pCi/L in all samples; the median concentration was 1,000 pCi/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broxton, D.E.
A total of 338 water and 1877 sediment samples were collected over a 20,700-km/sup 2/ area from 2125 locations at a nominal density of one sample per 10 km/sup 2/. Water samples were collected from wells, streams, springs, and artificial ponds. Sediment samples were collected from streams, springs, natural ponds, and artificial ponds. Arbitrary anomaly thresholds of two standard deviations above the mean were chosen for both water and sediment sample populations. The U concentrations in waters collected in the Tularosa quadrangle range from below the detection limit of 0.2 parts per billion (ppB) to 57.8 ppB. Most clusters ofmore » water samples containing anomalously high uranium concentrations were collected from locations in uplifts underlain either by volcanic rocks of the mid-Tertiary Datil group or by sedimentary rocks of late Paleozoic and Mesozoic age. Other groups of anomalous waters are from wells that tap Cenozoic aquifers in the intermontane basins. In those areas where the water-sample location coverage is adequate, the known U occurrences are generally associated with high or anomalous U concentrations in water samples. With the exception of one sample with a U concentration of 67.7 ppM, sediments collected in this study have U concentrations that range between 0.2 and 15.2 ppM. Most sediments with U concentrations above the arbitrary anomaly threshold value are from locations which occur in or parallel outcrops of Precambrian crystalline rock exposed in the San Andres and Oscura Mountains. Other anomalous sediments occur as more discreet groups in areas underlain by mid-Tertiary volcanic rocks of the Datil group. Several anomalous samples from the Mogollon-Datil volcanic field were collected along ring fracture systems that surround large volcanic cauldrons.« less
Wu, Chunying; Gu, Feng; Bai, Lu; Lu, Wenlong
2015-08-01
An analytical method for simultaneous determination of 22 typical pharmaceuticals and personal care products (PPCPs) in environmental water samples was developed by ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS). An Oasis HLB solid phase extraction cartridge, methanol as washing solution, water containing 0. 1% formic acid-methanol (7:3, v/v) as the mobile phases were selected for sample pretreatment and chromatographic separation. Based on the optimized sample pretreatment procedures and separation condition, the target recoveries ranged from 73% to 125% in water with the relative standard deviations ( RSDs) from 8.8% to 17.5%, and the linear ranges were from 2 to 2 000 µg/L with correlation coefficients (R2) not less than 0.997. The method can be applied to simultaneous determination of the 22 typical PPCPs in environmental water samples because of its low detection limits and high recoveries. It can provide support and help for the related research on water environmental risk assessment and control of the micro-organic pollutants.
Felmlee, J.K.; Cadigan, R.A.
1982-01-01
Multivariate statistical analyses were performed on data from 156 mineral-spring sites in nine Western States to analyze relationships among the various parameters measured in the spring waters. Correlation analysis and R-mode factor analysis indicate that three major factors affect water composition in the spring systems studied: (1) duration of water circulation, (2) depth of water circulation, and (3) partial pressure of carbon dioxide. An examination of factor scores indicates that several types of hydrogeologic systems were sampled. Most of the samples are (1) older water from deeper circulating systems having relatively high salinity, high temperature, and low Eh or (2) younger water from shallower circulating systems having relatively low salinity, low temperature, and high Eh. The rest of the samples are from more complex systems. Any of the systems can have a relatively high or low content of dissolved carbonate species, resulting in a low or high pH, respectively. Uranium concentrations are commonly higher in waters of relatively low temperature and high Eh, and radium concentrations are commonly higher in waters having a relatively high carbonate content (low pH) and, secondarily, relatively high salinity. Water samples were collected and (or) measurements were taken at 156 of the 171 mineral-spring sites visited. Various samples were analyzed for radium, uranium, radon, helium, and radium-228 as well as major ions and numerous trace elements. On-site measurements for physical properties including temperature, specific conductance, pH, Eh, and dissolved oxygen were made. All constituents and properties show a wide range of values. Radium concentrations range from less than 0.01 to 300 picocuries per liter; they average 1.48 picocuries per liter and have an anomaly threshold value of 171 picocuries per liter for the samples studied. Uranium concentrations range from less than 0.01 to 120 micrograms per liter and average 0.26 micrograms per liter; they have an anomaly threshold value of 48.1 micrograms per liter. Radon content ranges from less than 10 to 110,000 picocuries per liter, averages 549 picocuries per liter and has an anomaly threshold of 20,400 picocuries per liter. Helium content ranges from -1,300 to +13,000 parts per billion relative to atmospheric helium; it averages +725 parts per billion and has an anomaly threshold of 10,000 parts per billion. Radium-228 concentrations range from less than 2.0 to 33 picocuries per liter; no anomaly threshold was determined owing to the small number of samples. All of the anomaly thresholds may be somewhat high because the sampling was biased toward springs likely to be radioactive. The statistical variance in radium and uranium concentrations unaccounted for by the identified factors testifies to the complexity of some hydrogeologic systems. Unidentified factors related to geologic setting and the presence of uranium-rich rocks in the systems also affect the observed concentrations of the radioactive elements in the water. The association of anomalous radioactivity in several springs with nearby known uranium occurrences indicates that other springs having anomalous radioactivity may also be associated with uranium occurrences as yet undiscovered.
Annual water-resources review, White Sands Missile Range, New Mexico, 1978
Cruz, R.R.
1979-01-01
Ground-water data were collected in 1978 at White Sands Missile Range in south-central New Mexico. Total ground-water pumpage in 1978 was 692,045,700 gallons or 7,248,300 less than in 1977. Wells at the Post Headquarters produced 98 percent of the total volume. Water levels in test wells around the Post Headquarters well field show seasonal declines ranging from 14.78 feet to 0.71 feet. The water samples collected from the supply wells show that the chemical quality of the water is slightly better during the period of greatest declines. (Woodard-USGS)
Annual water-resources review White Sands Missile Range, New Mexico
Cruz, R.R.
1980-01-01
Ground-water data were collected in 1979 at White Sands Missile Range in south-central New Mexico. Total ground-water pumpage from the Post Headquarters well field, which produces more than 98% of the water used at White Sands Missile Range, was 1.4 million gallons more in 1979 than in 1978. The most significant seasonal water-level declines observed in 1979 were in supply well 22 (36.35 feet) and test well T-7 (15.98 feet). The chemical quality of water samples collected in 1979 was similar to that collected at comparable depths and periods in 1978. (USGS)
Liu, Shuhui; Wang, Wenjun; Chen, Jie; Sun, Jianzhi
2012-01-01
This paper describes a simple, sensitive and environmentally benign method for the direct determination of aniline and its derivatives in environmental water samples by capillary zone electrophoresis (CZE) with field-enhanced sample injection. The parameters that influenced the enhancement and separation efficiencies were investigated. Surprisingly, under the optimized conditions, two linear ranges for the calibration plot, 1–50 ng/mL and 50–1000 ng/mL (R > 0.998), were obtained. The detection limit was in the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the stacking efficiency, the standard addition method was applied to the analysis of water samples from local rivers. PMID:22837668
Water and Sediment Quality in the Yukon River Basin, Alaska, During Water Year 2001
Schuster, Paul F.
2003-01-01
Overview -- This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin during water year 2001 (October 2000 through September 2001). A broad range of chemical and biological analyses from three sets of samples are presented. First, samples were collected throughout the year at five stations in the basin (three on the mainstem Yukon River, one each on the Tanana and Porcupine Rivers). Second, fecal indicators were measured on samples from drinking-water supplies collected near four villages. Third, sediment cores from five lakes throughout the Yukon Basin were sampled to reconstruct historic trends in the atmospheric deposition of trace elements and hydrophobic organic compounds.
Machado, Kelly C; Grassi, Marco Tadeu; Vidal, Cristiane; Pescara, Igor C; Jardim, Wilson F; Fernandes, Andreia N; Sodré, Fernando F; Almeida, Fernanda V; Santana, Joyce S; Canela, Maria Cristina; Nunes, Camila R O; Bichinho, Kátia M; Severo, Flaviana J R
2016-12-01
This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL -1 to values above 2.0μgL -1 while source-water concentrations varied from 40ngL -1 to about 19μgL -1 . For atrazine, concentrations were found in the range from 2.0 to 6.0ngL -1 in drinking water and at concentrations of up to 15ngL -1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin. Copyright © 2016 Elsevier B.V. All rights reserved.
[Nitrate concentrations in tap water in Spain].
Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco
2015-01-01
To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Stanton, Jennifer S.; Fahlquist, Lynne
2006-01-01
A study of the quality of ground water beneath irrigated cropland was completed for the northern and southern High Plains aquifer. Ground-water samples were collected from 30 water-table monitoring wells in the northern agricultural land-use (NAL) study area in Nebraska in 2004 and 29 water-table monitoring wells in the southern agricultural land-use (SAL) study area in Texas in 2003. The two study areas represented different agricultural and hydrogeologic settings. The primary crops grown in the NAL study area were corn and soybeans, and the primary crop in the SAL study area was cotton. Overall, pesticide and fertilizer application rates were larger in the NAL study area. Also, precipitation and recharge rates were greater in the NAL study area, and depths to water and evapotranspiration rates were greater in the SAL study area. Ground-water quality beneath irrigated cropland was different in the two study areas. Nitrate concentrations were larger and pesticide detections were more frequent in the NAL study area. Nitrate concentrations in NAL samples ranged from 1.96 to 106 mg/L (milligrams per liter) as nitrogen, with a median concentration of 10.6 mg/L. Water in 73 percent of NAL samples had at least one pesticide or pesticide degradate detected. Most of the pesticide compounds detected (atrazine, alachlor, metolachlor, simazine, and degradates of those pesticides) are applied to corn and soybean fields. Nitrate concentrations in SAL samples ranged from 0.96 to 21.6 mg/L, with a median of 4.12 mg/L. Water in 24 percent of SAL samples had at least one pesticide or pesticide degradate detected. The pesticide compounds detected were deethylatrazine (a degradate of atrazine and propazine), propazine, fluometuron, and tebuthiuron. Most of the pesticides detected are applied to cotton fields. Dissolved-solids concentrations were larger in the SAL area and were positively correlated with both nitrate and chloride concentrations, suggesting a combination of human and natural sources. Dissolved-solids concentrations in NAL samples ranged from 272 to 2,160 mg/L, with a median of 442 mg/L, and dissolved solids in SAL samples ranged from 416 to 3,580 mg/L, with a median of 814 mg/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, T.L.
1979-11-01
During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a meanmore » of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.« less
Selbig, William R.
2017-01-01
Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.
Sedam, A.C.; Francy, D.S.
1993-01-01
This report presents streamwater- and ground-water-quality data collected to characterize the baseline water quality for 21 drainage basins in the coal-mining region of eastern Ohio. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus Physiographic Province. The data collected from 1989-91 and presented in this report represent the third and final phase of a 7-year study to assess baseline water quality in Ohio's coal region during 1985-1991. During 1989-91, 246 samples from 41 streamwater sites were collected periodically from a long-term site network. Ranges and medians of measurements made at the long-term streamwater sites were following: specific conductance, 270 to 5,170 and 792 microsiemens per centimeter at 25 degrees Celsius; pH, 2.7 to 9.1 and 7.8; alkalinity, 1 to 391 and 116 mg/L (milligrams per liter). Ranges and medians of laboratory analyses of the same samples were the following: dissolved sulfate, 13 to 2,100 and 200 mg/L; dissolved aluminum, <10 to 17,000 and 300 ? /L (micrograms per liter); dissolved iron, <10 to 53,000 and 60 ? /L; and dissolved manganese, <10 to 17,000 and 295 ? /L. The ranges for concentrations of total recoverable aluminum, iron, and manganese were similar to the ranges of concentrations found for dissolved constituents. Medians of total recoverable aluminum and iron were about 10 times greater than the medians of dissolved aluminum and iron. During 1989-91, once-only sample collections were done at 45 streamwater sites in nine basins chosen for synoptic sampling. At several sites in the Middle Hocking River basin and Leading Creek basin, water had low pH and high concentrations of dissolved aluminum, iron and manganese. These water-quality characteristics are commonly associated with ace mine drainage. Throughout the entire 7-year study (1985-91), medians for most constituents at the long-term streamwater-sampling sites were fairly consistent, despite the geographic diversity of the study area. Waters from several long-term sites, including several sites in Moxahala Creek and Middle Hocking River basins, had low pH and high concentrations of several constituents, including dissolved sulfate, iron, aluminum, and manganese; this combinations characteristics is indicitive of acid drainage from surface-mining operations. At many of the streamwater sites where concentration of these constituents were high, pH values in the neutral or alkaline range were indicative of stream buffering by carbonate rock or restoration of mined lands in the drainage system. The basins with sites in this category include Yellow and Cross Creeks and Wheeling Creek basins. Water quality at other sites showed little or no effects from surface mining. Ground-water samples collected during the last phase of the study (1989-91) were mostly from unconsolidated aquifers. The waters were generally hard to very hard and calcium bicarbonate in type. During the entire 7-year study period, medians of pH in ground-water samples varied little, and most values were in the alkaline range. Except for a few sites where concentrations of dissolved sulfate exceeded 250 mg/L and concentrations of total recoverable and dissolved iron and manganese exceeded 1,000 ? /L, the quality of ground water at the wells sampled in the study area showed little effect from coal mining.
Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003
Masoner, Jason R.; Mashburn, Shana L.
2004-01-01
Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from <0.06 to 31.8 milligrams per liter. Seventeen samples had nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds detected, 11 compounds were from household chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible source of nitrate in samples from 2 wells. Natural sources were determined to be the possible source of nitrate in samples from 7 wells, with a 15N values ranging from 0.83 to 9.44 permil.
Furlong, Edward T.; Anderson, Bruce D.; Werner, Stephen L.; Soliven, Paul P.; Coffey, Laura J.; Burkhardt, Mark R.
2001-01-01
In 1996, the U.S. Geological Survey National Water Quality Laboratory (NWQL) developed and implemented a graphitized carbon-based solid-phase extraction and high-performance liquid chromatographic analytical method to determine polar pesticide concentrations in surface- and ground-water samples. Subsequently, the NWQL developed a complementary analysis that uses high-performance liquid chromatography/mass spectrometry to detect, identify, and quantify polar pesticides and pesticide metabolites in filtered water at concentrations as low as 10 nanograms per liter. This new method was designed to improve sensitivity and selectivity over the prior method, and to reduce known interferences from natural organic matter.In this new method, pesticides are extracted from filtered water samples by useing a 0.5-gram graphitized carbon-based solid-phase extraction cartridge, eluted from the cartridge, and concentrations determined by using high-performance liquid chromatography with electrospray ionization-mass spectrometry. The upper concentration limit is 1.000 microgram per liter (μg/L) for most compounds. Single-operator method detection limits in organic-free water samples fortified with pesticides at a concentration of 0.025 μg/L ranged from 0.0019 to 0.022 μg/L for all compounds in the method. The grand mean (mean of mean recoveries for individual compounds) recoveries in organic-free water samples ranged from 72 to 89 percent, fortified with pesticides at three concentrations between 0.025 and 0.5 μg/L. Grand mean recoveries in ground- and surface-water samples ranged from 46 to 119 percent, also fortified with pesticides at three concentrations between 0.025 and 0.5 μg/L. Long-term recoveries from reagent water spikes were used to demonstrate that 38 of 65 compounds can be reported without qualification of the quantitative result across the analytical range of the method. The remaining 27 are reported with qualified estimates of concentration because of greater variability of recovery.
Hoogestraat, Galen K.; Rowe, Barbara L.
2016-04-14
Mount Rushmore National Memorial is located in the east-central part of the Black Hills area of South Dakota and is challenged to provide drinking water to about 3 million annual visitors and year-round park personnel. An environmental concern to water resources within Mount Rushmore National Memorial has been the annual aerial fireworks display at the memorial for the Independence Day holiday during 1998–2009. A major concern of park management is the contamination of groundwater and surface water by perchlorate, which is used as an oxidizing agent in firework displays. A study by the U.S. Geological Survey, in cooperation with the National Park Service, was completed to characterize the occurrence of perchlorate and selected metals (constituents commonly associated with fireworks) in groundwater and surface water within and adjacent to Mount Rushmore National Memorial during 2011–15. Concentrations of perchlorate and metals in 106 water samples (collected from 6 groundwater sites and 14 surface-water sites) and 11 soil samples (collected from 11 soil sites) are reported.Within the Mount Rushmore National Memorial boundary, perchlorate concentrations were greatest in the Lafferty Gulch drainage basin, ranging from less than 0.20 to 38 micrograms per liter (μg/L) in groundwater samples and from 2.2 to 54 μg/L in surface-water samples. Sites within the Starling Gulch drainage basin also had some evidence of perchlorate contamination, with concentrations ranging from 0.61 to 19 μg/L. All groundwater and surface-water samples within the unnamed tributary to Grizzly Bear Creek drainage basin and reference sites outside the park boundary had concentrations less than 0.20 μg/L. Perchlorate concentrations in samples collected at the 200-foot-deep production well (Well 1) ranged from 17 to 38 μg/L with a median of 23 μg/L, whereas perchlorate concentrations in samples from the 500-foot-deep production well (Well 2) ranged from 2.1 to 17 μg/L, with a median of 6.1 μg/L. Perchlorate concentrations in samples of the treated groundwater were similar to the concentrations from Well 1, which was the predominant source of the water supply at Mount Rushmore National Memorial during the study period (2011–15). Springflow upstream from the production wells in the West Fork Lafferty Gulch drainage had the greatest perchlorate concentrations, ranging from 21 to 54 μg/L. The groundwater site within Lafferty Gulch drainage basin but downstream from the park boundary also had a perchlorate concentration less than 0.20 μg/L in the one sample collected at the site. Water samples collected at reference sites generally had concentrations of metals within the same range of those sites within the Mount Rushmore National Memorial boundary, presenting little evidence of metal contamination due to anthropogenic factors within the park boundary. Soil samples were collected near most water sampling sites and within the Hall of Records Canyon where fireworks were launched. Perchlorate concentrations in soil were greatest in the West Fork Lafferty Gulch drainage and Hall of Records Canyon, which are topographically higher than the two groundwater wells.The perchlorate concentrations in groundwater and surface water within Lafferty Gulch drainage basin during 2011–15 were greater than the U.S. Environmental Protection Agency’s Interim Drinking Water Health Advisory benchmark of 15 μg/L. The perchlorate concentrations in the Mount Rushmore water supply relative to this benchmark are of concern; however, this health advisory is based on the assumption that consumers are using the supply as their primary water source and currently is not a regulated standard. The groundwater system at West Fork Lafferty Gulch is highly susceptible to contamination by way of recharge and is isolated from downstream movement by an intrusive body acting as a dam, which may explain why a contamination problem is not likely to disappear or disperse, as could happen in larger aquifer systems. The observed deposition of firework debris within Lafferty Gulch drainage basin coupled with the lack of alternative perchlorate sources indicates that past firework displays are the most probable source of perchlorate contamination.
Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.
Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K
2016-12-01
Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .
Kumar, Thulasi; Abd Majid, Mohamad Azlan; Onichandran, Subashini; Jaturas, Narong; Andiappan, Hemah; Salibay, Cristina C; Tabo, Hazel A L; Tabo, Norbel; Dungca, Julieta Z; Tangpong, Jitbanjong; Phiriyasamith, Sucheep; Yuttayong, Boonyaorn; Polseela, Raxsina; Do, Binh Nhu; Sawangjaroen, Nongyao; Tan, Tian-Chye; Lim, Yvonne A L; Nissapatorn, Veeranoot
2016-01-13
Access to clean and safe drinking water that is free from pathogenic protozoan parasites, especially Cryptosporidium parvum and Giardia lamblia that cause gastrointestinal illness in humans, is still an issue in Southeast Asia (SEA). This study is the first attempt to detect the aforementioned protozoan parasites in water samples from countries in SEA, using real-time polymerase chain reaction (qPCR) assays. A total of 221 water samples of 10 l each were collected between April and October 2013 from Malaysia (53), Thailand (120), the Philippines (33), and Vietnam (15). A physicochemical analysis was conducted. The water samples were processed in accordance with the US Environmental Protection Agency's methods 1622/1623.1, microscopically observed and subsequently screened using qPCR assays. Cryptosporidium oocysts were detected in treated water samples from the Philippines (1/10), with a concentration of 0.06 ± 0.19 oocyst/L, and untreated water samples from Thailand (25/93), Malaysia (17/44), and the Philippines (11/23), with concentrations ranging from 0.13 ± 0.18 to 0.57 ± 1.41 oocyst/L. Giardia cysts were found in treated water samples from the Philippines (1/10), with a concentration of 0.02 ± 0.06 cyst/L, and in untreated water samples from Thailand (20/93), Vietnam (5/10), Malaysia (22/44), and the Philippines (16/23), with concentrations ranging from 0.12 ± 0.3 to 8.90 ± 19.65 cyst/L. The pathogens C. parvum and G. lamblia were detected using using qPCR assays by targeting the 138-bp fragment and the small subunit gene, respectively. C. parvum was detected in untreated water samples from the Philippines (1/23) and Malaysia (2/44), whilst, G. lamblia detected was detected in treated water samples from the Philippines (1/10) and in untreated water samples from Thailand (21/93), Malaysia (12/44), and the Philippines (17/23). Nitrate concentration was found to have a high positive correlation with (oo)cyst (0.993). The presence of (oo)cysts in the water samples means that there is potential risk for zoonotic disease transmission in the studied countries. Detection using qPCR is feasible for quantifying both pathogenic C. parvum and G. lamblia in large water samples.
Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S
2016-01-01
Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Photometric properties of Mars soils analogs
Pommerol, A.; Thomas, N.; Jost, B.; Beck, P.; Okubo, C.; McEwen, A.S.
2013-01-01
We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.
Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb
2018-01-01
A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.
NASA Astrophysics Data System (ADS)
Hall, J.; Rowley, A.; Davidson, M.; Lin, L.; Lippmann, J.; Ward, J.; Slater, G.; Boice, E.; McCuddy, S.; Moser, D.; Onstott, t; Onstott, t
2001-12-01
Access to the Au mines of South Africa has provided us with an unparalleled opportunity to investigate the diversity and abundance of microbes from hydrologically restricted environments at depths up to 3.2 kilometers beneath the surface (kmbls.). Samples of highly pressurized, anaerobic water collected from freshly drilled bore holes into fault or dyke structures ranged in temperature from 32o to 60oC, in salinity from 0.2% to 2.5% and in pH from 7.2 to 10. Flow cytometry analyses of 21 samples amended with a fluorescent DNA stain yielded microbial concentrations ranging from <5{x}103 (detection limit) to 5{x}105 cellsml. The cell concentrations for half of these samples were below the detection limit and those of all the samples collected at 3.2 kmbls. were below detection. Fluorescent, forward and side scatter intensities indicate that the remaining samples contain one or two morphotypes. These values contrast with water samples from subsurface, dammed water pockets or service water where the cell concentrations range from 5{x}104 to 2.5{x}106 cellsml and as many as three morphotypes can be readily distinguished. Thermophilic enrichments suggest that some of these morphotypes are cultivable under conditions that are comparable to the environment. The apparent lack of cells in some of the water samples may reflect a combination of the thermal history of the basin, the origin of the fluid and the isolation of some of the fractures.
Dumouchelle, Denise H.
2006-01-01
Many home sewage-treatment systems (HSTS) in Ohio use curtain or perimeter drains to depress the level of the subsurface water in and around the systems. These drains could possibly intercept partially untreated wastewater and release potential pathogens to ground-water and surface-water bodies. The quality of water in curtain drains from two different HSTS designs in Medina County, Ohio, was investigated using several methods. Six evaporation-transpiration-absorption (ETA) and five leach-line (LL) systems were investigated by determining nutrient concentrations, chloride/bromide ratios (Cl/Br), Escherichia coli (E. coli ) concentrations, coliphage genotyping, and genetic fingerprinting of E. coli. Water samples were collected at 11 sites and included samples from curtain drains, septic tanks, and residential water wells. Nitrate concentrations in the curtain drains ranged from 0.03 to 3.53 mg/L (milligrams per liter), as N. Concentrations of chloride in 10 of the 11 curtain drains ranged from 5.5 to 21 mg/L; the chloride concentration in the eleventh curtain drain was 340 mg/L. Bromide concentrations in 11 curtain drains ranged from 0.01 to 0.22 mg/L. Cl/Br ratios ranged from 86 to 2,000. F-specific coliphage were not found in any curtain-drain samples. Concentrations of E. coli in the curtain drains ranged from 1 to 760 colonies per 100 milliliters. The curtain-drain water-quality data were evaluated to determine whether HSTS-derived water was present in the curtain drains. Nutrient concentrations were too low to be of use in the determination. The Cl/Br ratios appear promising. Coliphage was not detected in the curtain drains, so genotyping could not be attempted. E. coli concentrations in the curtain drains were all less than those from the corresponding HSTS; only one sample exceeded the Ohio secondary-contact water-quality standard. The genetic fingerprinting data were inconclusive because multiple links between unrelated sites were found. Although the curtain-drain samples from the ETA systems showed somewhat more evidence of the presence of HSTS water than did the LL systems, most of the approaches were inconclusive by themselves. The best evidence of HSTS water, from the Cl/Br ratios, indicates that the water in 10 of the 11 curtain drains, at both HSTS types, was a mixture of dilute ground water and HSTS-derived water; the 11th drain also show some effects of the HSTS, although road salt-affected water may be present. Therefore, it appears that there is no difference between the ETA and LL systems with respect to the water quality in curtain drains.
Baehr, Arthur L.; Reilly, Timothy J.
2001-01-01
Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.
Oh, Jin-Aa; Shin, Ho-Sang
2015-05-22
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to determine the level of hydrazine in drinking water. The method is based on the derivatization of hydrazine with naphthalene-2,3-dicarboxaldehyde (NDA) in water. The optimum conditions for UPLC-MS/MS detection were determined as follows: derivatization reagent dosage, 50mg/L of NDA; pH 2; and reaction time, 1min; room temperature. The formed derivative was injected into an LC system without extraction or purification procedures. Under the established conditions, the method was used to detect hydrazine in raw drinking water and chlorinated drinking water. The limits of detection and quantification for hydrazine in drinking water were 0.003μg/L and 0.01μg/L, respectively. The accuracy was in the range of 97-104%, and precision, expressed as relative standard deviation, was less than 9% in drinking water. Hydrazine was detected at a concentration of 0.13μg/L in one sample among 24 raw drinking water samples and in a range of 0.04-0.45μg/L in three samples among 24 chlorinated drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Argue, Denise M.; Kiah, Richard G.; Denny, Jane F.; Deacon, Jeffrey R.; Danforth, William W.; Johnston, Craig M.; Smagula, Amy P.
2007-01-01
Geophysical, water, and sediment surveys were done to characterize the effects of surficial geology, water and sediment chemistry, and surficial-sediment composition on the distribution of variable leaf water-milfoil in Moultonborough Bay, Lake Winnipesaukee, New Hampshire. Geophysical surveys were conducted in a 180-square-kilometer area, and water-quality and sediment samples were collected from 24 sites in the survey area during July 2005. Swath-bathymetric data revealed that Moultonborough Bay ranged in depth from less than 1 meter (m) to about 15 m and contained three embayments. Seismic-reflection profiles revealed erosion of the underlying bedrock and subsequent deposition of glaciolacustrine and Holocene lacustrine sediments within the survey area. Sediment thickness ranged from 5 m along the shoreward margins to more than 15 m in the embayments. Data from sidescan sonar, surficial-sediment samples, bottom photographs, and video revealed three distinct lake-floor environments: rocky nearshore, mixed nearshore, and muddy basin. Rocky nearshore environments were found in shallow water (less than 5 m deep) and contained sediments ranging from coarse silt to very coarse sand. Mixed nearshore environments also were found in shallow water and contained sediments ranging from silt to coarse sand with different densities of aquatic vegetation. Muddy basin environments contained the finest-grained sediments, ranging from fine to medium silt, and were in the deepest waters of the bay. Acoustic Ground Discrimination Systems (AGDS) survey data revealed that 86 percent of the littoral zone (the area along the margins of the bay and islands that extends from 0 to 4.3 m in water depth) contained submerged aquatic vegetation (SAV) in varying densities: approximately 36 percent contained SAV bottom cover of 25 percent or less, 43 percent contained SAV bottom cover of more than 25 and less than 75 percent, and approximately 7 percent contained SAV bottom cover of more than 75 percent. SAV included variable leaf water-milfoil, native milfoil, bassweed, pipewort, and other species, which were predominantly found near shoreward margins and at depths ranging from less than 1 to 4 m. AGDS data were used in a Geographic Information System to generate an interpolated map that distinguished variable leaf water-milfoil from other SAV. Furthermore, these data were used to isolate areas susceptible to variable leaf water-milfoil growth. Approximately 21 percent of the littoral zone contained dense beds (more than 59 percent bottom cover) of variable leaf water-milfoil, and an additional 44 percent was determined to be susceptible to variable leaf water-milfoil infestation. Depths differed significantly between sites with variable leaf water-milfoil and sites with other SAV (p = 0.04). Variable leaf water-milfoil was found at depths that ranged from 1 to 4 m, and other SAV had a depth range of 1 to 2 m. Although variable leaf water-milfoil was observed at greater depths than other SAV, it was not observed below the photic zone. Analysis of constituent concentrations from the water column, interstitial pore water, and sediment showed little correlation with the presence of variable leaf water-milfoil, with two exceptions. Iron concentrations were significantly lower at variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Similarly, the percentage of total organic carbon also was significantly lower at the variable leaf water-milfoil sites than at other sampling sites (p = 0.04). Surficial-sediment-grain size had the greatest correlation to the presence of variable leaf water-milfoil. Variable leaf water-milfoil was predominantly growing in areas of coarse sand (median grain-size 0.62 millimeters). Surficial-sediment-grain size was also correlated with total ammonia plus organic nitrogen (Rho = 0.47; p = 0.02) and with total phosphorus (Rho = 0.44; p = 0.05) concentrations in interstitial pore-water samples.
Durán, Gema M; Contento, Ana M; Ríos, Ángel
2013-11-01
Based on the highly sensitive fluorescence change of water-soluble CdSe/ZnS core-shell quantum dots (QD) by paraquat herbicide, a simple, rapid and reproducible methodology was developed to selectively determine paraquat (PQ) in water samples. The methodology enabled the use of simple pretreatment procedure based on the simple water solubilization of CdSe/ZnS QDs with hydrophilic heterobifunctional thiol ligands, such as 3-mercaptopropionic acid (3-MPA), using microwave irradiation. The resulting water-soluble QDs exhibit a strong fluorescence emission at 596 nm with a high and reproducible photostability. The proposed analytical method thus satisfies the need for a simple, sensible and rapid methodology to determine residues of paraquat in water samples, as required by the increasingly strict regulations for health protection introduced in recent years. The sensitivity of the method, expressed as detection limits, was as low as 3.0 ng L(-1). The lineal range was between 10-5×10(3) ng L(-1). RSD values in the range of 71-102% were obtained. The analytical applicability of proposed method was demonstrated by analyzing water samples from different procedence. Copyright © 2013 Elsevier B.V. All rights reserved.
Fluoride concentration in drinking water samples in Fiji.
Prasad, Neha; Pushpaangaeli, Bernadette; Ram, Anumala; Maimanuku, Leenu
2018-04-26
The main aim of this study was to determine the content of fluoride in drinking water from sources within the sampling areas for the National Oral Health Survey (NOHS) 2011 from the Central, Northern, Western and Eastern Divisions in the Fiji Islands. Drinking water samples were collected from taps, a waterfall, wells, creeks, streams, springs, rivers, boreholes and rain water tanks in a diverse range of rural and urban areas across the Fiji Islands. A total of 223 areas were sampled between December 2014 and June 2015. Samples were analysed for fluoride using a colorimetric assay with the Zirconyl-SPADNS Reagent. The samples were pre-treated with sodium arsenite solution prior to analysis to eliminate interference from chlorine. Measured fluoride concentrations ranged from 0.01 to 0.35 ppm, with a mean concentration across all samples of 0.03 + 0.04 ppm. No samples achieved the optimal level for caries prevention (0.7 ppm). The Western Division had the highest fluoride levels compared to the other Divisions. The highest single fluoride concentration was found in Valase. The drinking water for this rural area located in the Western Division is from a borehole. The lowest concentrations of fluoride were in reticulated water samples from rural areas in the Central Division, which were consistently less than those recorded in the Northern, Eastern and Western Divisions. All samples had fluoride concentrations below the optimum level required to prevent dental caries. Implications for public health: This research forms part of the objectives of the 2011 National Oral Health Survey in Fiji. At present, Fiji lacks water fluoridation and therefore a baseline of the fluoride content in drinking water supplies is essential before water fluoridation is implemented. The results from this study would be beneficial in designing caries-preventive strategies through water fluoridation and for comparing those strategies with caries prevalence overtime. © 2018 The Authors.
Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.
Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J
2016-11-01
Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Supercritical fluid extraction of selected pharmaceuticals from water and serum.
Simmons, B R; Stewart, J T
1997-01-24
Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.
Otero, Cassi L.
2007-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, conducted a 4-year study during 2002?06 to identify major flow paths in the Edwards aquifer in northeastern Bexar and southern Comal Counties (study area). In the study area, faulting directs ground water into three hypothesized flow paths that move water, generally, from the southwest to the northeast. These flow paths are identified as the southern Comal flow path, the central Comal flow path, and the northern Comal flow path. Statistical correlations between water levels for six observation wells and between the water levels and discharges from Comal Springs and Hueco Springs yielded evidence for the hypothesized flow paths. Strong linear correlations were evident between the datasets from wells and springs within the same flow path and the datasets from wells in areas where flow between flow paths was suspected. Geochemical data (major ions, stable isotopes, sulfur hexafluoride, and tritium and helium) were used in graphical analyses to obtain evidence of the flow path from which wells or springs derive water. Major-ion geochemistry in samples from selected wells and springs showed relatively little variation. Samples from the southern Comal flow path were characterized by relatively high sulfate and chloride concentrations, possibly indicating that the water in the flow path was mixing with small amounts of saline water from the freshwater/saline-water transition zone. Samples from the central Comal flow path yielded the most varied major-ion geochemistry of the three hypothesized flow paths. Central Comal flow path samples were characterized, in general, by high calcium concentrations and low magnesium concentrations. Samples from the northern Comal flow path were characterized by relatively low sulfate and chloride concentrations and high magnesium concentrations. The high magnesium concentrations characteristic of northern Comal flow path samples from the recharge zone in Comal County might indicate that water from the Trinity aquifer is entering the Edwards aquifer in the subsurface. A graph of the relation between the stable isotopes deuterium and delta-18 oxygen showed that, except for samples collected following an unusually intense rain storm, there was not much variation in stable isotope values among the flow paths. In the study area deuterium ranged from -36.00 to -20.89 per mil and delta-18 oxygen ranged from -6.03 to -3.70 per mil. Excluding samples collected following the intense rain storm, the deuterium range in the study area was -33.00 to -20.89 per mil and the delta-18 oxygen range was -4.60 to -3.70 per mil. Two ground-water age-dating techniques, sulfur hexafluoride concentrations and tritium/helium-3 isotope ratios, were used to compute apparent ages (time since recharge occurred) of water samples collected in the study area. In general, the apparent ages computed by the two methods do not seem to indicate direction of flow. Apparent ages computed for water samples in northeastern Bexar and southern Comal Counties do not vary greatly except for some very young water in the recharge zone in central Comal County.
Papp, Laszlo; Palcsu, Laszlo; Major, Zoltan; Rinyu, Laszlo; Tóth, Istvan
2012-01-01
This paper describes the procedure followed for noble gas measurements for litres, millilitres and microlitres of water samples in our laboratory, including sample preparation, mass spectrometric measurement procedure, and the complete calibrations. The preparation line extracts dissolved gases from water samples of volumes of 0.2 μ l to 3 l and it separates them as noble and other chemically active gases. Our compact system handles the following measurements: (i) determination of tritium concentration of environmental water samples by the (3)He ingrowth method; (ii) noble gas measurements from surface water and groundwater; and (iii) noble gas measurements from fluid inclusions of solid geological archives (e.g. speleothems). As a result, the tritium measurements have a detection limit of 0.012 TU, and the expectation value (between 1 and 20 TU) is within 0.2 % of the real concentrations with a standard deviation of 2.4 %. The reproducibility of noble gas measurements for water samples of 20-40 ml allows us to determine solubility temperatures by an uncertainty better than 0.5 °C. Moreover, noble gas measurements for tiny water amounts (in the microlitre range) show that the results of the performed calibration measurements for most noble gas isotopes occur with a deviation of less than 2 %. Theoretically, these precisions for noble gas concentrations obtained from measurements of waters samples of a few microlitres allow us to determine noble gas temperatures by an uncertainty of less than 1 °C. Here, we present the first noble gas measurements of tiny amounts of artificial water samples prepared under laboratory conditions.
NASA Astrophysics Data System (ADS)
Gusmaweti; Deswati, L.
2018-03-01
The long-term goal of this study is to provide an overview of the presence of phytoplankton in support of its functions in the waters of Batang Palangki as a conservation area of information on river water management, especially for Batang Palangki stakeholders. Specific targets to be achieved in achieving these objectives are (1) to know the density of phytoplankton, index of diversity of species, equitabilty index, domination index, and in Batang Palangki waters, and (2) to analyze the chemical and physical factors of the waters. The sampling method of phytoplankton is purposive sampling. The phytoplankton sampling is done By filtering 100 liters of water into the net plankton no 25 and filtered into the 25 cc, and then identified. The determination of water quality such as water temperature, water pH and watercolour. dissolved oxygen (DO) and BOD, and Hg content (mercury). The results showed that phytoplankton found from each of station was 370 individualis per liter with the highest density found in the station I of 155. The number of genus was 7, namely Neidium, Gyrogsima, Synedra, Frustulia, Fragillaria, Nitzschia and Peridinium. The diversity index averaged at 0.45, equabilty index averaged at 0.54, while the dominance index averaged at 0.28. Physical and chemical factor measurement results found that water temperature averaged at 26 °C, transparency ranged from 12 - 30 cm, velocity speed ranged from 8 - 15 m/s, while chemical factors such as DO, BOD, and COD ranged from 5.25 to 5.96 mg/L, 3.28 - 3.49 mg/L, and 47.05 - 76.25 mg/L respectively. Likewise, TOM measured in this research was 9.61 - 2.10 mg/L while Hg content ranged from 0.098 - 0.208 mg/L.
Lotspeich, R. Russell
2007-01-01
Lunga Reservoir is on the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because of the potential use of the reservoir for scuba-diver training and public water supply in addition to current recreational activities, the U.S. Marine Corps wanted to know more about the water quality of Lunga Reservoir and how it compared to Virginia Department of Environmental Quality and Virginia State Water Control Board ambient water-quality standards. Water samples and physical properties were collected by the U.S. Geological Survey at 6 locations throughout Lunga Reservoir, and physical properties were collected at 11 additional locations in the reservoir from September 2004 through August 2005. Water samples for analysis of pesticides and bottom-material trace elements were collected once during the study at four of the sampling locations. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and total chlorophyll concentration in Lunga Reservoir all had similar seasonal and spatial variations as in other lakes and reservoirs in this geographic region - thermal gradient in the summer and fall and isothermal conditions in the winter and early spring. Concentrations of water-quality indicators in Lunga Reservoir were within comparable levels of those in other reservoirs and did not violate the Virginia State Water Control Board standards for public water supplies. Water temperatures throughout Lunga Reservoir during the study period ranged from 4.4 to 30.1 degrees Celsius, well below the State Water Control Board maximum water temperature criteria of 32 degrees Celsius. Dissolved-oxygen concentrations ranged from 0.05 to 14.1 milligrams per liter throughout the reservoir during the study period, but never fell below the State Water Control Board minimum dissolved-oxygen criterion of 4.0 milligrams per liter at the surface of Lunga Reservoir. Specific conductance throughout Lunga Reservoir ranged from 29 to 173 microsiemens per centimeter at 25 degrees Celsius during the study period, with a mean specific conductance of 68 microsiemens per centimeter at 25 degrees Celsius. Measurements of pH throughout the reservoir ranged from 4.8 to 7.6 standard units. Concentrations of chemical constituents analyzed in Lunga Reservoir samples were below any State Water Control Board criteria and generally were similar in concentration to the same chemical constituents in other reservoirs in the State. Four water samples were analyzed for 54 pesticides, and none of these pesticides were above the laboratory minimum reporting level.
Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson
2017-01-01
Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562
Matuszewska, Renata; Szczotko, Maciej; Krogulska, Bozena
2012-01-01
The presence of parasitic protozoa in drinking water is mostly a result of improperly maintened the water treatment process. Currently, in Poland the testing of Cryptosporidium and Giardia in water as a part of routine monitoring of water is not perform. The aim of this study was the optimization of the method of Cryptosporidium and Giardia detection in water according to the main principles of standard ISO 15553:2006 and using Filta-Max xpress automatic elution station. Preliminary tests were performed on the samples contaminated with oocysts and cysts of reference strains of both parasitic protozoa. Further studies were carried out on environmental samples of surface water sampled directly from the intakes of water (21 samples from Vistula River and 8 samples from Zegrzynski Lake). Filtration process and samples volume reducing were performed using an automatic elution system Filta-Max xpress. Next, samples were purified during immunomagnetic separation process (IMS). Isolated cysts and oocysts were stained with FITC and DAPI and than the microscopic observation using an epifluorescence microscope was carried out. Recovery of parasite protozoa in all contaminated water samples after 9-cycles elution process applied was mean 60.6% for Cryptosporidium oocysts and 36.1% for Giardia cysts. Studies on the environmental surface water samples showed the presence of both parasitic protozoa. Number of detected Giardia cysts ranged from 1.0/10 L up to 4.5/10 L in samples from Zegrzynski Lake and from 1.0/10 L up to 38.9/10 L in samples from Vistula River. Cryptosporidium oocysts were present in 50% of samples from the Zegrzynski Lake and in 47.6% of samples from the Vistula River, and their number in both cases was similar and ranged from 0.5 up to 2.5 oocyst/10 L. The results show that applied procedure is appropriate for detection the presence of parasitic protosoan in water, but when water contains much amount of inorganic matter and suspended solids test method have to be modified like subsamples preparation and filtration process speed reduction. The applied method with the modification using Filta-Max xpress system can be useful for the routine monitoring of water. Detection of Cryptosporidium and Giardia in all samples of water taken from the intakes of surface water shows the possibility oftransfering of the protozoan cysts into the water intended for the consumption, therefore the testing of Cryptosporidium and Giardia should be included into the monitoring of water.
Burkhardt, M.R.; Soliven, P.P.; Werner, S.L.; Vaught, D.G.
1999-01-01
A method for determining submicrogram-per-liter concentrations of caffeine in surface water and groundwater samples has been developed. Caffeine is extracted from a 1 L water sample with a 0.5 g graphitized carbon-based solid-phase cartridge, eluted with methylene chloride-methanol (80 + 20, v/v), and analyzed by liquid chromatography with photodiode-array detection. The single-operator method detection limit for organic-free water samples was 0.02 ??g/L. Mean recoveries and relative standard deviations were 93 ?? 13% for organicfree water samples fortified at 0.04 ??g/L and 84 ?? 4% for laboratory reagent spikes fortified at 0.5 ??g/L. Environmental concentrations of caffeine ranged from 0.003 to 1.44 ??g/L in surface water samples and from 0.01 to 0.08 ??g/L in groundwater samples.
Bavili Tabrizi, Ahad; Abdollahi, Ali
2015-10-01
A simple, rapid and sensitive spectrofluorimetric method was developed for the determination of di-syston, ethion and phorate in environmental water samples. The procedure is based on the oxidation of these pesticides with cerium (IV) to produce cerium (III), and its fluorescence was monitored at 368 ± 3 nm after excitation at 257 ± 3 nm. The variables effecting oxidation of each pesticide were studied and optimized. Under the experimental conditions used, the calibration graphs were linear over the range 0.2-15, 0.1-13, 0.1-13 ng mL(-1) for di-syston, ethion and phorate, respectively. The limit of detection and quantification were in the range 0.034-0.096 and 0.112-0.316 ng mL(-1), respectively. Intra- and inter-day assay precisions, expressed as the relative standard deviation (RSD), were lower than 5.2 % and 6.7 %, respectively. Good recoveries in the range 86 %-108 % were obtained for spiked water samples. The proposed method was applied to the determination of studied pesticides in environmental water samples.
Crepeau, Kathryn L.; Domagalski, Joseph L.; Kuivila, Kathryn
1994-01-01
Analytical method and quality-assurance practices were developed for a study of the fate and transport of pesticides in the Sacramento-San Joaquin Delta and the Sacramento and San Joaquin River. Water samples were filtered to remove suspended parti- culate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide, and the pesticides were eluted with three 2-milliliter aliquots of hexane:diethyl ether (1:1). The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for analytes determined per 1,500-milliliter samples ranged from 0.006 to 0.047 microgram per liter. Recoveries ranged from 47 to 89 percent for 12 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.05 and 0.26 microgram per liter. The method was modified to improve the pesticide recovery by reducing the sample volume to 1,000 milliliters. Internal standards were added to improve quantitative precision and accuracy. The analysis also was expanded to include a total of 21 pesticides. The method detection limits for 1,000-milliliter samples ranged from 0.022 to 0.129 microgram per liter. Recoveries ranged from 38 to 128 percent for 21 pesticides in organic-free, Sacramento River and San Joaquin River water samples fortified at 0.10 and 0.75 microgram per liter.
Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses
2015-12-01
Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).
Mashile, Geaneth Pertunia; Mpupa, Anele; Nomngongo, Philiswa Nosizo
2018-06-14
In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227⁻256 mg g −1 . Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L −1 . The limits of detection and quantification ranged from 6⁻15 ng L −1 and 20⁻50 ng L −1 , respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.
Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011
Risser, Dennis W.; Conlon, Matthew D.
2018-05-17
This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12 milligrams per liter (mg/L) in Wolf Run, a pristine forested watershed, to 202 mg/L in Bottle Run, a watershed with more development near Williamsport. Concentrations of the major ions ranged over at least one order of magnitude; chloride had the largest range from 0.3 to 45.4 mg/L, with nine samples exceeding the natural background level of about 5 mg/L, most likely because of the application of deicing salt to roads. Trace constituents were even more variable, with concentrations for aluminum, cobalt, and manganese ranging over almost four orders of magnitude. Samples from Red Run and Dutchman Run, watersheds that experienced past coal mining activity, had concentrations of 11 metals that were significantly greater than in samples collected from other streams. Samples from Bottle Run, the tributary of Lycoming Creek nearest to Williamsport, contained elevated levels of chloride and boron, constituents associated with urban development.
Test well DO-CE 88 at Cambridge, Dorchester County, Maryland
Trapp, Henry; Knobel, LeRoy L.; Meisler, Harold; Leahy, P. Patrick
1984-01-01
Test well DO-CE 88 at Cambridge, Maryland, penetrated 3,299 feet of unconsolidated Quaternary, Tertiary and Cretaceous sediments and bottomed in quartz-monzonite gneiss. The well was drilled to provide data for a study of the aquifer system of the northern Atlantic Coastal Plain. Twenty-one core samples were collected. Six sand zones were tested for aquifer properties and sampled for ground-water chemistry. Point-water heads were measured at seven depths. Environmental heads (which ranged from - 18.33 to + 44.16 feet relative to sea level)indicate an upward component of flow. A temperature log showed a maximum temperature of 41.9 degrees Celsius and a mean temperature gradient of 0.00838 degrees Celsius per foot. The water analyses delineated the freshwater-saltwater transition zone between 2,650 and 3,100 feet. The ground water changes progressively downward from a sodium bicarbonate to a sodium chloride character. Clays in the analyzed core samples belong to the montmorillonite and kaolinite groups, and mean cation exchange capacity ranged from 8.3 to 38.9 milliequivalents per 100 grams. Vertical and horizontal hydraulic conductivities measured in cores ranged from 1.5 x 10 6 to 1.3 feet per day and from 7.3 x 10 -6 to 1.3 feet per day, respectively, but the most permeable sands were not cored. Porosity was 1.5 percent in the quartz monzonite bedrock and ranged from 22.4 to 41 percent in the overlying sediments. Transmissivities from aquifer tests ranged from 25 to 850 feet squared per day; horizontal hydraulic conductivities ranged from.2.5 to 85 feet squared per day, and intrinsic permeabilities ranged from 0.8 to 23 micrometers squared. Fossils identified in core samples include palynomorphs, dinoflagellates, and foraminifers.
Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.
2016-12-01
Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m/s over a volumetric water content range from 0.1938 to 0.4311 m3/m3. Using these measured properties, the water content estimated from geophysical measurements has been used to identify the unsaturated hydraulic conductivity indicative of the steady component of the aquifer recharge rate at Canosa.
Ensminger, Michael; Bergin, Rick; Spurlock, Frank; Goh, Kean S
2011-04-01
The California's San Joaquin River and its tributaries including Orestimba (ORC) and Del Puerto (DPC) Creeks are listed on the 2006 US EPA Clean Water Act §303(d) list for pesticide impairment. From December 2007 through June 2008, water and sediment samples were collected from both creeks in Stanislaus County to determine concentrations of organophosphorus (OP) and pyrethroid insecticides and to identify toxicity to Ceriodaphnia dubia and Hyalella azteca. OPs were detected in almost half (10 of 21) of the water samples, at concentrations from 0.005 to 0.912 μg L(-1). Diazinon was the most frequently detected OP, followed by chlorpyrifos and dimethoate. Two water samples were toxic to C. dubia; based on median lethal concentrations (LC50), chlorpyrifos was likely the cause of this toxicity. Pyrethroids were detected more frequently in sediment samples (18 detections) than in water samples (three detections). Pyrethroid concentrations in water samples ranged from 0.005 to 0.021 μg L(-1). These concentrations were well below reported C. dubia LC50s, and toxicity was not observed in laboratory bioassays. Cyfluthrin, bifenthrin, esfenvalerate, and λ-cyhalothrin were detected in sediment samples at concentrations ranging from 1.0 to 74.4 ng g(-1), dry weight. At DPC, all but one sediment sample caused 100% toxicity to H. azteca. Based on estimated toxicity units (TUs), bifenthrin was likely responsible for this toxicity and λ-cyhalothrin also contributed. At ORC, survival of H. azteca was significantly reduced in four of the 11 sediment samples. However, pyrethroids were detected in only two of these samples. Based on TUs, bifenthrin and λ-cyhalothrin likely contributed to the toxicity.
NASA Astrophysics Data System (ADS)
Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic
2017-08-01
The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.
Stability of ricinine, abrine, and alpha-amanitin in finished tap ...
Journal Article Ricinine and abrine are potential indicators of drinking water contamination by the biotoxins ricin and abrin, respectively. Simultaneous detection of ricinine and abrine, along with α-amanitin, another potential biotoxin water contaminant, is reportable through the use of automated sample preparation via solid phase extraction and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized over eight analytical batches with quality control samples analyzed over 10 days. For solutions of analytes prepared with appropriate preservatives, the minimum reporting level (MRL) was 0.50 μg/L for ricinine and abrine and 2.0 μg/L for α-amanitin. Among the analytes, the accuracy of the analysis ranged between 93 and 100% at concentrations of 1-2.5 x the MRL, with analytical precision ranging from 4 to 8%. Five drinking waters representing a range of water quality parameters and disinfection practices were fortified with the analytes and analyzed over a 28 day period to determine their storage stability in these waters. Ricinine was observed to be stable for 28 days in all tap waters. The analytical signal decreased within 5 hrs of sample preparation for abrine and μ-amanitin in some waters, but afterwards, remained stable for 28 days. The magnitude of the decrease correlated with common water quality parameters potentially related to sorption of contaminants onto dissolved and colloidal components within
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Lata, Suman; Yadav, Jyoti; Yadav, J. P.
2017-10-01
The present study was undertaken to determine the relationship between fluoride in water, urine and serum and dental fluorosis. The fluoride level in water and urine were measured spectrophotometrically by using acid zirconyl and SPADNS reagents, while the fluoride level in serum was determined by ion selective electrode meter. Dental fluorosis survey was conducted with the help of Performa prescribed by Rajiv Gandhi Drinking Water Mission and the use of Tooth Surface Index for Fluorosis. Mean fluoride values in water samples of Jhajjar City and Dadanpur and Dariyapur villages of Jhajjar District were measured to be 2.17 (range from 1.92 to 2.60 mg/L), 2.81 (range from 2.53 to 3.14 mg/L) and 2.22 mg/L (range from 1.63 to 3.33 mg/L), respectively. The mean fluoride values in the urine samples of children were found to be 1.51 (range from 0.05 to 2.64 mg/L), 1.71 (range from 0.69 to 2.80 mg/L) and 1.45 mg/L (range from 0.31 to 2.50 mg/L) at Jhajjar City and Dadanpur and Dariyapur sites, respectively. Serum fluoride was detected in the blood samples of children, who have high urinary fluoride at these three sites. The mean serum fluoride level was reported to be 0.15, 0.34 and 0.17 mg/L, respectively. A total of 842 children were also analyzed for dental fluorosis. The mean values of fluorosis-affected children in Jhajjar, Dadanpur and Dariyapur were 51.90, 94.63 and 36.84 %, respectively. A significantly positive correlation between water, urine, serum fluoride concentration and fluorosis was seen.
Williams, Shannon D.; Harris, Robin M.
1996-01-01
In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter, respectively.
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-11-01
A novel method based on simultaneous liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-liquid phase microextraction has been developed for the determination of six organophosphorus pesticides, i.e. isocarbophos, phosmet, parathion-methyl, triazophos, fonofos and phoxim, in water and watermelon samples prior to high-performance liquid chromatography (HPLC). Under the optimum conditions, the method shows a good linearity within a range of 1-200 ng/mL for water samples and 5-200 ng/g for watermelon samples, with the correlation coefficients (r) varying from 0.9990 to 0.9997 and 0.9986 to 0.9995, respectively. The limits of detection (LODs) were in the range between 0.1 and 0.3 ng/mL for water samples and between 1.0 and 1.5 ng/g for watermelon samples. The recoveries of the method at spiking levels of 5.0 and 50.0 ng/mL for water samples were between 85.4 and 100.8%, and at spiking levels of 5.0 and 50.0 ng/g for watermelon samples, they were between 82.6 and 92.4%, with the relative standard deviations (RSDs) varying from 4.5-6.9% and 5.2-7.4%, respectively. The results suggested that the developed method represents a simple, low-cost, high analytes preconcentration and excellent sample cleanup procedure for the determination of organophosphorus pesticides in water and watermelon samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents.
Waso, Monique; Dobrowsky, Penelope Heather; Hamilton, Kerry Ann; Puzon, Geoffrey; Miller, Haylea; Khan, Wesaal; Ahmed, Warish
2018-02-01
Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 10 2 to 3.6 × 10 4 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 10 1 to 7.8 × 10 4 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing associated public health risks.
Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania
2005-09-01
During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water, air and/or plants.
Ye, Xiao-yan; Xiao, Wen-qing; Huang, Xia-ning; Zhang, Yong-lu; Cao, Yu-guang; Gu, Kang-ding
2012-07-01
This study aimed to construct an effective method to concentrate and detect virus in drinking water, and human adenovirus pollution status in actual water samples was monitored by constructed method. The concentration efficient of NanoCeram filter for the first concentration with source water and drinking water and the concentration efficient of the different concentrations of PEG 8000 for the second concentration were assessed by spiking f₂ bacteriophage into water samples. The standard of human adenovirus for real-time PCR was constructed by T-A clone. The plasmid obtained was identified through sequence analyzing and consistency check comparing to target gene fragment was conducted by using blast algorithm. Then, real-time PCR was constructed to quantify the concentration of human adenovirus using the plasmid as standard. Water samples were concentrated by using NanoCeram filter on the spot and then concentrated for the second time by PEG/NaCl in 2011. The DNA of concentrated samples were extracted for the quantification of human adenovirus in real-time PCR subsequently to monitor the pollution of human adenovirus in water. For the first concentration by NanoCeram filter, the recovery rates were (51.63 ± 26.60)% in source water and (50.27 ± 14.35)% in treated water, respectively. For the second concentration, the highest recovery rate was reached to (90.09 ± 10.50)% at the concentration of 0.13 kg/L of PEG 8000. The sequence identity score of standard of adenovirus for real time PCR and adenovirus gene was 99%, implying that it can be successfully used to quantification with human adenovirus. The levels of human adenovirus in the water samples sampled in 2011 ranged from 4.13×10³ to 2.20×10⁶ copies/L in source water, while range from 5.57×10² to 7.52×10⁵ copies/L in treated water and the removal efficiency range was (75.49 ± 11.71)%. NanoCeram filers combined with PEG/NaCl was an effective method to concentrate virus in aquatic environment. There was a large number of human adenovirus in source water, and it is not sufficient to remove them thoroughly through conventional water treatment processes.
Manheim, Frank T.; Peck, E.E.; Lane, Candice M.
1985-01-01
The authors have devised a technique for determining chloride in interstitial water of consolidated rocks. Samples of rocks ranging from 5 to 10 g are crushed and sieved under controlled conditions and then ground with distilled water to submicron size in a closed mechanical mill. The chloride concentrations and total pore-water concentrations, obtained earlier from the same samples by low-temperature vacuum desiccation, are used to arrive at the 'original' pore-water chloride concentrations by a simple iteration procedure. Interstitial chlorinity results obtained from Cretaceous and Jurassic strata in the Gulf of Mexico coastal areas ranged from 20 to 100 g/kg Cl with reproducibility approaching plus or minus 1%.
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Sloto, Ronald A.
2002-01-01
A study of ground-water quantity and quality was conducted in the Big Elk Creek Basin, a rural area undergoing rapid growth. The 79.4-square mile study area is in the Piedmont Physiographic Province and is underlain almost entirely by crystalline rocks. Most of the basin in Pennsylvania is underlain by Wissahickon Schist, a fractured crystalline- rock aquifer. Yields of wells in the Wissahickon Schist range from 5 to 200 gal/min (gallons per minute); the median yield is 15 gal/min. Specific capacity ranges from 0.03 to 15 (gal/min)/ft (gallons per minute per foot) of drawdown; the median specific capacity is 0.4 (gal/min)/ft.Recharge to the basin occurs by infiltration of precipitation, and ground water discharges locally to streams. The median annual ground-water discharge to streams (base flow) for 1933-99 was 10.79 in. (inches) or 0.518 (Mgal/d)/mi2 (million gallons per day per square mile), which was 63 percent of the median annual streamflow. The median annual ground-water discharge to streams ranged from 5.32 in. or 0.255 (Mgal/d)/mi2 in 1966 to 17.98 in. or 0.863 (Mgal/d)/mi2 in 1972. Estimated ground-water availability ranges from 0.127 to 0.535 (Mgal/d)/mi2, depending on the estimation method used.Annual water budgets were calculated for the Big Elk Creek Basin for 1998-99. The 1998-99 average annual streamflow was 15.38 in., change in ground-water storage was an increase of 1.32 in., ground-water exports were 0.03 in., and estimated evapotranspiration (ET) was 30.5 in. Despite a 12.27-in. difference in precipitation between 1998 and 1999, the percentage of precipitation as ET (65.6 and 64 percent, respectively) is similar. Estimated average annual recharge for 1998-99 was 12.12 in. [0.580 (Mgal/d)/mi2].For this study, water samples from 20 wells in the Big Elk Creek Basin were collected for analysis for inorganic constituents and pesticides. In addition, data were available from 44 additional wells. Major ions, in order of decreasing concentration, based on median concentrations for the Wissahickon Schist, are silica, calcium, chloride, sodium, sulfate, magnesium, and potassium. The Wissahickon Schist and Peters Creek Schist have similar water types; ground water from serpentinite, the basal unit of the Baltimore Mafic Complex that straddles the Pennsylvania-Maryland border, is distinctly different. For the Wissahickon Schist and Peters Creek Schist, no cation is predominant; calcium, magnesium, and sodium are in nearly equal concentrations expressed in milliequivalents per liter. Bicarbonate is the dominant anion. Water from serpentinite is of the magnesium bicarbonate type; magnesium is the dominant cation, and bicarbonate is the dominant anion.Water from 2 percent of sampled wells exceeded the U.S. Environmental Protection Agency (USEPA) secondary maximum contaminant level (SMCL) for total dissolved solids. None of the chloride or sulfate concentrations exceeded the USEPA SMCL. Water from 10 percent of sampled wells exceeded the USEPA maximum contaminant level (MCL) of 10 mg/L (milligrams per liter) nitrate as nitrogen. All of those wells are in the Wissahickon Schist. The median concentration of nitrate in water samples from the Wissahickon Schist was 3.6 mg/L, and the maximum concentration was 36 mg/L. Except for iron and manganese, metals and other trace inorganic constituents do not appear to pose a water-quality problem. Fourteen percent of water samples analyzed for iron and 29 percent of water samples analyzed for manganese exceeded the USEPA SMCL's. The median activity of radon-222 for all formations was 2,400 pCi/L (picoCuries per liter). The median activity for water from 35 wells sampled in the Wissahickon Schist in the Big Elk Creek Basin was 2,500 pCi/L. Water from 94 percent of sampled wells exceeded the proposed USEPA MCL of 300 pCi/L, and water from 25 percent of sampled wells exceeded proposed USEPA alternate MCL of 4,000 pCi/L.In addition to the 20 wells sampled for pesticides for this study, data were available for 20 other wells sampled for pesticides. The most commonly detected pesticides in the Big Elk Creek Basin are deethyl atrazine (71 percent of sampled wells), atrazine (35 percent of sampled wells), metolachlor (32 percent of sampled wells), carbaryl (19 percent of sampled wells), picloram (14 percent of sampled wells), simazine (13 percent of sampled wells), and carbofuran (11 percent of sampled wells). Most concentrations are extremely low and are in the parts per trillion range. Concentrations of pesticides detected did not exceed USEPA MCL’s. Out of 43 volatile organic compounds analyzed, only 4 were detected—chloroform, total phenols, tert-butyl methyl ether (MTBE), and toluene. None of the concentrations exceeded USEPA MCL’s.
Characterization of marine aerosol for assessment of human exposure to brevetoxins.
Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M; Pierce, Richard H; Naar, Jerome; Backer, Lorraine C; Fleming, Lora E; Kirkpatrick, Barbara; Baden, Dan G
2005-05-01
Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period (May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 microg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6-12 microm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.
Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William
1997-01-01
Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples, and concentrations ranged from 11 to 16 micrograms per gram. Concentrations ofaluminum, beryllium, boron, copper, lead, and zinc were highest in samples from Main Drain at southerly international boundary near San Luis, Arizona. Selenium was detected in all bottom-sediment samples, and concentrations ranged from 0.1 to 0.7 micrograms per gram. Concentrations of cadmium, europium, homium, mercury, molybdenum, silver, tantalum, tin, and uranium were below analytical reporting limits in the bottom-sediment samples. Concentrations of trace elements in bottom-sediment samples were within the ranges found in a study of soils of the western United States and did not indicate a significant accumulation of these constituents. p,p'Dichlorodiphenyldichloroethylene (commonly referred to as p,-p'-DDE) was detected in one bottom-sediment sample at a concentration of 1.4 micrograms per gram. No other organochlorine compounds were detected in the bottom-sediment samples. DDE was present in all fish and bird samples. Almost one-half of the fish samples contained DDE residues that were two times higher than the mean calculated for a national study in 1984-85. Twenty-tree percent of the fish contained more than three times the national mean. Fish from downstream parts of the Main Drain had the highest concentrations of DDE. Although concentrations of DDE in fish and in bird carcasses and eggs were above background levels, residues generally were below thresholds associated with chronic poisoning and reproductive problems in figh and wildlife. Concentrations of 18 trace elements were detected in cattail (Typha sp.) roots, freshwater clam (Corbicula fluminea), fish, and bird samples. Selenium in most fish and in livers of red-winged (Agelaius phoeniceus) and yellow-headed (Xanthocephalus xanthocephalus) blackbirds was above background concentrations but below toxic concentrations. In contrast, selenium was present in a killdeer (Charadrium vociferus) liver sample at potentially toxic con
Wu, Chunxia; Liu, Huimin; Liu, Weihua; Wu, Qiuhua; Wang, Chun; Wang, Zhi
2010-07-01
A simple dispersive liquid-liquid microextraction based on solidification of floating organic droplet coupled with high-performance liquid chromatography-diode array detection was developed for the determination of five organophosphorus pesticides (OPs) in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL(-1) were 82.2-98.8% and 83.6-104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method was suitable for the determination of the OPs in real water samples.
Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng
2015-08-01
We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.
Guo, Hongyue; Riter, Leah S; Wujcik, Chad E; Armstrong, Daniel W
2016-04-22
A novel method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was developed for the sensitive determination of glyphosate and its major degradation product, AMPA in environmental water samples. The method involves the use of MS compatible mobile phases (0.1% formic acid in water and acetonitrile) for HPLC and direct analysis of water samples without sample derivatization. The method has been validated in different types of water matrices (drinking, surface and groundwater) by accuracy and precision studies with samples spiked at 0.1, 7.5 and 90 ppb. All mean accuracy values ranged from 85% to 112% for glyphosate and AMPA using both primary and secondary quantitative ion transitions (RSD ≤ 10%). Moreover, both primary and secondary ion transitions for glyphosate and AMPA can achieve the quantitation limits at 0.1 ppb. The linear dynamic range of the calibration curves were from 0.1 to 100 ppb for each analyte at each ion transitions with correlation coefficient higher than 0.997. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Rui; Li, Na; Wang, Chuanliu; Bai, Yuping; Ren, Ruibing; Gao, Shiqian; Yu, Wenzhi; Zhao, Tianqi; Zhang, Hanqi
2011-10-17
The foaming property of ionic liquids (ILs) was found and the factors that can influence foamability of the ILs were investigated. Based on the property of the ILs, the foam floatation-solid phase extraction (FF-SPE) was developed. The IL-based FF-SPE was applied to the extraction and concentration of steroid hormones, including corticosterone, 17-β-estadiol, 17-α-estradiol, 19-nortestosterone, estrone, testosterone, 17-α-hydroxyprogesterone, medroxyprogesterone, chloromadinon 17-acetate, norethisterone acetate, medroxyprogesterone-17-acetate, progesterone, 17-β-estradiol 3-benzoate and testosteron 17-propionate in water samples and then the steroid hormones were determined by high-performance liquid chromatography. The extraction and concentration were performed synchronously in 10 min. Some experimental conditions were examined and optimized. The recoveries ranged from 50.6% to 95.2% for lake water sample and from 53.4% to 98.7% for rain water sample. The precision ranged from 2.43% to 7.43% for the lake water sample and 2.07-7.01% for rain water sample. Based on the foaming property of ILs, the application of foam floatation should be widened. Copyright © 2011 Elsevier B.V. All rights reserved.
Garbarino, John R.; Bednar, Anthony J.; Burkhardt, Mark R.
2002-01-01
Analytical methods for the determination of arsenite [As(III)], arsenate [As(V)], dimethylarsinate (DMA), monomethylarsonate (MMA), and roxarsone in filtered natural-water samples are described. Various analytical methods can be used for the determination, depending on the arsenic species being determined. Arsenic concentration is determined by using inductively coupled plasma-mass spectrometry (ICP-MS) as an arsenic-specific detector for all methods. Laboratory-speciation methods are described that use an ion chromatographic column to separate the arsenic species; the column length, column packing, and mobile phase are dependent on the species of interest. Regardless of the separation technique, the arsenic species are introduced into plasma by eithe rpneumatic nebulization or arsine generation. Analysis times range from 2 to 8 minutes and method detection limits range from 0.1 to 0.6 microgram-arsenic per liter (ug-As/L), 10 to 60 picograms absolute (for a 100-microliter injection), depending on the arsenic species determined and the analytical method used. A field-generation specciation method also is described that uses a strong anion exchange cartridge to separate As(III) from As(V) in the field. As(III) in the eluate and the As(V) in the cartridge extract are determined by direct nebulization ICP-MS. Methylated arsenic species that also are retained on the cartridge will positively bias As(V) results without further laboratory separations. The method detection limit for field speciation is 0.3 ug-As/L. The distribution of arsenic species must be preserved in the field to eliminate changes caused by photochemical oxidation or metal oxyhydroxide precipitation. Preservation techniques, such as refrigeration, the addition of acides, or the additoin of ethylene-diaminetetraacetic acid (EDTA) and the effects of ambient light were tested. Of the preservatives evaluated, EDTA was found to work best with the laboratory- and field-speciation methods for all sample matrices tested. Storing the samples in opaque polytethylene bottles eliminated the effects of photochemical oxidation. The percentage change in As(III):As(V) ratios for an EDTA-preserved acid mine drainage (AMD) sample and ground-water sample during a 3-month period was -5 percent and +3 percent, respectively. The bias and variability of the methods were evaluated by comparing results for total arsenic and As(III), As(V), DMA, and MMA concentrations in ground water, AMD, and surface water. Seventy-one ground-water, 10 AMD, and 24 surface-water samples were analyzed. Concentrations in ground-water samples reached 720 ug-As/L for As(III) and 1080 ug-As/L for As(V); AMD samples reached 12800 ug-As/L for As(III) and 7050 ug-As/L for As(V); and surface-water samples reached 5 ug-As/L for As(III) and As(V). Inorganic arsenic species distribution in the samples ranged from 0 to 90 percent As(III). DMA and MMA were present only in surface-water samples from agricultural areas where the herbicide monosodium methylarsonate was applied; concentrations never exceeded 6 ug-As/L. Statistical analyses indicated that the difference between As(III) and As(V) concentrations for samples preserved with EDTA in opaque bottles and field-speciation results were analytically insignificant at the 95-percent confidence interval. There was no significant difference among the methods tested for total arsenic concentration. Percentage recovery for field samples spiked at 50 ug-As/L and analyzed by the laboratory-speciation method (n=2) ranged from 82 to 100 percent for As(III), 97 to 102 percent for As(V), 90 to 104 percent for DMA, and 81 to 96 percent for MMA; recoveries for samples spiked at 100 ug-As/L and analyzed by the field-speciation method ranged from 102 to 107 percent for As(III) and 105 to 106 percent for As(V). Laboratory-speciation results for Environment Canada reference material SLRS-2 closely matched reported concentrations. Laboratory-speciation metho
Copper in the intake and discharge zones of the Surry and Salem Nuclear Power Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Bishop, D.J.; Rice, D.W. Jr.
Copper concentrations were measured in the soluble and particulate fractions of water samples and bedload sediments collected in intake and discharge areas of the Surry and Salem Nuclear Power Stations during normal operations. Additional samples of water and suspended particles were collected during startup of Unit 2 at the Salem Power Station. In water samples collected from Surry, total copper ranged from 6.5 to 24.7 and labile copper from 0.5 to 2.9 ..mu..g/L; in those from Salem, total copper ranged from 6.7 to 10.6 and labile from 0.9 to 3.8 ..mu..g/L. At both sites the highest total copper concentration wasmore » measured in January 1979 during a period of high runoff. In general, differences between influent and effluent waters were small; the maximum was 4.2 ..mu..g Cu/L. Copper concentration in the water during startup of Unit 2 of Salem was high initially (>2500 ..mu..g Cu/L) but was almost entirely in the particulate fraction; labile copper was only 0.6 ..mu..g/L. The apparent complexing capacity (ACC) of the waters from Surry ranged from 6 to 40 and those from Salem from 5 to 60 ..mu..g Cu/L. Ranges in dissolved organic carbon were smaller, 2.9 to 5.1 and 2.2 to 5.0 mg C/L for Surry and Salem, respectively, and showed no relationship with ACC. Ultrafiltration of discharge waters indicated that, in most samples, the largest fraction of copper in the untreated water was in the >10,000 <100,000 molecular weight fraction; in waters treated to destroy dissolved organic carbon, it was generally in the >100,000 molecular weight fraction.Copper concentrations in intact bedload sediments from the intake area of Surry ranged from 2.3 to 26 and of Salem from 36 to 74 ..mu..g/g dry weight; those in the discharge area of Surry ranged from 13 to 30 and of Salem from 3 to 67. We noted considerable spatial heterogeneity both at the intake and discharge areas, and higher copper concentrations in the <62-..mu..m fraction than in intact sediments.« less
Lei, Yun; Chen, Beibei; You, Linna; He, Man; Hu, Bin
2017-12-01
Polydimethylsiloxane (PDMS)/MIL-100(Fe) coated stir bar was prepared by sol gel technique, and good preparation reproducibility was achieved with relative standard deviations (RSDs) ranging from 2.6% to 7.5% (n=7) and 3.6% to 10.8% (n=7) for bar-to-bar and batch-to-batch, respectively. Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/MIL-100(Fe) stir bar showed better extraction efficiency for target triazines compounds. It also exhibited relatively fast extraction/desorption kinetics and long lifespan. Based on it, a method of PDMS/MIL-100(Fe) coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the determination of six triazines (simazine, atrazine, prometon, ametryn, prometryne and prebane) in environmental water samples. Several parameters affecting SBSE of six target triazines including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.021-0.079μgL -1 . The repeatability RSDs were in the range of 2.3-6.3% (n=7, c=0.5μgL -1 ) and the enrichment factors (EFs) ranged from 51.1 to 102-fold (theoretical EF was 200-fold). The proposed method was applied to the analysis of target triazines in environmental water samples, with recoveries of 98.0-118% and 94.0-107% for spiked East Lake water and local pond water samples, respectively. Copyright © 2017. Published by Elsevier B.V.
Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto
2016-01-01
A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Mohamad Hanapi, Nor Suhaila; Sanagi, Mohd Marsin; Ismail, Abd Khamim; Wan Ibrahim, Wan Aini; Saim, Nor'ashikin; Wan Ibrahim, Wan Nazihah
2017-03-01
The aim of this study was to investigate and apply supported ionic liquid membrane (SILM) in two-phase micro-electrodriven membrane extraction combined with high performance liquid chromatography-ultraviolet detection (HPLC-UV) for pre-concentration and determination of three selected antidepressant drugs in water samples. A thin agarose film impregnated with 1-hexyl-3-methylimidazolium hexafluorophosphate, [C 6 MIM] [PF 6 ], was prepared and used as supported ionic liquid membrane between aqueous sample solution and acceptor phase for extraction of imipramine, amitriptyline and chlorpromazine. Under the optimized extraction conditions, the method provided good linearity in the range of 1.0-1000μgL -1 , good coefficients of determination (r 2 =0.9974-0.9992) and low limits of detection (0.1-0.4μgL -1 ). The method showed high enrichment factors in the range of 110-150 and high relative recoveries in the range of 88.2-111.4% and 90.9-107.0%, for river water and tap water samples, respectively with RSDs of ≤7.6 (n=3). This method was successfully applied to the determination of the drugs in river and tap water samples. It is envisaged that the SILM improved the perm-selectivity by providing a pathway for targeted analytes which resulted in rapid extraction with high degree of selectivity and high enrichment factor. Copyright © 2017 Elsevier B.V. All rights reserved.
Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh
2017-09-01
In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.
Özdemır, Kadir
2014-01-01
This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323
Storm-water data for Bear Creek basin, Jackson County, Oregon 1977-78
Wittenberg, Loren A.
1978-01-01
Storm-water-quality samples were collected from four subbasins in the Bear Creek basin in southern Oregon. These subbasins vary in drainage size, channel slope, effective impervious area, and land use. Automatic waterquality samplers and precipitation and discharge gages were set up in each of the four subbasins. During the period October 1977 through May 1978, 19 sets of samples, including two base-flow samples, were collected. Fecal coliform bacteria colonies per 100-milliliter sample ranged from less than 1,000 to more than 1,000,000. Suspended-sediment concentrations ranged from less than 1 to more than 2,300 milligrams per liter. One subbasin consisting of downtown businesses and streets with heavy vehicular traffic was monitored for lead. Total lead values ranging from 100 to 1,900 micrograms per liter were measured during one storm event.
Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.
de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale
2015-04-01
A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Azeem, Sami M Abdel; Hanafi, Hassan A; El-Shahat, M F
2015-01-01
A fast and sensitive on-line procedure for the determination of zinc in water and biological samples was developed. Zinc was preconcentrated in a mini-column packed with polyurethane foam (PUF) chemically modified with zincon via -N=N- bonding. The optimal conditions for preconcentration were pH 8.5 and sample flow rate of 4.0 mL min(-1). Quantitative desorption of Zn(II) was obtained by 0.1 mol L(-1) hydrochloric acid and subsequent spectrophotmetric determination using 4-(2-pyridylazo)-resorcinol at 498 nm. The obtained detection limit was found to be 3.0 ng mL(-1), precision (RSD) was 4.8 and 6.7% at 20 and 110 ng mL(-1), respectively, for 60 s preconcentration time and enrichment factor was 31. The linearity range was from 10 to 120 ng mL(-1) and maximum sample throughput was 20 h(-1). Finally, the method was successfully applied to the determination of zinc in tap water, Nile River water and human urine samples with RSD in the range of 1.1 - 8.3%.
Domagalski, Joseph L.
1999-01-01
Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a
NASA Astrophysics Data System (ADS)
Gupta, A.; Singh, P. J.; Gaikwad, D. Y.; Udupa, D. V.; Topkar, A.; Sahoo, N. K.
2018-02-01
An experimental setup is developed for the trace level detection of heavy water (HDO) using the off axis-integrated cavity output spectroscopy technique. The absorption spectrum of water samples is recorded in the spectral range of 7190.7 cm-1-7191.5 cm-1 with the diode laser as the light source. From the recorded water vapor absorption spectrum, the heavy water concentration is determined from the HDO and water line. The effect of cavity gain nonlinearity with per pass absorption is studied. The signal processing and data fitting procedure is devised to obtain linear calibration curves by including nonlinear cavity gain effects into the calculation. Initial calibration of mirror reflectivity is performed by measurements on the natural water sample. The signal processing and data fitting method has been validated by the measurement of the HDO concentration in water samples over a wide range from 20 ppm to 2280 ppm showing a linear calibration curve. The average measurement time is about 30 s. The experimental technique presented in this paper could be applied for the development of a portable instrument for the fast measurement of water isotopic composition in heavy water plants and for the detection of heavy water leak in pressurized heavy water reactors.
Comparison of electrical conductivity calculation methods for natural waters
McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.
2012-01-01
The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.
Prystajecky, Natalie; Huck, Peter M; Schreier, Hans; Isaac-Renton, Judith L
2014-04-01
Knowledge of host specificity, combined with genomic sequencing of Giardia and Cryptosporidium spp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period. Cryptosporidium was detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters. Giardia was detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% of Cryptosporidium samples and 98% of Giardia samples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy. Cryptosporidium genotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared to Giardia, since 98% of Giardia isolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows that Cryptosporidium subtyping for MST purposes is superior to the use of Giardia subtyping, based on better detection limits for Cryptosporidium-positive samples than for Giardia-positive samples and on greater host specificity among Cryptosporidium species. These additional tools could be used for risk assessment in public health and watershed management decisions.
Huck, Peter M.; Schreier, Hans; Isaac-Renton, Judith L.
2014-01-01
Knowledge of host specificity, combined with genomic sequencing of Giardia and Cryptosporidium spp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period. Cryptosporidium was detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters. Giardia was detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% of Cryptosporidium samples and 98% of Giardia samples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy. Cryptosporidium genotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared to Giardia, since 98% of Giardia isolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows that Cryptosporidium subtyping for MST purposes is superior to the use of Giardia subtyping, based on better detection limits for Cryptosporidium-positive samples than for Giardia-positive samples and on greater host specificity among Cryptosporidium species. These additional tools could be used for risk assessment in public health and watershed management decisions. PMID:24463970
Kaboré, Hermann A; Vo Duy, Sung; Munoz, Gabriel; Méité, Ladji; Desrosiers, Mélanie; Liu, Jinxia; Sory, Traoré Karim; Sauvé, Sébastien
2018-03-01
In the last decade or so, concerns have arisen with respect to the widespread occurrence of perfluoroalkyl acids (PFAAs) in the environment, food, drinking water, and humans. In this study, the occurrence and levels of a large range of perfluoroalkyl and polyfluoroalkyl substances (PFASs) were investigated in drinking water (bottled and tap water samples) from various locations around the world. Automated off-line solid phase extraction followed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was used to analyze PFASs of various chain lengths and functional groups. In total, 29 target and 104 suspect-target PFASs were screened in drinking water samples (n=97) from Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the USA) in 2015-2016. Out of the 29 PFASs quantitatively analyzed, perfluorocarboxylates (PFCAs: C 4/14 ), perfluoroalkane sulfonates (PFSAs: C 4 , C 6 , C 8 ), and perfluoroalkyl acid precursors (e.g., 5:3 fluorotelomer carboxylate (5:3 FTCA)) were recurrently detected in drinking water samples (concentration range:
Campestrini, Iolana; Jardim, Wilson F
2017-01-15
The occurrence of illicit drugs in natural waters (surface, source and drinking water) is of interest due to the poor sanitation coverage and the high consumption of drugs of abuse in Brazil. In addition, little is known about the effects of these compounds on aquatic organisms and human health. This work investigates the occurrence of cocaine (COC) and its major metabolite, benzoylecgonine (BE), in surface and drinking water collected in rivers from a populated geographic area in Brazil. Surface water samples were collected in 22 locations from 16 different rivers and one dam from São Paulo State, whereas drinking water samples were collected in 5 locations. Samples were collected during the dry and wet season. Among the 34 surface water samples analyzed, BE was detected above the LOD in 94%, while COC in 85%. BE concentrations ranged from 10ngL -1 to 1019ngL -1 and COC concentrations from 6ngL -1 to 62ngL -1 . In the drinking water samples analyzed, BE and COC were found in 100% of the samples analyzed. For BE, concentrations were found in the range from 10ngL -1 to 652ngL -1 , and COC was quantified in concentrations between 6 and 22ngL -1 . These concentrations are one of the highest found in urban surface waters and may pose some risk to aquatic species. However, no human health risk was identified using the Hazard Quotient. BE is proposed as a reliable indicator of sewage contamination in both source and drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeled de facto reuse and contaminants of emerging concern in drinking water source waters
Nguyen, Thuy; Westerhoff, Paul; Furlong, Edward T.; Kolpin, Dana W.; Batt, Angela L.; Mash, Heath E.; Schenck, Kathleen M.; Boone, J. Scott; Rice, Jacelyn; Glassmeyer, Susan T.
2018-01-01
De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial watershed model were used to quantify contaminants of emerging concern (CECs) concentrations at DWTP intakes to qualitatively compare exposure risks obtained by the two approaches. Between nine and 71 CECs were detected in grab samples. The number of upstream WWTP discharges ranged from 0 to >1,000; comparative de facto reuse results from DRINCS ranged from <0.1 to 13% during average flow and >80% during lower streamflows. Correlation between chemicals detected and DRINCS modeling results were observed, particularly DWTPs withdrawing from midsize water bodies. This comparison advances the utility of DRINCS to identify locations of DWTPs for future CEC sampling and treatment technology testing.
Physicochemical properties of some bottled water brands in Alexandria Governorate, Egypt.
Ibrahim, Hesham Z; Mohammed, Heba A G; Hafez, Afaf M
2014-08-01
Many people use bottled water instead of tap water for many reasons such as taste, ease of carrying, and thinking that it is safer than tap water. Irrespective of the reason, bottled water consumption has been steadily growing in the world for the past 30 years. In Egypt, this is still increasing to reach 3.8 l/person/day, despite its high price compared with tap water. The purpose of this study was to evaluate the physicochemical quality of some bottled water brands and to compare the quality with that reported on manufacture's labeling, Egyptian, and International standards. Fourteen bottled water brands were selected from the local markets of Alexandria city. Three bottles from each brand were randomly sampled, making a total sample size of 42 bottles. Sampling occurred between July 2012 and September 2012. Each bottle was analyzed for its physicochemical parameter and the average was calculated for each brand. The results obtained were compared with the Egyptian standard for bottled water, Food and Drug Administration (FDA), and with bottled water labels. In all bottles in the study, pH values ranged between 7.21 and 8.23, conductivity ranged between 195 and 675 μs/cm, and total dissolved solids, sulfate, chloride, and fluoride were within the range specified by the FDA. Calcium concentrations ranged between 2.7373 and 29.2183 mg/l, magnesium concentrations ranged between 5.7886 and 17.6633 mg/l, sodium between 14.5 and 205.8 mg/l, and potassium between 6.5 and 29.8 mg/l. For heavy metals such as iron, zinc, copper, and manganese, all of them were in conformity with the Egyptian standards and FDA, but nickel concentration in 11 brands was higher than the Egyptian standards. Twelve brands were higher than the Egyptian standards in cadmium concentration, but on comparison with FDA there were only five brands exceeding limits. Lead concentrations were out of range for all brands. On comparison with the labeled values, the quality of bottled water was not complying with labeled values. Physicochemical parameters in all bottled water examined brands were consistent with the Egyptian Standard and FDA, except for total dissolved solids, nickel, cadmium, and lead. Statistical analysis showed that there was significant difference (P<0.05) in all parameters tested between different brands. Values on the bottled water labels were not in agreement with analytical results.
Huang, Ke-Jing; Li, Jing; Liu, Yan-Ming; Wang, Lan
2013-02-01
The graphene functionalized with (3-aminopropyl) triethoxysilane was synthesized by a simple hydrothermal reaction and applied as SPE sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. These sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large specific surface area of nanoparticles, and only 10 mg of sorbents are required to extract PAHs from 100 mL water samples. Several condition parameters, such as eluent and its volume, adsorbent amount, sample volume, sample pH, and sample flow rate, were optimized to achieve good sensitivity and precision. Under the optimized extraction conditions, the method showed good linearity in the range of 1-100 μg/L, repeatability of the extraction (the RSDs were between 1.8 and 2.9%, n = 6), and satisfactory detection limits of 0.029-0.1 μg/L. The recoveries of PAHs spiked in environmental water samples ranged from 84.6 to 109.5%. All these results demonstrated that this new SPE technique was a viable alternative to conventional enrichment techniques for the extraction and analysis of PAHs in complex samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, H.E.; Weaver, T.A.
1979-01-01
During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less
Lundgren, Robert F.; Lopes, Thomas J.
1999-01-01
The Ohio River is a source of drinking water for more than 3 million people. Thus, it is important to monitor the water quality of this river to determine if contaminants are present, their concentrations, and if water quality is changing with time. This report presents an analysis of the occurrence, distribution, and trends of 21 volatile organic compounds (VOCs) along the main stem of the Ohio River and its major tributaries from 1987 through 1996. The data were collected by the Ohio River Valley Water Sanitation Commission's Organics Detection System, which monitors daily for VOCs at 15 stations. Various statistical methods were applied to basinwide data from all monitoring stations and to data from individual monitoring stations. For the basinwide data, one or more VOCs were detected in 45 percent of the 44,837 river-water samples. Trichloromethane, detected in 26 percent of the samples, was the most frequently detected VOC followed by benzene (11 percent), methylbenzene (6.4 percent), and the other 18 VOCs, which were detected in less than 4 percent of the samples. In samples from 8 of the 15 monitoring stations, trichloromethane was also the most frequently detected VOC. These stations were generally near large cities along the Ohio River. The median trichloromethane concentration was 0.3 microgram per liter (μg/L), and concentrations ranged from less than 0.1 to 125.3 μg/L. Most of the VOCs had median detected concentrations that ranged from 0.1 to 0.4 μg/L for the basinwide data and for samples from individual stations. Samples from stations in the upstream part of the basin and from the Kanawha River had the highest median concentrations. Ninety-nine percent of the detected VOC concentrations were within U.S. Environmental Protection Agency drinking-water regulations. Of the 268 exceedances of drinking-water regulations, 188 were due to the detection of 1,2-dichloroethane prior to 1993 in samples from the monitoring station near Paducah, Ky. Time trend analyses indicated that most VOCs had no trend in samples at most monitoring stations because they were detected infrequently. At one or more stations, 14 VOCs had decreasing trends in monthly mean concentrations that ranged from -0.01 to -0.42 μ/L per year. Nine VOCs had significant decreasing trends in percentage detection that ranged from -1.08 to -12.90 percent per year. These trends suggest that source-control efforts are working and that water quality is improving.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayat, Mitra
2016-01-01
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography–mass spectrometry (GC–MS) was used for the extraction and determination of 13 polycyclic aromatic hydrocarbons (PAHs) in mineral water samples. In this procedure, the suitable combination of extraction solvent (500 µL chloroform) and disperser solvent (1000 µL acetone) were quickly injected into the water sample (10.00 mL) by Hamilton syringe. After centrifugation, 500 µL of the lower organic phase was dried under a gentle stream of nitrogen, re-dissolved in chloroform and injected into GC-MS. Chloroform and acetone were found to be the best extraction and disperser solvent, respectively. Validation of the method was performed using spiked calibration curves. The enrichment factor ranged from 93 to 129 and the recovery ranged from 71 to 90%. The linear ranges for all the PAHs were 0.10-2.80 ngmL-1. The relative standard deviations (RSDs) of PAHs in water by using anthracene-d10 as internal standard, were in the range of 4-11% for most of the analytes (n = 3). Limit of detection (LOD) for different PAHs were between 0.03 and 0.1 ngmL-1. The method was successfully applied for the analysis of PAHs in mineral water samples collected from Tehran. PMID:27610156
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the South Prong of Spavinaw Creek Basin conducted baween July 14 and July 23. 1993. described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 10 sites on the mainstem of the South Prong of Spavinaw Creek and from 4 sites on tributaries during periods of low to moderate streamflow (less than 11 cubic feet per second). Water samples were collected from 4 wells and 10 springs located in the basin. In 14 surface-water samples, nitrite plus nitrate concentrations ranged from 0.75 to 4.2 milligrams per liter as nitrogen (mg/L). Orthophosphorus concentrations ranged from 0 03 to O. 15 mg/L as phosphorus. Fecal coliform bacteria counts ranged from 61 to 1,400 colonies per 100 milliliters (col/lOO mL), with a median of 120 col/100 mL. Fecal streptococci bacteria counts ranged from 70 to greater than 2,000 col/100 mL with a median of 185 col/lOO mL. Analysis for selected metals collected at one surface-water sites indicates that concentrations were usually below the reporting limit. Diel dissolved oxygen concentrations and temperatures were measured at an upstream and downstream site on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 7.2 to 83 mg/L and temperatures ranged from 15.5 to 17.0 C. Dissolved oxygen concentrations were higher and temperature values were lower at lhe upstream site, which is located close to two springs that produce all of the flow at that site. Dissolved nitrite plus nitrate was present in all four wells sampled in the basin with concentrations ranging from 0.04 to 3.5 mg/L as nitrogen. Orthophosphorus was present in concentrations ranging from less than 0.01 to 0.07 mg/L as phosphorus. Volatile organic compound analyses in two wells indicate that toluene was present in both wells and chloroform was present in one well. All other volatile organic compounds were found to be below the reporting limits. Analysis for common constituents and selected metals indicated that fluoride concentrations in one well exceeded the U.S. Environmental Protection Agency's primary maximum contamination levels for drinking water. Analyses of water samples collected from springs indicate that nitrite plus nitrate concen- trations ranged from 0.43 to 3.9 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.20 to 0.64 mg/L at nitrogen. Orthophosphorus concentrations ranged from 0.02 to 0.09 mg/L as phosphorus. Fecal coliform bacteria counts ranged from less than 3 to more than 2,000 col/100 mL, with a median of 370 col/100 mL. Fecal streptococci bacteria counts ranged from less than 4 to greater than 2,000 col/100 mL with a median of 435 col/100 mL. Streamflow in nine reaches of the mainstream increased an average of 20 percent. Six losing reaches were identified during the study, one located on the mainstem and the other five located on tributaries to the mainstem.
Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.
Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi
2014-09-01
Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Design and Simulation of Surface Plasmon Resonance Sensors for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Mahmood, Aseel I.; Ibrahim, Rawa Kh; Mahmood, Aml I.; Ibrahim, Zainab Kh
2018-05-01
In this work a Surface Plasmon Resonance (SPR) sensor based on Photonic Crystal Fiber (PCF) infiltrated with water samples has been proposed. To accurate detection of the sample properties, gold is used as plasmonic material. The air holes of PCF has been infiltrated with water samples, the optical properties of these samples has been taken from samples collected from Al-Qadisiya and Wathba lab. (east Tigris, Wathba, and Al-Rasheed) water projects at Baghdad- Iraq. Finite Element Method (FEM) has been used to study the sensor performance and fiber properties. From the numerical investigation we get maximum sensitivity circa 164.3 nm/RIU in the sensing range of 1.33 (of STD water) to 1.3431 (of river sample). The proposed sensor could be developed to detect f various high refractive index (RI) chemicals like the heavy metals in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed inmore » water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.« less
Peng, Guilong; Chen, Yi; Deng, Ruoyu; He, Qiang; Liu, Dun; Lu, Ying; Lin, Jin-Ming
2018-06-07
In this study, a convenient, sensitive, rapid and simple method was developed on microfluidic chip which was integrated with on-line complexing and laser-induced fluorescence detection. A rhodamine derivative (RD) was developed as a fluorescent chemosensor for Hg(II). It exhibited high selective recognition toward Hg(II) over other examined metal ions in water samples. Under the optimized conditions, the response was linearly proportional to the concentration of Hg(II) in the range of 0-70 μM with a detection limit of 0.031 μM. Satisfactory repeatability and reproducibility were achieved, with a relative standard deviation (RSD) of 6.62%. The established method was successfully applied for the determination of Hg(II) in environmental water samples (surface water, tap water, and waste water). Recoveries obtained for the determination of Hg(II) in spiking samples ranged from 85% to 103%. Copyright © 2018. Published by Elsevier B.V.
Ding, W H; Liu, C H; Yeh, S P
2000-10-27
This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.
2004-01-01
forests, alpine forests, and so forth); (2) had a range of sampling frequency and dura- tion, such as during and immediately following a fire (from the...1) were done in a variety of environments (savannas, grass- lands, temperate forests, alpine forests, and so forth), (2) had a range of sampling...of Nutrients in Surface Waters Gresswell, R.E., 1999, Fire and aquatic ecosystems in forested biomes of North America: Transactions of the American
Ground-water quality in the Chemung River Basin, New York, 2003
Hetcher-Aguila, Kari K.
2005-01-01
Water samples were collected from 24 public-supply wells and 13 private residential wells during the summer of 2003 and analyzed to describe the chemical quality of ground water throughout the Chemung River basin, upgradient from Waverly, N.Y, on the Pennsylvania border. Wells were selected to represent areas of heaviest ground-water use and greatest vulnerability to contamination, and to obtain a geographical distribution across the 1,130 square-mile basin. Samples were analyzed for physical properties, inorganic constituents, nutrients, metals and radionuclides, pesticides, volatile organic compounds, and bacteria.The cations that were detected in the highest concentrations were calcium and sodium; the anions that were detected in the greatest concentrations were bicarbonate, chloride, and sulfate. The predominant nutrient was nitrate. Nitrate concentrations in samples from wells finished in sand and gravel were greater than in those from wells finished in bedrock, except for one bedrock well, which had the highest nitrate concentration of any sample in this study. The most commonly detected metals were aluminum, barium, iron, manganese, and strontium. The range of tritium concentrations (0.6 to 12.5 tritium units) indicates that the water ages ranged from less than 10 years old to more than 50 years old. All but one of the 15 pesticides detected were herbicides; those detected most frequently were atrazine, deethylatrazine, and two degradation products of metolachlor (metachlor ESA and metachlor OA), which were the pesticides detected at the highest concentrations. Not every sample collected was analyzed for pesticides, and pesticides were detected only in wells finished in sand and gravel. Volatile organic compounds were detected in 15 samples, and the concentrations were at or near the analytical detection limits. Total coliform were detected in 12 samples; fecal coliform were detected in 7 samples; and Escherichia coli was detected in 6 samples. These bacteria were detected in water from bedrock as well as sand-and-gravel aquifers.Federal and State water-quality standards were exceeded in several samples. Two samples exceeded the chloride U.S. Environmental Protection Agency Secondary Maximum Contaminant Level of 250 milligrams per liter. The U.S. Environmental Protection Agency Drinking Water Advisory for sodium (30 to 60 milligrams per liter) was exceeded in 11 samples. The upper limit of the Secondary Maximum Contaminant Level range for aluminum (200 micrograms per liter) was exceeded in one sample. The Maximum Contaminant Level for barium (2,000 micrograms per liter) was exceeded in one sample. The Secondary Maximum Contaminant Level for iron (300 micrograms per liter) was exceeded in 11 samples. The Secondary Maximum Contaminant Level for manganese (50 micrograms per liter) was exceeded in 20 samples. The proposed Maximum Contaminant Level for radon (300 picocuries per liter) was exceeded in 34 samples.
Isolation of pathogenic Naegleria from artificially heated waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R L; Willaert, E; Stevens, A R
1977-01-01
Investigations were undertaken to determine whether heated waters facilitate the proliferation of free-living amoeba that cause primary amoebic meningoencephalitis. Water samples were taken close to the discharges of power plants situated on lakes or rivers in Florida and Texas and from cooling towers in Tennessee. The water temperatures ranged from 29 to 42/sup 0/C. Water samples were also taken from several lakes in Florida and Texas without associated power plants. The water temperatures of these ranged from 30/sup 0/ to 34/sup 0/C. Twenty-five-250-ml samples were filtered through membranes. Samples taken from the control lakes and cooling towers showed no growthmore » of pathogenic amoeba, whereas growth was obtained from 2 of the 8 lakes and rivers in Florida and from 1 of the 7 man-made lakes in Texas that were artificially heated. The amoebae were identified as belonging to the genus Naegleria from their trophozoite and cyst structure, ability to grow at 45/sup 0/C, to transform into flagellates, and to produce primary amebic meningoencephalitis (PAME) in mice after intranasal instillation. Their identification as N. fowleri was confirmed by indirect immunofluorescent analysis with antiserum produced against N. fowleri. These findings indicate that artificial heating of waters may facilitate the growth of pathogenic free living amoeba.« less
Annual water-resources review, White Sands Missile Range, New Mexico, 1984
Cruz, R.R.
1985-01-01
Hydrologic data were collected at White Sands Missile Range in 1984. The total groundwater withdrawal in 1984 was 685,275,000 gallons. The Post Headquarters well field produced 650,821,000 gallons in 1984. Six new wells were drilled at White Sands Missile Range in 1984. Nineteen water samples were collected for major chemical-constituent, trace-element, or radiochemical analysis in 1984. Depth-to-water measurements in the Post Headquarters supply wells showed seasonal fluctuations as well as continued long-term declines. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
Lee, Kathy E.; Langer, Susan K.; Menheer, Michael A.; Hansen, Donald S.; Foreman, William T.; Furlong, Edward T.; Jorgenson, Zachary G.; Choy, Steven J.; Moore, Jeremy N.; Banda, JoAnn; Gefell, Daniel J.
2015-01-01
During this study, 53 environmental samples, 4 field duplicate samples, and 8 field spike samples of bottom sediment and laboratory matrix-spike samples were analyzed for a wide variety of CECs at the USGS National Water Quality Laboratory using laboratory schedule 5433 for wastewater indicators; research method 6434 for steroid hormones, sterols, and bisphenol A; and research method 9008 for human-use pharmaceuticals and antidepressants. Forty of the 57 chemicals analyzed using laboratory schedule 5433 had detectable concentrations ranging from 1 to 49,000 micrograms per kilogram. Fourteen of the 20 chemicals analyzed using research method 6434 had detectable concentrations ranging from 0.04 to 24,940 nanograms per gram. Ten of the 20 chemicals analyzed using research method 9008 had detectable concentrations ranging from 0.59 to 197.5 micrograms per kilogram. Five of the 11 chemicals analyzed using research method 9008 had detectable concentrations ranging from 1.16 to 25.0 micrograms per kilogram.
Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico
NASA Astrophysics Data System (ADS)
Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph
2018-03-01
Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.
Radon-222 from different sources of water and the assessment of health hazard.
Ademola, Janet A; Ojeniran, Oluwaferanmi R
2017-02-01
Water samples collected from different sources were analysed for radon concentrations in order to evaluate the health effect associated with radon in water. The radon concentrations were in the range of 3.56-98.57, 0.88-25.49, 0.73-1.35 and 0.24-1.03 Bq.L -1 for borehole, well, packaged and utility water, respectively. Samples from boreholes had the highest radon concentrations with about 67% being higher than the threshold value of 11.1 Bq.L -1 recommended by the USEPA. The mean annual effective dose (AED) due to ingestion for adult, child and infant ranged from 8.71 × 10 -3 to 0.831 mSv.y -1 for the different sources. The mean AED calculated for consuming water from boreholes and wells for the three age groups were higher than the recommended reference dose level of 0.1 mSv.y -1 . The mean AED due to inhalation of radon in drinking water was negligible, ranging from 0.13 to 6.20 μSv.y -1 . The health burden associated with radon in water in the study is through ingestion of water directly from boreholes.
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Annual water-resources review, White Sands Missile Range, New Mexico
Cruz, R.R.
1983-01-01
Ground-water data were collected in 1982 at White Sands Missile Range in south-central New Mexico. Depth-to-water measurements in the Post Headquarters supply wells continued to show seasonal declines. Test wells east of the Headquarters well field continue to show long-term declines as well as seasonal fluctuations. The total amount of water pumped from White Sands Missile Range supply wells was 66,226,600 gallons more in 1982 than in 1981. The difference in the specific-conductance values of the water samples collected from the Post Headquarters supply wells in the winter and summer increased in 1982. (USGS)
Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.
2003-01-01
The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.
Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C
2002-11-15
Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.
Sandstrom, Mark W.; Stroppel, Max E.; Foreman, William T.; Schroeder, Michael P.
2001-01-01
A method for the isolation and analysis of 21 parent pesticides and 20 pesticide degradates in natural-water samples is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase-extraction columns that contain octadecyl-bonded porous silica to extract the analytes. The columns are dried by using nitrogen gas, and adsorbed analytes are eluted with ethyl acetate. Extracted analytes are determined by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 2 micrograms per liter (?g/L) for most analytes. Single-operator method detection limits in reagent-water samples range from 0.00 1 to 0.057 ?g/L. Validation data also are presented for 14 parent pesticides and 20 degradates that were determined to have greater bias or variability, or shorter holding times than the other compounds. The estimated maximum holding time for analytes in pesticide-grade water before extraction was 4 days. The estimated maximum holding time for analytes after extraction on the dry solid-phase-extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time. The method complements existing U.S. Geological Survey Method O-1126-95 (NWQL Schedules 2001 and 2010) by using identical sample preparation and comparable instrument analytical conditions so that sample extracts can be analyzed by either method to expand the range of analytes determined from one water sample.
ARSENIC URINARY METABOLITES: BIOMARKER STUDY
A population of adults and children with ranges of 10 to 300 g/l of arsenic in their drinking water will have their urine analyzed for total and speciated arsenic. A sample of 30 families will be selected based on tap water analyses for arsenic. This sample will comprise 50% adul...
AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS
Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...
Subedi, Bikram; Codru, Neculai; Dziewulski, David M; Wilson, Lloyd R; Xue, Jingchuan; Yun, Sehun; Braun-Howland, Ellen; Minihane, Christine; Kannan, Kurunthachalam
2015-04-01
On-site wastewater treatment systems (OWTSs or septic systems) are designed to treat and dispose effluents on the same property that produces the wastewater. Approximately 25% of the U.S. population is served by such facilities. Nevertheless, studies on the treatment efficiency and discharge of organic contaminants through septic effluents are lacking. This pilot study showed the occurrence of organic contaminants including pharmaceuticals and personal care products (PPCPs), perfluoroalkyl surfactants (PFASs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in septic effluents, adjacent lake water samples, household drinking water in homes that use lake water or a well adjacent to the lake as a source of drinking water, and offshore lake water samples. Septic effluent as well as lake and tap water samples were collected from several households with OWTSs around Skaneateles Lake located in central New York. The advanced on-site systems were installed in some households for the purpose of limiting nutrient levels in the effluent to protect the local surface water. Additionally, because many of these systems serve homes with limited land, advanced treatment systems were needed. The median concentrations of ten PPCPs (ranged from 0.45 to 388 ng/L) and eleven PFASs (ranged from 0.20 to 14.6 ng/L) in septic water were significantly higher (p ≤ 0.01) than in lake water samples. The median concentrations of PPCPs and PFASs in lake and tap water samples were not significantly different (p ≥ 0.65). The median concentrations of ∑PBDEs in septic, lake, and tap water samples were 7.47, 3.49, and 2.22 ng/L, respectively, and those for ∑PCBs were 33.1, 29.2, and 28.6 ng/L, respectively. The mass flux of PPCPs (i.e. the mass flow of PPCPs per unit area per unit time) through the disposal of treated septic effluent from textile biofilter and aerobic treatments to the dispersal unit ranged from 12 (carbamazepine) to 66900 μg/m(2)/day (caffeine) whereas that for PFASs ranged from 7.0 (perfluorobutanesulfonate) to 833 μg/m(2)/day (perfluorooctanoic acid). Based on the ratio of measured concentrations and method detection limit, triclocarban, perfluorooctanoic acid, and perfluorooctanesulfonate have the potential to be used as chemical tracers of septic water contamination in Skaneateles Lake. The median concentrations of atenolol, a beta-blocker drug, in septic water were significantly (ρ = 0.86, p = 0.01) correlated with enterococci counts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Heat Capacity of Hydrous Silicate Melts
NASA Astrophysics Data System (ADS)
Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.
2015-12-01
We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T
Furlong, E.T.; Martin, Jeffrey D.; Werner, S.L.; Gates, Paul M.
2002-01-01
The sensitivity and selective determination of polar pesticides were analyzed using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS). The effects of multiple operators and instruments on method performance were evaluated using 440 pairs of fortified reagent-water and blank reagent-water samples. The influence of varying environmental matrices on recovery and precision were also analyzed using 200 fortified ambient water samples and duplicate ambient water samples. The results show that compound stability in filtered water was matrix-, chemical class- and compound-dependent which ranged from 1 day to 2 weeks.
Predicting Risk from Radon in Source Waters from Water Quality Parameters
Overall, 47 groundwater samples were collected from 45 small community water systems (CWSs) and analyzed for radon and other water quality constituents. In general, groundwater from unconsolidated deposits and sedimentary rocks had lower average radon levels (ranging from 223 to...
Mieszkin, Sophie; Furet, Jean-Pierre; Corthier, Gérard; Gourmelon, Michèle
2009-01-01
The microbiological quality of coastal or river water can be affected by fecal contamination from human or animal sources. To discriminate pig fecal pollution from other pollution, a library-independent microbial source tracking method targeting Bacteroidales host-specific 16S rRNA gene markers by real-time PCR was designed. Two pig-specific Bacteroidales markers (Pig-1-Bac and Pig-2-Bac) were designed using 16S rRNA gene Bacteroidales clone libraries from pig feces and slurry. For these two pig markers, 98 to 100% sensitivity and 100% specificity were obtained when tested by TaqMan real-time PCR. A decrease in the concentrations of Pig-1-Bac and Pig-2-Bac markers was observed throughout the slurry treatment chain. The two newly designed pig-specific Bacteroidales markers, plus the human-specific (HF183) and ruminant-specific (BacR) Bacteroidales markers, were then applied to river water samples (n = 24) representing 14 different sites from the French Daoulas River catchment (Brittany, France). Pig-1-Bac and Pig-2-Bac were quantified in 25% and 62.5%, respectively, of samples collected around pig farms, with concentrations ranging from 3.6 to 4.1 log10 copies per 100 ml of water. They were detected in water samples collected downstream from pig farms but never detected near cattle farms. HF183 was quantified in 90% of water samples collected downstream near Daoulas town, with concentrations ranging between 3.6 and 4.4 log10 copies per 100 ml of water, and BacR in all water samples collected around cattle farms, with concentrations ranging between 4.6 and 6.0 log10 copies per 100 ml of water. The results of this study highlight that pig fecal contamination was not as frequent as human or bovine fecal contamination and that fecal pollution generally came from multiple origins. The two pig-specific Bacteroidales markers can be applied to environmental water samples to detect pig fecal pollution. PMID:19329663
Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi
2011-01-15
A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Analysis of chemical contamination within a canal in a Mexican border colonia.
Owens, Janel E; Niemeyer, Emily D
2006-04-01
This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (> 10(4) colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted.
Determination of patulin in apple juice by liquid chromatography: collaborative study.
Brause, A R; Trucksess, M W; Thomas, F S; Page, S W
1996-01-01
An AOAC International-International Union of Pure and Applied Chemistry-International Fruit Juice Union (AOAC-IUPAC-IFJU) collaborative study was conducted to evaluate a liquid chromatographic (LC) procedure for determination of patulin in apple juice. Patulin is a mold metabolite found naturally in rotting apples. Patulin is extracted with ethyl acetate, treated with sodium carbonate solution, and determined by reversed-phase LC with UV detection at 254 or 276 nm. Water, water-tetrahydrofuran, or water-acetonitrile was used as mobile phase. Levels determined in spiked test samples were 20, 50, 100, and 200 micrograms/L. A test sample naturally contaminated at 31 micrograms/L was also included. Twenty-two collaborators in 10 countries analyzed 12 test samples of apple juice. Recoveries averaged 96%, with a range of 91-108%. Repeatability relative standard deviations (RSDr) ranged from 10.9 to 53.8%. The reproducibility relative standard deviation (RSDR) ranged from 15.1 to 68.8%. The LC method for determination of patulin in apple juice has been adopted first action by AOAC INTERNATIONAL.
Determination of acetone and methyl ethyl ketone in water
Tai, D.Y.
1978-01-01
Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)
Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.
2014-01-01
Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.
[UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].
Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui
2014-05-01
The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.
Ramli, A Termizi; Hussein, A Wahab M A; Wood, A Khalik
2005-01-01
Concentrations of uranium-238 and thorium-232 in soil, water, grass, moss and oil-palm fruit samples collected from an area of high background radiation were determined using neutron activation analysis (NAA). U-238 concentration in soil ranged from 4.9 mg kg(-1) (58.8 Bq kg(-1)) to 40.4 mg kg(-1) (484.8 Bq kg(-1)), Th-232 concentration ranged from 14.9 mg kg(-1) (59.6 Bq kg(-1)) to 301.0 mg kg(-1) (1204 Bq kg(-1)). The concentration of U-238 in grass samples ranged from below the detection limit to 0.076 mg kg(-1) (912 mBq kg(-1)), and Th-232 ranged from 0.008 mg kg(-1) (32 mBq kg(-1)) to 0.343 mg kg(-1) (1.372 Bq kg(-1)). U-238 content in water samples ranged from 0.33 mg kg(-1) (4.0 Bq L(-1)) to 1.40 mg kg(-1) (16.8 Bq L(-1)), and Th-232 ranged from 0.19 mg kg(-1) (0.76 Bq L(-1)) to 0.66 mg kg(-1) (2.64 Bq L(-1)). It can be said that the concentrations of environmental U-238 and Th-232 in grass and water samples in the study area are insignificant. Mosses were found to be possible bio-radiological indicators due to their high absorption of the heavy radioelements from the environment.
Gan, Zhiwei; Sun, Hongwen; Feng, Biting; Wang, Ruonan; Zhang, Yanwei
2013-09-15
Seventy water samples, including wastewaters, tap waters, fresh surface waters, coastal waters, groundwaters, and precipitation samples, from Tianjin, China, were analyzed for seven commonly used artificial sweeteners (ASs). The concentrations of the investigated ASs were generally in the order of wastewater treatment plant (WWTP) influent > WWTP effluent > surface water > tap water > groundwater ≈ precipitation, while the composition profiles of ASs varied in different waters. Acesulfame, sucralose, cyclamate, and saccharin were consistently detected in surface waters and ranged from 50 ng/L to 0.12 mg/L, while acesulfame was the dominant AS in surface and tap waters. Aspartame was found in all of the surface waters at a concentration up to 0.21 μg/L, but was not found in groundwaters and tap waters. Neotame and neohesperidin dihydrochalcone were less frequently detected and the concentrations were low. The concentrations of the ASs in some of the surface waters were of the same order with those in the WWTP influents, but not with the effluents, indicating there are probably untreated discharges into the surface waters. The ASs were detected in precipitation samples with high frequency, and acesulfame, saccharin, and cyclamate were the predominant ASs, with concentrations ranging from 3.5 ng/L to 1.3 μg/L. A gross estimation revealed that precipitation may act as a source for saccharin and cyclamate in the surface environment of Tianjin city. Moreover, the presence of ASs in the atmosphere was primarily assessed by taking 4 air samples to evaluate their potential source in precipitation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Direct sampling of chemical weapons in water by photoionization mass spectrometry.
Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D
2006-05-01
The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.
Christensen, Victoria G.; Jones, Perry M.; Edlund, Mark B.; Ramstack, Joy M.
2010-01-01
A paleolimnological approach was taken to aid the Grand Portage Reservation, in northeastern Minnesota, in determining reference conditions for lakes on the reservation. The U.S. Geological Survey, in cooperation with the Grand Portage Band of Chippewa Indians and the Science Museum of Minnesota, conducted a study to describe water quality (2000-08) and historical total phosphorus concentrations (approximately 1781-2006) for Swamp and Speckled Trout Lakes. Results from this study may be used as a guide in establishing nutrient criteria in these and other lakes on the Grand Portage Reservation. Historical phosphorus concentrations were inferred through paleolimnological reconstruction methods involving diatom analysis and lead-210 dating of lake-sediment cores. Historical diatom-inferred total phosphorus concentrations in Swamp Lake ranged from 0.017 to 0.025 milligrams per liter (mg/L) based on diatom assemblages in sediment samples dated 1781-2005. Historical diatom-inferred total phosphorus concentrations in Speckled Trout Lake ranged from 0.008 to 0.014 mg/L based on diatom assemblages in sediment samples dated 1825-2006. In both lakes, historical changes in diatom-inferred total phosphorus concentrations did not exceed model error estimates, indicating that there has been minimal change in total phosphorus concentrations in the two lakes over about two centuries. Nutrient concentrations in monthly water samples collected May through October during 2000, 2002, 2004, 2006, and 2008 were compared to the diatom-inferred total phosphorus concentrations. Total phosphorus concentrations from water samples collected from Swamp Lake during 2000-08 ranged from less than 0.002 to 0.160 mg/L (median= 0.023 mg/L) compared to diatom-inferred total phosphorus concentrations of 0.018 to 0.020 mg/L for 2002 to 2005. Total phosphorus concentrations in water samples collected from Speckled Trout Lake during 2000-08 were similar to those of Swamp Lake, ranging from less than 0.002 to 0.147 mg/L (median=0.012 mg/L), whereas the diatom-inferred total phosphorus concentrations were smaller, ranging from 0.009 to 0.010 mg/L for 2003 to 2006. Differences in total phosphorus concentrations between the two lakes may be because of differences in watershed characteristics, particularly the number of wetlands in the two watersheds. Similarities between recent total phosphorus concentrations in water-quality samples and diatom-inferred total phosphorus indicate that diatom-inferred phosphorus reconstructions might be used to help establish reference conditions. Nutrient criteria for Grand Portage Reservation lakes may be established when a sampling program is designed to ensure representative phosphorus concentrations in water samples are comparable to diatom-inferred concentrations.
Isotopic composition of water from a mine drainage site in Creede County in south central Colorado
NASA Astrophysics Data System (ADS)
Michel, R. L.; Williams, M. W.; Krupicka, A.; Wireman, M.; Graves, J.
2011-12-01
Creede County in South Central Colorado was an active area of silver mining beginning in the early 1890s. To relieve flooding in some of the mines, the Nelson Tunnel was built in the late 1890s. This tunnel still exists and acid mine drainage from the tunnel eventually flows into the Willow Creek Watershed which eventually flows into the Upper Rio Grande. The water coming out of the tunnel is high in toxic metals and the area has become part of an EPA Superfund site in an effort to find a suitable method to remediate the metal problems. Among the approaches used in the program is the use of isotopes of water and carbon to identify sources and estimate ages of the water in the drainage. Samples were collected for analysis of isotopic ratios and tritium concentrations at a series of sites within the tunnel complex from 2008-2010. In 2009 samples were also collected for analysis of isotopes in groundwater and surface water. In 2010 sampling was expanded to include four precipitation and one snow sample. Tritium concentrations in precipitation and snowfall in 2010 ranged from 3-6 tritium units with the lowest concentration found in the snow sample. The 18O isotopic ratios in precipitation for this site ranged from an average of -8.9 o/oo in summer to about -19 o/oo in winter. The six groundwater samples collected in 2009 had an average 18O isotopic concentration of -15 o/oo and tritium concentrations ranging from 7.4-9.3 TU. These results suggest that the groundwater sampled is composed largely of a mixture of summer and winter precipitation with the latter source being dominant. The tritium concentrations in groundwater exceed recent precipitation concentrations, suggesting the presence of water from the bomb-tritium transient and an age of a decade or more for the groundwater. Eight sites in the tunnel were sampled I from 2008-2010, although not all sites were sampled every year. The sampling sites included waters seeping into the tunnel as well as the outlet water. For 18O, the average values were slightly less depleted in 2008 (-14.71 o/o) and 2010 (-14.87 o/oo) than in 2009 (-15.13 o/oo). Data from all years indicate that the source of water in the tunnel is a mixture similar to the mixture that produces local groundwater. The tritium concentrations, ranging from 0-5.6 TU, are substantially lower than concentrations measured in local groundwater. Only one site in the tunnel (Corkscrew Raise) had tritium concentrations near that of present day precipitation. All other sites had tritium concentrations below present day precipitation, indicating that these waters have a large component of water that was deposited prior to the onset of the bomb-tritium transient (1953). Most sites had tritium concentrations less than 2 TU, which suggests that these waters are a mixture of mostly old regional groundwater with a varying component of post-1953 water. Remediation efforts will have to concentrate on ways to prevent this old groundwater from entering the tunnel and transporting metals from the abandon mines to the watershed.
Mau, David P.; Ziegler, Andrew C.; Porter, Stephen D.; Pope, Larry M.
2004-01-01
Surface water in the Lake Olathe watershed, located in northeast Kansas, was sampled from June 2000 through December 2002 to characterize water-quality conditions in relation to physical properties, major ions, sediment, nutrients, selected trace elements, selected pesticides, fecal indicator bacteria, phytoplankton, and taste-and-odor compounds. In addition, two continuous real-time water-quality monitors were operated?one in Cedar Creek at Highway 56, the main tributary to Lake Olathe, and one in Lake Olathe, a supplemental domestic water supply and recreational resource for the city of Olathe. Median concentrations of dissolved and total forms of nitrogen and phosphorus in samples from Cedar Creek were larger than in samples from Lake Olathe, indicating that nutrients in the watershed were transported to Lake Olathe by Cedar Creek from June 2000 through December 2002. Increased concentrations of total phosphorus in samples from the hypolimnion of Lake Olathe compared to the epilimnion indicated that release of total phosphorus from bottom sediments occurred in the lake. Of the 50 pesticides analyzed in water samples from Cedar Creek and Lake Olathe, 10 pesticides were detected at concentrations greater than 0.01 microgram per liter in samples from Cedar Creek, and 9 pesticides were detected at concentrations greater than 0.01 microgram per liter in Lake Olathe, including four herbicides with concentrations exceeding 1.0 microgram per liter. Atrazine was detected at larger concentrations than any other pesticide in samples from both Cedar Creek and Lake Olathe during 2001 and 2002. Concentrations did not exceed the U.S. Environmental Protection Agency drinking-water annual average criterion of 3.0 micrograms per liter; however, concentrations in single samples were larger than 3.0 micrograms per liter. Regression analysis was used to assist in the estimation of sediment and chemical loads and yields. The estimated mean orthophosphate load for 2001 and 2002 represented 29 percent of the total phosphorus load to Lake Olathe. Estimated yields to Lake Olathe of both total nitrogen and total phosphorus, 13.0 and 1.1 pounds per acre per year, respectively, were consistent with mixed agricultural land use occurring in the watershed. Concentrations of fecal coliform bacteria samples from Lake Olathe were less than both primary and secondary single-sample criteria for recreational water in Kansas in place at the time of sampling. Sufficient samples were not collected to compare to the December 2003 Kansas Department of Health and Environment criteria, but single-sample Escherichia coli samples collected from Cedar Creek during storm runoff exceeded 2,000 colonies per 100 milliliters of water (former secondary recreation water-quality criterion for fecal coliform bacteria) in four of the seven samples collected. Water from Cedar Creek and Lake Olathe was analyzed in 2002 by enzyme-linked immunosorbent assay for microcystin-LR, a toxic algal compound. Concentrations of microcystin-LR in Lake Olathe during 2002 ranged from less than 0.1 to 0.41 microgram per liter, which is not considered a significant health risk according to guidelines published by the World Health Organization. Regression models were developed for four taste-and-odor phytoplankton species detected frequently in Lake Olathe? Melosira granulata, Anabaena, Oscillatoria, and Cryptomonas. The coefficient of determinations, R2, ranged from 0.64 to 0.89, and p-values ranged from less than 0.001 to 0.014, indicating a statistically significant relation with lake-residence time, specific conductance, turbidity, Secchi transparency depth, real-time continuous fluorescence, and total ammonia plus organic nitrogen as nitrogen. Actinomycetes, filamentous bacteria that are known producers of geosmin and 2-methylisoborneol (MIB), were sampled and analyzed in 2002 in water from Cedar Creek and Lake Olathe. In Lake Olathe, actinomycetes concentrations rang
Zimmerman, L.R.; Ziegler, A.C.; Thurman, E.M.
2002-01-01
A method for the determination of two common odor-causing compounds in water, geosmin and 2-methylisoborneol, was modified and verified by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas. The optimized method involves the extraction of odor-causing compounds from filtered water samples using a divinylbenzene-carboxen-polydimethylsiloxane cross-link coated solid-phase microextraction (SPME) fiber. Detection of the compounds is accomplished using capillary-column gas chromatography/mass spectrometry (GC/MS). Precision and accuracy were demonstrated using reagent-water, surface-water, and ground-water samples. The mean accuracies as percentages of the true compound concentrations from water samples spiked at 10 and 35 nanograms per liter ranged from 60 to 123 percent for geosmin and from 90 to 96 percent for 2-methylisoborneol. Method detection limits were 1.9 nanograms per liter for geosmin and 2.0 nanograms per liter for 2-methylisoborneol in 45-milliliter samples. Typically, concentrations of 30 and 10 nanograms per liter of geosmin and 2-methylisoborneol, respectively, can be detected by the general public. The calibration range for the method is equivalent to concentrations from 5 to 100 nanograms per liter without dilution. The method is valuable for acquiring information about the production and fate of these odor-causing compounds in water.
Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine
2012-01-01
Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625
Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.
Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan
2012-01-13
Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.
NASA Astrophysics Data System (ADS)
Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas
2013-06-01
In soils, the isotopic composition of water (δ2H and δ18O) provides qualitative (e.g., location of the evaporation front) and quantitative (e.g., evaporation flux and root water uptake depths) information. However, the main disadvantage of the isotope methodology is that contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here we present a nondestructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8°C and 24°C, we demonstrate that our new method is capable of monitoring δ2H and δ18O in soils online with high precision and after calibration, also with high accuracy. Our sampling protocol enabled detecting changes of δ2H and δ18O following nonfractionating addition and removal of liquid water and water vapor of different isotopic compositions. Finally, the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.
Brown, G.E.; McLain, B.J.
1994-01-01
The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.
Becker, Carol J.
2004-01-01
The U.S. Geological Survey in cooperation with the Oklahoma Department of Environmental Quality and the U.S. Environmental Protection Agency investigated the distribution of surface-water quality and possible sources of nutrients and Escherichia coli bacteria to surface water in Turkey Creek, which flows about 70 miles through mostly rural agricultural areas in northwest Oklahoma. Results show that discharge on the main stem of Turkey Creek increased during low-flow conditions from an average of 5.4 cubic feet per second at the upper most site to 39 cubic feet per second at the lower most site in the watershed, indicating that Turkey Creek gains water from ground-water discharge. A portion of the increase in stream discharge may be from discharges of treated effluent from city sewage lagoons. However, the volume and frequency of discharges are unknown. Surface-water-quality samples show that specific conductance ranged from 1,180 to 1,740 microsiemens per centimeter at 25 degrees Celsius during low-flow conditions and in general, decreased downstream with site 1 or site 2 having the largest measurement and site 5 having the lowest. The pH values were slightly alkaline and ranged from 6.8 to 8.5 with a median of 8.2. Dissolved oxygen ranged from 9.3 to 15.9 milligrams per liter in samples collected in the months of November, February, and March and ranged from 5.3 to 13.9 milligrams per liter in samples collected in the months of June, July, and August. Surface-water-quality samples show that the median concentrations of nitrite plus nitrate as nitrogen (1.16 milligrams per liter) and total phosphorus (0.275 milligram per liter) are larger than the average median concentrations of 0.35 and 0.083 milligram per liter, respectively, calculated from water-quality sites in Oklahoma and part of Arkansas (excluding sites in the Ozark Highland and the Ouachita Mountains ecoregions) having similar stream orders and stream slopes. Concentrations of nitrite plus nitrate as nitrogen increased slightly in the winter months and decreased in the summer months, whereas, concentrations of total phosphorus and orthophosphate as phosphorus tended to increase during the summer months and decrease in the winter months. During high-flow conditions total phosphorus increased 7.7 times above the average concentration of 0.261 milligram per liter in low-flow samples. Orthophosphate concentrations increased 3.5 to 4 times during high-flow conditions. Almost all low-flow samples showed 15N values between 4 and 10 parts per thousand, above the range for atmospheric nitrogen and synthetic fertilizer and below the range for animal waste. These samples may represent a mixture of nitrate from these two sources and other sources enriched with 15N, such as soils and plants. Results of the bacterial source tracking indicated that the two source groups having the greatest number of ribopattern matches with surface-water isolates were the cattle group, 53 isolates or 23.5 percent, and the human group, 41 isolates or 18.2 percent. Fewer surface-water isolates matched the deer and horse groups, 8.0 percent and 3.5 percent, respectively. About 43 percent or 96 surface-water isolates were not matched to any source group.
Alshishani, Anas; Salhimi, Salizawati Muhamad; Saad, Bahruddin
2018-01-15
A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r 2 >0.99 over the range of 20-2000μgL -1 for plasma and 5-2000μgL -1 for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL -1 , (0.8-1.5)μgL -1 and (0.3-0.8)μgL -1 for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
Determination of Picloram in Soil and Water by Reversed-Phase Liquid Chromatography
M.J.M. Wells; J.L. Michael; D.G. Neary
1984-01-01
A reversed-phase liquid chromatographic method is presneted for the determination of picloram in the parts per billion (ppb) range in soil, soil solution, and stream samples. Quanitification is effected by UV absorpation at 254 nm. Derivatization is not necessary. The method permits 92% ± 7.1 recovery from water samples and 61.8% ± 11.1 recovery from soil samples....
Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François
2016-06-01
We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the O isotopic composition of ocean water at that period in time.
Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis.
Polcaro, C M; Marra, C; Desiderio, C; Fanali, S
1999-09-01
A capillary electrophoretic method for the stereoselective analysis of aryloxypropionic and aryloxyphenoxypropionic acidic herbicides in ground water and river water was performed. Vancomycin and gamma-cyclodextrin were added to the background electrolyte (BGE) as chiral selectors. Water sample preconcentration was accomplished by solid-phase extraction on styrene-divinylbenzene packed cartridges (2 L of ground water and 1 L of river water). The analytical method allowed for the resolution of mecoprop, fenoprop, fluazifop and haloxyfop racemic mixtures in natural water samples spiked with enantiomer concentration levels in the range 0.1-0.13 ppb for ground water and 0.4-0.54 ppb for river water.
An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation
NASA Astrophysics Data System (ADS)
Sowers, T.; Wagner, A. J.
2016-12-01
Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.
Kim, Un-Jung; Kannan, Kurunthachalam
2018-04-27
The occurrence and profiles of 14 triester organophosphate flame retardants (OPFRs) and plasticizers were investigated in surface water, tap water, rainwater, and seawater collected from New York State. In total, 150 samples collected from rivers ( n = 35), lakes ( n = 39), tap water ( n = 58), precipitation/rainwater ( n = 15), and seawater ( n = 3) were analyzed for 14 organophosphate esters (OPEs). An additional nine Hudson River water samples were collected periodically to delineate seasonal trends in OPE levels. The total concentrations of OPEs were found at part-per-trillion ranges, with average concentrations that ranged from 0.01 ng/L for tripropyl phosphate (TPP) in river water to 689 ng/L for tris(2-butoxyethyl)phosphate (TBOEP) in lake water. Tris(1-chloro-2-propyl)phosphate (TCIPP) was the most abundant compound among the investigated OPEs in all types of water. The concentrations of OPEs in river-, lake-, and rainwater were similar but >3 times higher than those found in tap water. Chlorinated alkyl OPFRs accounted for a major proportion of total concentrations. TCIPP, TBOEP, and triethyl phosphate (TEP) were found in >90% of the samples analyzed. Wet deposition fluxes for 14 OPFRs were estimated, on the basis of the concentrations measured in rainwater in Albany, New York, and the values were between 440 and 5250 ng/m 2 . Among several surface water bodies analyzed, samples from the Hudson River and Onondaga Lake contained elevated concentrations of OPEs. Estimated daily intake of OPEs via the ingestion of drinking water was up to 9.65 ng/kg body weight/day.
Schebor, C; Chirife, J
2000-07-01
The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).
Electrical and magnetic properties of rock and soil
Scott, J.H.
1983-01-01
Field and laboratory measurements have been made to determine the electrical conductivity, dielectric constant, and magnetic permeability of rock and soil in areas of interest in studies of electromagnetic pulse propagation. Conductivity is determined by making field measurements of apparent resisitivity at very low frequencies (0-20 cps), and interpreting the true resistivity of layers at various depths by curve-matching methods. Interpreted resistivity values are converted to corresponding conductivity values which are assumed to be applicable at 10^2 cps, an assumption which is considered valid because the conductivity of rock and soil is nearly constant at frequencies below 10^2 cps. Conductivity is estimated at higher frequencies (up to 10^6 cps) by using statistical correlations of three parameters obtained from laboratory measurements of rock and soil samples: conductivity at 10^2 cps, frequency and conductivity measured over the range 10^2 to 10^6 cps. Conductivity may also be estimated in this frequency range by using field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and conductivity measured over the range 10^2 to 10^6 cps. This method is less accurate because nonrandom variation of ion concentration in natural pore water introduces error. Dielectric constant is estimated in a similar manner from field-derived conductivity values applicable at 10^2 cps and statistical correlations of three parameters obtained from laboratory measurements of samples: conductivity measured at 10^2 cps, frequency, and dielectric constant measured over the frequency range 10^2 to 10^6 cps. Dielectric constant may also be estimated from field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and dielectric constant measured from 10^2 to 10^6 cps, but again, this method is less accurate because of variation of ion concentration of pore water. Special laboratory procedures are used to measure conductivity and dielectric constant of rock and soil samples. Electrode polarization errors are minimized by using an electrode system that is electrochemically reversible-with ions in pore water.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, L.M.; Rose, S.E.
1993-03-01
Environmental tritium concentrations measured in 84 ground-water, surface-water, and precipitation samples collected throughout the Piedmont and Blue Ridge physiographic provinces of northern Georgia were used in conjunction with available geological and hydrochemical data to develop general concepts of ground-water flow within a regolith and crystalline fractured-rock system. Tritium concentrations ranged from 0 tritium units (TU) in water sampled from unpumped wells completed in fractured bedrock to 34 TU in water sampled from pumped wells screened at various intervals within the overlying regolith. Tritium concentrations measured in spring discharge, streamflow, and precipitation also were within this range. The distribution of tritiummore » indicates that tritiated water is retained within the regolith and that pumping is an important mechanism for mixing water of different ages within the flow system. Simulations using an analytical mixing model were performed to estimate the degree of mixing and the residence time of ground water within the flow system. Results of the simulations compared favorably with other geological and hydrochemical data. Simulated residence times for tritiated water indicated that ground-water residence times may be greater than 37 years within the bedrock fractures, but as little as 15 years in pumped bedrock wells and streams. Estimates of ground-water ages were based on environmental tritium concentrations produced by thermonuclear bomb testing conducted during the years of 1961-1962.« less
Ma, Jiping; Lu, Xi; Xia, Yan; Yan, Fengli
2015-02-01
A solid-phase extraction (SPE) method using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography was developed for the determination of four pyrazole and pyrrole pesticides (fenpyroximate, chlorfenapyr, fipronil and flusilazole) in environmental water samples. Several parameters, such as extraction adsorbent, elution solvent and volume and sample loading flow rate were optimized to obtain high SPE recoveries and extraction efficiency. The calibration curves for the pesticides extracted were linear in the range of 0.05-10 μg L(-1) for chlorfenapyr and fenpyroximate and 0.05-20 μg L(-1) for fipronil and flusilazole, with the correlation coefficients (r(2)) between 0.9966 and 0.9990. The method gave good precisions (relative standard deviation %) from 2.9 to 10.1% for real spiked samples from reservoir water and seawater; method recoveries ranged 92.2-105.9 and 98.5-103.9% for real spiked samples from reservoir water and seawater, respectively. Limits of detection (S/N = 3) for the method were determined to be 8-19 ng L(-1). The optimized method was successfully applied to the determination of four pesticides of pyrazoles and pyrroles in real environmental water samples. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
(238)U and total radioactivity in drinking waters in Van province, Turkey.
Selçuk Zorer, Özlem; Dağ, Beşir
2014-06-01
As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.
Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari
2007-04-01
Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.
Water quality study of Sunter River in Jakarta, Indonesia
NASA Astrophysics Data System (ADS)
Martinus, Y.; Astono, W.; Hendrawan, D.
2018-01-01
Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-04-12
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-01-01
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography–tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important. PMID:28401920
NASA Astrophysics Data System (ADS)
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-04-01
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.
Water quality of the Lexington Reservoir, Santa Clara County, California, 1978-80
Iwatsubo, R.T.; Sylvester, M.A.; Gloege, I.S.
1988-01-01
Analysis of water samples from Lexington Reservoir and Los Gatos Creek upstream from the reservoir from June 1978 through September 1980 showed that water generally met water-quality objectives identified by California Regional Water Quality Control Board, San Francisco Bay Region. Water-temperature profiles show that Lexington Reservoir is a warm monomictic lake. During summer, dissolved-oxygen concentrations generally were not reduced below 5.0 mg/L in the hyplimnion; only once during the study did bottom waters become anoxic. Water transparency decreased with depth. The euphotic zone ranged from 1.0 to 5.4 m, depending on suspended solids and algae, and was greater in summer than in spring. Calcium and bicarbonate were dominant ions at all stations except during spring, following the rainy season, when waters were a mixed cation bicarbonate type. Nitrogen concentrations were greater in samples from reservoir stations than in those from Los Gatos Creek, with most of the nitrogen in ammonia and organic forms. The amount of dissolved nitrate appeared to be related to phytoplankton abundance. Phosphorus and trace-element concentrations were low at all stations. Estimates of net primary productivity and Carlson 's trophic-state index, based on chlorophyll-a concentrations, indicated that reservoir classification ranges from oligotrophic to mesotrophic. Blue-green algae generally were predominant in reservoir samples. (USGS)
Foster, Adam L.; Katz, Brian G.
2010-01-01
The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, conducted a reconnaissance study in 2008 to determine the occurrence of 228 organic compounds in raw, source (untreated) and finished (treated) drinking water at seven municipal water-treatment facilities in Miami-Dade County. Results of this sampling study showed that 25 (about 11 percent) of the 228 organic compounds were detected in at least one source water sample and 22 (about 10 percent) were detected in at least one finished water sample. The concentrations of organic compounds in source water samples were less than or equal to 0.2 (u or mu)g/L (micrograms per liter). The concentrations of organic compounds in finished water samples were generally less than or equal to 0.5 (u or mu)g/L, with the exception of bromoform (a possible disinfection byproduct) at estimated concentrations ranging from 0.7 to 2.8 (u or mu)g/L and diethyl phthalate (a plasticizer compound) at 2 (u or mu)g/L.
Nyanza, Elias C; Dewey, Deborah; Thomas, Deborah S K; Davey, Mark; Ngallaba, Sospatro E
2014-12-01
This study examined the spatial distribution of total mercury (THg) and total arsenic (TAs) in water, soil and cassava (Manihot esculenta) (leaves and roots) samples taken from areas in Rwamagasa village in northwestern Tanzania where daily living activities occur in close proximity to extensive artisanal and small scale gold mining. Results indicated that 33.3 % of the water sources had THg levels above the WHO guideline of 1.0 µg/L for safe drinking water, and 12.5 % had TAs levels above 10 µg/L. Cassava leaves were found to have higher THg (ranging from 8.3 to 167 µg/kg) and TAs (ranging from 60 to 1,120 µg/kg) levels than cassava roots, which ranged between 1.2-8.3 µg/kg for THg and 25-310 µg/kg for TAs. Concentrations of THg and TAs in soil samples ranged between 5.8-1,759 and 183-20,298 µg/kg, respectively. Both THg and TAs were found to be distributed throughout Rwamagasa village.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualheim, B.
1979-04-01
This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less
Wesolowski, Edwin A.
1999-01-01
A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to be most useful for low streamflow simulations. The Ardmore BLTM/QUAL2E model was calibrated and verified with water-quality data from nine sites where two sets of five samples were collected. The streamflow during the water-quality sampling in Caddo Creek at site 7 ranged from 8.4 to 20 cubic feet per second, of which about 5.0 to 9.7 cubic feet per second was contributed by Sand Creek. The model simulates the fate and transport of 10 water-quality constituents. The model was verified by running it using data that were not used in calibration; only phytoplankton were not verified.Measured and simulated concentrations of dissolved oxygen exhibited a marked daily pattern that was attributable to waste loading and algal activity. Dissolved-oxygen measurements during this study and simulated dissolved-oxygen concentrations using the Ardmore Water-Quality Model, for the conditions of this study, illustrate that the dissolved-oxygen sag curve caused by the upstream wastewater discharges is confined to Sand Creek.
Quality of nutrient data from streams and ground water sampled during water years 1992-2001
Mueller, David K.; Titus, Cindy J.
2005-01-01
Proper interpretation of water-quality data requires consideration of the effects that bias and variability might have on measured constituent concentrations. In this report, methods are described to estimate the bias due to contamination of samples in the field or laboratory and the variability due to sample collection, processing, shipment, and analysis. Contamination can adversely affect interpretation of measured concentrations in comparison to standards or criteria. Variability can affect interpretation of small differences between individual measurements or mean concentrations. Contamination and variability are determined for nutrient data from quality-control samples (field blanks and replicates) collected as part of the National Water-Quality Assessment (NAWQA) Program during water years 1992-2001. Statistical methods are used to estimate the likelihood of contamination and variability in all samples. Results are presented for five nutrient analytes from stream samples and four nutrient analytes from ground-water samples. Ammonia contamination can add at least 0.04 milligram per liter in up to 5 percent of all samples. This could account for more than 22 percent of measured concentrations at the low range of aquatic-life criteria (0.18 milligram per liter). Orthophosphate contamination, at least 0.019 milligram per liter in up to 5 percent of all samples, could account for more than 38 percent of measured concentrations at the limit to avoid eutrophication (0.05 milligram per liter). Nitrite-plus-nitrate and Kjeldahl nitrogen contamination is less than 0.4 milligram per liter in 99 percent of all samples; thus there is no significant effect on measured concentrations of environmental significance. Sampling variability has little or no effect on reported concentrations of ammonia, nitrite-plus-nitrate, orthophosphate, or total phosphorus sampled after 1998. The potential errors due to sampling variability are greater for the Kjeldahl nitrogen analytes and for total phosphorus sampled before 1999. The uncertainty in a mean of 10 concentrations caused by sampling variability is within a small range (1 to 7 percent) for all nutrients. These results can be applied to interpretation of environmental data collected during water years 1992-2001 in 52 NAWQA study units.
National Water Quality Laboratory, 1995 services catalog
Timme, P.J.
1995-01-01
This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.
Water resources of the Red Lake Indian Reservation, northwestern Minnesota
Ruhl, J.F.
1991-01-01
The quality of ground water is suitable for drinking and other household uses, and the quality of the surface water generally meets U.S. Environmental Protection Agency criteria necessary for the maintenance of aquatic life. The major ions in both ground and surface water are calcium, magnesium, and bicarbonate. Lower and Upper Red Lakes are eutrophic to mesotrophic on the basis of their summer Secchi disk-transparency readings, which ranged from 2.6 to 8.2 feet. The concentration of total organic carbon in samples from Lower and Upper Red Lakes and four streams were below or, in the case of one stream, about equal to 30 milligrams per liter, which is indicative of water little affected by human activities. The sample with the highest organic carbon content was collected from a stream that drained peatlands, which were probably sources of organic matter in the runoff. The concentration of nitrite plus nitrate in samples collected from Lower and Upper Red Lakes in late summer was below 0.01 milligrams per liter, which is characteristic of water uncontaminated by animal wastes. Total phosphorus in these samples ranged from 0.01 to 0.02 milligrams per liter. Most of this phosphorus was in the particulate organic fraction because of the abundance of phytoplankton.
Isotopic (d18O/d2H) integrity of water samples collected and stored by automatic samplers
USDA-ARS?s Scientific Manuscript database
Stable water isotopes are increasingly becoming part of routine monitoring programs that utilize automatic samplers. The objectives of this study were to quantify the uncertainty in isotope signatures due to the length of sample storage (1-24 d) inside autosamplers over a range of air temperatures (...
Cai, Pei-Shan; Li, Dan; Chen, Jing; Xiong, Chao-Mei; Ruan, Jin-Lan
2015-04-15
Two thin-film microextractions (TFME), octadecylsilane (ODS)-polyacrylonitrile (PAN)-TFME and polar enhanced phase (PEP)-PAN-TFME have been proposed for the analysis of bisphenol-A, diethylstilbestrol and 17β-estradiol in aqueous tea extract and environmental water samples followed by high performance liquid chromatography-ultraviolet detection. Both thin-films were prepared by spraying. The influencing factors including pH, extraction time, desorption solvent, desorption volume, desorption time, ion strength and reusability were investigated. Under the optimal conditions, the two TFME methods are similar in terms of the analytical performance evaluated by standard addition method. The limits of detection for three estrogens in environmental water and aqueous tea extract matrix ranged from 1.3 to 1.6 and 2.8 to 7.1 ng mL(-1) by the two TFME methods, respectively. Both approaches were applied for the analysis of analytes in real aqueous tea extract and environmental water samples, presenting satisfactory recoveries ranged from 87.3% to 109.4% for the spiked samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fluoride Content of Bottled Waters in Hong Kong and Qatar.
Al-Mulla, Hessa I; Anthonappa, Robert P; King, Nigel M
2016-01-01
To determine the F concentration of bottled waters that was available in Hong Kong and Qatar. The F concentrations of bottled waters collected from Hong Kong (n=81) and Qatar (n=32) were analysed. The F ion selective electrode method was used to measure the F concentration in the samples. Three measurements were obtained for every sample to ensure reproducibility and appropriate statistical analyses were employed. Qatar group: F concentrations ranged from 0.06 ppm to 3.0 ppm with a mean value of 0.8 ppm. The F concentrations displayed on the labels of the samples (60%) were significantly lower than the measured F concentration (p < 0.0001). Hong Kong group: F concentrations ranged from 0.04 ppm to 2.52 ppm with a mean value of 0.44 ppm. The F concentrations displayed on the samples (16%) were significantly lower than the measured F concentration (p< 0.0001). Wide variations exist in the F concentration among the different brands of bottled water available in Hong Kong and Qatar. The F concentrations displayed on the labels were not consistent with the measured F concentrations.
Sun, Jing; Yi, Chun-Liang; Zhao, Ru-Song; Wang, Xia; Jiang, Wen-Qiang; Wang, Xi-Kui
2012-10-01
A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo-activated charcoal and detection with HPLC-ESI-MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo-activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02-20 μg/L, with correlation coefficients (r(2) ) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6-112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42-197 ng/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Williams, Shannon D.; Aycock, Robert A.
2001-01-01
Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. Numerous site-specific ground-water contamination investigations have been conducted at designated solid waste management units (SWMU?s) at AAFB. Several synthetic volatile organic compounds (VOC?s), primarily chlorinated solvents, have been identified in groundwater samples collected from monitoring wells near SWMU 8 in the Spring Creek area. During April and May 2000, a study of the groundwater resources in the Spring Creek area was conducted to determine if VOC?s from AAFB have affected local private water supplies and to advance understanding of the ground-water-flow system in this area. The study focused on sampling private wells located within the Spring Creek area that are used as a source of drinking water. Ground-water-flow directions were determined by measuring water levels in wells and constructing a potentiometric-surface map of the Manchester aquifer in the study area. Data were collected from a total of 35 private wells and 22 monitoring wells during the period of study. Depths to ground water were determined for 22 of the private wells and all 22 of the monitoring wells. The wells ranged in depth from 21 to 105 feet. Water-level altitudes ranged from 930 to 1,062 feet above sea level. Depths to water ranged from 8 to 83 feet below land surface. Water-quality samples were collected from 29 private wells which draw water from either gravel zones in the upper part of the Manchester aquifer, fractured bedrock in the lower part of the Manchester aquifer, or a combination of these two zones. Concentrations of 50 of the 55 VOC?s analyzed for were less than method detection limits. Chloroform, acetone, chloromethane, 2-butanone, and tetrachloroethylene were detected in concentrations exceeding the method detection limits. Only chloroform and acetone were detected in concentrations equal to or exceeding reporting limits. Chloroform was detected in a sample from one well at a concentration of 1.2 micrograms per liter (?g/L). Acetone was detected in a sample from another well at a concentration of 10 ?g/L. Acetone also was detected in a duplicate sample from the same well at an estimated concentration of 7.2 ?g/L, which is less than the reporting limit for acetone. The only contaminant of concern detected was tetrachloroethylene. Tetrachloroethylene was detected in only one sample, and this detection was at an estimated concentration below the reporting limit. None of the VOC concentrations exceeded drinking water maximum contaminant levels for public water systems.
Contamination of faecal coliforms in ice cubes sampled from food outlets in Kubang Kerian, Kelantan.
Noor Izani, N J; Zulaikha, A R; Mohamad Noor, M R; Amri, M A; Mahat, N A
2012-03-01
The use of ice cubes in beverages is common among patrons of food outlets in Malaysia although its safety for human consumption remains unclear. Hence, this study was designed to determine the presence of faecal coliforms and several useful water physicochemical parameters viz. free residual chlorine concentration, turbidity and pH in ice cubes from 30 randomly selected food outlets in Kubang Kerian, Kelantan. Faecal coliforms were found in ice cubes in 16 (53%) food outlets ranging between 1 CFU/100mL to >50 CFU/ 100mL, while in the remaining 14 (47%) food outlets, in samples of tap water as well as in commercially bottled drinking water, faecal coliforms were not detected. The highest faecal coliform counts of >50 CFU/100mL were observed in 3 (10%) food outlets followed by 11-50 CFU/100mL and 1-10 CFU/100mL in 7 (23%) and 6 (20%) food outlets, respectively. All samples recorded low free residual chlorine concentration (<0.10mg/L) with the pH ranging between 5.5 and 7.3 and turbidity between 0.14-1.76 NTU. Since contamination by faecal coliforms was not detected in 47% of the samples, tap water and commercially bottled drinking water, it was concluded that (1) contamination by faecal coliforms may occur due to improper handling of ice cubes at the food outlets or (2) they may not be the water sources used for making ice cubes. Since low free residual chlorine concentrations were observed (<0.10mg/ L) in all samples as well as in both tap water and commercially bottled drinking water, with the pH ranged between 5.5-7.3, ineffective disinfection of water source as a contributing factor to such high counts of faecal coliforms in ice cubes also could not be ruled out. Therefore, a periodical, yet comprehensive check on the food outlets, including that of ice cube is crucial in ensuring better food and water for human consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LD Antrim; NP Kohn
This report, PNNL-11911 Rev. 1, was published in July 2000 and replaces PNNL-11911, which was published in September 1998. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samplesmore » from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Chlorinated pesticide concentrations in water samples were similar to pre-remediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.65 ng/L to 18.1 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 0.65 ng/L to 103 ng/L and exceeded the remediation goal of 0.59 ng/L. The highest concentrations of both pesticides were found in Lauritzen Canal, and the lowest levels were from the Richmond Inner Harbor Channel water. Unusual amounts of detritus in the water column at the time of sampling, particularly in Lauritzen Canal, could have contributed to the elevated pesticide concentrations and poor analytical precision.« less
NASA Astrophysics Data System (ADS)
Sahoo, S.; Kaur, A.; Litoria, P.; Pateriya, B.
2014-11-01
Over period of time, the water usage and management is under stress for various reasons including pollution in both surface and subsurface. The groundwater quality decreases due to the solid waste from urban and industrial nodes, rapid use of insecticides and pesticides in agricultural practices. In this study, ground water quality maps for Rupnagar district of Punjab has been prepared using geospatial interpolation technique through Inverse Distance Weighted (IDW) approach. IDW technique has been used for major ground water quality parameters observed from the field samples like Arsenic, Hardness, pH, Iron, Fluoride, TDS, and Sulphate. To assess the ground water quality of the Rupnagar district, total 280 numbers of samples from various sources of tubewells for both pre and post monsoon have collected. Out of which, 80 to 113 samples found Iron with non potable limits ranging 0.3-1.1mg/l and 0.3-1.02mg/l according to BIS standard for both the seasons respectively. Chamkaur Sahib, Rupnagar, Morinda blocks have been found non potable limit of iron in both pre & post-monsoon. 11 to 52 samples in this region have sulphate with permissible limits in both the season ranging 200-400mg/l and 201-400mg/l. But arsenic had acceptable limit in both the season. Various parameters-wise ground water quality map is generated using the range values of drinking water quality to know the distribution of different parameters and diversification in the concentration of different elements. These maps are very much needful for human being to expand awareness among the people to maintain the Cleanness of water at their highest quality and purity levels to achieve a healthy life.
NASA Astrophysics Data System (ADS)
Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.
2016-02-01
We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.
The correlation of arsenic levels in drinking water with the biological samples of skin disorders.
Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul
2009-01-15
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.
González-Sálamo, Javier; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2017-12-29
In this work, the first application of core-shell poly(dopamine) magnetic nanoparticles as sorbent for the extraction of a group of eleven phthalic acid esters of interest (i.e. diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), bis-isopentyl phthalate (DIPP), bis-n-pentyl phthalate (DNPP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP)) and one adipate (bis (2-ethylhexyl) adipate, DEHA) from different water samples (Milli-Q, mineral, tap, pond and waste water) is proposed. Analysis were carried out by gas chromatography triple quadrupole tandem mass spectrometry. Parameters that affect the extraction performance were optimized following a step by step approach, being the optimum conditions the extraction of water at pH 6, with 60mg of sorbent and the elution with 6mL of dichloromethane. The methodology was validated for the five selected water samples using DBP-d 4 as internal standard. Determination coefficients of matrix-matched calibration curves were above 0.9904 in all cases while relative recovery values ranged between 71 and 120%, with relative standard deviation values below 19%. The limits of quantification of the method ranged between 9 and 20ng/L. Matrix effects were found for most analytes and water samples. Real water samples were also analyzed, finding DEP and DBP at concentrations below 4.20 and 1.23μg/L, respectively, in mineral, tap and waste water. DCHP, DEHP and BBP were also found in some of the samples at concentrations below the LOQs of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
Laboratory study of adsorption and deliquescence on the surface of Mars
NASA Astrophysics Data System (ADS)
Nikolakakos, George; Whiteway, James A.
2018-07-01
A sample of the zeolitic mineral chabazite was subjected to a range of water vapor pressures and temperatures found on present day Mars. Laser Raman scattering was applied to detect the relative amounts of water and carbon dioxide adsorbed by the sample. Results show that zeolites are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman scattering spectroscopy provides a promising method for detecting this process during a landed mission. When the water vapor pressure and temperature were sufficiently low, the zeolite sample also adsorbed carbon dioxide, resulting in the simultaneous adsorption of water and carbon dioxide on the surface mineral grains. Additional experiments were carried out using a mixture of magnesium perchlorate and chabazite. The sample of mixed surface material remained visually unchanged during water adsorption, but was found to darken during deliquescence.
Tuck, L.K.
1993-01-01
Mississippian through Holocene rocks crop out in the area. Emplaced Tertiary igneous rocks have caused structural deformation. Aquifers are Holocene alluvium, Quaternary interstratified sand and gravel, and Upper Cretaceous Judith River Formation and Virgelle Sandstone Member of Eagle Sandstone. Recharge to each aquifer is through combinations of infiltration of precipitation, streamflow, irrigation return flow, stored surface water, and subsurface inflow. Discharge is through combinations of seepage to streams, withdrawals from wells, flow of springs and seeps, evapotranspiration, and subsurface outflow. Water in alluvium flows sub- parallel to stream channels. One water sample had a dissolved-solids concentration of 439 milligrams per liter. Water in the interstratified sand and gravel generally moves northward. Transmissivity was estimated at 900 feet squared per day. Dissolved- solids concentration ranged from 154 to 1,600 milligrams per liter. Water quality is least feasible for irrigation, marginal for domestic use, and generally suitable for livestock. Water in the Judith River Formation probably flows northeast and southeast. One water sample had a dissolved-solids concentration of 855 milligrams per liter. Water in the Virgelle Sandstone Member generally flows north. Transmissivity ranges from 200 to 3,700 feet squared per day. Dissolved-solids concentration ranged from 213 to 1,360 milligrams per liter. Water quality near outcrops is mostly adequate for domestic and livestock use and marginal for irrigation, but deteriorates downgradient. Unknown perennial yields and water quality could limit development of this resource. Miners Coulee, Breed Creek, and Bear Gulch flow intermittently. Dissolved-solids concentration ranged from 241 to 774 milligrams per liter.
Carpani, Irene; Conti, Paolo; Lanteri, Silvia; Legnani, Pier Paolo; Leoni, Erica; Tonelli, Domenica
2008-02-28
A home-made microelectrode array, based on reticulated vitreous carbon, was used as working electrode in square wave voltammetry experiments to quantify the bacterial load of Escherichia coli ATCC 13706 and Pseudomonas aeruginosa ATCC 27853, chosen as test microorganisms, in synthetic samples similar to drinking water (phosphate buffer). Raw electrochemical signals were analysed with partial least squares regression coupled to variable selection in order to correlate these values with the bacterial load estimated by aerobic plate counting. The results demonstrated the ability of the method to detect even low loads of microorganisms in synthetic water samples. In particular, the model detects the bacterial load in the range 3-2,020 CFU ml(-1) for E. coli and in the range 76-155,556 CFU ml(-1) for P. aeruginosa.
Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho
2014-07-01
Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crepeau, Kathryn L.; Baker, Lucian M.; Kuivila, Kathryn
2000-01-01
A method of analysis and quality-assurance practices were developed to study the fate and transport of pesticides in the San Francisco Bay-Estuary by the U.S. Geological Survey. Water samples were filtered to remove suspended-particulate matter and pumped through C-8 solid-phase extraction cartridges to extract the pesticides. The cartridges were dried with carbon dioxide and the pesticides were eluted with three cartridge volumes of hexane:diethyl ether (1:1) solution. The eluants were analyzed using capillary-column gas chromatography/mass spectrometry in full-scan mode. Method detection limits for pesticides ranged from 0.002 to 0.025 microgram per liter for 1-liter samples. Recoveries ranged from 44 to 140 percent for 25 pesticides in samples of organic-free reagent water and Sacramento-San Joaquin Delta and Suisun Bay water fortified at 0.05 and 0.50 microgram per liter. The estimated holding time for pesticides after extraction on C-8 solid-phase extraction cartridges ranged from 10 to 257 days.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.
2018-02-01
River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of prescribed β values and gap distributions. The aliasing method, however, does not itself account for sampling irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is recommended for estimating β in irregular time series until improved methods are developed. Finally, all methods' performances depend strongly on the sampling irregularity, highlighting that the accuracy and precision of each method are data specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time series remains an unresolved challenge for the hydrologic community and for other disciplines that must grapple with irregular sampling.
Williams, M.W.; Davinroy, T.; Brooks, P.D.
1997-01-01
Organic and inorganic pools of nitrogen (N) were measured in talus fines or 'soils' and subtalus water during the summer of 1995 in the alpine Green Lakes Valley catchment of the Colorado Front Range. Nineteen talus soil samples were divided into four classes: subtalus dry, subtalus wet, surface vegetated and surface bare. The size of the individual talus soil patches ranged from 0.5 to 12.0 m2 in area, with bulk density ranging from 0-98 to 1-71 kg m-3 and soil texture ranging from sandy gravel in the subsurface talus to a loam in the vegetated surface. All samples contained KCl-extractable NH4+ and NO3-, organic N and carbon (C), and 17 of 19 samples contained microbial biomass. The mean subtalus values for KCl-extractable NH4-, of 3.2 mg N kg-1, and NO3-, of 1.0 mg N kg-1, were comparable with developed alpine soils on Niwot Ridge. Average microbial biomass in subtalus soils of 5.4 mg N kg-1 and total N of 1000 mg N kg-1 were about an order of magnitude lower than alpine tundra soils, reflecting the reduced amount of vegetation in talus areas. However, these measurements in surface-vegetated patches of talus were comparable with the well-developed soils on Niwot Ridge. These measurements in talus of microbial biomass, total N and KCl-extractable NH4+ and NO3-, show that there is sufficient biotically conditioned 'soil' within talus fields to influence the solute content of interstitial waters. Mean NO3- concentrations of 20 ??eq 1-1 from 29 samples of subtalus water were significantly higher than the 6-7 ??eq 1-1 in snow, while NH4+ concentrations in subtalus water of 0??7 ??eq 1-1 was significantly lower than in snow at 5??2 ??eq 1-1 (p = 0??001). Nitrate concentrations in subtalus water were significantly (p < 0??0001) correlated with concentrations of geochemica??l weathering products such as Ca2+ (r2 = 0??84) and silica (r2 = 0??49). The correlation of NO3- in subtalus water with geochemical weathering products suggests that NO3- concentrations in subtalus water increased with increased residence time, consistent with a biological source for this subtalus water NO3-. The high NO3- concentrations in subtalus water compared with atmospheric deposition of NO3- suggests that NO3- in talus fields may contribute to NO3- in stream waters of high-elevation catchments. ?? 1997 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Masoumi, Rahim
2017-04-01
From a hydrogeochemical point of view the geothermal fluids in the study area can be divided into two categories, (1) Na-Cl and (2) Na-Ca-HCO3. In the study area, the hot water samples depict temperature and pH ranges of 22 °C to 77 °C and 6.4 to 7.3, respectively. The total dissolved solids vary from 456 mg/L to 7006 mg/L. The concentration of rare metallic and non-metallic elements such as Li, Rb, B, Ba, Sr, CS, Se, Al, As, Hg in cold and hot spring waters in the Bushdi area were also analyzed. The utmost concentration belongs to Se which ranges from 135 mg/L to 273 mg/L. Boron also shows notable concentration values, in most samples it exceeds 20 mg/L, and in certain samples it ranges from 28 mg/L to 33.5 mg/L. The concentration value of arsenic ranges from 3 mg/L to 4 mg/L. The maximum concentration value of mercury is 0.01 mg/L. The δ18O values of these samples vary from -12.4 ‰ to -7.5 ‰ and the δD values range from -78.6 ‰ to -70.6 ‰. Plotting δ18O versus δD demonstrates that the data points are clustered close to both, the global meteoric water line (GMWL) with the equation δD = 8 δ18O + 10 and, the national meteoric water line (NMWL) with the equation δD = 6.89 δ18O + 6.57. As can be observed, the geothermal fluids in the Bushdi area show relatively slight increase in δ18O values that may be caused by interaction of hot fluids with host volcanic rocks. In fact, this relatively slight increment in δ18O values may indicate the low to moderate temperature of the geothermal system. The δD values, in general, do not show notable variation because of very low hydrogen content of the host rocks. The slight increase in δD, however, may be in conjunction with vaporization and isotopic interaction with the host rocks. The 3H content of the cold and hot waters in the Bushdi area is relatively high and varies from 0.65 TU to 41.4 TU. This may be caused either by mixing with meteoric sources or rapid fluid flow within the system in a shorter time than the β- disintegration of the isotope 3H. The δ18O versus δD diagram demonstrates that the data for the Bushdi area is plotted in three distinct domains, a, b, c. In a, the 3H content is > 10 TU indicating these waters being modern waters. Domain b belongs to samples whose 3H values are within the range of 1 TU to 10 TU being temporally categorized as sub-modern waters. The water samples in c possess 3H values < 1 TU indicating the oldest waters within the geothermal system in the study area. Key words: Geothermal fluids, Stable isotopes, Tracemetals, Sabalan volcano.
NASA Astrophysics Data System (ADS)
Munksgaard, Niels; Bass, Adrian; Wurster, Chris; Bird, Michael
2013-04-01
A novel sampling device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring-Down Spectrometry (CRDS). Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by injection/evaporation CRDS of discrete water samples. The isotopic effects of variable air and water temperature, water vapour concentration and water pumping rate were found to be either negligible or correctable by analysis of water standards. Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises interferences associated with CRDS analyses of many aqueous samples. Coupling of the DS-CRDS instrument to an auto sampler enables rapid analysis (10 min) of discrete water samples. The DS-CRDS system was used in the first continuous shipboard measurement of δ18O and δD of water. Combined with continuous salinity recordings, a data set of nearly 6,000 isotope measurements was made at 30-s intervals during a 3-day voyage through the Great Barrier Reef Lagoon. Precise identification of river plumes within the Great Barrier Reef Lagoon was possible because unique δ18O/δD-salinity relationships of individual plumes were measured at high spatial and temporal resolution. Continuous shipboard measurement of δ18O/δD values by DS-CRDS provides additional discriminatory power for assessing water mass formation processes and histories at a small fraction of the cost of traditional isotope analysis of discrete samples. In a second application of DS-CRDS, continuous real-time analysis, at 30-s intervals, of precipitation at an Australian tropical location revealed extreme and rapidly changing δ18O and δD values related to variations in moisture source areas, transport paths and precipitation histories. The range of δ18O (-19.6 ‰ to +2.6 ‰) and δD (-140 ‰ to +13 ‰) values from almost 6,000 measurements of nine rain events over 15 days during an 8-month period at a single location was comparable with the range measured in 1532 monthly samples from all seven Australian Global Network of Isotopes in Precipitation stations from 1962 to 2002. Extreme variations in δ18O (-8.7 ‰ to -19.6 ‰) and δD (-54 ‰ to -140 ‰) were recorded within a single 4-h period. Real-time stable isotope monitoring of environmental waters at high temporal and spatial resolution enables new and powerful tracer applications in climatology, hydrology, eco-physiology and palaeo-climatology.
Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009
May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.
2009-01-01
This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.
Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.
2013-01-01
Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or equal to reporting levels in water samples collected at various depths. Tritium concentrations in water from wells completed in shallow perched groundwater at the Advanced Test Reactor Complex (ATR Complex) were less than the reporting levels. Tritium concentrations in deep perched groundwater at the ATR Complex equaled or exceeded the reporting level in 12 wells during at least one sampling event during 2009–11 at the ATR Complex. Concentrations of strontium-90 in water from 20 of 76 aquifer wells sampled during April or October 2011 exceeded the reporting level. Strontium-90 was not detected within the ESRP aquifer beneath the ATR Complex. During at least one sampling event during 2009–11, concentrations of strontium-90 in water from 10 wells completed in deep perched groundwater at the ATR Complex equaled or exceeded the reporting levels. During 2009–11, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all aquifer wells and in all wells equipped with MLMS. Concentrations of cesium-137 were equal to or slightly above the reporting level in 8 aquifer wells and from 2 wells equipped with MLMS. The concentration of chromium in water from one well south of the ATR Complex was 97 micrograms per liter (μg/L) in April 2011, just less than the maximum contaminant level (MCL) of 100 μg/L. Concentrations of chromium in water samples from 69 other wells sampled ranged from 0.8 μg/L to 25 μg/L. During 2009–11, dissolved chromium was detected in water from 15 wells completed in perched groundwater at the ATR Complex. In 2011, concentrations of sodium in water from most wells in the southern part of the INL were greater than the background concentration of 10 milligrams per liter (mg/L); the highest concentrations were at or near the Idaho Nuclear Engineering and Technology Center (INTEC). After the newpercolation ponds were put into service in 2002 southwest of the INTEC, concentrations of sodium in water samples from the Rifle Range well rose steadily until 2008, when the concentrations generally began decreasing. The increases and decreases were attributed to disposal variability in the new percolation ponds. Concentrations of sodium in most wells equipped with MLMS generally were consistent with depth. During 2011, dissolved sodium concentrations in water from 17 wells completed in deep perched groundwater at the ATR Complex ranged from 6 to 146 mg/L. In 2011, concentrations of chloride in most water samples from aquifer wells south of the INTEC and at the Central Facilities Area exceeded the background concentrations of 15 mg/L, but were less than the secondary MCL of 250 mg/L. Chloride concentrations in water from wells south of the INTEC have generally increased because of increased chloride disposal to the old percolation ponds since 1984 when discharge of wastewater to the INTEC disposal well was discontinued. After the new percolation ponds were put into service in 2002 southwest of the INTEC, concentrations of chloride in water samples from one well rose steadily until 2008 then began decreasing. Chloride concentrations in water from all but one well completed in the ESRP aquifer at or near the ATR Complex were less than background and ranged between 10 and 14 mg/L during 2011, similar to concentrations detected during the 2006–08 reporting period. During 2011, chloride concentrations in water from two aquifer wells at the Radioactive Waste Management Complex (RWMC) were slightly greater than concentrations detected during the 2006–08 reporting period. The vertical distribution of chloride concentrations in wells equipped with MLMS were generally consistent within zones during 2009–11 and ranged from about 8 to 20 mg/L. During April 2011, dissolved chloride concentrations in shallow perched groundwater at the ATR Complex ranged from 7 to 13 mg/L in water from three wells. Dissolved chloride concentrations in deep perched groundwater at the ATR Complex during 2011 ranged from 4 to 54 mg/L. In 2011, sulfate concentrations in water samples from 11 aquifer wells in the south-central part of the INL equaled or exceeded the background concentration of sulfate and ranged from 40 to 167 mg/L. The greater-than-background concentrations in water from these wells probably resulted from sulfate disposal at the ATR Complex infiltration ponds or the old INTEC percolation ponds. In 2011, sulfate concentrations in water samples from two wells near the RWMC were greater than background levels and could have resulted from well construction techniques and (or) waste disposal at the RWMC. The vertical distribution of sulfate concentrations in three wells near the southern boundary of the INL was generally consistent with depth, and ranged between 19 and 25 mg/L. The maximum dissolved sulfate concentration in shallow perched groundwater near the ATR Complex was 400 mg/L in well CWP 1 in April 2011. During 2009–11, the maximum concentration of dissolved sulfate in deep perched groundwater at the ATR Complex was 1,550 mg/L in a well located west of the chemical-waste pond. In 2011, concentrations of nitrate in water from most wells at and near the INTEC exceeded the regional background concentrations of 1 mg/L and ranged from 1.6 to 5.95 mg/L. Concentrations of nitrate in wells south of INTEC and farther away from the influence of disposal areas and the Big Lost River show a general decrease in nitrate concentrations through time. During 2009–11, water samples from 30 wells were collected and analyzed for volatile organic compounds (VOCs). Six VOCs were detected. At least one and up to five VOCs were detected in water samples from 10 wells. The primary VOCs detected include carbon tetrachloride, chloroform, tetrachloroethylene, 1,1,1-trichloroethane, and trichloroethylene. In 2011, concentrations for all VOCs were less than their respective MCL for drinking water, except carbon tetrachloride in water from two wells. During 2009–11, variability and bias were evaluated from 56 replicate and 16 blank quality-assurance samples. Results from replicate analyses were investigated to evaluate sample variability. Constituents with acceptable reproducibility were stable isotope ratios, major ions, nutrients, and VOCs. All radiochemical constituents and trace metals had acceptable reproducibility except for gross beta-particle radioactivity, aluminum, antimony, and cobalt. Bias from sample contamination was evaluated from equipment, field, container, and source-solution blanks. No detectable constituent concentrations were reported for equipment blanks of the thief samplers and sampling pipes or for the source-solution and field blanks. Equipment blanks of bailers had detectable concentrations of strontium-90, sodium, chloride, and sulfate, and the container blank had a detectable concentration of dichloromethane.
Performance of a novel high throughput method for the determination of VX in drinking water samples.
Knaack, Jennifer S; Zhou, Yingtao; Magnuson, Matthew; Silvestri, Erin; Johnson, Rudolph C
2013-03-05
VX (O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate) is a highly toxic organophosphorus nerve agent, and even low levels of contamination in water can be harmful. Measurement of low concentrations of VX in aqueous matrixes is possible using an immunomagnetic scavenging technique and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized in high-performance liquid chromatography (HPLC)-grade water preserved with sodium omadine, an antimicrobial agent, and sodium thiosulfate, a dechlorinating agent, over eight analytical batches with quality control samples analyzed over 10 days. The minimum reportable level was 25 ng/L with a linear dynamic range up to 4.0 μg/L. The mean accuracies for two quality control samples containing VX at concentrations of 0.250 and 2.00 μg/L were 102 ± 3% and 103 ± 6%, respectively. The stability of VX was determined in five tap water samples representing a range of water quality parameters and disinfection practices over a 91 day period. In preserved tap water samples, VX recovery was between 81 and 92% of the fortified amount, 2.0 μg/L, when analyzed immediately after preparation. Recovery of VX decreased to between 31 and 45% of the fortified amount after 91 days, indicating hydrolysis of VX. However, the preservatives minimized the hydrolysis rate to close to the theoretical limit. The ability to detect low concentrations of VX in preserved tap water 91 days after spiking suggests applicability of this method for determining water contamination with VX and utility during environmental remediation.
Thermoelectrically cooled water trap
Micheels, Ronald H [Concord, MA
2006-02-21
A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.
Volatile Concentrations in Pyroclastic Obsidian: Two Case Studies
NASA Astrophysics Data System (ADS)
Wearn, K. M.; Cashman, K. V.; Wallace, P. J.
2002-12-01
Pyroclastic obsidian is abundant in fall deposits associated with Mt. Mazama's Cleetwood eruption and South Sister's Rock Mesa eruption. Measured concentrations of H2Ototal and CO2 in >300 obsidian samples from these two eruptions provide important information about both the style of degassing (open- vs. closed-system) and changes in eruptive conditions through the course of both eruptions. Obsidian clasts preserve a range of total H2O contents, with samples from lower stratigraphic levels displaying a wider range of water concentrations than those from the uppermost tephra layer sampled. All samples from the Cleetwood section contain <=1 wt% water, with those from the top of that deposit containing <0.4 wt%. Obsidian from the basal ash layer of the subsequent climactic eruption contains 0.1 - 0.8 wt% water. Obsidian fragments from the Rock Mesa eruption show a broader range in H2Ototal contents (from 0.1 to >3 wt%) than those from the Cleetwood eruption. At Rock Mesa, maximum total water contents generally decrease with increased stratigraphic height. However, this decrease is not strictly monotonic: fluctuations in maximum total water contents correspond to stratigraphic unit boundaries. In addition, the Rock Mesa event produced abundant obsidian with very low H2Ototal concentrations throughout the eruption. Dissolved molecular CO2 levels are below the detection limit in all of the Cleetwood and Mazama samples. This is not surprising, given the low initial CO2 measured in Cleetwood and Mazama melt inclusions by Bacon et al. (1992). CO2 concentrations in the Rock Mesa clasts range from <5 ppm to ~44 ppm, and are positively correlated with H2Ototal concentrations. Fluorine concentrations in Cleetwood and Mazama climactic obsidian clasts vary between ~510 and ~695 ppm, with climactic samples averaging slightly lower concentrations than Cleetwood samples. Fluorine concentrations in Rock Mesa obsidians are uniformly low (~300 to ~510 ppm). Chlorine contents of Cleetwood and Mazama climactic samples range from ~1400 ppm to ~1610 ppm. The Rock Mesa samples all contain less chlorine (~510 to ~1120 ppm) than the Cleetwood and climactic samples, and in the Rock Mesa obsidian, chlorine and total water are positively correlated. Stratigraphic variations in the volatile contents of pyroclastic obsidian support previous work suggesting that obsidian forms along the margins of the volcanic conduit and is eroded from the conduit walls by fragmenting magma. Both the Cleetwood and the Rock Mesa deposits indicate initial evacuation of shallow vanguard magma followed by a rapid increase in fragmentation depth. Both deposits also show a gradual decrease in the fragmentation depth through time, consistent with subsequent effusive activity in both cases. More puzzling is the apparent closed-system degassing trend defined by the H2O-CO2-Cl relations in the Rock Mesa obsidian samples, despite the loss of volatiles required for obsidian formation. This suggests that volatile data may also provide information on the relative time scales of volatile exsolution and loss and obsidian formation.
Krøjgaard, Louise H; Krogfelt, Karen A; Albrechtsen, Hans-Jørgen; Uldum, Søren A
2011-11-21
Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool for risk assessment. In water collected from the apartments Legionella spp were detected by qPCR in the concentration range from LOQ to 9.6*105GU/L while L. pneumophila were detected in a range from LOQ to 6.8*105 GU/L. By culturing, the legionellae were detected in the range from below detection limit (> 10 CFU/L) to 1.6*106 CFU/L. In circulating water and in first flush water from shower hoses, culture and qPCR showed the same tendencies. The overall correlation between the bacteria number detected by culture and the two developed qPCR assays (L. spp and L. pneumophila) was relatively poor (r2 = 0.31 for culture and Legionella spp. assay, r2 = 0.20 for culture and L. pneumophila assay). Detection by qPCR was suitable for monitoring changes in the concentration of Legionella but the precise determination of bacteria is difficult. Risk assessment by qPCR only on samples without any background information regarding treatment, timing, etc is dubious. However, the rapid detection by qPCR of high concentrations of Legionella - especially Legionella pneumophila - is valuable as an indicator of risk, although it may be false positive compared to culture results. On the other hand, the detection of a low number of bacteria by qPCR is a strong indication for the absence of risk.
Measurements of radon concentrations in Spa waters in Amasya, Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yigitoglu, I., E-mail: ibrahim.yigitoglu@gop.edu.tr; Ucar, B.; Oner, F.
The aim of this study is to determine the radon concentrations in thermal waters in the Amasya basin in Turkey and to explore the relationship between radon anomalies and active geological faults. The radon concentration measurements were performed in four thermal Spas around Amasya basin. The water samples were collected from tap waters in thermal water sources. The obtained radon concentrations ranged from 0.15 ± 0.12 to 0.71 ± 0.32 BqL{sup −1} for Spa waters. The relationship between the radon concentration anomalies and earthquakes that occurred in the sampling period are discussed.
NASA Technical Reports Server (NTRS)
1979-01-01
In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.
Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R
2005-12-15
A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.
Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés
2012-04-01
A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.
Dokpikul, Nattawut; Chaiyasith, Wipharat Chuachuad; Sananmuang, Ratana; Ampiah-Bonney, Richmond J
2018-04-25
A novel method was developed by SAE-DLLME for chromium speciation in water and rice samples using 2-thenoyltrifluoroacetone (TTA) as a chelating reagent by ETAAS. The speciation of Cr(III) and Cr(VI) was achieved by complexation of Cr(III)-TTA and the total Cr was measured after reduction of Cr(VI) to Cr. The calibration graph was linear in the range of 0.02-2.50 µg L -1 , with a detection limit of 0.0052 µg L -1 . The %RSD was in range of 2.90-3.30% at 0.5, 1.5 and 2.5 µg L -1 of Cr(III), n = 5 and the EF was 54.47. The method was applied to chromium speciation and total chromium determination in real samples and gave recoveries in the range of 96.2-103.5% and 97.1-102.7% for Cr(III) and Cr(VI) in water samples and 93.7-103.5% of total Cr in rice samples. The accuracy of the method was evaluated by analysis of SRM 1573a with good agreement compared to the certified value. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Feng; Yang, Bin; Zhou, Li-Jun; Lai, Hua-Jie
2011-03-11
A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR). Copyright © 2011 Elsevier B.V. All rights reserved.
Armstrong, C.A.
1984-01-01
The investigation of the water resources of the Dickinson lignite area, an area of about 500 square miles, was undertaken to define the hydrologic system of the area and to project probable effects of coal mining on the system.Aquifers occur in sandstone beds in: the Fox Hills Sandstone and the lower Hell Creek Formation of Cretaceous age, the upper Hell Creek Formation of Cretaceous age and the lower Ludlow Member of the Fort Union Formation of Tertiary age, and the upper Ludlow and lower Tongue River Members of the Fort Union Formation of Tertiary age. Aquifers also occur in the sandstone and lignite lenses in the upper Tongue River Member and the Sentinel Butte Member of the Fort Union Formation. Depths to the Fox Hills-lower Hell Creek aquifer system range from about 1,300 to 1,710 feet. Well yields range from 18 to 100 gallons per minute. The water is soft and is a sodium bicarbonate type. Dissolvedsolids concentrations in samples collected from the aquifer system ranged from 1,230 to 1,690 milligrams per liter.Depths to the upper Hell Creek-lower Ludlow aquifer system range from about 720 to 1,040 feet. Well yields generally are less than 30 gallons per minute but may be as much as 150 gallons per minute. The water is soft and a sodium bicarbonate type. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 1,010 to 1,450 milligrams per liter.Depths to the upper Ludlow-lower Tongue River aquifer system range from about 440 to 713 feet. Well yields may range from about 1 to 100 gallons per minute. The water generally is soft and a sodium bicarbonate type but may be moderately hard and a sulfate type in the southwestern part of the area. Dissolved-solids concentrations in samples collected from the aquifer system ranged from 995 to 1,990 milligrams per liter. Depths to the upper Tongue River-Sentinel Butte aquifer system range from near land surface to about 530 feet below land surface. Well yields generally range from about 1 to 185 gallons per minute. Yields from the lignite parts of the system range from about 2 to 60 gallons per minute. The water generally is a sodium bicarbonate type, but locally sulfate is the dominant anion. Dissolved-solids concentrations in samples collected from the aquifer system generally ranged from 574 to 2,720 milligrams per liter.
Furlong, E.T.; Burkhardt, M.R.; Gates, Paul M.; Werner, S.L.; Battaglin, W.A.
2000-01-01
Sulfonylurea (SU), imidazolinone (IMI), and sulfonamide (SA) herbicides are new classes of low-application-rate herbicides increasingly used by farmers. Some of these herbicides affect both weed and crop species at low dosages and must be carefully used. Less is known about the effect of these compounds on non-crop plant species, but a concentration of 100 ng/l in water has been proposed as the threshold for possible plant toxicity for most of these herbicides. Hence, analytical methods must be capable of detecting SUs, IMIs, and SAs at concentrations less than 100 ng/l in ambient water samples. The authors developed a two-cartridge, solid-phase extraction method for isolating 12 SU, 3 IMI, and 1 SA herbicides by using high-performance liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS) to identify and quantify these herbicides to 10 ng/l. This method was used to analyze 196 surface- and ground-water samples collected from May to August 1998 throughout the Midwestern United States, and more than 100 quality-assurance and quality-control samples. During the 16 weeks of the study, the HPLC/ESI-MS maintained excellent calibration linearity across the calibration range from 5 to 500 ng/l, with correlation coefficients of 0.9975 or greater. Continuing calibration verification standards at 100-ng/l concentration were analyzed throughout the study, and the average measured concentrations for individual herbicides ranged from 93 to 100 ng/l. Recovery of herbicides from 27 reagent-water samples spiked at 50 and 100 ng/l ranged from 39 to 92%, and averaged 73%. The standard deviation of recoveries ranged from 14 to 26%, and averaged 20%. This variability reflects multiple instruments, operators, and the use of automated and manual sample preparation. Spiked environmental water samples had similar recoveries, although for some herbicides, the sample matrix enhanced recoveries by as much as 200% greater than the spiked concentration. This matrix enhancement was sample- and compound-dependent. Concentrations of herbicides in unspiked duplicate environmental samples were typically within 25% of each other. The results demonstrate the usefulness of HPLC/ESI-MS for determining low-application-rate herbicides at ambient concentrations. Copyright (C) 2000 Elsevier Science B.V.
Lopes, Vitor Sergio Almeida; Riente, Roselene Ribeiro; da Silva, Alexsandro Araújo; Torquilho, Delma Falcão; Carreira, Renato da Silva; Marques, Mônica Regina da Costa
2016-09-15
A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Smith, Kirk P.
2013-01-01
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of ongoing development in the drinking-water source area, the Cambridge water supply has the potential to be affected by a wide variety of contaminants. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Hobbs Brook and Stony Brook Basins, which compose the drinking-water source area, since 1997 (water year 1997) through continuous monitoring and discrete sample collection and, since 2004, through systematic collection of streamwater samples during base-flow and stormflow conditions at five primary sampling stations in the drinking-water source area. Four primary sampling stations are on small tributaries in the Hobbs Brook and Stony Brook Basins; the fifth primary sampling station is on the main stem of Stony Brook and drains about 93 percent of the Cambridge drinking-water source area. Water samples also were collected at six secondary sampling stations, including Fresh Pond Reservoir, the final storage reservoir for the raw water supply. Storm runoff and base-flow concentrations of calcium (Ca), chloride (Cl), sodium (Na), and sulfate (SO4) were estimated from continuous records of streamflow and specific conductance for six monitoring stations, which include the five primary sampling stations. These data were used to characterize current water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Hobbs Brook and Stony Brook Basins. These data also were used to describe how streamwater quality is affected by various watershed characteristics and provide information to guide future watershed management. Water samples were analyzed for physical properties and concentrations of Ca, Cl, Na, and SO4, total nitrogen (TN), total phosphorus (TP), caffeine, and a suite of 59 polar pesticides. Values of physical properties and constituent concentrations varied widely, particularly in samples from tributaries. Median concentrations of Ca, Cl, Na, and SO4 in samples collected in the Hobbs Brook Basin (39.8, 392, 207, and 21.7 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Basin (17.8, 87.7, 49.7, and 14.7 mg/L, respectively). These differences in major ion concentrations are likely related to the low percentages of developed land and impervious area in the Stony Brook Basin. Concentrations of dissolved Cl and Na in samples, and those estimated from continuous records of specific conductance (particularly during base flow), often were greater than the U.S. Environmental Protection Agency (USEPA) secondary drinking-water guideline for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Commonwealth of Massachusetts, Executive Office of Energy and Environmental Affairs drinking-water guideline for Na (20 mg/L). Mean annual flow-weighted concentrations of Ca, Cl, and Na were generally positively correlated with the area of roadway land use in the subbasins. Correlations between mean annual concentrations of Ca and SO4 in base flow and total roadway, total impervious, and commercial-industrial land uses were statistically significant. Concentrations of TN (range of 0.42 to 5.13 mg/L in all subbasins) and TP (range of 0.006 to 0.80 mg/L in all subbasins) in tributary samples did not differ substantially between the Hobbs Brook and Stony Brook Basins. Concentrations of TN and TP in samples collected during water years 2004–07 exceeded proposed reference concentrations of 0.57 and 0.024 mg/L, in 94 and 56 percent of the samples, respectively. Correlations between annual flow-weighted concentrations of TN and percentages of recreational land use and water-body area were statistically significant; however, no significant relation was found between TP and available land-use information. The volume of streamflow affected water-quality conditions at the primary sampling stations. Turbidity and concentrations of TP were positively correlated with streamflow. In contrast, concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflows. Concentrations of TN were not correlated with streamflow. Twenty-five pesticides and caffeine were detected in water samples collected in the drinking-water source area and in raw water collected from the Cambridge water-treatment facility intake at the Fresh Pond Reservoir. Imidacloprid, norflurazon, and siduron were the most frequently detected pesticides with the frequency of detections ranging from about 24 to 41 percent. Caffeine was detected in about 37 percent of water samples at concentrations ranging from 0.003 to 1.82 micrograms per liter (μg/L). Although some of the detected pesticides degrade rapidly, norflurazon and siduron are relatively stable and are able to immigrate though the serial reservoir system. Concentrations of 2,4-D, carbaryl, imazaquin, MCPA (2-methyl-4-chlorophenoxyacetic acid), metsulfuron-methyl, norflurazon, siduron, and caffeine were detected more frequently in stormflow samples than in base-flow samples. Concentrations of pesticides did not exceed USEPA drinking-water guidelines or other health standards and were several orders of magnitude less than the lethal exposure level established for several fish species common to the drinking-water source area. Imidacloprid, an insecticide, was the only pesticide with a concentration exceeding available long-term aquatic-life guidelines. Several pesticides correlated significantly with the amount of recreational, residential, and commercial area in the tributary subbasins. Mean annual base-flow concentrations of caffeine correlated significantly with parking-lot land use. For most tributaries, about 70 percent of the annual loads of Ca, Cl, Na, and SO4 were associated with base flow. Upward temporal trends in annual loads of Cl and Na were identified on the basis of data for water years 1998 to 2008 for the outlet of the Cambridge Reservoir in the Hobbs Brook Basin; however, similar trends were not identified for the main stem of Stony Brook downstream from the reservoir. The proportions of the TN load attributed to base flow and stormflow were similar in each tributary. In contrast, more than 83 percent of the TP loads in the tributaries and about 73 percent of the TP load in main stem of Stony Brook were associated with stormflow. Mean annual yields of Ca, Cl, Na, and SO4 in the Stony Brook Reservoir watershed, which represents most of the drinking-water source area, were 14, 85, 46, and 9 metric tons per square kilometer, respectively. Mean annual yields among the individual tributary subbasins varied extensively. Mean annual yields for the respective constituents increased with an increase in roadway and parking-lot area in the tributary subbasins. Mean annual yields of TN in the tributary subbasins ranged from about 740 to more than 1,200 kilograms per square kilometer and exceeded the yield for the main stem of Stony Brook at USGS station 01104460 upstream from the Stony Brook Reservoir. Mean annual yields estimated for the herbicides 2,4-D and imidacloprid ranged from 34 to 310 grams per square kilometer (g/km2) and 3 to 170 g/km2, respectively. Annual loads for 2,4-D were entirely associated with stormflow. The largest annual load for imidacloprid was estimated for the main stem of Stony Brook; however, the highest annual yield for this pesticide, as well as for benomyl, carbaryl, metalaxyl, and propiconazole, was estimated for a tributary to the Stony Brook Reservoir that drains largely residential and recreational areas. Mean annual yields for the herbicide siduron ranged from 6.9 to 35 g/km2 with most of the loads associated with stormflow. Mean annual yields for the insecticide diuron ranged from 2.1 to 4.4 g/km2. Annual yields of caffeine ranged from 11 to 410 g/km2.
Detection of human enteric viruses in stream water with RT-PCR and cell culture.
Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.
2004-01-01
A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.
Samara, Fatin; Elsayed, Yehya; Soghomonian, Balik; Knuteson, Sandra L
2016-10-15
Water and sediments were collected on March 2013 and April 2014 from Khalid Khor creek area in United Arab Emirates to assess their quality parameters. The pH and alkalinity of the water samples were measured and their values were similar to those of shallow saltwater ecosystems. In addition, elemental analyses and organic compounds were done using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and Gas Chromatography-Mass Spectroscopy (GC-MS), respectively. The concentration of heavy and trace metals in the water samples were within the acceptable limits except for lead which showed high values, while the concentrations of metals in the sediment samples were relatively high and ranged from 6517 to 13,768mg/kg. GC-MS analysis showed the presence of polyaromatic heterocyclic (PAHs) compounds in sediments near the shipping area and in amounts classified as highly carcinogenic; however, no polychlorinated biphenyls (PCB) were identified. Moreover, fecal bacterial contamination in water was detected in concentrations that range between 300 and 10,140 organisms/100mL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water resources of Hot Springs County, Wyoming
Plafcan, Maria; Ogle, Kathy Muller
1994-01-01
The wells and springs inventoried in Hot Springs County most commonly had been completed in or issued from the Quaternary alluvium, Quaternary terrace deposits, Fort Union and Mesaverde Formations, Cody Shale, and the Frontier and Chugwater Formations. The largest discharges measured were from the Quaternary terrace deposits (400 gallons per minute) and the Phosphoria Formation (1,000 gallons per minute). Discharges from all other geologic units varied, but most wells and springs yielded 50 gallons per minute or less.Water-quality samples collected from springs that issued from the Absaroka Volcanic Supergroup, the Bighorn Dolomite, and the Flathead Sandstone had the lowest dissolved-solids concentrations, which ranged from 58 to 265 milligrams per liter, and the least variable water types. Water from the volcanic rocks was a sodium bicarbonate type; whereas, water from the Flathead Sandstone was a calcium bicarbonate type. Water types for all the other aquifers varied from sampling site to sampling site; however, water samples from the Fort Union Formation and the Cody Shale were consistently of the sodium sulfate type. The effect of oil- and gas-development at Hamilton Dome on thermal spring discharges at Hot Springs State Park near Thermopolis was studied. The estimated drawdown from 1918, when the Hamilton Dome oil field was discovered, to 1988 was made using drill-stem data from previous studies. Drawdown at Big Spring in the Park was estimated to be less than 3 feet on the basis of recent oil- and water-production data, previous modeling studies, and the estimated water-level drawdown of 330 feet in wells at the Hamilton Dome oil field.Streams originating in the Plains region of the county, such as Middle Fork Owl Creek, are ephemeral or intermittent; whereas, streams originating in the mountains, such as Gooseberry Creek, are perennial. Average annual runoff across the county ranges from 0.26 inches at a representative streamflow-gaging station near Worland in the plains region to 5.4 inches in the Owl Creek Mountains and southeastern Absaroka Range.
Garbarino, John R.; Kanagy, Leslie K.; Cree, Mark E.
2006-01-01
A new analytical method for the determination of elements in filtered aqueous matrices using inductively coupled plasma-mass spectrometry (ICP-MS) has been implemented at the U.S. Geological Survey National Water Quality Laboratory that uses collision/reaction cell technology to reduce molecular ion interferences. The updated method can be used to determine elements in filtered natural-water and other filtered aqueous matrices, including whole-water, biota, sediment, and soil digestates. Helium or hydrogen is used as the collision or reaction gas, respectively, to eliminate or substantially reduce interferences commonly resulting from sample-matrix composition. Helium is used for molecular ion interferences associated with the determination of As, Co, Cr, Cu, K, Mg, Na, Ni, V, W and Zn, whereas hydrogen is used for Ca, Fe, Se, and Si. Other elements that are not affected by molecular ion interference also can be determined simply by not introducing a collision/reaction gas into the cell. Analysis time is increased by about a factor of 2 over the previous method because of the additional data acquisition time in the hydrogen and helium modes. Method detection limits for As, Ca, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Se, Si (as SiO2), V, W, and Zn, all of which use a collision/reaction gas, are 0.06 microgram per liter (?g/L) As, 0.04 milligram per liter (mg/L) Ca, 0.02 ?g/L Co, 0.02 ?g/L Cr, 0.04 ?g/L Cu, 1 ?g/L Fe, 0.007 mg/L K, 0.009 mg/L Mg, 0.09 mg/L Na, 0.05 ?g/L Ni, 0.04 ?g/L Se, 0.03 mg/L SiO2, 0.05 ?g/L V, 0.03 ?g/L W, and 0.04 ?g/L Zn. Most method detection limits are lower or relatively unchanged compared to earlier methods except for Co, K, Mg, Ni, SiO2, and Tl, which are less than a factor of 2 higher. Percentage bias for samples spiked at about one-third and two-thirds of the concentration of the highest calibration standard ranged from -8.1 to 7.9 percent for reagent water, -14 to 21 percent for surface water, and -16 to 16 percent for ground water. The percentage bias for reagent water spiked at trace-element concentrations of 0.5 to 3 ?g/L averaged 4.4 percent with a range of -6 to 16 percent, whereas the average percentage bias for Ca, K, Mg, Na, and SiO2 was 1.4 percent with a range of -4 to 10 percent for spikes of 0.5 to 3 mg/L. Elemental results for aqueous standard reference materials compared closely to the certified concentrations; all elements were within 1.5 F-pseudosigma of the most probable concentration. In addition, results from 25 filtered natural-water samples and 25 unfiltered natural-water digestates were compared with results from previously used methods using linear regression analysis. Slopes from the regression analyses averaged 0.98 and ranged from 0.87 to 1.29 for filtered natural-water samples; for unfiltered natural-water digestates, the average slope was 1.0 and ranged from 0.83 to 1.22. Tests showed that accurate measurements can be made for samples having specific conductance less than 7,500 microsiemens per centimeter (?S/cm) without dilution; earlier ICP-MS methods required dilution for samples with specific conductance greater than 2,500 ?S/cm.
Thiros, Susan A.; Manning, Andrew H.
2004-01-01
Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range of valley water-table temperatures indicating that mountain-block recharge must constitute a substantial fraction of recharge to the principal aquifer in this area. Together, the recharge temperature and stable-isotope data define two zones with apparently high proportions of valley recharge on the east side of the valley.The possibility of water samples containing a substantial proportion of water recharged before thermonuclear testing began in the early 1950s (pre-bomb) was evaluated by comparing the initial tritium concentration of each sample (measured tritium plus measured tritiogenic helium-3) to that of local precipitation at the apparent time of recharge. Three interpreted-age categories were determined for water from the sampled wells: (1) dominantly pre-bomb; (2) dominantly modern; and (3) modern or a mixture of pre-bomb and modern. Apparent tritium/helium-3 ages range from 3 years to more than 50 years. Water generally becomes older with distance from the mountain front, with the oldest water present in the discharge area.The presence of anthropogenic compounds at concentrations above reporting levels and elevated nitrate concentrations (affected wells) in the principal aquifer is well correlated with the distribution of interpreted-age categories. All of the wells (10 of 10) with dominantly modern water are affected. Seventy percent (7 of 10) of the wells with dominantly modern or a mixture of modern and pre-bomb waters are affected. Only 1 of the 11 wells with dominantly pre-bomb water is affected. Anthropogenic compounds were not detected in water with an apparent age of more than 50 years, except for water from one well. All of the samples that consisted mostly of modern water contained at least one anthropogenic compound.
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Validation of an automated fluorescein method for determining bromide in water
Fishman, M. J.; Schroder, L.J.; Friedman, L.C.
1985-01-01
Surface, atmospheric precipitation and deionized water samples were spiked with ??g l-1 concentrations of bromide, and the solutions stored in polyethylene and polytetrafluoroethylene bottles. Bromide was determined periodically for 30 days. Automated fluorescein and ion chromatography methods were used to determine bromide in these prepared samples. Analysis of the data by the paired t-test indicates that the two methods are not significantly different at a probability of 95% for samples containing from 0.015 to 0.5 mg l-1 of bromide. The correlation coefficient for the same sets of paired data is 0.9987. Recovery data, except for the surface water samples to which 0.005 mg l-1 of bromide was added, range from 89 to 112%. There appears to be no loss of bromide from solution in either type of container.Surface, atmospheric precipitation and deionized water samples were spiked with mu g l** minus **1 concentrations of bromide, and the solutions stored in polyethylene and polytetrafluoroethylene bottles. Bromide was determined periodically for 30 days. Automated fluorescein and ion chromatography methods were used to determine bromide in these prepared samples. Analysis of the data by the paired t-test indicates that the two methods are not significantly different at a probability of 95% for samples containing from 0. 015 to 0. 5 mg l** minus **1 of bromide. The correlation coefficient for the same sets of paired data is 0. 9987. Recovery data, except for the surface water samples to which 0. 005 mg l** minus **1 of bromide was added, range from 89 to 112%. Refs.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Curtin, T.
2016-12-01
Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71.5 to -86.5‰ (VSMOW) in the Cascades. Stable isotopic differences between mountain ranges reflect distance from the ocean and increasing elevation. Stable isotopes of water show no correlation with air or lake water temperatures. Average annual precipitation and bedrock across this topographic gradient controls the major ions and stable isotopic composition of these lakes.
A rapid leaf-disc sampler for psychrometric water potential measurements.
Wullschleger, S D; Oosterhuis, D M
1986-06-01
An instrument was designed which facilitates faster and more accurate sampling of leaf discs for psychrometric water potential measurements. The instrument consists of an aluminum housing, a spring-loaded plunger, and a modified brass-plated cork borer. The leaf-disc sampler was compared with the conventional method of sampling discs for measurement of leaf water potential with thermocouple psychrometers on a range of plant material including Gossypium hirsutum L., Zea mays L., and Begonia rex-cultorum L. The new sampler permitted a leaf disc to be excised and inserted into the psychrometer sample chamber in less than 7 seconds, which was more than twice as fast as the conventional method. This resulted in more accurate determinations of leaf water potential due to reduced evaporative water losses. The leaf-disc sampler also significantly reduced sample variability between individual measurements. This instrument can be used for many other laboratory and field measurements that necessitate leaf disc sampling.
Vijaya Bhaskar Reddy, Ambavaram; Yusop, Zulkifli; Jaafar, Jafariah; Bin Aris, Azmi; Abdul Majid, Zaiton; Umar, Khalid; Talib, Juhaizah
2016-06-01
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid-phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected-ion monitoring mode. Good linear relationships were obtained in the range of 0.1-50 μg/L for chlorpyrifos, and 0.05-50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54-86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhong, Cheng; Chen, Beibei; He, Man; Hu, Bin
2017-02-03
In this study, covalent triazine framework-1 (CTF-1) was adopted as solid phase extraction (SPE) sorbents, and a method of SPE inline coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for trace analysis of three nitroimidazolaes (including metronidazole, ronidazole and dimetridazole) in porcine liver and environmental water samples. CTF-1 has rich π-electron and N containing triazine, thus can form π-π interaction and intermolecular hydrogen bond with three target polar nitroimidazoles, resulting in high extraction efficiency (87%-98%). Besides, CTF-1 has large specific area, which benefits rapid mass transfer and low column pressure, leading to fast adsorption/desorption dynamics. Several parameters affecting inline SPE including pH, sample flow rate, sample volume, desorption reagents, elution flow rate, elution volume, and ionic strength were investigated. Under the optimal experimental conditions, the limits of detection (S/N=3) were found to be in the range of 0.11-0.13μg/L. The enrichment factors (EFs) ranged from 52 to 59 fold (theoretical EF was 60-fold). The relative standard deviations were in the range of 4.3-9.4% (n=7, c=1μg/L), and the linear range was 0.5-500μg/L for three target analytes. The sample throughput is 7/h. The proposed method was successfully applied to the analysis of nitroimidazoles in porcine liver and environmental water samples with good recoveries for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin
2014-02-01
A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.
Potential For Denitrification near Reclaimed Water Application Sites in Orange County, Florida, 2009
Byrne, Michael J.; Smith, Richard L.; Repert, Deborah A.
2012-01-01
The potential for denitrification was tested in water samples from four Upper Floridan aquifer wells near a reclaimed water application site, in west Orange County Florida, and two adjacent springs. Results of the study indicate that denitrifying bacteria are present in the groundwater and spring water samples, and that these bacteria can readily denitrify the waters when suitable geochemical conditions exist. The acetylene block technique was used to assess nitrous oxide in the samples that was produced by denitrification. The laboratory incubation experiment consisted of four different treatments to each of the six samples: (1) ambient water (no added nitrate or glucose), (2) ambient water amended with 1.4 milligrams per liter (mg/L) nitrate as nitrogen (N), (3) ambient water amended with 5.0 mg/L nitrate as N, and (4) ambient water amended with 5.0 mg/L nitrate as N and 10 mg/L glucose as C6H12O6. A companion set of incubations using treatment 2 tracked changes in nitrate and nitrite concentration with time. The rate of denitrification in treatment 2 ranged from 0.059 to 0.124 milligram per liter per day nitrogen [(mg/L)/d N] and in treatment 3 ranged from 0.071 to 0.226 (mg/L)/d N. At all of the sampling sites, treatment 4 yielded denitrification rates at least an order of magnitude greater than those measured for the other treatments; rates ranged from 2.3 to 4.4 (mg/L)/d N. The electron donor supply, dissolved organic carbon, in the groundwater and springwater is sufficient to remove at least 1.1-1.4 mg/L nitrate as N in 20 to 30 days, as indicated by nitrous oxide production rates under ambient conditions (treatment 1). The even higher nitrate removal observed with addition of supplemental carbon in treatment 4 suggests that carbon is a limiting nutrient in this reaction. Denitrifying activity might explain the low ambient nitrate concentrations in the Upper Floridan aquifer in this area.
NASA Astrophysics Data System (ADS)
Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.
2001-12-01
Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.
McLain, B.J.
1993-01-01
Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.
Schrader, Tony P.
2015-01-01
Water samples were collected in the summer of 2012 from142 wells completed in the alluvial aquifer and measured onsite for specific conductance, temperature, and pH. Samples were collected from 94 wells for dissolved chloride analysis. Specific conductance ranged from 91 microsiemens per centimeter at 25 degrees Celsius (μS/cm at 25 °C) in Drew County to 984 μS/cm at 25 °C in Monroe County. The mean specific conductance was 547 μS/cm at 25 °C. Temperature ranged from 18.1 degrees Celsius (°C) in Crittenden County to 22.4 °C in Prairie County. The mean temperature was 22.1 °C. The pH ranged from 8.3 in Randolph County to 6.2 in Drew County and had a median of 7.3. Dissolved chloride concentrations ranged from 3.34 milligrams per liter (mg/L) in Randolph County to 182 mg/L in Lincoln County. The mean chloride concentration was 27.6 mg/L.
Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.
2006-01-01
As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which are not regulatory standards and are not legally enforceable values. All of the contaminants detected in this study were found at concentrations less than available human-health benchmarks. In the source waters sampled in phase 1, 10 contaminants of the approximately 260 measured were detected in samples collected from Eagle Valley, and 4 contaminants were detected in samples from Spanish Springs Valley. The most frequently detected compounds in the Eagle Valley source water were chloroform (a disinfection by-product), which was detected in samples from four wells, and deethylatrazine (a degradation product of the herbicide atrazine), which was detected in samples from three wells. Each of the four contaminants detected in the Spanish Springs Valley source waters was detected in samples from one well. The detection frequencies of VOCs and pesticides in samples from the SWQA wells were similar to those in samples from both shallow and deep monitoring wells in Carson City, Reno, and Spanish Springs. This indicates that the SWQA sampling is representative of the organic chemical compounds likely to be detected in the aquifers sampled. However, more organic compounds were detected at low frequencies and concentrations in samples from the monitoring wells than in samples from SWQA wells. Three contaminants were detected in one finished-water sample collected from Eagle Valley. Comparison of SWQA results in the Nevada Basin and Range Study Unit to results of an SWQA in the larger urban area of Salt Lake City showed that fewer anthropogenic compounds were detected in Eagle and Spanish Springs Valleys and generally at lower concentrations than in the Salt Lake City study.
Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.
Rodríguez-Martínez, Sarah; Sharaby, Yehonatan; Pecellín, Marina; Brettar, Ingrid; Höfle, Manfred; Halpern, Malka
2015-06-15
Bacteria of the genus Legionella cause water-based infections, resulting in severe pneumonia. To improve our knowledge about Legionella spp. ecology, its prevalence and its relationships with environmental factors were studied. Seasonal samples were taken from both water and biofilm at seven sampling points of a small drinking water distribution system in Israel. Representative isolates were obtained from each sample and identified to the species level. Legionella pneumophila was further determined to the serotype and genotype level. High resolution genotyping of L. pneumophila isolates was achieved by Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Within the studied water system, Legionella plate counts were higher in summer and highly variable even between adjacent sampling points. Legionella was present in six out of the seven selected sampling points, with counts ranging from 1.0 × 10(1) to 5.8 × 10(3) cfu/l. Water counts were significantly higher in points where Legionella was present in biofilms. The main fraction of the isolated Legionella was L. pneumophila serogroup 1. Serogroup 3 and Legionella sainthelensis were also isolated. Legionella counts were positively correlated with heterotrophic plate counts at 37 °C and negatively correlated with chlorine. Five MLVA-genotypes of L. pneumophila were identified at different buildings of the sampled area. The presence of a specific genotype, "MLVA-genotype 4", consistently co-occurred with high Legionella counts and seemed to "trigger" high Legionella counts in cold water. Our hypothesis is that both the presence of L. pneumophila in biofilm and the presence of specific genotypes, may indicate and/or even lead to high Legionella concentration in water. This observation deserves further studies in a broad range of drinking water systems to assess its potential for general use in drinking water monitoring and management. Copyright © 2015 Elsevier Ltd. All rights reserved.
A collaborative project commenced in August 2013 with the aim of demonstrating a range of techniques that can be used in tackling the problems of lead in drinking water. The main project was completed in March 2014, with supplementary sampling exercises in mid-2014. It involved t...
Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions
2006-11-29
water was thought to be contaminated. The FDA found perchlorate in roughly 90% of lettuce samples (average levels ranged from 11.9 ppb to 7.7 ppb for... lettuces in four states), and in 101 of 104 bottled milk samples (with an average level of 5.7 ppb across 14 states). 5 This research is relevant to
Dumouchelle, Denise H.
2006-01-01
In 2004, a public-health nuisance was declared by the Wayne County Board of Health in the Scenic Heights Drive-Batdorf Road area of Wooster Township, Wayne County, Ohio, because of concerns about the safety of water from local wells. Repeated sampling had detected the presence of fecal-indicator bacteria and elevated nitrate concentrations. In June 2006, the U.S. Geological Survey (USGS), in cooperation with the Ohio Environmental Protection Agency (Ohio EPA), collected and analyzed samples from some of the affected wells to help investigate the possibility of human-origin bacterial contamination. Water samples from 12 wells and 5 home sewage-treatment systems (HSTS) were collected. Bromide concentrations were determined in samples from the 12 wells. Samples from 5 of the 12 wells were analyzed for wastewater compounds. Total coliform, enterococci and Escherichia coli (E. coli) bacteria concentrations were determined for samples from 8 of the 12 wells. In addition, two microbial source-tracking tools that employ DNA markers were used on samples from several wells and a composite sample of water from five septic tanks. The DNA markers from the Enterococcus faecium species and the order Bacteroidales are associated with specific sources, either human or ruminant sources. Bromide concentrations ranged from 0.04 to 0.18 milligrams per liter (mg/L). No wastewater compounds were detected at concentrations above the reporting limits. Samples from the 12 wells also were collected by Ohio EPA and analyzed for chloride and nitrate. Chloride concentrations ranged from 12.6 to 61.6 mg/L and nitrate concentrations ranged from 2.34 to 11.9 mg/L (as N). Total coliforms and enterococci were detected in samples from 8 wells, at concentrations from 2 to 200 colony-forming units per 100 milliliters (CFU/100 mL) and 0.5 to 17 CFU/100 mL, respectively. E. coli were detected in samples from three of the eight wells, at concentrations of 1 or 2 CFU/100 mL. Tests for the human-specific marker of enterococci, the esp gene, were negative in the seven samples tested, including the composite sample of HSTS water. DNA with the general Bacteroidales marker was detected in samples from four wells, but the tests for both the human- and ruminant-associated markers were negative. The presence of the PCR (polymerase chain reaction) -detectable DNA for the general fecal Bacteroidales marker is indicative of fecal contamination and recently recharged water.
Dinh, Quoc Tuc; Alliot, Fabrice; Moreau-Guigon, Elodie; Eurin, Joëlle; Chevreuil, Marc; Labadie, Pierre
2011-09-15
This study presents the development of an automated on-line solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of 23 antibiotics in environmental water samples. After optimisation of LC-MS/MS conditions, SPE parameters such as sorbent type, sample pH or sample volume were optimised. Antibiotic recoveries ranged from 64% to 98% and compared favourably with those achieved using off-line SPE. Limits of detection were in the range 0.5-13.7 ng L(-1). This on-line SPE-LC-MS/MS procedure was applied to the analysis of water samples taken in three rivers within the Seine River basin, near Paris (France). The obtained results revealed the occurrence of 12 antibiotics, including tylosin, erythromycin, tetracycline, amoxicillin, trimethoprim, sulfamethoxazole, oxolinic acid, flumequine, norfloxacin, ciprofloxacin, ofloxacin, and vancomycin (2-1435 ng L(-1)). Copyright © 2011 Elsevier B.V. All rights reserved.
Xiong, Jukun; An, Taicheng; Zhang, Chaosheng; Li, Guiying
2015-06-01
The aim of this study was to assess the pollution profiles of various typical brominated flame retardants in water and surface sediment near a typical electronic waste dismantling region in southern China. We found that polybrominated diphenyl ethers (PBDEs), 2,4,6-tribromophenol (TBP), pentabromophenol (PeBP), tetrabromobisphenol A (TBBPA), and bisphenol A (BPA) were ubiquitous in the water and sediment samples collected in the study region. In water, Σ19PBDEs (sum of all 20 PBDE congeners studied except BDE-209, which was below the detection limit) levels ranged from 0.31 to 8.9 × 10(2) ng L(-1). TBP, PeBP, TBBPA, and BPA concentrations in the water samples ranged from not being detectable (nd-under the detection limit) to 3.2 × 10(2) (TBP), from nd to 37 (PeBP), from nd to 9.2 × 10(2) (TBBPA) and from nd-8.6 × 10(2) ng L(-1) (BPA). In sediment, Σ19PBDEs ranged from nd to 5.6 × 10(3) ng g(-1), while BDE-209 was the predominant congener, with a range of nd to 3.5 × 10(3) ng g(-1). Tri- to hepta-BDE concentrations were significantly (p < 0.01) correlated with each other, except for BDE-71 and BDE-183, and octa- to nona-BDEs concentrations were significantly (p < 0.05) correlated with each other, except for BDE-208. BDE-209 was not significantly correlated with tri- to nona-BDEs. Risk assessments indicated that the water and sediment across the sampling sites posed no estrogenic risk. However, different eco-toxicity risk degrees at three trophic levels did exist at most sampling sites.
Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar
2016-06-07
Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.
Cox, S.E.
2003-01-01
Estimates of residence time of ground water beneath Submarine Base Bangor and vicinity ranged from less than 50 to 4,550 years before present, based on analysis of the environmental tracers tritium, chlorofluorocarbons (CFCs), and carbon-14 (14C), in 33 ground-water samples collected from wells tapping the ground-water system. The concentrations of multiple environmental tracers tritium, CFCs, and 14C were used to classify ground water as modern (recharged after 1953), pre-modern (recharged prior to 1953), or indeterminate. Estimates of the residence time of pre-modern ground water were based on evaluation of 14C of dissolved inorganic carbon present in ground water using geochemical mass-transfer modeling to account for the interactions of the carbon in ground water with carbon of the aquifer sediments. Ground-water samples were obtained from two extensive aquifers and from permeable interbeds within the thick confining unit separating the sampled aquifers. Estimates of ground-water residence time for all ground-water samples from the shallow aquifer were less than 45 years and were classified as modern. Estimates of the residence time of ground water in the permeable interbeds within the confining unit ranged from modern to 4,200 years and varied spatially. Near the recharge area, residence times in the permeable interbeds typically were less than 800 years, whereas near the discharge area residence times were in excess of several thousand years. In the deeper aquifers, estimates of ground-water residence times typically were several thousand years but ranged from modern to 4,550 years. These estimates of ground-water residence time based on 14C were often larger than estimates of ground-water residence time developed by particle-tracking analysis using a ground-water flow model. There were large uncertainties?on the order of 1,000-2,000 years?in the estimates based on 14C. Modern ground-water tracers found in some samples from large-capacity production wells screened in the deeper aquifer may be the result of preferential ground-water pathways or induced downward flow caused by pumping stress. Spatial variations in water quality were used to develop a conceptual model of chemical evolution of ground water. Stable isotope ratios of deuterium and oxygen-18 in the 33 ground-water samples were similar, indicating similar climatic conditions and source of precipitation recharge for all of the sampled ground water. Oxidation of organic matter and mineral dissolution increased the concentrations of dissolved inorganic carbon and common ions in downgradient ground waters. However, the largest concentrations were not found near areas of ground-water discharge, but at intermediate locations where organic carbon concentrations were greatest. Dissolved methane, derived from microbial methanogenesis, was present in some ground waters. Methanogenesis resulted in substantial alteration of the carbon isotopic composition of ground water. The NETPATH geochemical model code was used to model mass-transfers of carbon affecting the 14C estimate of ground-water residence time. Carbon sources in ground water include dispersed particulate organic matter present in the confining unit separating the two aquifers and methane present in some ground water. Carbonate minerals were not observed in the lithologic material of the ground-water system but may be present, because they have been found in the bedrock of stream drainages that contribute sediment to the study area.
Hassan, Jalal; Manavi, Parisa Nejatkhah; Darabi, Elmira
2013-03-01
The concentrations of polychlorinated biphenyls (PCBs) were assessed at four sites in Khour-e-Mousa (Mah-Shahr), Iran. Sea water, sediment and fish (cynoglossus bilineatus) samples were taken at each site and were analysed for PCB levels. To investigate the possible source of PCBs found in fish samples, sediments and waters were collected from four sites (D1, D2, D3, and D4) and studied. The relationship between PCB concentrations in sediment, water and fish is discussed. The results indicate that PCBs are detected in all fish samples and its concentration range from 3.2 to 102.7 μg kg(-1) dry weight and 5.4-149.7 μg kg(-1) dry weight in cold and warm seasons, respectively. The D2 and D4 sites were found to have the highest and lowest levels of PCB concentrations, respectively. Total congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations at the sediment samples for D1, D2, D3, and D4 sites ranged from 1.6 to 30.9 μg kg(-1) dry weight and 2.3-47.1 μg kg(-1) dry weight in cold and warm seasons, respectively. The total PCB concentrations for D2 site were found to be significantly higher than other three sites. Total water congener PCB (CB, 28, 52, 44, 101, 149, 118, 153, 138, and 180) concentrations ranged from 0.01 to 0.25 μg L(-1) and 0.02-0.39 μg L(-1) in cold and warm seasons, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration
Mull, Bonnie; Hill, Vincent R.
2015-01-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.
Mull, Bonnie; Hill, Vincent R
2012-12-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.
Pinheiro, Anselmo de Souza; de Andrade, Jailson B
2009-10-15
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 microgL(-1), with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 microg L(-1) (lambda-cyhalothrin), 3.0-60.0 microg L(-1) (methyl parathion), 9.0-60.0 microg L(-1) (ethion), and 9.0-30.0 microg L(-1) (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n=26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 microg L(-1). The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.
Valls-Cantenys, Carme; Scheurer, Marco; Iglesias, Mònica; Sacher, Frank; Brauch, Heinz-Jürgen; Salvadó, Victoria
2016-09-01
A sensitive, multi-residue method using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine a representative group of 35 analytes, including corrosion inhibitors, pesticides and pharmaceuticals such as analgesic and anti-inflammatory drugs, five iodinated contrast media, β-blockers and some of their metabolites and transformation products in water samples. Few other methods are capable of determining such a broad range of contrast media together with other analytes. We studied the parameters affecting the extraction of the target analytes, including sorbent selection and extraction conditions, their chromatographic separation (mobile phase composition and column) and detection conditions using two ionisation sources: electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). In order to correct matrix effects, a total of 20 surrogate/internal standards were used. ESI was found to have better sensitivity than APCI. Recoveries ranging from 79 to 134 % for tap water and 66 to 144 % for surface water were obtained. Intra-day precision, calculated as relative standard deviation, was below 34 % for tap water and below 21 % for surface water, groundwater and effluent wastewater. Method quantification limits (MQL) were in the low ng L(-1) range, except for the contrast agents iomeprol, amidotrizoic acid and iohexol (22, 25.5 and 17.9 ng L(-1), respectively). Finally, the method was applied to the analysis of 56 real water samples as part of the validation procedure. All of the compounds were detected in at least some of the water samples analysed. Graphical Abstract Multi-residue method for the determination of micropollutants including pharmaceuticals, iodinated contrast media and pesticides in waters by LC-MS/MS.
See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J.
1995-01-01
Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill aquifers were investigated. Backfill and ground-water samples were collected at coal mines in the Powder River Basin, Wyoming. Backfill was generally dominated by aluminum (14,400 to 49,000 mg/kg (milligrams per kilogram)), iron (3,330 to 23,200 mg/kg), and potassium (7,950 to 18,000 mg/kg). Backfill saturated-paste selenium concentrations ranged from 1 to 156 mg/kg (microsiemens per kilogram). Ground-water total selenium concentrations ranged from 3 to 125 mg/L. Dissolved organic carbon in all ground-water samples was dominated by hydrophobic and hydrophilic acids (38 to 84 percent). Selenite sorption/desorption experiments were conducted using background solutions of distilled-deionized water, 0.1 molar calcium chloride, and isolated hydrophobic and hydrophilic acids. Selenite sorption was larger when 0.1 molar calcium chloride was used. The addition of hydrophilic acid decreased selenite sorption more than the addition of hydrophobic acids. Geochemical modelling was used to predict the solid phases controlling dissolved selenium concentrations and to evaluate the effects of dissolved organic carbon on selenium solubility. Results suggested that 55 to 90 percent of selenium in backfill precipitation/dissolution extracts was dominated by magnesium selenate ion pairs. Dissolved organic carbon had little effect on selenium speciation. A redox chamber was constructed to control Eh and pH in water and backfill-core sample suspensions. The response of selenite and selenate in water samples to redox conditions did not follow thermodynamic predictions. Reduction of selenate in water samples did not occur at any of the redox levels tested.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal).
Cordeiro, S; Coutinho, R; Cruz, J V
2012-08-15
High fluoride contents in the water supply of the city of Ponta Delgada, located in the volcanic island of São Miguel (Azores, Portugal) have been reported. Dental fluorosis in São Miguel has been identified and described in several medical surveys. The water supply in Ponta Delgada consists entirely of groundwater. A study was carried out in order to characterize the natural F-pollution of a group of springs (30) and wells (3), that are associated to active central volcanoes of a trachytic nature. Two springs known for their high content in fluoride were sampled, both located in the central volcano of Furnas. The sampled waters are cold, ranging from slightly acidic to slightly alkaline (pH range 6.53-7.60), exhibiting a low electrical conductivity (springs range 87-502 μS/cm; wells range 237-1761 μS/cm), and are mainly from the Na-HCO(3), Na-HCO(3)-Cl and Na-Cl-HCO(3) water types. Results suggest two main trends of geochemical evolution: silicate weathering, enhanced by CO(2) dilution, and seawater spraying. Fluoride contents range between 0.17 mg/L and 2 mg/L, and no seasonal variations were detected. Results in the sources of the water supply system are lower than those of the Furnas volcano, which reach 5.09 mgF/L, demonstrating the effect of F-rich gaseous emanations in this area. Instead, the higher fluoride contents in the water supply are mainly due to silicate weathering in aquifers made of more evolved volcanic rocks. Copyright © 2012 Elsevier B.V. All rights reserved.
Perez-Martinez, Iza; Aguilar-Ayala, Diana A; Fernandez-Rendon, Elizabeth; Carrillo-Sanchez, Alma K; Helguera-Repetto, Addy C; Rivera-Gutierrez, Sandra; Estrada-Garcia, Teresa; Cerna-Cortes, Jorge F; Gonzalez-Y-Merchand, Jorge A
2013-12-11
Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the "main house faucet" and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as "good quality" potable water. Household potable water may be a potential source of NTM infection in Mexico City.
Taylor, R. Lynn
1995-01-01
Depths and velocities, measured at sample points after benthic macroinvertebrate sampling, ranged from 0.03 to 0.30 meter and from 0.06 to 1.2 meters per second, respectively. Measurable stream discharge ranged from 0.01 to 0.27 cubic meter per second. During two of the sampling periods, no flow was at site 1.
Genuino, Homer C; Espino, Maria Pythias B
2012-04-01
Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.
Walia, Tarun; Abu Fanas, Salem; Akbar, Madiha; Eddin, Jamal; Adnan, Mohamad
2017-07-01
To assess fluoride concentration in drinking water which include tap water of 4 emirates - Abu Dhabi, Dubai, Sharjah and Ajman plus bottled water, commonly available soft drinks & juices in United Arab Emirates. Five different samples of tap water collected from each of the four emirates of UAE: Ajman, Sharjah, Abu Dhabi and Dubai; twenty-two brands of bottled water and fifteen brands of popular cold beverages, purchased from different supermarkets in U.A.E were tested using ion selective electrode method and the fluoride concentration was determined. The mean fluoride content of tap water samples was 0.14 mg F/L with a range of 0.04-0.3 mg F/L; with Ajman tap water samples showing the highest mean fluoride content of 0.3 mg F/L. The mean fluoride content for both bottled drinking water and beverages was 0.07 mg F/L with a range of 0.02-0.50 mg F/L and 0.04-0.1 mg F/L respectively. Majority (68.2%) of the bottled water are produced locally within U.A.E while a few (31.8%) are imported. The tap water, bottled water and beverages available in U.A.E show varying concentrations of fluoride, however none showed the optimal level necessary to prevent dental caries. Dental professionals in U.A.E should be aware of the fluoride concentrations before prescribing fluoride supplements to children.
Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia
2012-01-01
Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.
Analysis of perfluoroalkyl substances in waters from Germany and Spain.
Llorca, Marta; Farré, Marinella; Picó, Yolanda; Müller, Jutta; Knepper, Thomas P; Barceló, Damià
2012-08-01
Water has been identified as one of the main routes of human exposure to perfluoroalkyl substances (PFASs). This work assessed the presence of 21 PFASs along the whole water cycle using a new fast and cost effective analytical method based on an online sample enrichment followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated for different types of matrices (ultrapure water, tap water and treated wastewater). The quality parameters for the 21 selected compounds presented good limits of detection (LOD) and quantification (LOQ) ranging, in general, from 0.83-10 ng/L to 2.8-50 ng/L, respectively. The method was applied to assess the occurrence of PFASs in 148 water samples of different steps along the whole water cycle, including: mineral bottled water, tap water, river water and treated effluent wastewater, from Germany to Spain. In addition, in order to prove the good performance of the online analytical method, the analysis of PFASs was carried out in parallel using a method based on offline anionic solid phase extraction (SPE) followed by LC-MS/MS. Consistent results were obtained using both approaches. The more frequently found compounds were perfluoroalkyl acids, such as the perfluorobutanoic acid which was in the 54% of the tap water samples investigated with concentrations in the range between 2.4 and 27 ng/L, the perfluoroheptanoic acid (0.23-53 ng/L) and perfluorooctanoic acid (0.16-35 ng/L), and the sulphonate perfluorooctanesulfonate (0.04-258 ng/L) which was the second more frequent compound and also the compound found in with the higher concentration. It should be remarked that the 88% of the samples analyzed presented at least one of the compounds at quantifiable concentrations. In addition, PFASs including short chain compounds were proved to be prevalent in drinking water, and the 50% of the drinking water samples showed quantifiable concentrations of PFASs. It should be said that the great majority of the samples may not pose an immediate health risk to consumers, and just 6 of the drinking water samples presented concentrations of PFOS exceeding the Provisional Health Advisory (PHA) level established by the Office of Water from the USEPA for PFOS, which was set in 200 ng/L. Copyright © 2012 Elsevier B.V. All rights reserved.
Al-Sammak, Maitham Ahmed; Hoagland, Kyle D; Snow, Daniel D; Cassada, David
2013-12-15
Blue-green algae, also known as cyanobacteria, can produce several different groups of toxins in the environment including hepatotoxins (microcystins), neurotoxic non-protein amino acids β-methylamino-l-alanine (BMAA), and 2,4-diaminobutyric (DABA), as well as the bicyclic amine alkaloid anatoxin-a. Few studies have addressed the methods necessary for an accurate determination of cyanotoxins in environmental samples, and none have been published that can detect these cyanotoxins together in a single sample. Cyanotoxins occur in a wide range of environmental samples including water, fish, and aquatic plant samples. Using polymeric cation exchange solid phase extraction (SPE) coupled with liquid chromatography and fluorescence detection (HPLC/FD), and liquid chromatography ion trap tandem mass spectrometry (LC/MS/MS), these compounds can for the first time be simultaneously quantified in a variety of environmental sample types. The extraction method for biological samples can distinguish bound and free cyanotoxins. Detection limits for water ranged from 5 to 7 μg/L using HPLC/FD, while detection limits for and LC/MS were in the range of 0.8-3.2 μg/L. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yao, Bo; Li, Rui; Yan, Shuwen; Chan, Shen-An; Song, Weihua
2018-05-18
Steroid hormones (SHs) are continuously released into the aquatic environment through various pathways after being excreted by humans and animals, interfere with the normal function of the endocrine system and may affect the physiology and reproduction of exposed aquatic life. To conduct a nationwide investigation of the occurrence and biological effects of SHs in surface river/steam water in China, we quantitated 27 selected SHs in 217 surface water samples by solid-phase extraction (SPE) tandem LC-MS/MS and used a recombinant yeast estrogen assay to screen extracts of the water samples for estrogenic activities. SHs were commonly found in the surface water samples, and their levels were typically in the ng L -1 range. Estrone (E1) and estriol (E3) were normally present in several to dozens of times higher concentrations than estradiol (E2) and 17-a-Ethinylestradiol (EE2). The high concentrations (mean > 1 μg L -1 ) of Sum SHs were primarily obtained in areas under extreme water stress, specifically the eastern coastal areas. Source apportionment based on the profiles of the target compounds indicated that 54.5% of the SHs in target samples came from freshly discharged untreated sewage. The estrogen equivalent (EEQ (bio) ) values ranged from 0.01 to 40.27 ng L -1 , and the calculated EEQ (EEQ (cal) ) values were generally lower than the corresponding EEQ (bio) values for all samples. E2 was the main contributor to the estrogenicity among the three estrogens, with a contribution ratio of 82.8%. The risk quotient values of E2 were highest and ranged from 1.55 to 782.95, and 76.0% of the target surface samples displayed the greatest environmental risk. We concluded that the impacts of SHs on humans in Chinese surface waters should not be ignored and that certain actions should be taken to decrease the levels of SHs in source waters, especially measures targeting SHs in untreated wastewater from the vast rural areas. Copyright © 2018. Published by Elsevier Ltd.
Beckwith, Michael A.
2003-01-01
Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.
Salem, A A
2007-03-01
A newly developed method for determining three phenoxy acids and one carbamate herbicide in water and soil samples using gas chromatography with mass spectrometric detection is developed. Phenoxy acids are derivatized through a condensation reaction with a suitable aromatic amine. 1,1-Carbonyldiimidazole is used as a condensation reagent. Derivatization conditions are optimized with respect to the amount of analyte, amine, solvent, and derivatization reagent. The optimum derivatization yield is accomplished in acetonitrile. 4-Methoxy aniline is used as a derivatizing agent. Obtained derivatives are stable indefinitely. Enhancement in sensitivity is achieved by using the single-ion monitoring mass spectrometric mode. The effectiveness of the developed method is tested by determining investigated compounds in water and soil samples. Analytes are concentrated from water samples using liquid-phase extraction and solid-phase extraction. Soil samples are extracted using methanol. Detection limits of 1.00, 50.00, 100.00, and 1.00 ng/mL are obtained for 2-(1-methylethoxy)phenyl methylcarbamate (Baygon), 2-(3-chlorophenoxy)-propionic acid (Cloprop), 2,4,5-trichlorophenoxyacetic acid, and 4-(2,4-dichlorophenoxy)butyric acid, respectively. LPE for spiked water samples yields recoveries in the range of 60.6-95.7%, with relative standard deviation (RSD) values of 1.07-7.85% using single component calibration curves. Recoveries of 44.8-275.5%, with RSD values ranging from 1.43% to 8.61% were obtained using a mixed component calibration curves. SPE from water samples and soil samples showed low recoveries. The reason is attributed to the weak sorption capabilities of soil and Al(2)O(3).
Wang, Hexing; Wang, Na; Wang, Bin; Zhao, Qi; Fang, Hong; Fu, Chaowei; Tang, Chuanxi; Jiang, Feng; Zhou, Ying; Chen, Yue; Jiang, Qingwu
2016-03-01
A variety of antibiotics have been found in aquatic environments, but antibiotics in drinking water and their contribution to antibiotic exposure in human are not well-explored. For this, representative drinking water samples and 530 urine samples from schoolchildren were selected in Shanghai, and 21 common antibiotics (five macrolides, two β-lactams, three tetracyclines, four fluoquinolones, four sulfonamides, and three phenicols) were measured in water samples and urines by isotope dilution two-dimensional ultraperformance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Drinking water included 46 terminal tap water samples from different spots in the distribution system of the city, 45 bottled water samples from 14 common brands, and eight barreled water samples of different brands. Of 21 antibiotics, only florfenicol and thiamphenicol were found in tap water, with the median concentrations of 0.0089 ng/mL and 0.0064 ng/mL, respectively; only florfenicol was found in three bottled water samples from a same brand, with the concentrations ranging from 0.00060 to 0.0010 ng/mL; no antibiotics were found in barreled water. In contrast, besides florfenicol and thiamphenicol, an additional 17 antibiotics were detected in urine samples, and the total daily exposure doses and detection frequencies of florfenicol and thiamphenicol based on urine samples were significantly and substantially higher than their predicted daily exposure doses and detection frequencies from drinking water by Monte Carlo Simulation. These data indicated that drinking water was contaminated by some antibiotics in Shanghai, but played a limited role in antibiotic exposure of children.
Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil).
Segura, Fabiana Roberta; Nunes, Emilene Arusievicz; Paniz, Fernanda Pollo; Paulelli, Ana Carolina Cavalheiro; Rodrigues, Gabriela Braga; Braga, Gilberto Úbida Leite; Dos Reis Pedreira Filho, Walter; Barbosa, Fernando; Cerchiaro, Giselle; Silva, Fábio Ferreira; Batista, Bruno Lemos
2016-11-01
On November 5th, 2015, Samarco's iron mine dam - called Fundão - spilled 50-60 million m 3 of mud into Gualaxo do Norte, a river that belongs to Rio Doce Basin. Approximately 15 km 2 were flooded along the rivers Gualaxo do Norte, Carmo and Doce, reaching the Atlantic Ocean on November 22nd, 2015. Six days after, our group collected mud, soil and water samples in Bento Rodrigues (Minas Gerais, Brazil), which was the first impacted area. Overall, the results, water samples - potable and surface water from river - presented chemical elements concentration according to Brazilian environmental legislations, except silver concentration in surface water that ranged from 1.5 to 1087 μg L -1 . In addition, water mud-containing presented Fe and Mn concentrations approximately 4-fold higher than the maximum limit for water bodies quality assessment, according to Brazilian laws. Mud particle size ranged from 1 to 200 μm. SEM-EDS spot provided us some semi quantitative data. Leaching/extraction tests suggested that Ba, Pb, As, Sr, Fe, Mn and Al have high potential mobilization from mud to water. Low microbial diversity in mud samples compared to background soil samples. Toxicological bioassays (HepG2 and Allium cepa) indicated potential risks of cytotoxicity and DNA damage in mud and soil samples used in both assays. The present study provides preliminary information aiming to collaborate to the development of future works for monitoring and risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Chung-Ho; Lerch, Robert N.; Thurman, E. Michael; Garrett , Harold E.; George, Milon F.
2002-01-01
Balance (isoxaflutole, IXF) belongs to a new family of herbicides referred to as isoxazoles. IXF has a very short soil half-life (<24 h), degrading to a biologically active diketonitrile (DKN) metabolite that is more polar and considerably more stable. Further degradation of the DKN metabolite produces a nonbiologically active benzoic acid (BA) metabolite. Analytical methods using solid phase extraction followed by high-performance liquid chromatography−UV (HPLC-UV) or high-performance liquid chromatography−mass spectrometry (HPLC-MS) were developed for the analysis of IXF and its metabolites in distilled deionized water and ground water samples. To successfully detect and quantify the BA metabolite by HPLC-UV from ground water samples, a sequential elution scheme was necessary. Using HPLC-UV, the mean recoveries from sequential elution of the parent and its two metabolites from fortified ground water samples ranged from 68.6 to 101.4%. For HPLC-MS, solid phase extraction of ground water samples was performed using a polystyrene divinylbenzene polymer resin. The mean HPLC-MS recoveries of the three compounds from ground water samples spiked at 0.05−2 μg/L ranged from 100.9 to 110.3%. The limits of quantitation for HPLC-UV are approximately 150 ng/L for IXF, 100 ng/L for DKN, and 250 ng/L for BA. The limit of quantitation by HPLC-MS is 50 ng/L for each compound. The methods developed in this work can be applied to determine the transport and fate of Balance in the environment.
Lin, Chung-Ho; Lerch, Robert N; Thurman, E Michael; Garrett, Harold E; George, Milon F
2002-10-09
Balance (isoxaflutole, IXF) belongs to a new family of herbicides referred to as isoxazoles. IXF has a very short soil half-life (<24 h), degrading to a biologically active diketonitrile (DKN) metabolite that is more polar and considerably more stable. Further degradation of the DKN metabolite produces a nonbiologically active benzoic acid (BA) metabolite. Analytical methods using solid phase extraction followed by high-performance liquid chromatography-UV (HPLC-UV) or high-performance liquid chromatography-mass spectrometry (HPLC-MS) were developed for the analysis of IXF and its metabolites in distilled deionized water and ground water samples. To successfully detect and quantify the BA metabolite by HPLC-UV from ground water samples, a sequential elution scheme was necessary. Using HPLC-UV, the mean recoveries from sequential elution of the parent and its two metabolites from fortified ground water samples ranged from 68.6 to 101.4%. For HPLC-MS, solid phase extraction of ground water samples was performed using a polystyrene divinylbenzene polymer resin. The mean HPLC-MS recoveries of the three compounds from ground water samples spiked at 0.05-2 microg/L ranged from 100.9 to 110.3%. The limits of quantitation for HPLC-UV are approximately 150 ng/L for IXF, 100 ng/L for DKN, and 250 ng/L for BA. The limit of quantitation by HPLC-MS is 50 ng/L for each compound. The methods developed in this work can be applied to determine the transport and fate of Balance in the environment.
Influence of In-Well Convection on Well Sampling
Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.
2006-01-01
Convective transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. Convective flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the convective cell. The convective movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a convecting well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the convection on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, convective circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple baffle systems.
Castro-Hermida, José Antonio; González-Warleta, Marta; Mezo, Mercedes
2015-01-01
The objectives of this cross-sectional study were to detect the presence of Cryptosporidium spp. and Giardia duodenalis in drinking water treatments plants (DWTPs) in Galicia (NW Spain) and to identify which species and genotype of these pathogenic protozoans are present in the water. Samples of untreated water (surface or ground water sources) and of treated drinking water (in total, 254 samples) were collected from 127 DWTPs and analysed by an immunofluorescence antibody test (IFAT) and by PCR. Considering the untreated water samples, Cryptosporidium spp. were detected in 69 samples (54.3%) by IFAT, and DNA of this parasite was detected in 57 samples (44.8%) by PCR, whereas G. duodenalis was detected in 76 samples (59.8%) by IFAT and in 56 samples (44.0%) by PCR. Considering the treated drinking water samples, Cryptosporidium spp. was detected in 52 samples (40.9%) by IFAT, and the parasite DNA was detected in 51 samples (40.1%) by PCR, whereas G. duodenalis was detected in 58 samples (45.6%) by IFAT and in 43 samples (33.8%) by PCR. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0% in all samples analysed. Cryptosporidium andersoni, C. hominis, C. parvum and assemblages A-I, A-II, E of G. duodenalis were identified. The results indicate that Cryptosporidium spp. and G. duodenalis are widespread in the environment and that DWTPs are largely ineffective in reducing/inactivating these pathogens in drinking water destined for human and animal consumption in Galicia. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination. Copyright © 2014 Elsevier GmbH. All rights reserved.
Dumouchelle, D.H.
1999-01-01
In 1998, 25 samples of ground water from the Lockport Dolomite in western Ohio were analyzed for major ions, trace elements, and arsenic. Samples were collected from residential wells in Darke, Miami, Montgomery, and Preble Counties. The water sampled was untreated, except perhaps for water from one well. In general, samples from the northern part of the study area had the highest concentrations of common constituents such as calcium, magnesium, potassium, sulfate, boron, and strontium. Iron and strontium concentrations were generally high throughout the study area, with median concentrations of 4,500 ?g/L (micrograms per liter) and 1,500 ?g/L, respectively. Arsenic concentrations, which ranged from less than 1 ?g/L to 29 ?g/L, did not exceed the drink ing-water standard of 50 ?g/L.
FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE BOTTLED DRINKING WATER IN BANGKOK, THAILAND.
Rirattanapong, Praphasri; Rirattanapong, Opas
2016-09-01
The use of bottled drinking water may be a source of fluoride and could be a risk factor for fluorosis among infants and young children. The aim of this study was to evaluate the fluoride content of commercially available bottled drinking water in Bangkok, Thailand. Forty-five water samples (15 samples of plain water and 30 samples of mineral water) were purchased from several supermarkets in Bangkok, Thailand. Three bottles of each water sample were purchased, and the fluoride content of each sample was measured twice using a combination fluoride-ion selective electrode. The average reading for each sample was then calculated. Data were analyzed by descriptive statistics. Differences between mineral and plain water samples were determined by Student’s t-test. The mean (±SD) fluoride content for all the water samples was 0.17 (±0.17) mg F/l (range: 0.01-0.89 mg F/l). Six brands (13%) tested stated the fluoride content on the label. The actual fluoride content in each of their brands varied little from the label. Eight samples (18%) had a fluoride content >0.3 mg F/l and two samples (4%) had a fluoride content >0.6 mg F/l. The mean mineral water fluoride concentration was significantly higher than the mean fluoride concentration of plain water (p=0.001). We found commercially sold bottled drinking water in Bangkok, Thailand contained varying concentrations of fluoride; some with high concentrations of fluoride. Health professions need to be aware this varying fluoride content of bottled drinking water and educate the parents of infants and small children about this when prescribing fluoride supplements. Consideration should be made to have fluoride content put on the label of bottled water especially among brands with a content >0.3 mg F/l.
Bach, Cristina; Boiteux, Virginie; Hemard, Jessica; Colin, Adeline; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier
2016-05-27
Here, we developed and validated a headspace-solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) method for the determination of 14 volatile perfluorinated alkylated substances (PFASs) in water and sediment samples according to SANTE 11945/2015 guidelines. Three fluorotelomer alcohols (FTOHs), two perfluoroalkyl iodides (PFIs), three fluorotelomer iodides (FTIs), four fluorotelomer acrylates and methacrylates (FTACs and FTMACs) and two perfluoroalkyl sulfonamides (FASAs) were analysed simultaneously to assess the occurrence of these compounds from their emission sources to the outlets in water treatment plants. Several SPME parameters were optimised for both water and sediment to maximise responses and keep analysis time to a minimum. In tap water, the limits of quantification (LOQs) were found to be between 20ng/L and 100ng/L depending on the analyte, with mean recoveries ranging from 76 to 126%. For sediments, LOQs ranged from 1 to 3ng/g dry weight depending on the target compound, with mean recoveries ranging from 74 to 125%. SPME considerably reduced sample preparation time and its use provided a sensitive, fast and simple technique. We then used this HS-SPME-GC/MS method to investigate the presence of volatile PFASs in the vicinity of an industrial facility. Only 8:2 FTOH and 10:2 FTOH were detected in a few water and sediment samples at sub-ppb concentration levels. Moreover, several non-target fluorotelomers (12:2 FTOH, 14:2 FTOH and 10:2 FTI) were identified in raw effluent samples. These long-chain fluorotelomers have high bioaccumulative potential in the aquatic environment compared with short-chain fluorotelomers such as 6:2 FTOH and 6:2 FTI. Copyright © 2016 Elsevier B.V. All rights reserved.
DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY
The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...
Montiel-León, Juan Manuel; Duy, Sung Vo; Munoz, Gabriel; Amyot, Marc; Sauvé, Sébastien
2018-04-01
A study was initiated to investigate a fast and reliable method for the determination of selected systemic insecticides in water matrixes and to evaluate potential sources of bias in their analysis. Acetamiprid, clothianidin, desnitro-imidacloprid, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam were amenable to analysis via on-line sample enrichment hyphenated to ultra-high-performance liquid chromatography tandem mass spectrometry. The selection of on-line solid-phase extraction parameters was dictated by a multicriterion desirability approach. A 2-mL on-line injection volume with a 1500 μL min -1 loading flow rate met the objectives sought in terms of chromatographic requirements, extraction efficiency, sensitivity, and precision. A total analysis time of 8 min per sample was obtained with method limits of detection in the range of 0.1-5 ng L -1 for the scope of targeted analytes. Automation at the sample concentration step yielded intraday and interday precisions in the range of 1-23 and 2-26%, respectively. Factors that could affect the whole method accuracy were further evaluated in matrix-specific experiments. The impact of the initial filtration step on analyte recovery was evaluated in ultra-pure water, tap water, and surface water. Out of the nine membranes tested, glass fiber filters and polyester filters appeared as the most appropriate materials. Sample storage stability was also investigated across the three matrix types; the targeted analytes displayed suitable stability during 28 days at either 4 °C or - 20 °C, with little deviations (± 10%) with respect to the initial T 0 concentration. Method applicability was demonstrated in a range of tap water and surface water samples from the province of Québec, Canada. Results from the present survey indicated a predominance of thiamethoxam (< 0.5-10 and 3-61 ng L -1 in tap water and river water, respectively), clothianidin (< 0.5-6 and 2-88 ng L -1 in tap water and river water, respectively), and imidacloprid (< 0.1-1 and 0.8-38 ng L -1 in tap water and river water, respectively) among the targeted analytes. Graphical abstract ᅟ Development of solid-phase extraction coupled on-line to UHPLC-MS/MS for the rapid screening of systemic insecticides in water.
Lithium in the Natural Waters of the South East of Ireland
Kavanagh, Laurence; Keohane, Jerome; Cleary, John; Garcia Cabellos, Guiomar; Lloyd, Andrew
2017-01-01
The South East of Ireland (County Carlow) contains a deposit of the valuable lithium-bearing mineral spodumene (LiAl(SiO3)2). This resource has recently attracted interest and abstractive mining in the area is a possibility for the future. The open cast mining of this resource could represent a potential hazard in the form of metalliferous pollution to local water. The population of County Carlow is just under 60,000. The local authority reports that approximately 75.7% of the population’s publicly supplied drinking water is abstracted from surface water and 11.6% from groundwater. In total, 12.7% of the population abstract their water from private groundwater wells. Any potential entry of extraneous metals into the area’s natural waters will have implications for people in county Carlow. It is the goal of this paper to establish background concentrations of lithium and other metals in the natural waters prior to any mining activity. Our sampling protocol totaled 115 sites along five sampling transects, sampled through 2015. From this dataset, we report a background concentration of dissolved lithium in the natural waters of County Carlow, surface water at x¯ = 0.02, SD = 0.02 ranging from 0 to 0.091 mg/L and groundwater at x¯ = 0.023, SD = 0.02 mg/L ranging from 0 to 0.097 mg/L. PMID:28587126
Lithium in the Natural Waters of the South East of Ireland.
Kavanagh, Laurence; Keohane, Jerome; Cleary, John; Garcia Cabellos, Guiomar; Lloyd, Andrew
2017-05-26
The South East of Ireland (County Carlow) contains a deposit of the valuable lithium-bearing mineral spodumene (LiAl(SiO₃)₂). This resource has recently attracted interest and abstractive mining in the area is a possibility for the future. The open cast mining of this resource could represent a potential hazard in the form of metalliferous pollution to local water. The population of County Carlow is just under 60,000. The local authority reports that approximately 75.7% of the population's publicly supplied drinking water is abstracted from surface water and 11.6% from groundwater. In total, 12.7% of the population abstract their water from private groundwater wells. Any potential entry of extraneous metals into the area's natural waters will have implications for people in county Carlow. It is the goal of this paper to establish background concentrations of lithium and other metals in the natural waters prior to any mining activity. Our sampling protocol totaled 115 sites along five sampling transects, sampled through 2015. From this dataset, we report a background concentration of dissolved lithium in the natural waters of County Carlow, surface water at x ¯ = 0.02, SD = 0.02 ranging from 0 to 0.091 mg/L and groundwater at x ¯ = 0.023, SD = 0.02 mg/L ranging from 0 to 0.097 mg/L.
NASA Astrophysics Data System (ADS)
Msilimba, Golden; Wanda, Elijah M. M.
In Malawi, shallow wells constitute the most important water sources for domestic purposes. However, increasing human population coupled with poor sanitation and infrastructure is undermining the quality of shallow well water. An assessment of microbial and geochemical quality of shallow well water in high-density areas of Zolozolo, Ching’ambo and Chiputula in Mzuzu City, Northern Malawi, has been carried out. The study aimed at characterising domestic water sources, identifying possible sources of water contamination and determining levels of microbial and chemical contamination. Arc-view GIS was used to map the water sources. A questionnaire survey was carried out to elicit information on characteristics of drinking water sources. Water samples were collected from quasi-randomly selected shallow wells and analysed for microbial and chemical parameters using standard methods. HCA, performed using R-programme, was used to group sampled sites according to their bio-physicochemical characteristics. Compliance of the water with MBS/WHO water quality guidelines was determined. The WQI was computed to turn multifaceted data obtained from laboratory analyses into simple information that is comprehensible and useable by the public to assess overall quality of water at a specific water points. The GW-chart was used to show hydrogeochemical water types from each sampled site. Microbial analysis revealed that water from 96.3% of shallow wells recorded faecal coliforms ranging from 129 to 920 cfu per 100 ml which were significantly higher than the Malawi Standards and WHO thresholds. In general, shallow well water is of low mineralisation (EC range 80-500 μS cm-1), with hydrogeochemical facies dominated by Ca-HCO3, which evolves to Ca-Cl water type. The shallow well water registered a WQI range of 50.16-66.04%, with a medium WQ rating. This suggested that the water obtained from the shallow wells is unsuitable for direct human consumption. It was observed that 100% of the shallow wells were at risk of pollution from onsite sanitation because of their proximity to sanitary facilities. It was strongly recommended that onsite treatment interventions have to be mobilised and initiated to protect the households from further possible consequences of using the water.
Moukas, Athanasios I; Thomaidis, Nikolaos S; Calokerinos, Antony C
2016-01-01
This study presents the development, optimization, and validation of a novel method for the determination of polychlorinated naphthalenes (PCNs) by liquid chromatography-atmospheric pressure photoionization (APPI), using toluene as dopant. The mass spectra of PCN 52, 54, 66, 67, 73, and 75 were recorded in negative ionization. The base ions corresponded to [M-Cl+O](-), where M is the analyte molecule. A strategy, which includes designs of experiments, for the development, the evaluation, and the optimization of the LC-APPI-MS/MS methods is also described. Finally, a highly sensitive method with low instrumental limits of detection (LoDs), ranging from 0.8 pg for PCN 75 to 16 pg for PCN 54 on column, was validated. A Thermo Hypersil Green PAH (100 mm × 2.1 mm, 3 μm) column was used with acetonitrile/water/methanol as mobile phase. The method was applied for the determination of the selected PCNs in surface and tap water samples. A simple liquid-liquid extraction method for the extraction of PCNs from water samples was used. Method LoQs ranged from 29 ng L(-1), for PCN 73, to 63 ng L(-1), for PCN 54, and the recoveries ranged from 97 to 99%, for all congeners. This is the first LC-APPI-MS/MS method for the determination of PCNs in water samples.
Sagona, Jessica A; Dukett, James E; Hawley, Harmonie A; Mazurek, Monica A
2014-10-03
Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks. Here, we discuss a dual derivatization method with PFBHA and BSTFA which targets only organic compounds that contain functional groups reacting with both reagents. The method also reduced potential contamination by minimizing the amount of sample processing from the field through the GCMS analysis steps. Once derivatized only gas chromatographic separation and selected ion monitoring (SIM) are needed to identify and quantify the polar organic compounds of interest. Concentrations of the detected total keto-acids in individual cloud water samples ranged from 27.8 to 329.3ngmL(-1) (ppb). Method detection limits for the individual HPOC ranged from 0.17 to 4.99ngmL(-1) and the quantification limits for the compounds ranged from 0.57 to 16.64ngmL(-1). The keto-acids were compared to the total organic carbon (TOC) results for the cloud water samples with concentrations of 0.607-3.350mgL(-1) (ppm). GCMS analysis of all samples and blanks indicated good control of the entire collection and analysis steps. Selected ion monitoring by GCMS of target keto-acids was essential for screening the complex organic carbon mixtures present at low ppb levels in cloud water. It was critical for ensuring high levels of quality assurance and quality control and for the correct identification and quantification of key marker compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu
2013-08-01
The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).
NASA Astrophysics Data System (ADS)
Birawida, A. B.; Selomo, M.; Mallongi, A.
2018-05-01
Coliform bacteria are suspected to come from faeces. As a result, their presence in various places ranging from drinking water, foodstuffs or other ingredients to human needs are not expected. This research aimed to describe bacterial contaminations, depot sanitations, equipment sanitations, worker hygiene, raw water quality, and refill drinking water in Barrang Lompo island in 2017. The observational research applied descriptive approach. Water samples collected grab from the drinking water depot taps, then examined using Most Probable Number (MPN) method. The results showed that three of six depots have qualified drinking water quality. Raw water samples from all depots indicated that none were eligible. The samples examined contained gram-negative bacteria. The types of bacteria that grew on the sample were Klebsiella pneumonia and Pseudomonas aerogenosa. In the environmental sanitation depots and worker hygiene, there was no one eligible. Sanitary appliances were all eligible and there were depots that used reserve osmosis methods and used combination methods between reserve osmosis and ultraviolet light. It was concluded that almost all samples of drinking water were contaminated by bacteria. Owners and depot workers were advised to improve and implement better hygiene and sanitation.
Ali, Arshad; Leckel, Robert J; Jahan, Nusrad; Al-Shami, Salman A; Rawi, Che Salmah Md
2009-03-01
A 1-year larval and adult population survey of pestiferous chironomids was conducted in 4 man-made wetlands in a resort area of central Florida, USA. Benthic samples were randomly collected from each wetland at least once every month. Geocoordinates, water depth, and physical composition of substrates at each larval sample location were noted. Adult midge populations were sampled weekly around the wetlands by employing 10 New Jersey light traps permanently placed in the area. Chironominae and Tanypodinae midges occurred in the larval and adult samples; a few Orthocladiinae were also taken. Among Chironominae, Chironomini (mostly Polypedilum spp., Cryptochironomus spp., Glyptotendipes paripes, and Goeldichironomus carus) and Tanytarsini (mostly Tanytarsus spp.), and some other Chironomidae were recorded. Tanypodinae were quantitatively not important. Monthly mean number of total adults per trap-night ranged from 23 in February to 211 in October. Annual mean larval density and range of total chironomids in the study wetlands amounted to 1,128/m2, range: 0-12,332/m2. The total larvae were most abundant in May. Tanytarsus spp. and Polypedilum spp. were numerically the most predominant spatially as well as temporally. Mean water depth at the sampled locations was 1.83 m (range: <1-8.75 m); 47% of the total collected larvae occurred at <1-m water depth and 53% at >1-m-deep water. Of all sampled locations, substrates such as sand, mixed substrates, and muck were respectively encountered at 656, 371, and 299 locations. The predominance of sand and mixed substrates was conducive to supporting the numerically dominant Tanytarsus spp. and Polypedilum spp. In laboratory bioassays, Tanytarsus spp., Polypedilum spp., Glyptotendipes paripes, and Goeldichironomus carus were highly susceptible to temephos, as well as to s-methoprene. Bacillus thuringiensis serovar. israelensis was most effective against Tanytarsus spp. and least against Goeldichironomus carus.
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.
2011-01-01
This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.
Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma
Kurklin, J.K.
1990-01-01
Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.
Development of an enzyme-linked immunosorbent assay for the detection of dicamba.
Clegg, B S; Stephenson, G R; Hall, J C
2001-05-01
A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzing, Shin-Hwa; Chang, Jia-Yaw; Ling, Yong-Chien
2004-03-31
A method has been developed for the determination of endocrine disruptors (EDs) (containing hydroxyl groups) in surface water from different sources. The surface water samples from different sites including school and local dormitory sewage effluents, lake water and river water were collected and analyzed. In this method, the pretreated sample is directly analyzed by GC-MS using on-line derivatization, where tetramethylammonium hydroxide (TMA-OH) was used as the derivatizing agent. Use of large-volume direct sample introduction (DSI) and co-injection of the sample and TMAOH avoids external contaminations as observed in conventional derivatization protocols. Additionally, the use of chemical ionization (CI) and CI-MS/MSmore » could enable detection of EDs at lower concentrations and reduce the matrices' interference thereby enhancing detection sensitivity of EDs for quantification. In this work, the use of dichloromethane as CI reagent for EDs is reported for the first time and could detect EDs to concentrations as low as 0.5 pg/mL. The recovery ranged from 74 to 112 % and the relative standard derivations for replicate analyses ranged from 5 to 17 %. We hope that this method will be applicable for routine analysis of EDs with hydroxyl functional groups.« less
Hexagonal ice in pure water and biological NMR samples.
Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H
2017-01-01
Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu
2015-05-22
Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were <4.82% and <7.04%, respectively. The proposed method was successfully applied to determine the three fungicides in real water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
A role for high frequency hydrochemical sampling in long term ecosystem studies
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2007-12-01
Monitoring of surface waters for major chemical constituents is needed to assess long-term trends and responses to ecological disturbance. However, the typical fixed-interval (weekly, monthly, or quarterly) sampling schemes of most long-term ecosystem studies may not capture the full range of stream chemical variation and do not always provide enough information to discern the landscape processes that control surface water chemistry and solute loadings. To expand upon traditional hydrochemical monitoring, we collected high frequency event-based surface water samples at an upland, forested basin of the Sleepers River Research Watershed (Vermont, USA), one of five intensively studied sites in the Water, Energy, and Biogeochemical Budgets (WEBB) program of the US Geological Survey. We present several examples that highlight the importance of linking long-term weekly data with intensive, high frequency sampling. We used end-member mixing analysis and isotopic approaches to trace sources of stream nutrients (e.g. nitrate, dissolved organic carbon) and quantified how atmospheric pollutants (e.g. nitrogen, sulfate, and mercury) affect stream chemistry. High frequency sampling generates large numbers of samples and is both labor and resource intensive but yields insights into ecosystem functions that are not readily discerned from less-frequent sampling. As the ecological community contemplates the scope and foci of environmental observatories as benchmarks for deciphering the effects of natural and anthropogenic change, incorporating high frequency hydrochemical sampling will further our understanding of ecosystem functions across a range of ecosystem types and disturbance effects.
Taylor, R. Lynn; Ferreira, Rodger F.
1995-01-01
Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during April-September 1989. Benthic macroinvertebrate, periphyton, and phytoplankton communities were sampled at three sites along the Olmos Creek/San Antonio River system. Total mean densities of benthic macroinvertebrates for the three sites ranged from 670 to 10,000 organisms per square meter. The most abundant macroinvertebrates were the class Insecta (insects). Total densities of periphyton ranged from 2,900 to 110,000 cells per square millimeter. Cyanophyta (blue-green algae) and Bacillariophyta (diatoms) were the predominant periphyton organisms. Total densities of phyto- plankton ranged from 5,000 to 47,000 cells per square milliliter. Blue-green algae accounted for more than one- half of the phytoplankton in each sample. Hardness ranged from 160 to 250 milligrams per liter as calcium carbonate, and alkalinity ranged from 130 to 220 milligrams per liter as calcium carbonate. The largest dissolved nitrite concentration was 0.038 milligram per liter. The largest total phosphorus concentration was 0.150 milligram per liter, over one-half of which was dissolved orthophosphate. Total aluminum and total iron were the only trace elements in water to exceed the reporting threshold by large concen- trations. Total aluminum concentrations ranged from 70 to 280 micrograms per liter, and total iron concentrations ranged from 70 to 340 micrograms per liter. Lead was the most prominent trace element in bottom-material samples, with concentrations ranging from 30 to 230 micrograms per gram.
Brown, William M.; Kockelman, William J.; Ziony, Joseph I.
1986-01-01
Hydrologic data were collected at White Sands Missile Range, NM, in 1985. The total groundwater withdrawal in 1985 was 676,433 ,800 gallons. The 11 supply wells in the Post Headquarters well field produced 642,056,000 gallons, or about 95 percent of the total. The six Range area supply wells produced 34,377,800 gallons. The total groundwater withdrawal was 8,841,200 gallons less in 1985 than 1984. Water samples from six Post Headquarters supply wells were collected for major chemical analysis. Water samples from 19 other wells were collected for pH and specific-conductance analysis. Depth-to-water measurements in the Post Headquarters supply wells showed seasonal fluctuations as well as continued long-term declines. (USGS)
Antonijevic, Evica; Mandinic, Zoran; Curcic, Marijana; Djukic-Cosic, Danijela; Milicevic, Nemanja; Ivanovic, Mirjana; Carevic, Momir; Antonijevic, Biljana
2016-06-01
This study explores relation between dental fluorosis occurrence in schoolchildren, residents of Ritopek, a small local community near Belgrade, and fluoride exposure via drinking water. Additionally, fluoride levels were determined in children's urine and hair samples, and efforts were made to correlate them with dental fluorosis. Dental fluorosis and caries prevalence were examined in a total of 52 schoolchildren aged 7-15 years (29 boys and 23 girls). Fluoride levels in three types of samples were analyzed using composite fluoride ion-selective electrode. Results showed high prevalence of dental fluorosis (34.6 %) and low prevalence of dental caries (23.1 %, mean DMFT 0.96) among children exposed to wide range of water fluoride levels (0.11-4.14 mg/L, n = 27). About 11 % of water samples exceeded 1.5 mg/L, a drinking-water quality guideline value for fluoride given by the World Health Organization (2006). Fluoride levels in urine and hair samples ranged between 0.07-2.59 (n = 48) and 1.07-19.83 mg/L (n = 33), respectively. Severity of dental fluorosis was positively and linearly correlated with fluoride levels in drinking water (r = 0.79). Fluoride levels in urine and hair were strongly and positively correlated with levels in drinking water (r = 0.92 and 0.94, respectively). Fluoride levels in hair samples appeared to be a potentially promising biomarker of fluoride intake via drinking water on one hand, and severity of dental fluorosis on the other hand. Based on community fluorosis index value of 0.58, dental fluorosis revealed in Ritopek can be considered as "borderline" public health issue.
Kumar, Ajay; Kaur, Manpreet; Mehra, Rohit; Sharma, Dinesh Kumar; Mishra, Rosaline
2017-10-01
The level of radon concentration has been assessed using the Advanced SMART RnDuo technique in 30 drinking water samples from Jammu district, Jammu and Kashmir, India. The water samples were collected from wells, hand pumps, submersible pumps, and stored waters. The randomly obtained 14 values of radon concentration in water sources using the SMART RnDuo technique have been compared and cross checked by a RAD7 device. A good positive correlation (R = 0.88) has been observed between the two techniques. The overall value of radon concentration in various water sources has ranged from 2.45 to 18.43 Bq L, with a mean value of 8.24 ± 4.04 Bq L, and it agreed well with the recommended limit suggested by the European Commission and UNSCEAR. However, the higher activity of mean radon concentration was found in groundwater drawn from well, hand and submersible pumps as compared to stored water. The total annual effective dose due to radon inhalation and ingestion ranged from 6.69 to 50.31 μSv y with a mean value of 22.48 ± 11.03 μSv y. The total annual effective dose was found to lie within the safe limit (100 μSv y) suggested by WHO. Heavy metal analysis was also carried out in various water sources by using an atomic absorption spectrophotometer (AAS), and the highest value of heavy metals was found mostly in groundwater samples. The obtained results were compared with Indian and International organizations like WHO and the EU Council. Among all the samples, the elemental analysis is not on the exceeding side of the permissible limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, R.G.
1979-05-01
During the summers of 1976, 1977, and 1978, 598 water and 1657 sediment samples were collected from 1775 locations within the 19,600-km/sup 2/ area of the Cortez Quadrangle, Colorado and Utah. Water samples were collected from streams, springs, and wells; sediment samples were collected from stream channels (wet and dry) and from springs. Each water sample was analyzed for 13 elements, and each sediment sample was analyzed for 43 elements. Uranium concentrations in water samples range from below the detection limit of 0.02 to 241.47 ppB and have a median of 0.87 ppB and a mean of 3.80 ppB. Backgroundmore » uranium concentrations are 2 to 5 ppB in several nonmountainous regions but are much lower in mountainous areas, particularly in the northeastern portion of the quadrangle. Water samples containing high uranium concentrations (>20 ppB) generally are associated with high conductivities, high concentrations of other metallic elements, and geologic units, such as the Mancos shale, that are unfavorable for uranium mineralization. However, four ground-water samples exhibit high uranium concentrations without concomitant high conductivities or high concentrations of other metallic elements. Two of these samples were collected from sites in the Slick Rock U--V district, and two were collected in the Morrison formation in the southern portion of the quadrangle where large uranium deposits are not known. Water samples collected from the northwestern corner of the quadrangle uniformly exhibit background uranium values but generally contain high nickel concentrations. In this area, U--Cu (White Canyon-type) deposits are hosted primarily by the Shinarump member of the Chinle formation. Uranium concentrations in sediment samples range from 0.51 to 76.41 ppM and have a median of 2.76 ppM and a mean of 3.08 ppM. Background uranium and metallic element concentrations decrease to the southwest from the highest values in the northeastern portion of the quadrangle.« less
NASA Technical Reports Server (NTRS)
Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick
2000-01-01
We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.
Peng, Guilong; He, Qiang; Al-Hamadani, Sulala M Z F; Zhou, Guangming; Liu, Mengzi; Zhu, Hui; Chen, Junhua
2015-05-01
Dispersive liquid-liquid microextraction with solidification of a floating organic droplet (DLLME-SFO) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was applied for the determination of thiamphenicol (TAP), florfenicol (FF) in water samples. 1-Undecanol was used as the extraction solvent which has lower density than water, low toxicity, and low melting point (19°C). A mixture of 800mL acetone (disperser solvent) and 80µL of 1-undecanol (extraction solvent) was injected into 20mL of aqueous solution. After 5min, 0.6g of NaCl was added and the sample vial was shaken. After 5min, the sample was centrifuged at 3500rpm for 3min, and then placed in an ice bath. When the extraction solvent floating on the aqueous solution had solidified, it was transferred into another conical vial where it was melted quickly at room temperature, and was diluted with methanol to 1mL, and analyzed by HPLC-UV detection. Parameters influencing the extraction efficiency were thoroughly examined and optimized. The extraction recoveries (ER) and the enrichment factors (EF) ranged from 67% to 72% and 223 to 241, respectively. The limits of detection (LODs) (S/N=3) were 0.33 and 0.56µgL(-1) for TAP and FF, respectively. Linear dynamic range (LDR) was in the range of 1.0-550µgL(-1) for TAP and 1.5-700µgL(-1) for FF, the relative standard deviations (RSDs) were in the range of 2.6-3.5% and the recoveries of spiked samples ranged from 94% to 106%. Copyright © 2015 Elsevier Inc. All rights reserved.
Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003
Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.
2005-01-01
The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7 μg/L, with a median value of 9.6 μg/L. Factors affecting arsenic concentration in the carbonate-rock aquifer in addition to geothermal heating are its natural occurrence in the aquifer material and time of travel along the flow path.Most of the chemical analyses, especially for VOCs and nutrients, indicate little, if any, effect of overlying land-use patterns on ground-water quality. The water quality in recharge areas for the aquifer where human activities are more intense may be affected by urban and/or agricultural land uses as evidenced by pesticide detections. The proximity of the carbonate-rock aquifer at these sites to the land surface and the potential for local recharge to occur through the fractured rock likely results in the occurrence of these and other land-surface related contaminants in the ground water. Water from sites sampled near outcrops of carbonate-rock aquifer likely has a much shorter residence time resulting in a potential for detection of anthropogenic or land-surface related compounds. Sites located in discharge areas of the flow systems or wells that are completed at a great depth below the land surface generally show no effects of land-use activities on water quality. Flow times within the carbonate-rock aquifer, away from recharge areas, are on the order of thousands of years, so any contaminants introduced at the land surface that will not degrade along the flow path have not reached the sampled sites in these areas.
Park, Jinhee; Ra, Jin-Sung; Rho, Hojung; Cho, Jaeweon; Kim, Sang Don
2018-03-01
The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction. The results of the WER from YSR samples also indicated significantly different copper toxicities in all sites. The model-based predictions showed that effluent and estuary waters had significantly different properties in regard to their ability to be used to investigate water characteristics and copper toxicity. It was supposed that the slight water characteristics changes, such as pH, DOC, hardness, conductivity, among others, influence copper toxicity, and these variable effects on copper toxicity interacted with the water composition. The 38% prediction was outside of the validation range by a factor of two in all sites, showing a poor predictive ability, especially in STPs and streams adjacent to the estuary, while the measured toxicity was more stable. The samples that ranged from pH 7.3-7.7 generated stable predictions, while other samples, including those with lower and the higher pH values, led to more unstable predictions. The results also showed that the toxicity of Cu in sample waters to D. magna was closely proportional to the amounts of acidity, including the carboxylic and phenolic groups, as well as the DOC concentrations. Consequently, the acceptable prediction of metal toxicity in various water samples needs the site-specific results considering the water characteristics such as pH and DOC properties particularly in STPs and estuary regions. Copyright © 2017 Elsevier Inc. All rights reserved.
High-Throughput Quantitation of Neonicotinoids in Lyophilized Surface Water by LC-APCI-MS/MS.
Morrison, Lucas M; Renaud, Justin B; Sabourin, Lyne; Sumarah, Mark W; Yeung, Ken K C; Lapen, David R
2018-05-21
Background : Neonicotinoids are among the most widely used insecticides. Recently, there has been concern associated with unintended adverse effects on honeybees and aquatic invertebrates at low parts-per-trillion levels. Objective : There is a need for LC-MS/MS methods that are capable of high-throughput measurements of the most widely used neonicotinoids at environmentally relevant concentrations in surface water. Methods : This method allows for quantitation of acetamiprid, clothianidin, imidacloprid, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam in surface water. Deuterated internal standards are added to 20 mL environmental samples, which are concentrated by lyophilisation and reconstituted with methanol followed by acetonitrile. Results : A large variation of mean recovery efficiencies across five different surface water sampling sites within this study was observed, ranging from 45 to 74%. This demonstrated the need for labelled internal standards to compensate for these differences. Atmospheric pressure chemical ionization (APCI) performed better than electrospray ionization (ESI) with limited matrix suppression, achieving 71-110% of the laboratory fortified blank signal. Neonicotinoids were resolved on a C18 column using a 5 min LC method, in which MQL ranged between 0.93 and 4.88 ng/L. Conclusions : This method enables cost effective, accurate, and reproducible monitoring of these pesticides in the aquatic environment. Highlights : Lyophilization is used for high throughput concentration of neonicotinoids in surface water. Variations in matrix effects between samples was greatly reduced by using APCI compared with ESI. Clothianidin and thiamethoxam were detected in all samples with levels ranging from below method quantitation limit to 65 ng/L.
2014-08-01
The system abilities of two chromatographic techniques, capillary electrophoresis (CE) and high performance liquid chromatography (HPLC), were compared for the analysis of four tetracyclines (tetracycline, chlorotetracycline, oxytetracycline and doxycycline). The pH, concentration of background electrolyte (BGE) were optimized for the analysis of the standard mixture sample, meanwhile, the effects of separation voltage and water matrix (pH value and hardness) effects were investigated. In hydrodynamic injection (HDI) mode, a good quantitative linearity and baseline separation within 9. 0 min were obtained for the four tetracyclines at the optimal conditions; the analytical time was about half of that of HPLC. The limits of detection (LODs) were in the range of 0. 28 - 0. 62 mg/L, and the relative standard deviations (RSDs) (n= 6) of migration time and peak area were 0. 42% - 0. 56% and 2. 24% - 2. 95%, respectively. The obtained recoveries spiked in tap water and fishpond water were at the ranges of 96. 3% - 107. 2% and 87. 1% - 105. 2%, respectively. In addition, the stacking method, field-amplified sample injection (FASI), was employed to improve the sensitivity, and the LOD was down to the range of 17.8-35.5 μg/L. With FASI stacking, the RSDs (n=6) of migration time and peak area were 0. 85%-0. 95% and 1. 69%-3.43%, respectively. Due to the advantages of simple sample pretreatment and fast speed, CE is promising in the analysis of the antibiotics in environmental water.
1973-09-01
stations in the last three sampling periods of this project to supplement the regular I infaunal sampling schedule. Salinity , dissolved oxygen, water...summer. Salinity was quite variable but tended to be * highest in late summer (range 0.1 — 10 O/~~~~~~ )~~~ Dissolved oxygen, being an inverse...function of both salinity and temperature, dropped in summer. Concentrations in the 2—3 mg/l range were not unusual. The physical data collected in
Ciofi, Lorenzo; Renai, Lapo; Rossini, Daniele; Ancillotti, Claudia; Falai, Alida; Fibbi, Donatella; Bruzzoniti, Maria Concetta; Santana-Rodriguez, José Juan; Orlandini, Serena; Del Bubba, Massimo
2018-01-01
The applicability of a direct injection UHPLC-MS/MS method for the analysis of several perfluoroalkyl acids (PFAAs) in a wide range of water matrices was investigated. The method is based on the direct injection of 100µL of centrifuged water sample, without any other sample treatment. Very good method detection limits (0.014-0.44ngL -1 ) and excellent intra and inter-day precision (RSD% values in the range 1.8-4.4% and 2.7-5.7%, respectively) were achieved, with a total analysis time of 20min per sample. A high number of samples - i.e. 8 drinking waters (DW), 12 ground waters (GW), 13 surface waters (SW), 8 influents and 11 effluents of wastewater treatment plants (WWTP IN and WWTP OUT ) were processed and the extent of matrix effect (ME) was calculated, highlighting the strong prevalence of |ME| < 20%. The occurrence of |ME| > 50% was occasionally observed only for perfluorooctanesulphonic and perfluorodecanoic acids. Linear discriminant analysis highlighted the great contribution of the sample origin (i.e. DW, GW, SW, WWTP IN and WWTP OUT ) to the ME. Partial least square regression (PLS) and leave-one-out cross-validation were performed in order to interpret and predict the signal suppression or enhancement phenomena as a function of physicochemical parameters of water samples (i.e. conductivity, hardness and chemical oxygen demand) and background chromatographic area. The PLS approach resulted only in an approximate screening, due to the low prediction power of the PLS models. However, for most analytes in most samples, the fitted and cross-validated values were such as to correctly distinguish between | ME | higher than 20% or below this limit. PFAAs in the aforementioned water samples were quantified by means of the standard addition method, highlighting their occurrence mainly in WWTP influents and effluents, at concentrations as high as one hundred of µgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Analytical data from phases I and II of the Willamette River basin water quality study, Oregon
Harrison, Howard E.; Anderson, Chauncey W.; Rinella, Frank A.; Gasser, Timothy M.; Pogue, Ted R.
1995-01-01
The data were collected at 50 sites, representing runoff from agricultural, forested, and urbanized subbasins. In Phase I, water samples were collected during high and low flows in 1992 and 1993 to represent a wide range of hydrologic conditions. Bed-sediment samples were collected during low flows in 1993. In Phase II, water samples were collected in the spring of 1994 after the first high-flow event following the application of agricultural fertilizers and pesticides and in the fall during the first high-flow events following the conclusion of the agricultural season.
Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998
Dorava, Joseph M.; Love, Andra
1999-01-01
Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.
NASA Astrophysics Data System (ADS)
El-Sayed, Salah Abdelwahab; Morsy, Samah M.; Zakaria, Khalid M.
2018-06-01
This study addresses the topic of recharge sources and evolution of groundwater in the Atfih area situated in the northeastern part of the Nile Valley, Egypt. Inventory of water wells and collection of groundwater and surface water samples have been achieved. Water samples are analyzed for major ions according to the American Society for Testing and Materials and for the environmental isotopes analysis (oxygen-18 and deuterium) by using a Triple Liquid Isotopic Water Analyzer (Los Gatos). The groundwater is available from the Quaternary aquifer formed mainly of graded sand and gravel interbedded with clay lenses. The hydrogeologic, hydrogeochemical and isotopic investigations indicate the hydrodynamic nature of the aquifer, where different flow paths, recharge sources and evolution mechanisms are distinguished. The directions of groundwater flow are from E, W and S directions suggesting the contribution from Nile River, the Eocene aquifer and the Nile basin, respectively. The groundwater altitudes range from 13 m (MSL) to 44 m (MSL). The hydraulic gradient varies between 0.025 and 0.0015. The groundwater is alkaline (pH > 7) and has salinity ranging from fresh to brackish water (TDS between 528 mg/l and 6070 mg/l). The observed wide range in the ionic composition and water types reflects the effect of different environmental and geological conditions through which the water has flowed. The isotopic compositions of groundwater samples vary between -14.13‰ and +23.56 for δD and between - 2.91‰ and +3.10 for δ18O. The isotopic data indicates that the Quaternary aquifer receive recharge from different sources including the Recent Nile water, surplus irrigation water, old Nile water before the construction of Aswan High Dam, surface runoff of local rains and Eocene aquifer. Evaporation, water rock interaction and mixing between different types of waters are the main processes in the groundwater evolution. Major suggestions are presented to develop the aquifer productivity and to mitigate the deterioration of groundwater quality.
Hamilton, K. A.; Gyawali, P.; Toze, S.; Haas, C. N.
2016-01-01
ABSTRACT Avian and possum fecal droppings may negatively impact roof-harvested rainwater (RHRW) water quality due to the presence of zoonotic pathogens. This study was aimed at evaluating the performance characteristics of a possum feces-associated (PSM) marker by screening 210 fecal and wastewater samples from possums (n = 20) and a range of nonpossum hosts (n = 190) in Southeast Queensland, Australia. The host sensitivity and specificity of the PSM marker were 0.90 and 0.95 (maximum value, 1.00), respectively. The mean concentrations of the GFD marker in possum fecal DNA samples (8.8 × 107 gene copies per g of feces) were two orders of magnitude higher than those in the nonpossum fecal DNA samples (5.0 × 105 gene copies per g of feces). The host sensitivity, specificity, and concentrations of the avian feces-associated GFD marker were reported in our recent study (W. Ahmed, V. J. Harwood, K. Nguyen, S. Young, K. Hamilton, and S. Toze, Water Res 88:613–622, 2016, http://dx.doi.org/10.1016/j.watres.2015.10.050). The utility of the GFD and PSM markers was evaluated by testing a large number of tank water samples (n = 134) from the Brisbane and Currumbin areas. GFD and PSM markers were detected in 39 of 134 (29%) and 11 of 134 (8%) tank water samples, respectively. The GFD marker concentrations in PCR-positive samples ranged from 3.7 × 102 to 8.5 × 105 gene copies per liter, whereas the concentrations of the PSM marker ranged from 2.0 × 103 to 6.8 × 103 gene copies per liter of water. The results of this study suggest the presence of fecal contamination in tank water samples from avian and possum hosts. This study has established an association between the degradation of microbial tank water quality and avian and possum feces. Based on the results, we recommend disinfection of tank water, especially for tanks designated for potable use. IMPORTANCE The use of roof-harvested rainwater (RHRW) for domestic purposes is a globally accepted practice. The presence of pathogens in rainwater tanks has been reported by several studies, supporting the necessity for the management of potential health risks. The sources of fecal pollution in rainwater tanks are unknown. However, the application of microbial source tracking (MST) markers has the potential to identify the sources of fecal contamination in a rainwater tank. In this study, we provide evidence of avian and possum fecal contamination in tank water samples using molecular markers. This study established a potential link between the degradation of the microbial quality of tank water and avian and possum feces. PMID:27208100
Santaladchaiyakit, Yanawath; Srijaranai, Supalax
2014-11-01
Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Chun; Ma, Ruiyang; Wu, Qiuhua; Sun, Meng; Wang, Zhi
2014-09-26
In this paper, porous carbon with a highly ordered structure was synthesized using zeolite ZSM-5 as a template and sucrose as a carbon source. Through the in situ reduction of Fe(3+), magnetic property was successfully introduced into the ordered porous carbon, resulting in a magnetic porous carbon (MPC). MPC was used as an adsorbent for the extraction of some chlorophenols (2-chlorophenol, 3-chlorophenol, 2,3-dichlorophenol and 3,4-dichlorophenol) from water and peach juice samples followed by high performance liquid chromatography-ultraviolet detection. Good linearity was observed in the range 1.0-100.0 ng mL(-1) and 2.0-100.0 ng mL(-1) for water and peach juice sample, respectively. The limits of detection (S/N=3) were between 0.10 and 0.30 ng mL(-1). The relative standard deviations were less than 5.3% and the recoveries of the method for the compounds were in the range from 87.8% to 102.3%. The results demonstrated that the MPC had a high adsorptive capability toward the four chlorophenols from water and peach juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Occurrence of perchlorate in drinking water and seawater in South Korea.
Her, Namguk; Jeong, Hyunchan; Kim, Jongsung; Yoon, Yeomin
2011-08-01
Concentrations of perchlorate were determined by both liquid-chromatography-mass spectrometry (LC-MS) and ion chromatography tandem mass spectrometry (IC-MS/MS) in 520 tap-water, 48 bottled-water, and 9 seawater samples obtained or purchased from >100 different locations in South Korea. The method detection limits were 0.013 μg/L for LC-MS and 0.005 μg/L for IC-MS/MS, and the limits of quantification (LOQs) were 0.10 μg/L for LC-MS and 0.032 μg/L for IC-MS/MS. Perchlorate was detected in most (80%) of the tap-water samples, with concentrations higher than the LOQ; the concentrations ranged from <1.0 to 6.1 μg/L (mean 0.56). Perchlorate was detected by IC-MS/MS in many (n = 23) of the bottled-water samples, with concentrations higher then the LOQ, ranging from 0.04 to 0.29 μg/L (mean 0.07 ± 0.01). The concentrations of perchlorate in all seawater samples collected from the various locations were higher than the LOQ, with a mean concentration of 1.15 ± 0.01 μg/L (maximum 6.11 and minimum 0.11). This study provides further evidence that drinking-water sources have been contaminated by perchlorate. To the best of our knowledge, this is the first comprehensive study on perchlorate assessment in drinking water and seawater in South Korea.
Tseng, Wan-Chi; Chen, Pai-Shan; Huang, Shang-Da
2014-03-01
Novel sample preparation methods termed "up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME)" and "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)" coupled with gas chromatography-mass spectrometry (GC-MS) have been developed for the analysis of 11 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. For UDSA-DLLME, an up-and-down shaker-assisted emulsification was employed. Extraction was complete in 3min. Only 14 μL of 1-heptanol was required, without a dispersive solvent. Under the optimum conditions, the linear range was 0.08-100 µg L(-1), and the LODs were in the range 0.022-0.060 µg L(-1). The enrichment factors (EFs) ranged from 392 to 766. Relative recoveries were between 84% and 113% for river, lake, and field water. In WLSEME, 9 μL of 1-nonanol as extraction solvent and 240 μL of 1 mg L(-1) Triton X-100 as surfactant were mixed in a microsyringe to form a cloudy emulsified solution, which was then injected into the samples. Compared with other surfactant-assisted emulsion methods, WLSEME uses much less surfactant. The linear range was 0.08-100 µg L(-1), and the LODs were 0.022-0.13 µg L(-1). The EFs ranged from 388 to 649. The relative recoveries were 86-114% for all three water specimens. Copyright © 2013 Elsevier B.V. All rights reserved.
Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila
2014-09-01
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.
2017-10-01
Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.
Trombley, T.J.
2001-01-01
Water-quality samples were collected from 20 surface-water sites and 7 ground-water sites across the Prairie Band Potawatomi Reservation in northeastern Kansas as part of a water-quality study begun in 1996. Water quality is a very important consideration for the tribe. Three creeks draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, are important tribal resources used for maintaining subsistence fishing and hunting needs for tribal members. Samples were collected twice during June 1999 and June 2000 at all 20 surface-water sites after herbicide application, and nine quarterly samples were collected at 5 of the 20 sampling sites from February 1999 through February 2001. Samples were collected once at six wells and twice at one well from September through December 2000. Surface-water-quality constituents analyzed included nutrients, pesticides, and bacteria. In addition to nutrients, pesticides, and bacteria, ground-water constituents analyzed included major dissolved ions, arsenic, boron, and dissolved iron and manganese. The median nitrite plus nitrate concentration was 0.376 mg/L (milligram per liter) for 81 surface-water samples, and the maximum concentration was 4.18 mg/L as nitrogen, which is less than one-half the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) for drinking water of 10 mg/L as nitrogen. Fifty-one of the 81 surface-water-quality samples exceeded the U.S. Environmental Protection Agency's recommended goal for total phosphorus of 0.10 mg/L for the protection of aquatic life. Triazine concentrations in 26 surface-water-quality samples collected during May and June 1999 and 2000 exceeded 3.0 ?g/L (micrograms per liter), the Maximum Contaminant Level established for drinking water by the U.S. Environmental Protection Agency. Triazine herbicide concentrations tended to be highest during late spring runoff after herbicide application. High concentrations of fecal indicator bacteria in surface water are a concern on the reservation with fecal coliform concentrations ranging from 4 to greater than 31,000 colonies per 100 milliliters of water with a median concentration of 570 colonies per 100 milliliters. More than one-half of the surface-water-quality samples exceeded the Kansas Department of Health and Environment contact recreation criteria of 200 and 2,000 colonies per 100 milliliters of water and were collected mostly during the spring and summer. Two wells had sodium concentrations of about 10 times the U.S. Environmental Protection Agengy health advisory level (HAL) of 20 mg/L; concentrations ranged from 241 to 336 mg/L. In water from two wells, sulfate concentrations exceeded 800 mg/L, more than three times the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for drinking water of 250 mg/L. All but two of the eight ground-water-quality samples had dissolved-solids concentrations exceeding the SMCL of 500 mg/L. The highest concentration of 2,010 mg/L was more than four times the SMCL. Dissolved boron concentrations exceeded the U.S. Environmental Protection Agency 600-?g/L HAL in water from two of the seven wells sampled. Because the HAL is for a lifetime of exposure, the anticipated health risk due to dissolved boron is low. Dissolved iron concentrations in ground-water samples exceeded the 300-?g/L SMCL for treated drinking water in three of the seven wells sampled. Dissolved manganese concentrations in water from the same three wells also exceeded the established SMCL of 50 ?g/L. Dissolved pesticides were not detected in any of the well samples; however, there were degradation products of the herbicides alachlor and metolachlor in several samples. Insecticides were not detected in any ground-water-quality samples. Low concentrations of E. coli and fecal coliform bacteria were detected in water from two wells, and E. coli was detected in water from one well. Much higher concentrations of E. coli, fecal coliform, and fecal strepto
Determination of DDT and metabolites in surface water and sediment using LLE, SPE, ACE and SE.
Sibali, Linda L; Okonkwo, Jonathan O; Zvinowanda, Caliphs
2009-12-01
Surface water and sediment samples collected from Jukskei River in South Africa, were subjected to different extraction techniques, liquid-liquid (LLE), solid-phase extraction (SPE), activated carbon extraction (ACE) and soxhlet extraction (SE) for sediment. The samples were extracted with dichloromethane, cleaned in a silica gel column and the extracts quantified using a Varian 3800 GC-ECD. The percentage recovery test for 2,4'DDT, DDE and DDD and 4,4'DDT, DDE and DDD in water ranged from 80%-96% and 76%-95% (LLE); 56%-76% and 56%-70% (SPE) and 75%-84% (ACE), respectively; while that recoveries for sediment samples varied from 65%-95% for 2,4'DDT, DDE and DDD and 80%-91% for 4,4'DDT, DDE and DDD. The high recoveries exhibited by ACE compared very well with LLE and SE. This was not the case with SPE which exhibited the lowest value of recoveries for both 2,4 and 4,4'DDD, DDE and DDT standard samples. The mean concentrations of DDT and metabolites ranged from nd-1.10 μg/L, nd-0.80 μg/L, nd-1.21 μg/L and 1.92 μg/L for LLE, SPE, ACE and SE, respectively. The total DDT (2,4' and 4,4'-DDT) in water and sediment samples ranged from 1.20-3.25 μg/L and 1.82-5.24 μg/L, respectively. The low concentrations of the DDT metabolites obtained in the present study may suggest a recent contamination of the river by DDT.
Direct Measurement of Perchlorate Exposure Biomarkers in a Highly Exposed Population: A Pilot Study
Wong, Michelle; Copan, Lori; Olmedo, Luis; Patton, Sharyle; Haas, Robert; Atencio, Ryan; Xu, Juhua; Valentin-Blasini, Liza
2011-01-01
Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment. PMID:21394205
[Spring water quality assessment regarding the problem of endemic fluorosis].
Leshchenko, D V; Mialo, O A; Beliakova, M B; Beliaeva, E A; Samoukina, A M; Chervinets, Iu V; Ivanova, O V
2013-01-01
A possible variant for reducing the consumption of fluoride by population of Tver region is the use of water with low fluoride content, such as spring water. Assessment of drinking suitability of spring water (the content of physiologically important mineral elements and microbial purity) is relevant to our region. Water samples from 6 spring-water source of Tver region were studied during the year. The content of fluoride and calcium were measured by using an ion-selective electrodes. Microbiological purity tested by the presence of total coliform bacteria, thermotolerant coliform bacteria, coliphages and total microbial numbers. The analysis of some mineral components in spring water of Tver region showed that calcium content was in range 33-88 mg/l, that satisfied the recommended value; fluoride concentration is less then 0.5 mg/l. In all spring water samples total coliforms, thermotolerant coliforms and coliphages were absent. The total microbial number was in standard range, except of two spring-water source in the autumn and summer. The data suppose that spring water of Tver region can be used as a component of diet normalizing the fluoride consumption at risk of dental fluorosis in children.
Toxicological and chemical insights into representative source and drinking water in eastern China.
Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner
2018-02-01
Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Menezes, Helvécio Costa; de Barcelos, Stella Maris Resende; Macedo, Damiana Freire Dias; Purceno, Aluir Dias; Machado, Bruno Fernades; Teixeira, Ana Paula Carvalho; Lago, Rochel Monteiro; Serp, Philippe; Cardeal, Zenilda Lourdes
2015-05-11
This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil. Copyright © 2015 Elsevier B.V. All rights reserved.
Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S
2017-02-01
Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.
Time-weighted average water sampling with a solid-phase microextraction device.
Ouyang, Gangfeng; Chen, Yong; Pawliszyn, Janusz
2005-11-15
A fiber-in-needle SPME device was developed and investigated for time-weighted average water sampling. The device was designed so that the overall mass-transfer resistance is contained within the static water inside the needle, which ensures that mass uptake could be predicted with Fick's first law of diffusion and the sampling rate is less affected by water turbulence. The device possesses all of the advantages of commercialized devices, in addition to needle filling and replacement ease. Laboratory calibration with deployment of the device to a flow-through system demonstrated that there was a linear mass uptake for up to 12 days, and the linear range could be longer. PDMS coating is assumed to be a perfect zero sink for most polycyclic aromatic hydrocarbons, except naphthalene. The effect of water temperature was also investigated. Under normal field conditions, the change of mass uptake rate with temperature was negligible. To facilitate the convenience for long-term water sampling, a new standard aqueous generator was introduced. This study extended the application of SPME technology for long-term water sampling.
NASA Astrophysics Data System (ADS)
Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.
2015-12-01
Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises questions about water quality in Antrim and Kalkaska counties. Further investigation is needed to address questions raised in this study. As the controversy surrounding fracking is growing and the application of this technology spreads worldwide, it is important for the questions about fracking and groundwater quality to be well addressed.
Spatiotemporal Dynamics of Biogeochemical Species around Karadiyana Solid Waste Landfill, Sri Lanka
NASA Astrophysics Data System (ADS)
Koliyabandara, P. A.; Cooray, P. L. A. T.; Liyanage, S.; Siriwardana, C.
2017-12-01
Leachate from solid waste landfills is a significant environmental issue throughout the world. Most of the developed countries have strict guidelines for solid waste landfills as opposed to the open solid waste dumps in developing countries. Karadiyana solid waste management facility is located in Western province, Sri Lanka having a total area about 25 acres. Several Local Authorities use this facility as the final disposal site for their daily collected garbage. About 575 tons/day of Municipal Solid Waste reach the project site. This novel study was carried out to understand the spatiotemporal variation of nutrients around the site surrounded by a marshy land which directly has a connection to Weras River. Leachate, surface water and ground water samples were collected from pre-determined locations and analyzed to assess the interaction of leachate with surrounding water bodies. Sample locations were selected based on topography, areas close to dumpsite and flow regimes. Sampling was done monthly over eight months starting from September 2016 data and they were preserved, and analyzed according to the Standard Methods for the Examination of Water and wastewater analysis. Ammonia Nitrogen, Nitrate Nitrogen, Total Phosphorous (TP) of surface water ranged in between 0.08-320, 10-6000, 0.2-50 mg/L. For leachate samples, the above parameters varied in the range of 0.22-320, 18-13000 and 0.04-15 mg/L. Highest concentrations for Nitrogenous species and Phosphorous were observed at the sampling point closer to the site (latitude 6.816538 and longitude of 79.902250). Higher concentrations measured during the rainy period may be attributed to rainwater that infiltrated into the landfill that promotes solubilisation of pollutants and enhanced leaching of nutrients from actively decomposing waste mass into leachates. Interestingly, though high concentration of nitrogen and TP observed in surface waters, dense algae growth was not observed. This may be due to the presence of Cu at level in the range of 0.1 to 0.2 ppm. Ammonia Nitrogen, Nitrate Nitrogen, TP in ground water of monitoring wells ranged in between 400-500, 40-62, 1.6- 160 mg/L. Our results emphasizes there is a greater threat by the cumulative load discharged to the river annually. Proper treatment prior to disposal is recommended.
Bernardy, Jeffry A.; Hubert, Terrance D.; Ogorek, Jacob M.; Schmidt, Larry J.
2013-01-01
An LC/MS method was developed and validated for the quantitative determination and confirmation of antimycin-A (ANT-A) in water from lakes or streams. Three different water sample volumes (25, 50, and 250 mL) were evaluated. ANT-A was stabilized in the field by immediately extracting it from water into anhydrous acetone using SPE. The stabilized concentrated samples were then transported to a laboratory and analyzed by LC/MS using negative electrospray ionization. The method was determined to have adequate accuracy (78 to 113% recovery), precision (0.77 to 7.5% RSD with samples ≥500 ng/L and 4.8 to 17% RSD with samples ≤100 ng/L), linearity, and robustness over an LOQ range from 8 to 51 600 ng/L.
Bernardy, Jeffry A; Hubert, Terrance D; Ogorek, Jacob M; Schmidt, Larry J
2013-01-01
An LC/MS method was developed and validated for the quantitative determination and confirmation of antimycin-A (ANT-A) in water from lakes or streams. Three different water sample volumes (25, 50, and 250 mL) were evaluated. ANT-A was stabilized in the field by immediately extracting it from water into anhydrous acetone using SPE. The stabilized concentrated samples were then transported to a laboratory and analyzed by LC/MS using negative electrospray ionization. The method was determined to have adequate accuracy (78 to 113% recovery), precision (0.77 to 7.5% RSD with samples > or = 500 ng/L and 4.8 to 17% RSD with samples < or = 100 ng/L), linearity, and robustness over an LOQ range from 8 to 51 600 ng/L.
Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.
1993-01-01
Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.
Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming
2014-12-01
An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frequent Detection and Genetic Diversity of Human Bocavirus in Urban Sewage Samples.
Iaconelli, M; Divizia, M; Della Libera, S; Di Bonito, P; La Rosa, Giuseppina
2016-12-01
The prevalence and genetic diversity of human bocaviruses (HBoVs) in sewage water samples are largely unknown. In this study, 134 raw sewage samples from 25 wastewater treatment plants (WTPs) in Italy were analyzed by nested PCR and sequencing using species-specific primer pairs and broad-range primer pairs targeting the capsid proteins VP1/VP2. A large number of samples (106, 79.1 %) were positive for HBoV. Out of these, 49 were classified as HBoV species 2, and 27 as species 3. For the remaining 30 samples, sequencing results showed mixed electropherograms. By cloning PCR amplicons and sequencing, we confirmed the copresence of species 2 and 3 in 29 samples and species 2 and 4 in only one sample. A real-time PCR assay was also performed, using a newly designed TaqMan assay, for quantification of HBoVs in sewage water samples. Viral load quantification ranged from 5.51E+03 to 1.84E+05 GC/L (mean value 4.70E+04 GC/L) for bocavirus 2 and from 1.89E+03 to 1.02E+05 GC/L (mean value 2.27E+04 GC/L) for bocavirus 3. The wide distribution of HBoV in sewages suggests that this virus is common in the population, and the most prevalent are the species 2 and 3. HBoV-4 was also found, representing the first detection of this species in Italy. Although there is no indication of waterborne transmission for HBoV, the significant presence in sewage waters suggests that HBoV may spread to other water environments, and therefore, a potential role of water in the HBoV transmission should not be neglected.
Depleted uranium investigation at missile impact sites in White Sands Missile Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Etten, D.M.; Purtymun, W.D.
1994-01-01
An investigation for residual depleted uranium was conducted at Pershing missile impact sites on the White Sands Missile Range. Subsurface core soil samples were taken at Chess, Salt Target, and Mine Impact Sites. A sampling pump was installed in a monitoring well at Site 65 where a Pershing earth penetrator was not recovered. Pumping tests and water samples were taken at this site. Chess Site, located in a gypsum flat, was the only location showing elevated levels of depleted uranium in the subsurface soil or perched groundwater. Small fragments can still be found on the surface of the impact sites.more » The seasonal flooding and near surface water has aided in the movement of surface fragments.« less
Robertson, J.F.
1996-01-01
Ground-water and sediment contamination by petroleum hydrocarbons resulting from leaks and overfills was detected during tank removal activities at three former underground storage tank locations at Fort Jackson, near Columbia, South Carolina. Investigations were initiated to assess the effect of contamination to the surficial aquifer at Sites 1062, 2438, and 2444. These investigations involved the installation of permanent monitoring wells and the collection and analysis of sediment and ground-water samples at the three sites. Water-level data were collected at all sites to determine hydraulic gradients and the direction of ground-water flow. In addition, aquifer tests were made at Site 1062 to determine the hydraulic conductivity of the surficial aquifer at that site. Sediment borings were made at the three sites to collect subsurface-sediment samples for lithologic description and laboratory analyses, and for the installation of ground-water monitoring wells. Laboratory analyses of sediment samples collected from boreholes at Site 1062 indicated elevated concentrations of petroleum hydrocarbons at three locations. Total Petroleum Hydrocarbons - Diesel Range Organics were detected at one borehole at a concentration of 388,000 micrograms per kilogram. Total benzene, toluene, ethylbenzene, and xylene concentrations in sediment from the site ranged from less than 350 to over 100,000 micrograms per kilogram. Total lead was detected at concentrations ranging from 2,900 to 5,900 micrograms per kilogram. Petroleum hydrocarbons were detected at Site 2438 in one borehole at a trace concentration of 112 micrograms per kilogram of para- and meta-xylenes. No concentrations exceeding the detection limits were reported for petroleum hydrocarbons in sediment samples collected from Site 2444; however, total lead was detected in sediment samples from two boreholes, each at concentrations of 600 micrograms per kilogram. Ground-water samples were collected from each site for laboratory analysis and field-property determinations. Petroleum hydrocarbons and lead were detected at concentrations exceeding regulatory limits for drinking water in ground water from Site 1062 only. Petroleum hydrocarbons were detected in ground water from three wells at Site 1062, with the highest concentrations occurring in the area of the former underground storage tanks. Benzene was detected at concentrations as much as 28 micrograms per liter; toluene as much as 558 micrograms per liter; para- and meta-xylenes as much as 993 micrograms per liter; and naphthalene as much as 236 micrograms per liter. Ethylbenzene and ortho-xylene were detected in one well at concentrations of 70 and 6 micrograms per liter, respectively. Dissolved lead was detected in ground water from four wells at concentrations from 5 to 152 micrograms per liter. Analysis of ground-water samples collected from Sites 2438 and 2444 showed little evidence of petroleum-hydrocarbon contamination. Petroleum hydrocarbons were not detected in any of the ground-water samples collected from Site 2438. With the exception of a low concentration of naphthalene (11 micrograms per liter) detected in ground water from one well, petroleum hydrocarbons and lead were not detected in ground water collected from Site 2444.
Survey of bottled drinking water sold in Canada. Part 2. Selected volatile organic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, B.D.; Conacher, H.B.S.; Salminen, J.
Selected volatile organic compound (VOC) contaminants were determined in 182 samples of retail bottled waters purchased in Canada. Samples included spring water (86) packaged in containers of polyethylene or in smaller containers of transparent plastic or glass, mineral water (61) packaged only in transparent plastic or glass, and miscellaneous bottled waters (35). Analyses were performed by 3 laboratories, each using headspace sampling and capillary gas chromatography with either mass spectrometric (1 laboratory) or flame ionization detection with mass spectrometric confirmation, if required (2 laboratories). Benzene, the contaminant of primary interest, was detected in only 1 of the 182 samples atmore » 2 {mu}g/kg. Other VOC contaminants detected (number of positive samples, average, and range of positives in {mu}g/kg) included toluene (20, 6.92, 0.5-63), cyclohexane (23, 39.2, 3-108), chloroform (12, 25.8, 3.7-70), and dichloromethane (4, 59, 22-97). Cyclohexane was found in the plastic and as a migrant from the plastic in 20 samples of spring water, but it was found in only 1 of 61 mineral water samples analyzed at only 3 {mu}g/kg/. Chloroform was found almost exclusively in samples that could have been obtained from public water supplies. It was not found in mineral water samples, but it was found in 1 spring water sample at 3.7 {mu}g/kg. The source of the toluene contamination was not known. Other VOCs detected include ethanol and limonene, associated with added flavoring; pentane, as a migrant from a foamed polystyrene cap liner; and 1,1,2,2-tetra-chloroethylene in a sample of demineralized water. 10 refs., 6 tabs.« less
Smith, S. Jerrod; Schneider, M.L.; Masoner, J.R.; Blazs, R.L.
2003-01-01
Elevated salinity in the North Fork Red River is a major concern of the Bureau of Reclamation W. C. Austin Project at Lake Altus. Understanding the relation between surface-water runoff, ground-water discharge, and surface-water quality is important for maintaining the beneficial use of water in the North Fork Red River basin. Agricultural practices, petroleum production, and natural dissolution of salt-bearing bedrock have the potential to influence the quality of nearby surface water. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, sampled stream discharge and water chemistry at 19 stations on the North Fork Red River and tributaries. To characterize surface-water resources of the basin in a systematic manner, samples were collected synoptically during receding streamflow conditions during July 8-11, 2002. Together, sulfate and chloride usually constitute greater than half of the dissolved solids. Concentrations of sulfate ranged from 87.1 to 3,450 milligrams per liter. The minimum value was measured at McClellan Creek near Back (07301220), and the maximum value was measured at Bronco Creek near Twitty (07301303). Concentrations of chloride ranged from 33.2 to 786 milligrams per liter. The minimum value was measured at a North Fork Red River tributary (unnamed) near Twitty (07301310), and the maximum value was measured at the North Fork Red River near Back (07301190), the most upstream sample station.
Davis, Linda C.
2010-01-01
Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April or October 2008, reportable concentrations of tritium in groundwater ranged from 810 ? 70 to 8,570 ? 190 picocuries per liter (pCi/L), and the tritium plume extended south-southwestward in the general direction of groundwater flow. Tritium concentrations in water from wells completed in shallow perched groundwater at the ATRC were less than the reporting levels. Tritium concentrations in deep perched groundwater exceeded the reporting level in 11 wells during at least one sampling event during 2006-08 at the ATRC. Tritium concentrations from one or more zones in each well were reportable in water samples collected at various depths in six wells equipped with multi-level WestbayTM packer sampling systems. Concentrations of strontium-90 in water from 24 of 52 aquifer wells sampled during April or October 2008 exceeded the reporting level. Concentrations ranged from 2.2 ? 0.7 to 32.7 ? 1.2 pCi/L. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the ATRC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than using the disposal well for radioactive-wastewater disposal at ATRC. At the ATRC, the strontium-90 concentration in water from one well completed in shallow perched groundwater was less than the reporting level. During at least one sampling event during 2006-08, concentrations of strontium-90 in water from nine wells completed in deep perched groundwater at the ATRC were greater than reporting levels. Concentrations ranged from 2.1?0.7 to 70.5?1.8 pCi/L. At the Idaho Nuclear Technology and Engineering Center (INTEC), the reporting level was exceeded in water from two wells completed in deep perched groundwater. During 2006-08, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells and all zones in wells equipped with multi-level WestbayTM packer sampling systems
Luo, Qian; Wang, Donghong; Wang, Zijian
2012-10-15
An investigation of the occurrence of nine nitrosamines in drinking water following different water treatment processes was conducted using samples from seven drinking water treatment plants in three cities and tap waters in one city in China. The total nitrosamine levels ranged from not detected (n.d.) to 43.45 ng/L. The species and concentrations of the nine nitrosamines varied with disinfection methods and source waters. N-nitrosodimethylamine (NDMA), which is the nitrosamines of greatest concern, was identified in raw water, disinfecting water, finished water and tap water samples, ranging from 0.8 to 21.6, 0.12 to 24.2, n.d. to 8.8, and n.d. to 13.3 ng/L, respectively. Chloramination alone produced the most significant amounts of NDMA, while ozonation followed by chloramination led to moderately reduced levels. Additionally, chlorination produced relatively less NDMA, while low pressure ultraviolet radiation followed by chlorination could also significantly reduce them. Total organic carbon is one of the most important factors influencing nitrosamines formation in disinfecting water. In contrast, the addition of chlorine following any other disinfection was found to increase the formation of the other eight species of nitrosamines. The three nitrosamines recommended for monitoring by the US EPA were detected in the tap water samples, but most were present at levels below those that pose a risk to human health. Nevertheless, the occurrence and concentration of nitrosamines regulated in the Drinking Water Contaminant Candidate List could cause some potential human effects and therefore warrant attention. Copyright © 2012 Elsevier B.V. All rights reserved.
Eckhardt, David A.V.; Sloto, Ronald A.
2012-01-01
Groundwater samples were collected from 15 production wells and 1 spring at 9 national park units in New York, Pennsylvania, and West Virginia in July and August 2011 and analyzed to characterize the quality of these water supplies. The sample sites generally were selected to represent areas of potential effects on water quality by drilling and development of gas wells in Marcellus Shale and Utica Shale areas of the northeastern United States. The groundwater samples were analyzed for 53 constituents, including nutrients, major inorganic constituents, trace elements, chemical oxygen demand, radioactivity, and dissolved gases, including methane and radon-222. Results indicated that the groundwater used for water supply at the selected national park units is generally of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water guideline at several wells. Nine analytes were detected in concentrations that exceeded Federal drinking-water standards, mostly secondary standards that define aesthetic properties of water, such as taste and odor. One sample had an arsenic concentration that exceeded the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 micrograms per liter (μg/L). The pH, which is a measure of acidity (hydrogen ion activity), ranged from 4.8 to 8.4, and in 5 of the 16 samples, the pH values were outside the accepted U.S. Environmental Protection Agency secondary maximum contaminant level (SMCL) range of 6.5 to 8.5. The concentration of total dissolved solids exceeded the SMCL of 500 milligrams per liter (mg/L) at four sites. The sulfate concentration exceeded the SMCL of 250 mg/L concentration in one sample, and the fluoride concentration exceeded the SMCL of 2 mg/L in one sample. Sodium concentrations exceeded the U.S. Environmental Protection Agency drinking water health advisory of 60 mg/L at four sites. Iron concentrations exceeded the SMCL of 300 μg/L in two samples, and manganese concentrations exceeded the SMCL of 50 μg/L in five samples. Radon-222 concentrations exceeded the proposed U.S. Environmental Protection Agency MCL of 300 picocuries per liter in eight samples.
Robinson, James L.; Carmichael, John K.; Halford, Keith J.; Ladd, David E.
1997-01-01
Naval Support Activity (NSA) Memphis is a Department of the Navy facility located at the City of Millington, Tennessee, about 5 miles north of Memphis. Contaminants have been detected in surface-water, sediment, and ground-water samples collected at the facility. As part of the Installation Restoration Program, the Navy is considering remedial-action options to prevent or lessen the effect of ground-water contamination at the facility and to control the movement and discharge of contaminants. A numerical model of the ground-water-flow system in the area of NSA Memphis was constructed and calibrated so that quantifiable estimates could be made of ground-water-flow rates, direction, and time-of-travel. The sediments beneath NSA Memphis, to a depth of about 200 feet, form a shallow aquifer system. From youngest to oldest, the stratigraphic units that form the shallow aquifer system are alluvium, loess, fluvial deposits, and the Cockfield and Cook Mountain Formations. The shallow aquifer system is organized into five hydrogeologic units: (1) a confining unit composed of the relatively low permeability sediments of the upper alluvium and the loess; (2) the A1 aquifer comprising sand and gravel of the lower alluvium and the fluvial deposits, and sand lenses in the upper part of the preserved section of the Cockfield Formation; (3) a confining unit composed of clay and silt within the upper part of the Cockfield Formation; (4) the Cockfield aquifer comprising sand lenses within the lower part of the preserved section of the Cockfield Formation; and (5) a confining unit formed by low permeability sediments of the Cook Mountain Formation that composes the upper confining unit for the Memphis aquifer. Thicknesses of individual units vary considerably across the facility. Structural and depositional features that affect the occurrence of ground water in the shallow aquifer system include faulting, an erosional scarp, and 'windows' in the confining units. Underlying the shallow aquifer system is the Memphis aquifer, the primary source of water for NSA Memphis and the City of Memphis, Tennessee. Analyses of sediment cores, aquifer and well specific-capacity tests, and numerical modeling were used to estimate the hydraulic characteristics of units of the shallow aquifer system. The vertical hydraulic conductivity of core samples of the alluvium-loess confining unit ranged from about 8.5 x 10-5 to 1.6 x 10-2 feet per day, and the total porosity of the samples ranged from about 35 to 48 percent. The results of the aquifer test were used to estimate a horizontal hydraulic conductivity of about 5 feet per day for the alluvial-fluvial deposits aquifer. The total porosity of core samples of the alluvial-fluvial deposits aquifer ranged from about 22 to 39 percent. The vertical hydraulic conductivity of core samples of the Cockfield confining unit ranged from about 4.5 x 10-5 to 2.5 x 10-3 feet per day, and the total porosity ranged from about 41 to 55 percent. Well specific-capacity tests indicate that the horizontal hydraulic conductivity of sand units that compose the Cockfield aquifer range from about 0.5 to 3 feet per day. The vertical hydraulic conductivity of core samples of the Cook Mountain confining unit ranged from about 5.0 x 10-6 to 9.9 x 10-4 feet per day. Total porosity of core samples of the Cook Mountain confining unit ranged from about 30 to 42 percent. Ground-water flow and time-of-travel in the shallow aquifer system were simulated using the MODFLOW finite-difference model and the -particle-tracking program MODPATH. A three-layer, steady-state model of the shallow aquifer system was constructed and calibrated to the potentiometric surface of the A1 aquifer. Results of numerical modeling support the proposed conceptual hydrogeologic model of the shallow aquifer system. Ground-water time-of-travel in the A1 aquifer was simulated using an assumed effective porosity of 25 percent. Typical ground-water-flow velocities were on the or
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose
Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu
2014-01-01
222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007
Appraisal of water in bedrock aquifers, northern Cascade County, Montana
Wilke, K.R.
1982-01-01
Suburban residential expansion of the city of Great Falls has resulted in an increased demand on water supplies from bedrock aquifers in northern Cascade County. The unconsolidated deposits aquifer of Quaternary age, including alluvium and glacial lake deposits, also is an important source of water in the area. Water levels in the Madison-Swift aquifer and all overlying aquifers, including the Quaternary deposits aquifer, reflect unconfined (water-table) conditions in the Great Falls vicinity. This interconnected hydrologic system is the result of breaching of the major anticlinal structure, by ancestral and present day erosion of drainage channels by the Missouri River and its tributaries. Significant vertical inter-aquifer mixing of water, as well as surface water/groundwater interchange, probably occurs in the central part of the study area. Characterization of the chemical composition of water in individual aquifers based on samples from wells in this area probably is unreliable because of this mixing. Quality of water from two wells in the Madison-Swift aquifer near Giant Springs is similar to water from the springs. Water from these three samples is less mineralized than most groundwater in the study area; dissolved solids concentrations for the three samples range from 516 to 550 mg/L. The quality of water varies among aquifers and throughout the study area. The ranges of dissolved solids concentrations determined by chemical analysis are Madison-Swift aquifer, about 520 to 1,570 mg/L; Morrison Formation, 908 to 1 ,480 mg/L; Kootenai Formation, 558 to 1,550 mg/L; Colorado Group , 2,690 and 2,740 mg/L (two samples); and unconsolidated Quaternary deposits, 383 to 2,060 mg/L. The chemical quality of water from the Colorado Group in the western one-third of the area generally is more mineralized than water from aquifers in the rest of the area. Specific conductance of water from eight wells completed in the Colorado Group averages 4,440 micromhos at 25 C. (Author 's abstract)
Groundwater quality for 75 domestic wells in Lycoming County, Pennsylvania, 2014
Gross, Eliza L.; Cravotta, Charles A.
2017-03-06
Groundwater is a major source of drinking water in Lycoming County and adjacent counties in north-central and northeastern Pennsylvania, which are largely forested and rural and are currently undergoing development for hydrocarbon gases. Water-quality data are needed for assessing the natural characteristics of the groundwater resource and the potential effects from energy and mineral extraction, timber harvesting, agriculture, sewage and septic systems, and other human influences.This report, prepared in cooperation with Lycoming County, presents analytical data for groundwater samples from 75 domestic wells sampled throughout Lycoming County in June, July, and August 2014. The samples were collected using existing pumps and plumbing prior to any treatment and analyzed for physical and chemical characteristics, including nutrients, major ions, metals and trace elements, volatile organic compounds, gross-alpha particle and gross beta-particle activity, uranium, and dissolved gases, including methane and radon-222.Results indicate groundwater quality generally met most drinking-water standards, but that some samples exceeded primary or secondary maximum contaminant levels (MCLs) for arsenic, iron, manganese, total dissolved solids (TDS), chloride, pH, bacteria, or radon-222. Arsenic concentrations were higher than the MCL of 10 micrograms per liter (µg/L) in 9 of the 75 (12 percent) well-water samples, with concentrations as high as 23.6 μg/L; arsenic concentrations were higher than the health advisory level (HAL) of 2 μg/L in 23 samples (31 percent). Total iron concentrations exceeded the secondary maximum contaminant level (SMCL) of 300 μg/L in 20 of the 75 samples. Total manganese concentrations exceeded the SMCL of 50 μg/L in 20 samples and the HAL of 300 μg/L in 2 of those samples. Three samples had chloride concentrations that exceeded the SMCL of 250 milligrams per liter (mg/L); two of those samples exceeded the SMCL of 500 mg/L for TDS. The pH ranged from 5.3 to 9.15 and did not meet the SMCL range of 6.5 to 8.5 in 22 samples, with 17 samples having a pH less than 6.5 and 8 samples having pH greater than 8.5. Generally, the samples that had elevated TDS, chloride, or arsenic concentrations had high pH.Total coliform bacteria were detected in 39 of 75 samples (52 percent), with Escherichia coli detected in 10 of those 39 samples. Radon-222 activities ranged from non-detect to 7,420 picocuries per liter (pCi/L), with a median of 863 pCi/L, and exceeded the proposed drinking-water standard of 300 pCi/L in 50 (67 percent) of the 75 samples; radon-222 activities were higher than the alternative proposed standard of 4,000 pCi/L in 3 samples.Water from 15 of 75 (20 percent) wells had concentrations of methane greater than the reporting level of 0.01 mg/L; detectable methane concentrations ranged from 0.04 to 16.8 mg/L. Two samples had methane concentrations (13.1 and 16.8 mg/L) exceeding the action level of 7 mg/L. Low levels of ethane (up to 0.12 mg/L) were present in the five samples with the highest methane concentrations (near or above 1 mg/L) that were analyzed for hydrocarbon compounds and isotopic composition. The isotopic composition of methane in four of these groundwater samples, from the Catskill and Lock Haven Formations and the Hamilton Group, have sample carbon isotopic ratio delta values (carbon-13/carbon-12) ranging from –42.36 to –36.08 parts per thousand (‰) and hydrogen isotopic ratio delta values (deuterium/protium) ranging from –212.0 to –188.4 ‰, which are consistent with the isotopic compositions reported for mud-gas logging samples from these geologic units and a thermogenic source of the methane. However, the isotopic composition and ratios of methane to ethane in a fifth sample indicate the methane in that sample may be of microbial origin that subsequently underwent oxidation. The fifth sample had the highest concentration of methane, 16.8 mg/L, with an carbon isotopic ratio delta values of -50.59 ‰ and a hydrogen isotopic ratio delta values of -209.7 ‰.The six well-water samples with the highest methane concentrations also had among the highest pH values (8.25 to 9.15) and elevated concentrations of sodium, lithium, boron, fluoride, arsenic, and bromide. Relatively elevated concentrations of some other constituents, such as barium, strontium, and chloride, commonly were present in, but not limited to, those well-water samples with elevated methane.Three of the six groundwater samples with the highest methane concentrations had chloride/bromide ratios that indicate mixing with a small amount of brine (0.02 percent or less) similar in composition to those reported at undetermined depth below the freshwater aquifer and for gas and oil well brines in Pennsylvania. The sample with the highest methane concentration and most other samples with low methane concentrations (less than about 1 mg/L) have chloride/bromide ratios that indicate predominantly anthropogenic sources of chloride, such as road-deicing salt, septic systems, and (or) animal waste. Brines that are naturally present may originate from deeper parts of the aquifer system, while anthropogenic sources are more likely to affect shallow groundwater because they occur on or near the land-surface.The spatial distribution of groundwater compositions generally indicate that (1) uplands along the western border of Lycoming County usually have dilute, slightly acidic oxygenated, calcium-bicarbonate type waters; (2) intermediate altitudes or areas of carbonate bedrock usually have water of near neutral pH, with highest amounts of hardness (calcium and magnesium); (3) stream valleys, low elevations where groundwater may be discharging, and deep wells in uplands usually have water with pH values greater than 8 and highest arsenic, sodium, lithium, bromide concentrations. Geochemical modeling indicated that for samples with elevated pH, sodium, lithium, bromide, and alkalinity, the water chemistry could have resulted by dissolution of calcite (calcium carbonate) combined with cation-exchange and mixing with a small amount of brine. Through cation-exchange reactions between water and bedrock, which are equivalent to processes in a water softener, calcium ions released by calcite dissolution are exchanged for sodium ions on clay minerals. Thus, the assessment of groundwater quality in Lycoming County indicates groundwater is generally of good quality, but various parts of Lycoming County can have groundwater with low to moderate concentrations of methane and other constituents that appear in naturally present brine and produced waters from gas and oil wells at high concentrations."
Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi
2014-11-01
In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Aldicarb-pesticide contamination of ground water in eastern Suffolk County, Long Island, New York
Soren, Julian; Stelz, W.G.
1984-01-01
Aldicarb, a toxic oxime-carbamate pesticide that was believed incapable of reaching ground water, was used in potato-farming areas of eastern Suffolk County, New York during 1975-80. In 1979, aldicarb was found in substantial concentrations in ground water throughout the area. The New York State Department of Health set a limit of 7 micrograms per liter for aldicarb in drinking water. Extensive ground-water sampling into 1980 showed widespread contamination ranging from small amounts to as much as 515 micrograms per liter. In 1980, the U.S. Environmental Protection Agency banned the use of aldicarb on Long Island at the manufacturer 's request. A 1982 sampling study found aldicarb to have penetrated to about 40 feet below the water table in concentrations ranging from below detection limit to 239 micrograms per liter. Despite reputed toxicity, no instance of aldicarb poisoning on Long Island has been documented. The excessive aldicarb concentrations in the ground water of eastern Long Island may persist for decades; the duration has not been precisely determined and remains under investigation. (USGS)
Furukawa, Koji; Hashimoto, Makoto; Kaneco, Satoshi
2017-01-01
A rapid determination of aniline in environmental water was examined based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Environmental water samples were diluted 20-fold with Mill-Q water and measured by LC/MS/MS after adding a surrogate substance (aniline-d 5 ). In the results of the present study, the calibration curve of aniline showed good linearity in the range of 0.05 - 2.0 μg/L. Since the RSD (repeatability) by measuring repeatedly an aniline standard solution (0.05 μg/L, n = 7) was 3.2%, the repeatability of this work was very excellent. In addition, the recovery rate of aniline in environmental water was in the range of 99.0 - 102% with RSD 3.4 - 7.7%, and very good recovery test results were obtained. From these results, this analytical method was confirmed to be effective for aniline measurements of environmental water samples. Also, it is possible to conduct rapid analyses of aniline in environmental water without any solid-phase extraction process, compared to the solid-phase extraction-GC/MS method.
An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA
Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.
2011-01-01
Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.
The water, deuterium, gas and uranium content of tektites
Friedman, I.
1958-01-01
The water content, deuterium concentration of the water, total gas and uranium contents were determined on tektite samples and other glass samples from Texas, Australia, Philippine Islands, Java, French Indo-China, Czechoslovakia, Libyan Desert, Billiton Island, Thailand, French West Africa, Peru, and New Mexico. The water content ranges from 0.24 per cent for the Peru tektite, to 0.0002 per cent for a moldavite. The majority of the tektites have less than 0.05 per cent water, and average 0.005 per cent H2O by weight. No other gases were detected, the lower detection limit being about 1 p.p.m. by weight. The deuterium content of the water in tektites is in the same range as that in terrestrial waters, and varies from 0.010 mole per cent to 0.0166 mole per cent deuterium. The uranium content is about from 1 to 3 p.p.m. The possible origin of tektites is discussed. The experimental data presented favour their being originally terrestrial, but produced by some catastrophic event. An extra-terrestrial source is not ruled out. ?? 1958.
Soeder, Daniel J.; Miller, Cherie V.
2003-01-01
Prime Hook National Wildlife Refuge is located in southeastern Delaware in coastal lowlands along the margin of Delaware Bay. For 37 years, the Broadkiln Sportsman?s Club adjacent to the refuge operated a trap-shooting range, with the clay-target launchers oriented so that the expended lead shot from the range dropped into forested wetland areas on the refuge property. Investigators have estimated that up to 58,000 shotgun pellets per square foot are present in locations on the refuge where the lead shot fell to the ground. As part of the environmental risk assessment for the site, the U.S. Geological Survey (USGS) investigated the potential for lead contamination in ground water. Results from two sampling rounds in 19 shallow wells indicate that elevated levels of dissolved lead are present in ground water at the site. The lead and associated metals, such as antimony and arsenic (common shotgun pellet alloys), are being transported along shallow ground-water flowpaths toward an open-water slough in the forested wetland adjacent to the downrange target area. Water samples from wells located along the bank of the slough contained dissolved lead concentrations higher than 400 micrograms per liter, and as high as 1 milligram per liter. In contrast, a natural background concentration of lead from ground water in a well upgradient from the site is about 1 microgram per liter. Two water samples collected several months apart from the slough directly downgradient of the shooting range contained 24 and 212 micrograms per liter of lead, respectively. The data indicate that lead from a concentrated deposit of shotgun pellets on the refuge has been mobilized through a combination of acidic water conditions and a very sandy, shallow, unconfined aquifer, and is moving along ground-water flowpaths toward the surface-water drainage. Data from this study will be used to help delineate the lead plume, and determine the fate and transport of lead from the source area.
Rural drinking water at supply and household levels: quality and management.
Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad
2006-09-01
Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.
Ground-water-quality data for selected wells in the Beaver Creek watershed, West Tennessee
Williams, S.D.
1996-01-01
In 1993 the U.S. Geological Survey, in cooperation with the Tennessee Department of Environment and Conservation (TDEC), began an investigation of the quality of ground water in the Beaver Creek watershed in West Tennessee. A total of 408 water samples were collected from 91 wells during 5 sampling periods in 1994. Water samples were analyzed for selected water-quality properties, fecal coliform and streptococci bacteria, nutrients, and major inorganic constituents. Selected well- construction data and information on potential sources of contamination were also collected for the 91 wells sampled. Nitrate concentrations (measured as NO
Quantitative Analysis and Stability of the Rodenticide TETS ...
Journal Article The determination of the rodenticide tetramethylenedisulfotetramine (TETS) in drinking water is reportable through the use of automated sample preparation via solid phase extraction and detection using isotope dilution gas chromatography-mass spectrometry. The method was characterized over twenty-two analytical batches with quality control samples. Accuracies for low and high concentration quality control pools were 100 and 101%, respectively. The minimum reporting level (MRL) for TETS in this method is 0.50 ug/L. Five drinking waters representing a range of water quality parameters and disinfection practices were fortified with TETS at ten times the MRL and analyzed over a 28 day period to determine the stability of TETS in these waters. The amount of TETS measured in these samples averaged 100 ± 6% of the amount fortified suggesting that tap water samples may be held for up to 28 days prior to analysis.
Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05
Steele, G.V.; Sibray, S.S.; Quandt, K.A.
2007-01-01
During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples from the Ogallala and the Brule sand. Median concentrations of nitrate varied by aquifer-2.6 milligrams per liter (Ogallala), 2.1 milligrams per liter (Brule), and 1.3 milligrams per liter (Brule sand). The chemistry of the ground water in the study area indicates that ground water flows from recharge areas in both the tableland areas and Lodgepole Creek Valley to discharge areas beyond the study area. Recharging water that percolates into the Ogallala in the tableland areas either enters the Ogallala aquifer, flows along the Ogallala-Brule contact, or enters Brule fractures or sand. Although limited in amount, ground water flowing along the Ogallala-Brule contact or in the Brule fractures or sand appears to be the predominant means by which water moves from the tableland areas to Lodgepole Creek Valley. Apparent ground-water ages from chlorofluorocarbon and sulfur hexafluoride data generally were similar. Age of ground water for most monitoring wells located in Lodgepole Creek Valley ranged from the mid- to late 1960s to the early 1990s. Ages of ground water in samples from monitoring wells located in tableland draw areas ranged from the mid-1980s to the early 1990s. Water in the Brule (areas without known secondary permeability structures) or deeper Brule sand aquifer was substantially older than water in the Ogallala aquifer and probably was recharged between 10,000 to 30,000 years before present. The stable isotopic data indicate that the ground water in the study area probably originated from precipitation. Ground water in Lodgepole Creek and the tableland areas are similar in chemistry. However, there appears to be limited interaction between ground water within the Ogallala to the north of Sidney and Lodgepole Creek Valley. Available data indicate that although some of the ground water in the Ogallala likely flows across the Ogallala-Brule contact, most of it does not move toward Lodgepole Creek.
Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.
Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan
2013-12-01
Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.
Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet
Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan
2013-01-01
Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study. PMID:24367140
do Nascimento, Marilia Teresa Lima; Santos, Ana Dalva de Oliveira; Felix, Louise Cruz; Gomes, Giselle; de Oliveira E Sá, Mariana; da Cunha, Danieli Lima; Vieira, Natividade; Hauser-Davis, Rachel Ann; Baptista Neto, José Antonio; Bila, Daniele Maia
2018-03-01
Endocrine disrupting compounds (EDCs) can be found in domestic sewage, wastewater treatment plant effluents, natural water, rivers, lakes and in the marine environment. Jurujuba Sound, located in the state of Rio de Janeiro, Southeastern Brazil, receives untreated sewage into its waters, one the main sources of aquatic contamination in this area. In this context, the aim of the present study was to evaluate the estrogenic potential of water sampled from different depths and from areas with differential contamination levels throughout Jurujuba Sound. Water quality was evaluated and acute toxicity assays using Allviibrio fischeri were conducted, while estrogenic activity of the water samples was determined by a Yeast Estrogen Screening assay (YES). Water quality was mostly within the limits established for marine waters by the Brazilian legislation, with only DOC and ammoniacal nitrogen levels above the maximum permissible limits. No acute toxicity effects were observed in the Allivibrio fisheri assay. The YES assay detected moderate estrogenic activity in bottom water samples from 3 sampling stations, ranging from 0.5 to 3.2ngL -1 , as well as in one surface water sample. Estrogenic activity was most frequently observed in samples from the bottom of the water column, indicating adsorption of estrogenic compounds to the sediment. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of storm-water runoff on local ground-water quality, Clarksville, Tennessee
Hoos, Anne B.
1990-01-01
Storm-related water-quality data were collected at a drainage-well site and at a spring site in Clarksville, Tennessee, to define the effects of storm-water runoff on the quality of ground water in the area. A dye-trace test verified the direct hydraulic connection between the drainage well and Mobley Spring. Samples of storm run off and spring flow were collected at these sites for nine storms during the period February to October 1988. Water samples were collected also from Mobley Spring and two other springs and two observation wells in the area during dry-weather conditions to assess the general quality of ground water in an urban karst terrain. Evaluation of the effect of storm-water runoff on the quality of local ground water is complicated by the presence of other sources of contaminants in the area Concentrations and load for most major constituents were much smaller in storm-water runoff at the drainage well than in the discharge of Mobley Spring, indicating that much of the chemical constituent load discharged from the spring comes from sources other than the drainage well. However, for some of the minor constituents associated with roadway runoff (arsenic, copper, lead, organic carbon, and oil and grease), the drainage well contributed relatively large amounts of these constituents to local ground water during storms. The close correlation between concentrations of total organic carbon and concentrations of most trace metals at the drainage-well and Mobley Spring sites indicates that these constituents are transported together. Many trace metals were flushed early during each runoff event. Mean storm loads for copper, lead, zinc, and four nutrient species (total nitrogen, ammonia nitrogen, total phosphorus, and orthophosphorus) in storm-water runoff at the drainage-well site were lower than mean storm load predicted from an existing regression model. The overprediction by the model may be a result of the small size of the drainage area relative to the range of drainage areas used in the development of the models, or to the below-normal amounts of rainfall during the period of sampling for this investigation. Loads& in storm-water runoff for 22 constituents were extrapolated from sampled storms to total loads for the period February to October 1988. Calculated loads for trace metals for the period ranged from 0.030pound.s for cadmium to 12pound.s for strontium. Loads of the primary nutrients ranged from 0.97pounds for nitrite as nitrogen to 34pounds of organic nitrogen. Storm-water quality at the drainage-well and Mobley Spring sites was compared to background water quality of the local aquifer; as characterized by dry-weather samples from three springs and two observation wells in the Clarksville area. Concentrations of total-recoverable cadmium, chromium, copper, lead, and nickel were higher in many stormwater samples from both the drainage-well and Mobley Spring sites than in samples from any other site. In addition, concentrations of total organic carbon, methylene blue active substances, and total-recoverable oil and grease were generally higher in storm-water samples from the drainage-well site than in any ground-water sample. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total recoverable iron, manganese, and methylene blue active substances in storm samples from the drainage-well site exceeded the maximum contaminant levels listed in Tennessee?s drinking-water standards (1988) by as much as 2,500 and 5,500 colonies per 100 milliliters, and 2.7, 0.29, and 0.05 milligrams per liter, respectively. Densities of fecal coliform and fecal streptococcus bacteria and concentrations of total-recoverable iron, manganese, and lead in storm samples from Mobley Spring exceeded the maximum contaminant levels by as much as 500 and 4,500 colonies per 100 milliliters, and 18.7,0.65, and 0.02 milligrams per liter, respectively. For iron, manganese, and bacteria, these undesirable
Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh
NASA Astrophysics Data System (ADS)
Hasanuzzaman, M.; Rahman, M. A.; Islam, M. S.; Salam, M. A.; Nabi, M. R.
2018-03-01
Pesticides used to protect the crops from pest attack in the agricultural fields pose harmful effect to the non-target organisms such as human and many other aquatic and terrestrial organisms either directly or indirectly through food chain. The present study was conducted to monitor a total of seven pesticide residues under organochlorine, organophosphorus and carbamate pesticides in three different sources of pond water, paddy field water and tube-well water from Nagarpur Upazila and paddy field water in the company of Dhaleshwari and Gazikhali river water from Saturia Upazila, Bangladesh. A total of 40 water samples were analyzed using high-performance liquid chromatography equipped with ultraviolet detector. Among the organophosphorus pesticides, diazinon was detected in eight water samples at a concentration ranging from 4.11 to 257.91 μg/l whereas, malathion was detected only in one water sample at a concentration of 84.64 μg/l and chlorpyrifos pesticide was also detected only in one water sample and the concentration was 37.3 μg/l. Trace amount of carbaryl was identified but it was below the detection limit. None of the tested water samples was found to be contaminated with DDT or its metabolites (DDE and DDD). The water samples contaminated with the suspected pesticides were above the acceptable limit except for the fish pond samples of Sahabatpur and Dubaria union. To control the misuse of pesticides and to reduce the possible health risk, appropriate control systems of pests such as integrated pest management system should be implemented immediately by the authorities of the country.
[Estimation of exposure to fluoride in "Los Altos de Jalisco", México].
Hurtado-Jiménez, Roberto; Gardea-Torresdey, Jorge
2005-01-01
To estimate the level of fluoride exposure and human health risks in Los Altos de Jalisco (Jalisco State Heights) region. This study was conducted between May and July 2002. The fluoride concentrations of 105 water wells and six tap water samples were electrochemically measured. Exposure doses to fluoride and total intake of fluoride were estimated for babies (10 kg), children (20 kg), and adults (70 kg). The fluoride concentration of the water samples ranged from 0.1 to 17.7 mg/l. More than 45% of the water samples exceeded the national guideline value for fluoride of 1.5 mg/l. The estimated values of the exposure doses to fluoride and total intake of fluoride were in the range of 0.04-1.8 mg/kg/d and 0.5-18.4 mg/d, respectively. Dental fluorosis, skeletal fluorosis, and bone fractures are some of the potential health risks due to the intake of high doses of fluoride for the population of Los Altos de Jalisco. In order to reduce health risks, fluoridated salt,fluoridated toothpastes, and drinking water containing more than 0.7 mg/l of fluoride should be avoided.
Source and transport of human enteric viruses in deep municipal water supply wells
Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.
2013-01-01
Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.
Apparent CFC and 3H/ 3He age differences in water from Floridan Aquifer springs
NASA Astrophysics Data System (ADS)
Happell, James D.; Opsahl, Stephen; Top, Zafer; Chanton, Jeffrey P.
2006-03-01
The apparent CFC-11, -12 and -113 ages of Upper Floridan Aquifer water discharged from 31 springs located in Florida and Georgia ranged from 11 to 44 years when samples were collected in 2002 and 2003. Apparent 3H/ 3He ages in these springs ranged from 12 to 66 years. Some of the springs sampled did not yield valid CFC ages because one or more of the CFCs were contaminated by non-atmospheric sources. Of the 31 springs sampled, six were contaminated with all three CFCs and nine were contaminated with one or two CFCs. Of the remaining 16 springs, the CFC distributions of four could be modeled assuming a single source of water, and 11 were best modeled by assuming two sources of water, with one of the water sources >60 years old. The CFC and 3H/ 3He apparent ages and the simple mixing models applied to these ages suggest that past impacts to the water quality of water recharging the sampled springs may take anywhere from 0 to ˜60 years or more to appear in the discharging spring water. In 27 springs where both 3H/ 3He ages and CFC ages were available, five springs gave similar results between the two techniques, while in the other 22 cases the 3H/ 3He apparent ages were 8-40 years greater than the CFC ages. Large excesses of 4He were observed in many of the springs, consistent with a source of older water. This older water may also carry an additional and unaccounted for source of 3He, which may be responsible for the greater 3H/ 3He ages relative to the CFC ages. We believe that the large excess 3He and 4He values and apparent age differences are related to regional climate variations because our samples were obtained at the end of a 4-year drought.
Fluoride contamination sensor based on optical fiber grating technology
NASA Astrophysics Data System (ADS)
Jadhav, Mangesh S.; Laxmeshwar, Lata S.; Akki, Jyoti F.; Raikar, P. U.; Kumar, Jitendra; Prakash, Om; Raikar, U. S.
2017-11-01
A number of distinct advantages of the optical fiber technology in the field of sensors and communications which leads to enormous applications. Fiber Bragg grating (FBG) developed from the fabrication of photosensitive fiber through phase mask technique is used in the present report. The designed fiber sensor used for the detection and determination of contaminants in drinking water at ppm & ppb level and it is considered as a special type of concentration sensor. The test samples of drinking water have been collected from different regions. In this paper we have calibrated the FBG sensor to detect Flouride concentration in drinking water in the range of 0.05-8 ppm. According to WHO, the normal range of fluoride content in drinking water is about 0.7 ppm to 1.5 ppm. The results for resultant spectral shifts for test samples are closely agree with standard values.
2013-01-01
Background Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. Results AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. Conclusion Household potable water may be a potential source of NTM infection in Mexico City. PMID:24330835
Potential radiation control of biofouling bacteria on intake filters
NASA Astrophysics Data System (ADS)
Eichholz, Geoffrey G.; Jones, Cynthia G.; Haynes, Harold E.
The biofouling of filters at deep wells supplying water for industrial and drinking water purposes by various iron- and sulfur-reducing bacteria is a wide-spread problem in the United States and can cause serious economic losses. Among the means of control, steam heating or chemical additives can be applied only intermittently and have their own environmental impact. Preliminary studies have shown that installation of a sealed gamma radiation source may provide an alternative solution. Analysis of a range of water samples from contaminated wells identified many of the samples as rich in barsiderocapsa and barpseudomona bacteria. Static and dynamic experiments on water samples at various does and dose rates have shown that these organisms are relatively radiation-sensitive, with a lethal dose in the range of 200-400Gy (20-40kR). Since the main objective is to restrict growth or deposit of plaque on filters, dose rates of the order of 50-75 Gy/hr would be adequate. Such dose rates could be obtained with relatively weak sources, depending on filter dimensions. A conceptual design for such systems has been proposed.
Uranium and radon in ground water in the lower Illinois River basin
Morrow, William S.
2001-01-01
Uranium and radon are present in ground water throughout the United States, along with other naturally occurring radionuclides. The occurrence and distribution of uranium and radon are of concern because these radionuclides are carcinogens that can be ingested through drinking water. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program, water samples were collected and analyzed for uranium and radon from 117 wells in four aquifers in the lower Illinois River Basin (LIRB) from 1996 to 1997. The aquifers were the shallow glacial drift deposits of the Bloomington Ridged Plain (BRP) not overlying a buried bedrock valley (BRP N/O BV), shallow glacial drift deposits of the BRP overlying the Mahomet Buried Bedrock Valley (BRP O/L MBBV), shallow glacial drift deposits of the Galesburg/Springfield Plain not overlying a buried bedrock valley (GSP N/O BV), and the deep glacial drift deposits of the Mahomet Buried Bedrock Valley (MBBV). Uranium was detected in water samples from all aquifers except the MBBV and ranged in concentration from less than 1 microgram per liter ( ? g/L) to 17 ? g/L. Uranium concentrations did not exceed 20 ? g/L, the proposed U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) at the time of sampling (1996?97). The current (2001) promulgated MCL is 30 ? g/L (U.S. Environmental Protection Agency, 2000). The highest median uranium concentration (2.0 ? g/L) among the four aquifers was in the BRP N/O BV. Uranium most often occurred in oxidizing and sulfate-rich water. Radon was detected in water samples from all aquifers in the LIRB. Radon concentrations in all aquifers ranged from less than 80 picocuries per liter (pCi/L) to 1,300 pCi/L. Of 117 samples, radon concentrations exceeded 300 pCi/L (the proposed USEPA MCL) in 34 percent of the samples. Radon concentrations exceeded 300 pCi/L in more than one-half of the samples from the GSP N/O BV and the BRP O/L MBBV. No sample exceeded the proposed Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L. Concentrations of uranium and radon were not correlated.
Impact Of Standing Water On Saltstone Placement II - Hydraulic Conductivity Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Pickenheim, B. R.
2012-12-06
The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain systemmore » will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes was prepared and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. Report SRNL-STI-2012-00546 was issued detailing the experimental procedure, results, and conclusions related to density and leachability. In the previous report, it was concluded that: density tends to increase toward the bottom of the samples. This effect is pronounced with excess bleed water; drying of the saltstone during curing leads to decreased Leachability Index (more leaching) for potassium, sodium, rhenium, nitrite, and nitrate; there is no noticeable effect on saltstone oxidation/leachability by changing the water to premix ratio (over the range studied), or by pouring into standing water (when tested up to 10 volume percent). The hydraulic conductivity data presented in this report show that samples cured exposed to the atmosphere had about three orders of magnitude higher hydraulic conductivity than any of the other samples. Considering these data, along with the results presented in the previous report, leads to the conclusion that small changes in water to premix ratio and the inclusion of up to 10 volume percent standing water should not be expected to have a detrimental effect on saltstone grout quality. The hydraulic conductivity results further demonstrate that curing in a moist environment is critical to maintaining saltstone quality.« less
Jones, Sandra R.; Garbarino, John R.
1999-01-01
Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent for arsenic and from 82 to 93 percent for selenium, depending on the flow conditions used. Statistical analysis of dissolved and whole-water recoverable analytical results for the same set of water samples indicated that there is no significant difference between the GF-AAS and HG-AAS methods. Interferences related to various chemical constituents were also identified. Although sulfate and chloride in association with various cations might interfere with the determination of arsenic and selenium by GF-AAS, the use of a magnesium nitrate/palladium matrix modifier and low-flow argon during atomization helped to minimize such interferences. When using stabilized temperature platform furnace conditions where stop flow is used during atomization, the addition of hydrogen (5 percent volume/volume) to the argon minimized chemical interferences. Nevertheless, stop flow during atomization was found to be less effective than low flow in reducing interference effects.
Meyer, M.T.; Bumgarner, J.E.; Varns, J.L.; Daughtridge, J.V.; Thurman, E.M.; Hostetler, K.A.
2000-01-01
Approximately one-half of the 50 000000 lb of antibiotics produced in the USA are used in agriculture. Because of the intensive use of antibiotics in the management of confined livestock operations, the potential exists for the transport of these compounds and their metabolites into our nation's water resources. A commercially available radioimmunoassay method, developed as a screen for tetracycline antibiotics in serum, urine, milk, and tissue, was adapted to analyze water samples at a detection level of approximately 1.0 ppb and a semiquantitative analytical range of 1-20 ppb. Liquid waste samples were obtained from 13 hog lagoons in three states and 52 surface- and ground-water samples were obtained primarily from areas associated with intensive swine and poultry production in seven states. These samples were screened for the tetracycline antibiotics by using the modified radioimmunoassay screening method. The radioimmunoassay tests yielded positive results for tetracycline antibiotics in samples from all 13 of the hog lagoons. Dilutions of 10-100-fold of the hog lagoon samples indicated that tetracycline antibiotic concentrations ranged from approximately 5 to several hundred parts per billion in liquid hog lagoon waste. Of the 52 surface- and ground-water samples collected all but two tested negative and these two samples contained tetracycline antibiotic concentrations less than 1 ppb. A new liquid chromatography/mass spectrometry method was used to confirm the radioimmunoassay results in 9 samples and also to identify the tetracycline antibiotics to which the radioimmunoassay test was responding. The new liquid chromatography/mass spectrometry method with online solid-phase extraction and a detection level of 0.5 ??g/l confirmed the presence of chlorotetracycline in the hog lagoon samples and in one of the surface-water samples. The concentrations calculated from the radioimmunoassay were a factor of 1-5 times less than those calculated by the liquid chromatography/mass spectrometry concentrations for chlorotetracycline. Copyright (C) 2000 Elsevier Science B.V.
Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D
2016-05-15
This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol, timolol, betaxolol, nadolol and diclofenac being found in some of them, at levels higher than their quantitation limits. Copyright © 2016 Elsevier B.V. All rights reserved.
Petersen, Jördis; Pröfrock, Daniel; Paschke, Albrecht; Broekaert, Jose A C; Prange, Andreas
2015-10-01
Little knowledge is available about water concentrations of rare earth elements (REEs) in the marine environment. The direct measurement of REEs in coastal waters is a challenging task due to their ultra-low concentrations as well as the high salt content in the water samples. To quantify these elements at environmental concentrations (pg L(-1) to low ng L(-1)) in coastal waters, current analytical techniques are generally expensive and time consuming, and require complex chemical preconcentration procedures. Therefore, an integrative passive sampler was tested as a more economic alternative sampling approach for REE analysis. We used a Chemcatcher-Metal passive sampler consisting of a 3M Empore Chelating Disk as the receiving phase, as well as a cellulose acetate membrane as the diffusion-limiting layer. The effect of water turbulence and temperature on the uptake rates of REEs was analyzed during 14-day calibration experiments by a flow-through exposure tank system. The sampling rates were in the range of 0.42 mL h(-1) (13 °C; 0.25 m s(-1)) to 4.01 mL h(-1) (13 °C; 1 m s(-1)). Similar results were obtained for the different REEs under investigation. The water turbulence was the most important influence on uptake. The uptake rates were appropriate to ascertain time-weighted average concentrations of REEs during a field experiment in the Elbe Estuary near Cuxhaven Harbor (exposure time 4 weeks). REE concentrations were determined to be in the range 0.2 to 13.8 ng L(-1), where the highest concentrations were found for neodymium and samarium. In comparison, most of the spot samples measured along the Chemcatcher samples had REE concentrations below the limit of detection, in particular due to necessary dilution to minimize the analytical problems that arise with the high salt content in marine water samples. This study was among the first efforts to measure REE levels in the field using a passive sampling approach. Our results suggest that passive samplers could be an effective tool to monitor ultra-trace concentrations of REEs in coastal waters with high salt content.
Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti
2012-11-01
The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart from drinking water treatment where chlorination caused an increase in oxidative stress response, presumably due to the formation of disinfection by-products. This study demonstrates the relevance and applicability of the oxidative stress response pathway for water quality monitoring.
Trombley, Thoams J.; Brown, Craig J.; Delzer, Gregory C.
2007-01-01
A water-quality assessment by the U.S. Geological Survey (USGS) determined the occurrence of anthropogenic (manmade) organic compounds (AOCs) in water from 15 community water system (CWS) wells and associated finished drinking water. The study, which focused on water from the unconfined glacial stratified aquifer in western and central Connecticut, was conducted as part of the USGS National Water-Quality Assessment Program (NAWQA) Source Water-Quality Assessment (SWQA) project and included analysis of water samples for 88 volatile organic compounds (VOCs), 120 pesticides, and 50 other anthropogenic organic compounds (OAOCs). During Phase I of the study, 25 AOCs were detected (12 VOCs, 10 pesticides, and 3 OAOCs) in source-water samples collected from 15 CWS wells sampled once from October 2002 to May 2003. Although concentrations generally were low (less than 1 microgram per liter), four compounds were detected at higher concentrations in ground water from four wells. The most frequently occurring AOCs were detected in more than half of the samples and included chloroform (87 percent), methyl tert-butyl ether (MTBE, 80 percent), 1,1,1-trichloroethane (67 percent), atrazine (60 percent), deethylatrazine (60 percent), perchloroethene (PCE, 53 percent), and simazine (53 percent). Trichloroethene (TCE) was detected in 47 percent of samples. Samples generally contained a mixture of compounds ranging from 2 to 19 detected compounds, with an average of 8 detected compounds per sample. During Phase II of the study, 42 AOCs were detected in source-water samples collected from 10 resampled CWS wells or their associated finished water. Trihalomethanes accounted for most of the VOCs detections with all concentrations less than 1 microgram per liter. Chloroform, the most frequently detected VOC, was found in all source-water and all finished-water samples. As with the Phase I samples, other frequently detected VOCs included MTBE, and the solvents 1,1,1-trichloroethane, PCE, and TCE. Triazine herbicides and their degradation products accounted for most of the detected pesticides.
A Rapid Leaf-Disc Sampler for Psychrometric Water Potential Measurements 1
Wullschleger, Stan D.; Oosterhuis, Derrick M.
1986-01-01
An instrument was designed which facilitates faster and more accurate sampling of leaf discs for psychrometric water potential measurements. The instrument consists of an aluminum housing, a spring-loaded plunger, and a modified brass-plated cork borer. The leaf-disc sampler was compared with the conventional method of sampling discs for measurement of leaf water potential with thermocouple psychrometers on a range of plant material including Gossypium hirsutum L., Zea mays L., and Begonia rex-cultorum L. The new sampler permitted a leaf disc to be excised and inserted into the psychrometer sample chamber in less than 7 seconds, which was more than twice as fast as the conventional method. This resulted in more accurate determinations of leaf water potential due to reduced evaporative water losses. The leaf-disc sampler also significantly reduced sample variability between individual measurements. This instrument can be used for many other laboratory and field measurements that necessitate leaf disc sampling. PMID:16664879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevenell, L.
1989-11-01
Thirty-one thermal and nonthermal water samples were collected in Panama by the Instituto de Recursos Hidraulicos y Electrificacion and analyzed by the Earth and Space Sciences Division at Los Alamos National Laboratory to evaluate the geothermal potential of four different areas. Chemical and isotopic analyses were performed on each sample. Because samples from several areas were submitted, the chemistry of the samples is varied, with total dissolved solids of thermal fluids ranging from 900 to nearly 10,000 mg/{ell}. All water samples studied are meteoric in origin, and none of the thermal waters exhibit an {sup 18}O enrichment, which is characteristicmore » of high-temperature isotopic, exchange between water and rock. At all four areas, calculated geothermometer temperatures within a reservoir of less than 160{degrees}C. 4 refs., 4 figs., 6 tabs.« less
Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek
2013-11-15
A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less
Druliner, A.D.; Mason, J.P.
2001-01-01
The U.S. Geological Survey, in cooperation with the Lower Platte South Natural Resources District, conducted a hydrogeologic and water-quality reconnaissance study of the five principal aquifers in deposits of Quaternary age in the Natural Resources District. The purpose of the study was to delineate the approximate extent of the aquifers, to estimate volumes of drainable water in three aquifers, to provide information that could be useful in designing future ground-water-quality monitoring, and to determine baseline water-quality conditions in the aquifers, focusing on nitrate concentrations. The approximate lateral boundaries of the Dwight-Valparaiso, Crete-Princeton-Adams, and Waverly aquifers were defined as areas in which the thickness of continuous sand and gravel deposits was less than 40 feet. The three aquifers were determined to contain about 1,340,000; 1,540,000; and 172,000 acre-feet of drainable water, respectively, assuming a specific yield of 0.20. During the summer of 1994, ground-water samples were collected from 46 wells in the five aquifers and analyzed for nitrate and screened for triazine herbicides. Additionally, water samples from 39 of these wells were analyzed for major ions, iron, and manganese, and 35 were analyzed for radon. Water-quality analyses revealed that the water in the five aquifers had specific conductances that ranged from 399 to 2,040 micro-siemens per centimeter and was a calcium-carbonate to calcium-magnesium-sodium carbonate type. The most mineralized water samples were from the Crete-Princeton-Adams aquifer, which contained a median concentration of dissolved solids of 520 milligrams per liter. Concentrations of nitrate in water samples from the aquifers ranged from less than 0.05 to 23 milligrams per liter as nitrogen, and only six water samples exceeded the Maximum Contaminant Level established by the U.S. Environmental Protection Agency of 10 milligrams per liter. The median concentration of radon for water samples from the five aquifers was 300 picocuries per liter, which is the proposed Maximum Contaminant Level. Water samples from the Crete-Princeton-Adams and Waverly aquifers had the largest concentrations of radon among the five aquifers. The Crete-Princeton-Adams aquifer had a median concentration of 440 picocuries per liter, and the Waverly aquifer had a median concentration of 390 picocuries per liter. Herbicides were detected in water from only six wells, which were in four of the five aquifers. Atrazine, metabolites of atrazine, metolachlor, and metribuzin were detected in concentrations generally less than 1.00 microgram per liter.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.
2008-01-01
Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.
Mukdasai, Siriboon; Thomas, Chunpen; Srijaranai, Supalax
2014-03-01
Dispersive liquid microextraction (DLME) combined with dispersive µ-solid phase extraction (D-µ-SPE) has been developed as a new approach for the extraction of four pyrethroids (tetramethrin, fenpropathrin, deltamethrin and permethrin) prior to the analysis by high performance liquid chromatography (HPLC) with UV detection. 1-Octanol was used as the extraction solvent in DLME. Magnetic nanoparticles (Fe3O4) functionalized with 3-aminopropyl triethoxysilane (APTS) were used as the dispersive in DLME and as the adsorbent in D-µ-SPE. The extracted pyrethroids were separated within 30 min using isocratic elution with acetonitrile:water (72:28). The factors affecting the extraction efficiency were investigated. Under the optimum conditions, the enrichment factors were in the range of 51-108. Linearity was obtained in the range 0.5-400 ng mL(-1) (tetramethrin) and 5-400 ng mL(-1) (fenpropathrin, deltamethrin and permethrin) with the correlation coefficients (R(2)) greater than 0.995. Detection limits were 0.05-2 ng mL(-1) (water samples) and 0.02-2.0 ng g(-1) (vegetable samples). The relative standard deviations of peak area varied from 1.8 to 2.5% (n=10). The extraction recoveries of the four pyrethroids in field water and vegetable samples were 91.7-104.5%. The proposed method has high potential for use as a sensitive method for determination of pyrethroid residues in water and vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Pei, Miao; Zhu, Xiangyu; Huang, Xiaojia
2018-01-05
Effective extraction is a key step in the determination of sulfonylurea herbicides (SUHs) in complicated samples. According to the chemical properties of SUHs, a new monolithic adsorbent utilizing acrylamidophenylboronic acid and vinylimidazole as mixed functional monomers was synthesized. The new adsorbent was employed as the extraction phase of multiple monolithic fiber solid-phase microextraction (MMF-SPME) of SUHs, and the extracted SUHs were determined by high-performance liquid chromatography with diode array detection (HPLC-DAD). Results well evidence that the prepared adsorbent could extract SUHs in environmental waters and soil effectively through multiply interactions such as boronate affinity, dipole-dipole and π-π interactions. Under the optimized extraction conditions, the limits of detection for target SUHs in environmental water and soil samples were 0.018-0.17μg/L and 0.14-1.23μg/kg, respectively. At the same time, the developed method also displayed some analytical merits including wide linear dynamic ranges, good method reproducibility, satisfactory sensitivity and low consume of organic solvent. Finally, the developed were successfully applied to monitor trace SUHs in environmental water and soil samples. The recoveries at three fortified concentrations were in the range of 70.6-119% with RSD below 11% in all cases. The obtained results well demonstrate the excellent practical applicability of the developed MMF-SPME-HPLC-DAD method for the monitoring of SUHs in water and soil samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Apodaca, Lori Estelle; Bails, Jeffrey B.
2000-01-01
Water-quality samples were collected in the summer of 1997 from 45 sites (43 wells and 2 springs) in selected alluvial aquifers throughout the Southern Rocky Mountains physiographic province of the Upper Colorado River Basin study unit as part of the U.S. Geological Survey National Water-Quality Assessment Program. The objective of this study was to assess the water-quality conditions in selected alluvial aquifers in the Southern Rocky Mountains physiographic province. Alluvial aquifers are productive aquifers in the Southern Rocky Mountains physiographic province and provide for easily developed wells. Water-quality samples were collected from areas where ground water is used predominantly for domestic or public water supply. Twenty-three of the 45 sites sampled were located in or near mining districts. No statistical differences were observed between the mining sites and sites not associated with mining activities for the majority of the constituents analyzed. Water samples were analyzed for major ions, nutrients, dissolved organic carbon, trace elements, radon-222, pesticides, volatile organic compounds, bacteria, and methylene blue active substances. In addition, field parameters consisting of water temperature, specific conductance, dissolved oxygen, pH, turbidity, and alkalinity were measured at all sites.Specific conductance for the ground-water sites ranged from 57 to 6,650 microsiemens per centimeter and had higher concentrations measured in areas such as the northwestern part of the study unit. Dissolved oxygen ranged from 0.1 to 6.0 mg/L (milligrams per liter) and had a median concentration of 2.9 mg/L. The pH field values ranged from 6.1 to 8.1; about 4 percent of the sites (2 of 45) had pH values outside the range of 6.5 to 8.5 and so did not meet the U.S. Environmental Protection Agency secondary maximum contaminant level standard for drinking water. About 5 percent (2 of 43) of the samples exceeded the U.S. Environmental Protection Agency recommended turbidity value of 5 nephelometric turbidity units; one of these samples was from a monitoring well. The U.S. Environmental Protection Agency secondary maximum contaminant levels for dissolved solids, sulfate, iron, and manganese were exceeded at some of the sites. Higher dissolved-solids concentrations were detected where sedimentary rocks are exposed, such as in the northwestern part of the Southern Rocky Mountains physiographic province. The dominant water compositions for the sites sampled are calcium, magnesium, and bicarbonate. However, sites in areas where sedimentary rocks are exposed and sites located in or near mining areas show more sulfate-dominated waters. Nutrient concentrations were less than the U.S. Environmental Protection Agency drinking-water standards. Only one site had a nitrate concentration greater than 3.0 mg/L, a level indicating possible influence from human activities. No significant differences among land-use/land-cover classifications (forest, rangeland, and urban) for drinking-water wells (42 sites) were identified for dissolved-solids, sulfate, nitrate, iron or manganese concentrations. Radon concentrations were higher in parts of the study unit where Precambrian rocks are exposed. All radon concentrations in ground water exceeded the previous U.S. Environmental Protection Agency proposed maximum contaminant level for drinking water, which has been withdrawn pending further review.Pesticide detections were at concentrations below the reporting limits and were too few to allow for comparison of the data. Eight volatile organic compounds were detected at six sites; all concentrations complied with U.S. Environmental Protection Agency drinking-water standards. Total coliform bacteria were detected at six sites, but no Escherichia coli (E. coli) was detected. Methylene blue active substances were detected at three sites at concentrations just above the reporting limit. Overall, the water quality in the Southern Rocky Mountains physiograph
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
Furlong, Edward T.; Noriega, Mary C.; Kanagy, Christopher J.; Kanagy, Leslie K.; Coffey, Laura J.; Burkhardt, Mark R.
2014-01-01
This report describes a method for the determination of 110 human-use pharmaceuticals using a 100-microliter aliquot of a filtered water sample directly injected into a high-performance liquid chromatograph coupled to a triple-quadrupole tandem mass spectrometer using an electrospray ionization source operated in the positive ion mode. The pharmaceuticals were separated by using a reversed-phase gradient of formic acid/ammonium formate-modified water and methanol. Multiple reaction monitoring of two fragmentations of the protonated molecular ion of each pharmaceutical to two unique product ions was used to identify each pharmaceutical qualitatively. The primary multiple reaction monitoring precursor-product ion transition was quantified for each pharmaceutical relative to the primary multiple reaction monitoring precursor-product transition of one of 19 isotope-dilution standard pharmaceuticals or the pesticide atrazine, using an exact stable isotope analogue where possible. Each isotope-dilution standard was selected, when possible, for its chemical similarity to the unlabeled pharmaceutical of interest, and added to the sample after filtration but prior to analysis. Method performance for each pharmaceutical was determined for reagent water, groundwater, treated drinking water, surface water, treated wastewater effluent, and wastewater influent sample matrixes that this method will likely be applied to. Each matrix was evaluated in order of increasing complexity to demonstrate (1) the sensitivity of the method in different water matrixes and (2) the effect of sample matrix, particularly matrix enhancement or suppression of the precursor ion signal, on the quantitative determination of pharmaceutical concentrations. Recovery of water samples spiked (fortified) with the suite of pharmaceuticals determined by this method typically was greater than 90 percent in reagent water, groundwater, drinking water, and surface water. Correction for ambient environmental concentrations of pharmaceuticals hampered the determination of absolute recoveries and method sensitivity of some compounds in some water types, particularly for wastewater effluent and influent samples. The method detection limit of each pharmaceutical was determined from analysis of pharmaceuticals fortified at multiple concentrations in reagent water. The calibration range for each compound typically spanned three orders of magnitude of concentration. Absolute sensitivity for some compounds, using isotope-dilution quantitation, ranged from 0.45 to 94.1 nanograms per liter, primarily as a result of the inherent ionization efficiency of each pharmaceutical in the electrospray ionization process. Holding-time studies indicate that acceptable recoveries of pharmaceuticals can be obtained from filtered water samples held at 4 °C for as long as 9 days after sample collection. Freezing samples to provide for storage for longer periods currently (2014) is under evaluation by the National Water Quality Laboratory.
Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun
2017-05-15
In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water.
Ryan, P B; Huet, N; MacIntosh, D L
2000-08-01
Arsenic, cadmium, and lead have been associated with various forms of cancer, nephrotoxicity, central nervous system effects, and cardiovascular disease in humans. Drinking water is a well-recognized pathway of exposure to these metals. To improve understanding of the temporal dimension of exposure to As, Cd, and Pb in drinking water, we obtained 381 samples of tap and/or tap/filtered water and self-reported rates of drinking water consumption from 73 members of a stratified random sample in Maryland. Data were collected at approximately 2-month intervals from September 1995 through September 1996. Concentrations of As (range < 0.2-13.8 microg/L) and Pb (< 0.1-13.4 microg/L) were within the ranges reported for the United States, as were the rates of drinking water consumption (median < 0.1-4.1 L/day). Cd was present at a detectable level in only 8.1% of the water samples. Mean log-transformed concentrations and exposures for As and Pb varied significantly among sampling cycles and among respondents, as did rates of drinking water consumption, according to a generalized linear model that accounted for potential correlation among repeated measures from the same respondent. We used the intraclass correlation coefficient of reliability to attribute the total variance observed for each exposure metric to between-person and within-person variability. Between-person variability was estimated to account for 67, 81, and 55% of the total variance in drinking water consumption, As exposure (micrograms per day), and Pb exposure (micrograms per day), respectively. We discuss these results with respect to their implications for future exposure assessment research, quantitative risk assessment, and environmental epidemiology.
Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C
2016-02-01
Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru
2012-01-01
The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.
Least limiting water range of Udox soil under degraded pastures on different sun-exposed faces
NASA Astrophysics Data System (ADS)
Passos, Renato Ribeiro; Marciano da Costa, Liovando; Rodrigues de Assis, Igor; Santos, Danilo Andrade; Ruiz, Hugo Alberto; Guimarães, Lorena Abdalla de Oliveira Prata; Andrade, Felipe Vaz
2017-07-01
The efficient use of water is increasingly important and proper soil management, within the specificities of each region of the country, allows achieving greater efficiency. The South and Caparaó regions of Espírito Santo, Brazil are characterized by relief of `hill seas' with differences in the degree of pasture degradation due to sun exposure. The objective of this study was to evaluate the least limiting water range in Udox soil under degraded pastures with two faces of exposure to the sun and three pedoenvironments. In each pedoenvironment, namely Alegre, Celina, and Café, two areas were selected, one with exposure on the North/West face and the other on the South/East face. In each of these areas, undisturbed soil samples were collected at 0-10 cm depth to determine the least limiting water range. The exposed face of the pasture that received the highest solar incidence (North/West) presented the lowest values in least limiting water range. The least limiting water range proved to be a physical quality indicator for Udox soil under degraded pastures.
Fate of pesticides added to the soil in northeast of Santa Fe Province, Argentina.
NASA Astrophysics Data System (ADS)
Vidal, Claudia; Aparicio, Virginia; De Geronimo, Eduardo; Costa, Jose Luis
2017-04-01
The use of pesticides in crop production has increased in the Northeast Santa Fe Province. This region has predominance of argiudolls, hapludalf and natracualf soils, with silt loam texture and 1.5 % of organic matter content. The main crops are sunflower, maize, cotton and sorghum. There are also extensive livestock production systems. The objective of this work was to study the presence and environmental fate of pesticides used in the agricultural systems of the Northeast Santa Fe Province. Different environmental matrices (soil, surface water and sediment) were sampled during the 2014-2015 cropping season in an area of about 180,000 ha of the "Arroyo el Rey" basin. Soil samples were collected at 0-5 cm depth in sunflower, sorghum, soybean and cotton cultivated fields. A total of 12 field plots were sampled, with glyphosate application and without glyphosate application. Water samples were collected at three locations: upper basin, medium basin, and lower basin in polypropylene bottles and stored at -20 °C until analysis. Glyphosate and AMPA was extracted from filtered water samples with a buffer solution (100 mM Na2B4O7•10H2O/100 mM K3PO4, pH=9) and derivatized with 9-fluorenylmethylchloroformate (1 mg mL-1 in acetonitrile). Afterwards samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). A multi-residue determination of pesticides other than glyphosate and AMPA was used to detect pesticides in soil, water and sediment. Hydroxy atrazine (Atz-OH) (a degradation product of atrazine) and AMPA (a degradation product of glyphosate) were founded in the 100% of the soil samples. Below 70% of occurrence frequency were detected molecules such as Imidaclopyr (63%), Glyphosate (63%), Diethyltuolamide (61%), Atrazine (22%), Fluorocloridone (13%), Imazethapyr and Acetochlor To 1%). In water samples taken during 2014 the pesticides that exceeded the threshold of 0.1 μg.L-1 per molecule (European Economic Community) were AMPA (range: 0.7-0.3 μg.L-1), Atrazine (range : 0,201-0,1 μg.L-1), Atz-OH (range: 0.1598-0.135 μg.L-1). Also in some cases, the 0.5 μg.L-1 value (maximum for sum of EEC molecules) was exceeded, with ranges from 0.845 to 0.104 μg.L-1. In the water taken during 2015 the concentrations of AMPA and Glyphosate were greater than in 2014 (ranges: 6,6-0,5 μg.L-1 and 4.5-0,2 μg.L-1, respectively). This preliminary information indicates the need to study processes such as retention, degradation and vertical transport of pesticides to understand the mechanisms by which they are present in the different environmental matrices. In addition, it is important to reduce the input of pesticides added to the environment to produce grains and fibers in this region.
Groundwater quality of the Gulf Coast aquifer system, Houston, Texas, 2007-08
Oden, Jeannette H.; Oden, Timothy D.; Szabo, Zoltan
2010-01-01
In the summers of 2007 and 2008, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, completed an initial reconnaissance-level survey of naturally occurring contaminants (arsenic, other selected trace elements, and radionuclides) in water from municipal supply wells in the Houston area. The purpose of this reconnaissance-level survey was to characterize source-water quality prior to drinking water treatment. Water-quality samples were collected from 28 municipal supply wells in the Houston area completed in the Evangeline aquifer, Chicot aquifer, or both. This initial survey is part of ongoing research to determine concentrations, spatial extent, and associated geochemical conditions that might be conducive for mobility and transport of these constituents in the Gulf Coast aquifer system in the Houston area. Samples were analyzed for major ions (calcium, magnesium, potassium, sodium, bromide, chloride, fluoride, silica, and sulfate), selected chemically related properties (residue on evaporation [dissolved solids] and chemical oxygen demand), dissolved organic carbon, arsenic species (arsenate [As(V)], arsenite [As(III)], dimethylarsinate [DMA], and monomethylarsonate [MMA]), other trace elements (aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc), and selected radionuclides (gross alpha- and beta-particle activity [at 72 hours and 30 days], carbon-14, radium isotopes [radium-226 and radium-228], radon-222, tritium, and uranium). Field measurements were made of selected physicochemical (relating to both physical and chemical) properties (oxidation-reduction potential, turbidity, dissolved oxygen concentration, pH, specific conductance, water temperature, and alkalinity) and unfiltered sulfides. Dissolved organic carbon and chemical oxygen demand are presented but not discussed in the report. Physicochemical properties, major ions, and trace elements varied considerably. The pH ranged from 7.2 to 8.1 (median 7.6); specific conductance ranged from 314 to 856 microsiemens per centimeter at 25 degrees Celsius, with a median of 517 microsiemens per centimeter; and alkalinity ranged from 126 to 324 milligrams per liter as calcium carbonate (median 167 milligrams per liter). The range in oxidation-reduction potential was large, from -212 to 244 millivolts, with a median of -84.6 millivolts. The largest ranges in concentration for filtered major ion constituents were obtained for cations sodium and calcium and for anions chloride and bicarbonate (bicarbonate was calculated from the measured alkalinity). Filtered arsenic was detected in all 28 samples, ranging from 0.58 to 15.3 micrograms per liter (median 2.5 micrograms per liter), and exceeded the maximum contaminant level established by the U.S. Environmental Protection Agency of 10 micrograms per liter in 2 of the 28 samples. As(III) was the most frequently detected arsenic specie. As(III) concentrations ranged from less than 0.6 to 14.9 micrograms arsenic per liter. The range in concentrations for the arsenic species As(V) was from less than 0.8 to 3.3 micrograms arsenic per liter. Barium, boron, lithium, and strontium were detected in quantifiable (equal to or greater than the laboratory reporting level) concentrations in all samples and molybdenum in all but one sample. Filtered iron, manganese, nickel, and vanadium were each detected in at least 18 of the 28 samples. All other selected trace elements were each detected in 16 or fewer samples. Radionuclides were detected in most samples. The gross alpha-particle activities at 30 days and 72 hours ranged from R-0.94 to 15.5 and R-1.1 to 17.2 picocuries per liter, respectively ('R' indicates nondetected result less than the sample-specific critical level). The combined radium (radium-226 plus radium-228) concentrations ranged from an estimat
Menezes, Helvécio C; Paulo, Breno P; Paiva, Maria José N; Cardeal, Zenilda L
2016-01-01
This paper describes a simple and quick method for sampling and also for carrying out the preconcentration of pesticides in environmental water matrices using two-phased hollow fiber liquid phase microextraction (HF-LPME). Factors such as extraction mode, time, solvents, agitation, and salt addition were investigated in order to validate the LPME method. The following conditions were selected: 6 cm of polypropylene hollow fiber, ethyl octanoate as an acceptor phase, and extraction during 30 min under stirring at 200 rpm. The optimized method showed good linearity in the range of 0.14 to 200.00 μ g L -1 ; the determination coefficient ( R 2 ) was in the range of 0.9807-0.9990. The LOD ranged from 0.04 μ g L -1 to 0.44 μ g L -1 , and LOQ ranged from 0.14 μ g L -1 to 1.69 μ g L -1 . The recovery ranged from 85.17% to 114.73%. The method was applied to the analyses of pesticides in three environmental water samples (a spring and few streams) collected in a rural area from the state of Minas Gerais, Brazil.
Zhang, Shu-Xin; Peng, Rong; Jiang, Ran; Chai, Xin-Sheng; Barnes, Donald G
2018-02-23
This paper reports on a high-throughput headspace gas chromatographic method (HS-GC) for the determination of nitrite content in water sample, based on GC measurement of cyclohexene produced from the reaction between nitrite and cyclamate in a closed vial. The method has a relative standard deviation of <3.5%; The differences between the results of the nitrite measurements obtained by this method and those of a reference method were less than 5.8% and the recoveries of the method were in the range of 94.8-102% (for a spiked nitrite content range from 0.002 to 0.03 mg/L). The limit of detection of the method was 0.46 μg L -1 . Due to an overlapping mode in the headspace auto-sampler system, the method can provide an automated and high-throughput nitrite analysis for the surface water samples. In short, the present HS-GC method is simple, accurate, and sensitive, and it is very suitable to be used in the batch sample testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Arsenic exposure in drinking water: an unrecognized health threat in Peru.
George, Christine Marie; Sima, Laura; Arias, M Helena Jahuira; Mihalic, Jana; Cabrera, Lilia Z; Danz, David; Checkley, William; Gilman, Robert H
2014-08-01
To assess the extent of arsenic contamination of groundwater and surface water in Peru and, to evaluate the accuracy of the Arsenic Econo-Quick(™) (EQ) kit for measuring water arsenic concentrations in the field. Water samples were collected from 151 water sources in 12 districts of Peru, and arsenic concentrations were measured in the laboratory using inductively-coupled plasma mass spectrometry. The EQ field kit was validated by comparing a subset of 139 water samples analysed by laboratory measurements and the EQ kit. In 86% (96/111) of the groundwater samples, arsenic exceeded the 10 µg/l arsenic concentration guideline given by the World Health Organization (WHO) for drinking water. In 56% (62/111) of the samples, it exceeded the Bangladeshi threshold of 50 µg/l; the mean concentration being 54.5 µg/l (range: 0.1-93.1). In the Juliaca and Caracoto districts, in 96% (27/28) of groundwater samples arsenic was above the WHO guideline; and in water samples collected from the section of the Rímac river running through Lima, all had arsenic concentrations exceeding the WHO limit. When validated against laboratory values, the EQ kit correctly identified arsenic contamination relative to the guideline in 95% (106/111) of groundwater and in 68% (19/28) of surface water samples. In several districts of Peru, drinking water shows widespread arsenic contamination, exceeding the WHO arsenic guideline. This poses a public health threat requiring further investigation and action. For groundwater samples, the EQ kit performed well relative to the WHO arsenic limit and therefore could provide a vital tool for water arsenic surveillance.
Mathany, Timothy M.
2017-03-09
The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic constituents (volatile organic compounds, pesticides, and pesticide degradates), constituents of special interest (perchlorate and 1,2,3-trichloropropane), and natural inorganic constituents (nutrients, major and minor ions, and trace elements). Isotopic tracers (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) also were measured to help identify processes affecting groundwater quality and the sources and ages of the sampled groundwater. More than 200 constituents and water-quality indicators were measured during the trend sampling period.Quality-control samples (blanks, replicates, matrix-spikes, and surrogate compounds) were collected at about one-third of the trend sites, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. On the basis of detections in laboratory and field blank samples collected by GAMA-PBP study units, including the 12 study units presented here, reporting levels for some groundwater results were adjusted in this report. Differences between replicate samples were mostly within acceptable ranges, indicating low variability in analytical results. Matrix-spike recoveries were largely within the acceptable range (70 to 130 percent).This study did not attempt to evaluate the quality of water delivered to consumers. After withdrawal, groundwater used for drinking water typically is treated, disinfected, and blended with other waters to achieve acceptable water quality. The comparison benchmarks used in this report apply to treated water that is served to the consumer, not to untreated groundwater. To provide some context for the results, however, concentrations of constituents measured in these groundwater samples were compared with benchmarks established by the U.S. Environmental Protection Agency and the State of California. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks.Most organic constituents that were detected in groundwater samples from the trend sites were found at concentrations less than health-based benchmarks. One volatile organic compound—perchloroethene—was detected at a concentration greater than the health-based benchmark in samples from one trend site during the initial and trend sampling periods. Chloroform was detected in at least 10 percent of the samples at trend sites in both sampling periods. Methyl tert-butyl ether was detected in samples from more than 10 percent of the trend sites during the initial sampling period. No pesticide or pesticide degradate was detected in greater than 10 percent of the samples from trend sites or at concentrations greater than their health-based benchmarks during either sampling period. Nutrients were not detected at concentrations greater than their health-based benchmarks during either sampling period.Most detections of major ions and trace elements in samples from trend sites were less than health-based benchmarks during both sampling periods. Arsenic and boron each were detected at concentrations greater than the health-based benchmark in samples from four trend sites during the initial and trend sampling periods. Molybdenum was detected in samples from four trend sites at concentrations greater than the health-based benchmark during both sampling periods. Samples from two of these trend sites had similar molybdenum concentrations, and two had substantially different concentrations during the initial and trend sampling periods. Uranium was detected at a concentration greater than the health-based benchmark only at two trend sites.
Clow, D.W.; Mast, M.A.; Campbell, D.H.
1996-01-01
Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 ??equiv. 1-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 ??equiv. 1-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock, Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 ??equiv. 1-1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 ??equiv. 1-1, which was five times higher than in atmospheric deposition (4-5 ??equiv. 1-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 ??equiv. 1-1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation, suggesting that sulphate may be regulated to some extent by a within-watershed process, such as sulphate adsorption.
Cabañero, Ana I; San-Hipólito, Tamar; Rupérez, Mercedes
2007-01-01
A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase. Copyright (c) 2007 John Wiley & Sons, Ltd.
Low, Dennis J.; Chichester, Douglas C.
2006-01-01
This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 25-year period (January 1, 1979, through August 11, 2004) based on water samples from wells. The data are from eight source agencies唯orough of Carroll Valley, Chester County Health Department, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Montgomery County Health Department, Pennsylvania Drinking Water Information System, Pennsylvania Department of Agriculture, Susquehanna River Basin Commission, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies varied in type and number of analyses; however, the analyses are represented by 12 major analyte groups:biological (bacteria and viruses), fungicides, herbicides, insecticides, major ions, minor ions (including trace elements), nutrients (dominantly nitrate and nitrite as nitrogen), pesticides, radiochemicals (dominantly radon or radium), volatile organic compounds, wastewater compounds, and water characteristics (dominantly field pH, field specific conductance, and hardness).A summary map shows the areal distribution of wells with ground-water-quality data statewide and by major watersheds and source agency. Maps of 35 watersheds within Pennsylvania are used to display the areal distribution of water-quality information. Additional maps emphasize the areal distribution with respect to 13 major geolithologic units in Pennsylvania and concentration ranges of nitrate (as nitrogen). Summary data tables by source agency provide information on the number of wells and samples collected for each of the 35 watersheds and analyte groups. The number of wells sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 8,012 wells sampled, the greatest concentration of wells are in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties), in the vicinity of Pittsburgh, and in the northwest (Erie County). The number of wells sampled is relatively sparse in south-central (Adams, Cambria, Cumberland, and Franklin Counties), central (Centre, Indiana, and Snyder Counties), and north-central (Bradford, Potter, and Tioga Counties) Pennsylvania. Little to no data are available for approximately one-third of the state. Water characteristics and nutrients were the most frequently sampled major analyte groups; approximately 21,000 samples were collected for each group. Major and minor ions were the next most-frequently sampled major analyte groups; approximately 17,000 and 12,000 samples were collected, respectively. For the remaining eight major analyte groups, the number of samples collected ranged from a low of 307 samples (wastewater compounds) to a high of approximately 3,000 samples (biological).The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 2,988 samples in the biological analyte group, 53 percent had water that exceeded an MCL. Almost 2,500 samples were collected and analyzed for volatile organic compounds; 14 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (17,465 samples and a 33.9 percent exceedence), minor ions (11,905 samples and a 17.1 percent exceedence), and water characteristics (21,183 samples and a 20.3 percent exceedence). Samples collected and analyzed for fungicides, herbicides, insecticides, and pesticides (4,062 samples), radiochemicals (1,628 samples), wastewater compounds (307 samples), and nutrients (20,822 samples) had the lowest exceedences of 0.3, 8.4, 0.0, and 8.8 percent, respectively.
Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika; Sun, Shiwei; Tripathee, Lekhendra
2016-10-01
Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH4(+) in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7ngL(-1), with an average of 12.5ngL(-1). The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH4(+). The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. Copyright © 2016 Elsevier B.V. All rights reserved.
García-Galán, M Jesús; Díaz-Cruz, M Silvia; Barceló, Damià
2011-02-01
Sulfonamides (SAs) have become one of the antibiotic families most frequently found in all kind of environmental waters. In the present work, the presence of 16 SAs and one of their acetylated metabolites in different water matrices of the Ebro River basin has been evaluated during two different sampling campaigns carried out in 2007 and 2008. Influent and effluent samples from seven wastewater treatment plants (WWTPs), together with a total of 28 river water samples were analyzed by on-line solid phase extraction-liquid chromathography-tandem mass spectrometry (on-line SPE-LC-MS/MS). Sulfamethoxazole and sulfapyridine were the SAs most frequently detected in WWTPs (96-100%), showing also the highest concentrations, ranging from 27.2 ng L(-1) to 596 ng L(-1) for sulfamethoxazole and from 3.7 ng L(-1) to 227 ng L(-1) for sulfapyridine. Sulfamethoxazole was also the SA most frequently detected in surface waters (85% of the samples) at concentrations between 11 ng L(-1) and 112 ng L(-1). In order to assess the effectiveness of the wastewater treatment in degrading SAs, removal efficiencies in the seven WWTPs were calculated for each individual SA (ranging from 4% to 100%) and correlated to the corresponding hydraulic retention times or residence times of the SAs in the plants. SAs half-lives were also estimated, ranging from to 2.5 hours (sulfadimethoxine) to 128 h (sulfamethazine). The contribution of the WWTPs to the presence of SAs depends on both the load of SAs discharging on the surface water from the WWTP effluent but also on the flow of the receiving waters in the discharge sites and the dilution exerted; WWTP4 exerts the highest pressure on the receiving water course. Finally, the potential environmental risk posed by SAs was evaluated calculating the hazard quotients (HQ) to different non-target organisms in effluent and river water. The degree of susceptibility resulted in algae>daphnia>fish. Sulfamethoxazole was the only SA posing a risk to algae in effluent water, with an HQ>7. Copyright © 2010 Elsevier Ltd. All rights reserved.
Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.
Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María
2017-01-01
This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Gulson, Brian; Korsch, Michael; Bradshaw, Anthony
2016-01-01
Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision 204Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes 208Pb, 207Pb and 206Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town. PMID:26907319
Gulson, Brian; Korsch, Michael; Bradshaw, Anthony
2016-02-22
Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision (204)Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes (208)Pb, (207)Pb and (206)Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town.
Li, Wei; Duan, Jinming; Niu, Chaoying; Qiang, Naichen; Mulcahy, Dennis
2011-10-01
A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved organic carbon (DOC) and pH were examined. The results indicate that signal detection intensity for MC-LR was significantly suppressed as the ionic strength increased from ultrapure water condition, whereas it increased slightly with solution pH and DOC at low concentrations. However, addition of methanol (MeOH) into the sample was able to counter the signal suppression effects. In this study, dilution of the tap water sample by adding 4% MeOH (v/v) was observed to be adequate to compensate for the signal suppression. The recoveries of the samples fortified with MC-LR (0.2, 1, and 10 µg/L) for three different tap water samples ranged from 84.4% to 112.9%.
Naftz, D.L.; Rice, J.A.
1989-01-01
Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.
Goldman, Ellen R.; Egge, Adrienne L.; Medintz, Igor L.; Lassman, Michael E.; Anderson, George P.
2005-01-01
A homogeneous assay was used to detect 2,4,6-trinitrotoluene (TNT) spiked into environmental water samples. This assay is based on changes in fluorescence emission intensity when TNT competitively displaces a fluorescently labeled, TNT analog bound to an anti-TNT antibody. The effectiveness of the assay was highly dependent on the source of the sample being tested. As no correlation between pH and assay performance was observed, ionic strength was assumed to be the reason for variation in assay results. Addition of 10x phosphate-buffered saline to samples to increase their ionic strength to that of our standard laboratory buffer (about 0.17 M) significantly improved the range over which the assay functioned in several river water samples. PMID:15915298
Renter, David G.; Sargeant, Jan M.; Oberst, Richard D.; Samadpour, Mansour
2003-01-01
Genetic diversity, isolation frequency, and persistence were determined for Escherichia coli O157 strains from range cattle production environments. Over the 11-month study, analysis of 9,122 cattle fecal samples, 4,083 water source samples, and 521 wildlife fecal samples resulted in 263 isolates from 107 samples presumptively considered E. coli O157 as determined by culture and latex agglutination. Most isolates (90.1%) were confirmed to be E. coli O157 by PCR detection of intimin and Shiga toxin genes. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested preparations revealed 79 unique patterns (XbaI-PFGE subtypes) from 235 typeable isolates confirmed to be E. coli O157. By analyzing up to three isolates per positive sample, we detected an average of 1.80 XbaI-PFGE subtypes per sample. Most XbaI-PFGE subtypes (54 subtypes) were identified only once, yet the seven most frequently isolated subtypes represented over one-half of the E. coli O157 isolates (124 of 235 isolates). Recurring XbaI-PFGE subtypes were recovered from samples on up to 10 sampling occasions and up to 10 months apart. Seven XbaI-PFGE subtypes were isolated from both cattle feces and water sources, and one of these also was isolated from the feces of a wild opossum (Didelphis sp.). The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments. PMID:12514039
A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico.
González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M
2015-04-24
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Lee, Kil Yong; Burnett, William C
A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milker, Yvonne; Weinkauf, Manuel F G; Titschack, Jürgen; Freiwald, Andre; Krüger, Stefan; Jorissen, Frans J; Schmiedl, Gerhard
2017-01-01
We present paleo-water depth reconstructions for the Pefka E section deposited on the island of Rhodes (Greece) during the early Pleistocene. For these reconstructions, a transfer function (TF) using modern benthic foraminifera surface samples from the Adriatic and Western Mediterranean Seas has been developed. The TF model gives an overall predictive accuracy of ~50 m over a water depth range of ~1200 m. Two separate TF models for shallower and deeper water depth ranges indicate a good predictive accuracy of 9 m for shallower water depths (0-200 m) but far less accuracy of 130 m for deeper water depths (200-1200 m) due to uneven sampling along the water depth gradient. To test the robustness of the TF, we randomly selected modern samples to develop random TFs, showing that the model is robust for water depths between 20 and 850 m while greater water depths are underestimated. We applied the TF to the Pefka E fossil data set. The goodness-of-fit statistics showed that most fossil samples have a poor to extremely poor fit to water depth. We interpret this as a consequence of a lack of modern analogues for the fossil samples and removed all samples with extremely poor fit. To test the robustness and significance of the reconstructions, we compared them to reconstructions from an alternative TF model based on the modern analogue technique and applied the randomization TF test. We found our estimates to be robust and significant at the 95% confidence level, but we also observed that our estimates are strongly overprinted by orbital, precession-driven changes in paleo-productivity and corrected our estimates by filtering out the precession-related component. We compared our corrected record to reconstructions based on a modified plankton/benthos (P/B) ratio, excluding infaunal species, and to stable oxygen isotope data from the same section, as well as to paleo-water depth estimates for the Lindos Bay Formation of other sediment sections of Rhodes. These comparisons indicate that our orbital-corrected reconstructions are reasonable and reflect major tectonic movements of Rhodes during the early Pleistocene.
Weinkauf, Manuel F. G.; Titschack, Jürgen; Freiwald, Andre; Krüger, Stefan; Jorissen, Frans J.; Schmiedl, Gerhard
2017-01-01
We present paleo-water depth reconstructions for the Pefka E section deposited on the island of Rhodes (Greece) during the early Pleistocene. For these reconstructions, a transfer function (TF) using modern benthic foraminifera surface samples from the Adriatic and Western Mediterranean Seas has been developed. The TF model gives an overall predictive accuracy of ~50 m over a water depth range of ~1200 m. Two separate TF models for shallower and deeper water depth ranges indicate a good predictive accuracy of 9 m for shallower water depths (0–200 m) but far less accuracy of 130 m for deeper water depths (200–1200 m) due to uneven sampling along the water depth gradient. To test the robustness of the TF, we randomly selected modern samples to develop random TFs, showing that the model is robust for water depths between 20 and 850 m while greater water depths are underestimated. We applied the TF to the Pefka E fossil data set. The goodness-of-fit statistics showed that most fossil samples have a poor to extremely poor fit to water depth. We interpret this as a consequence of a lack of modern analogues for the fossil samples and removed all samples with extremely poor fit. To test the robustness and significance of the reconstructions, we compared them to reconstructions from an alternative TF model based on the modern analogue technique and applied the randomization TF test. We found our estimates to be robust and significant at the 95% confidence level, but we also observed that our estimates are strongly overprinted by orbital, precession-driven changes in paleo-productivity and corrected our estimates by filtering out the precession-related component. We compared our corrected record to reconstructions based on a modified plankton/benthos (P/B) ratio, excluding infaunal species, and to stable oxygen isotope data from the same section, as well as to paleo-water depth estimates for the Lindos Bay Formation of other sediment sections of Rhodes. These comparisons indicate that our orbital-corrected reconstructions are reasonable and reflect major tectonic movements of Rhodes during the early Pleistocene. PMID:29166653
Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS.
Wang, Wanfeng; Hu, Jianying; Yu, Jianwei; Yang, Min
2010-01-01
The method for detecting N-nitrosodimethylamine (NDMA) in drinking water using ultra performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) was improved by optimizing the clean-up procedure to remove the matrix interference in pretreatment process, and was then applied to a survey of NDMA in both raw and finished water samples from five water treatment plants in South China. The NDMA concentrations ranged from 4.7 to 15.1 ng/L in raw water samples, and from 4.68 to 46.9 ng/L in finished water. The NDMA concentration in raw water was found to be related with nitrite concentration, and during the treatment, the NDMA concentration increased following ozonation but decreased after subsequent activated carbon treatment.
Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Results from field blanks indicated contamination was not a noticeable source of bias in the data for ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and thresholds established for aesthetic concerns (Secondary Maximum Contaminant Levels, SMCL-CA) by CDPH. Therefore, any comparisons of the results of this study to drinking-water standards only is for illustrative purposes and is not indicative of compliance or non-compliance to those standards. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water standards or thresholds. Six constituents? fluoride, arsenic, molybdenum, uranium, gross-alpha radioactivity, and radon-222?were detected at concentrations higher than thresholds set for health-based regulatory purposes. Three additional constituents?pH, iron and manganese?were detected at concentrations above thresholds set for aesthetic concerns. Volatile organic compounds (VOCs) and pesticides, were detected in less than one-third of the samples and generally at less than one one-hundredth of a health-based threshold.
Friction coefficient of spruce pine on steel -- a note on lubricants
Charles W. McMillin; Truett J. Lemoine; Floyd G. Manwiller
1970-01-01
Generally, the introduction of water and ethanol increased the friction coefficient for ovendry samples but decreased the coeffecient when the samples were saturated. Octanoic acid decreased the coefficient when samples were wet. In the entire experiment, coefficients ranged from 0.14 to 0.78.
Determination of the water retention of peat soils in the range of the permanent wilting point.
NASA Astrophysics Data System (ADS)
Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang
2017-04-01
Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.
Metzger, Loren F.; Fio, John L.
1997-01-01
The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.
Szumińska, Danuta; Szopińska, Małgorzata; Lehmann-Konera, Sara; Franczak, Łukasz; Kociuba, Waldemar; Chmiel, Stanisław; Kalinowski, Paweł; Polkowska, Żaneta
2018-05-15
Climate changes observed in the Arctic (e.g. permafrost degradation, glacier retreat) may have significant influence on sensitive polar wetlands. The main objectives of this paper are defining chemical features of water within six small arctic lakes located in Bellsund (Svalbard) in the area of continuous permafrost occurrence. The unique environmental conditions of the study area offer an opportunity to observe phenomena influencing water chemistry, such as: chemical weathering, permafrost thawing, marine aerosols, atmospheric deposition and biological inputs. In the water samples collected during the summer 2013, detailed tundra lake water chemistry characteristics regarding ions, trace elements, pH and specific electrolytic conductivity (SEC 25 ) analysis were determined. Moreover, water chemistry of the studied lakes was compared to the water samples from the Tyvjobekken Creek and precipitation water samples. As a final step of data analysis, Principal Component Analysis (PCA) was performed. Detailed chemical analysis allowed us to conclude what follows: (1) Ca 2+ , Mg 2+ , SO 4 2- , Sr are of geogenic origin, (2) NO 3 - present in tundra lakes and the Tyvjobekken Creek water samples (ranging from 0.31 to 1.69mgL - 1 and from 0.25 to 1.58mgL - 1 respectively) may be of mixed origin, i.e. from biological processes and permafrost thawing, (3) high contribution of non-sea-salt SO 4 2- >80% in majority of studied samples indicate considerable inflow of sulphate-rich air to the study area, (4) high content of chlorides in tundra lakes (range: 25.6-32.0% meqL - 1 ) indicates marine aerosol influence, (5) PCA result shows that atmospheric transport may constitute a source of Mn, Co, Ni, Cu, Ga, Ba and Cd. However, further detailed inter-season and multi-seasonal study of tundra lakes in the Arctic are recommended. Especially in terms of detailed differentiation of sources influence (atmospheric transport vs. permafrost degradation). Copyright © 2017 Elsevier B.V. All rights reserved.
Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony
2012-01-01
Water-quality samples collected in an area prone to groundwater flooding in Wawarsing, New York, were analyzed and assessed to better understand the hydrologic system and to aid in the assessment of contributing water sources. Above average rainfall over the past decade, and the presence of a pressurized water tunnel that passes about 700 feet beneath Wawarsing, could both contribute to groundwater flooding. Water samples were collected from surface-water bodies, springs, and wells and analyzed for major and trace inorganic constituents, dissolved gases, age tracers, and stable isotopes. Distinct differences in chemistry exist between tunnel water and groundwater in unconsolidated deposits and in bedrock, and among groundwater samples collected from some bedrock wells during high head pressure and low head pressure of the Rondout-West Branch Tunnel. Samples from bedrock wells generally had relatively higher concentrations of sulfate (SO42-), strontium (Sr), barium (Ba), and lower concentrations of calcium (Ca) and bicarbonate (HCO3-), as compared to unconsolidated wells. Differences in stable-isotope ratios among oxygen-18 to oxygen-16 (δ18O), hydrogen-2 to hydrogen-1 (δ2H), sulfur-34 to sulfur-32(δ34S) of SO42-, Sr-87 to Sr-86 (87Sr/86Sr), and C-13 to C-12 (δ13C) of dissolved inorganic carbon (DIC) indicate a potential for distinguishing water in the Delaware-West Branch Tunnel from native groundwater. For example, 87Sr/86Sr ratios were more depleted in groundwater samples from most bedrock wells, as compared to samples from surface-water sources, springs, and wells screened in unconsolidated deposits in the study area. Age-tracer data provided useful information on pathways of the groundwater-flow system, but were limited by inherent problems with dissolved gases in bedrock wells. The sulfur hexafluoride (SF6) and (or) chlorofluorocarbons (CFCs) apparent recharge years of most water samples from wells screened in unconsolidated deposits and springs ranged from 2003 to 2010 (current) and indicate short flow paths from the point of groundwater recharge. All but three of the samples from bedrock wells had interference problems with dissolved gases, mainly caused by excess air from degassing of hydrogen sulfide and methane. The SF6 and (or) CFC apparent recharge years of samples from three of the bedrock wells ranged from the 1940s to the early 2000s; the sample with the early 2000s recharge year was from a flowing artesian well that was chemically similar to water samples collected at the influent to the tunnel at Rondout Reservoir and the most hydraulically responsive to water tunnel pressure compared to other bedrock wells. Data described in this report can be used, together with hydrogeologic data, to improve the understanding of source waters and groundwater-flow patterns and pathways, and to help assess the mixing of different source waters in water samples. Differences in stable isotope ratios, major and trace constituent concentrations, saturation indexes, tritium concentrations, and apparent groundwater ages will be used to estimate the proportion of water that originates from Rondout-West Branch Tunnel leakage.
Guy, A C; Desutter, T M; Casey, F X M; Kolka, R; Hakk, H
2012-01-01
Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements, the objectives of this study, which focused on Fargo, ND, and Moorhead, MN, were to assess floodwater quality and to determine the quantity and quality of overbank sediment deposited after floodwaters recede and the quality of soil underlying sediment deposits. 17β-Estradiol was detected in 9 of 24 water samples, with an average concentration of 0.61 ng L. Diesel-range organics were detected in 8 of 24 samples, with an average concentration of 80.0 μg L. The deposition of sediment across locations and transects ranged from 2 to 10 kg m, and the greatest mass deposition of chemicals was closest to the river channel. No gasoline-range organics were detected, but diesel-range organics were detected in 26 of the 27 overbank sediment samples (maximum concentration, 49.2 mg kg). All trace elements detected in the overbank sediments were within ranges for noncontaminated sites. Although flooding has economic, social, and environmental impacts, based on the results of this study, it does not appear that flooding in the RR in F-M led to decreased quality of water, sediment, or soil compared with normal river flows or resident soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn
2012-01-01
Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10 herbicides, 4 insecticides, 1 synergist, and 2 pesticide degradates. On a national scale, aminomethylphosphonic acid (AMPA), the primary degradate of the herbicide glyphosate, which is the active ingredient in Roundup®, was the most frequently detected pesticide in water (16 of 54 samples) followed by glyphosate (8 of 54 samples). The maximum number of pesticides observed at a single site was nine compounds in a water sample from a site in Louisiana. The maximum concentration of a pesticide or degradate observed in water was 2,880 nanograms per liter of clomazone (a herbicide) at a site in Louisiana. In California, a total of eight pesticides were detected among all of the low and high elevation sites; AMPA was the most frequently detected pesticide, but glyphosate was detected at the highest concentrations (1.1 micrograms per liter). Bed-sediment samples were analyzed for 94 pesticides by using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment, 22 pesticides were detected in one or more of the samples, including 9 fungicides, 3 pyrethroid insecticides, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and its major degradates, as well as several herbicides. Pyraclostrobin, a strobilurin fungicide, and bifenthrin, a pyrethroid insecticide, were detected most frequently. Maximum pesticide concentrations ranged from less than their respective method detection limits to 1,380 micrograms per kilogram (tebuconazole in California). The number of pesticides detected in samples from each site ranged from zero to six compounds. The sites with the greatest number of pesticides were in Maine and Oregon with six pesticides detected in one sample from each state, followed by Georgia with four pesticides in one sample. For California, a total of 10 pesticides were detected among all sites, and 4 pesticides were detected at both low and high elevation sites; tebuconazole and pyraclostrobin were the two most frequently detected pesticides in California. For the other six selected states, the most frequently detected pesticides in bed sediment were pyraclostrobin (detected in 17 of 42 samples), bifenthrin (detected in 14 of 42 samples), and tebuconazole (detected in 10 of 42 samples). The fungus, Batrachochytrium dendrobatidis (Bd), was detected in water samples in sites from four of the seven states during 2009 and 2010, and the number of zoospore equivalents per liter of water in samples where Bd was detected ranged from 1.6 to 343. Bd was not detected in water samples from sites in Georgia, Louisiana, and Oregon.
A novel method of recognizing liquefied honey.
Płowaś-Korus, Iwona; Masewicz, Łukasz; Szwengiel, Artur; Rachocki, Adam; Baranowska, Hanna Maria; Medycki, Wojciech
2018-04-15
The content of glucose, fructose, sucrose, maltose and water were determined for multiflorous honey of Great Poland. The measurements were carried out for different fractions of honey and also for the liquefied honey at 40 °C. Water activity and pH were both determined for all samples. A new method of recognizing liquefied honey is proposed based on the water influence on pH and the monosaccharides and disaccharides contents. The simple function of quadratic polynomial enabled to reveal the different character of the liquefied honey. The electrical conductivity behavior of different dry matter samples of honey are presented in the wide range of temperature. The proton spin-lattice relaxation measurements were recorded for the crystalline fraction in the magnetic field range covering the proton Larmor frequencies from 0.01 to 25 MHz and in the wide range of temperature. Heating the honey at 30 °C results in the irreversible molecular structure changes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rahman, Aminur; Hashem, Abul; Nur-A-Tomal, Shahruk
2016-12-01
Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO 3 , and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) GUIDELINES ESTABLISHING TEST PROCEDURES... to a wide variety of sample types ranging from reagent (blank) water containing analyte to wastewater... times the standard deviation of replicate instrumental measurements of the analyte in reagent water. (c...
Manzo, Valentina; Honda, Luis; Navarro, Orielle; Ascar, Loreto; Richter, Pablo
2014-10-01
In this study, six non-steroidal anti-inflammatory drugs (NSAIDs) were extracted from water samples using the rotating-disk sorptive extraction (RDSE) technique. The extraction disk device contains a central cavity that allows for the incorporation of a powdered sorbent phase (Oasis™ HLB). The analytes were extracted from water and pre-concentrated on the sorbent to reach the extraction equilibrium, and then they were desorbed with solvent, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). The variables for the extraction were studied using high performance liquid chromatography with a diode array detector (HPLC-DAD) to avoid the derivatization step, and the optimum values were as follows: 60 mg of Oasis™ HLB, a rotation velocity of 3,000 rpm, a pH of 2, a sample volume of 50 mL, and an extraction time of approximately 90-100 min. The recoveries ranged from 71 to 104%, with relative standard deviations (RSD) between 2 and 8%. The detection limits ranged from 0.001 to 0.033 µg L(-1). The described method was applied to the analysis of influents and effluents from wastewater treatment plants (WWTP) in Santiago, Chile. The concentrations of the detected drugs ranged from 1.5 to 13.4 µg L(-1) and from 1.0 to 3.2 µg L(-1) in the influents and effluents, respectively. The samples were extracted by solid phase extraction (SPE). No significant differences were observed in the determined concentrations for most of the NSAIDs, indicating that RDSE is an alternative method for the preparation of water samples. Copyright © 2014 Elsevier B.V. All rights reserved.