Sample records for water sampling devices

  1. Time-weighted average water sampling with a solid-phase microextraction device.

    PubMed

    Ouyang, Gangfeng; Chen, Yong; Pawliszyn, Janusz

    2005-11-15

    A fiber-in-needle SPME device was developed and investigated for time-weighted average water sampling. The device was designed so that the overall mass-transfer resistance is contained within the static water inside the needle, which ensures that mass uptake could be predicted with Fick's first law of diffusion and the sampling rate is less affected by water turbulence. The device possesses all of the advantages of commercialized devices, in addition to needle filling and replacement ease. Laboratory calibration with deployment of the device to a flow-through system demonstrated that there was a linear mass uptake for up to 12 days, and the linear range could be longer. PDMS coating is assumed to be a perfect zero sink for most polycyclic aromatic hydrocarbons, except naphthalene. The effect of water temperature was also investigated. Under normal field conditions, the change of mass uptake rate with temperature was negligible. To facilitate the convenience for long-term water sampling, a new standard aqueous generator was introduced. This study extended the application of SPME technology for long-term water sampling.

  2. A comparison of solids collected in sediment traps and automated water samplers

    USGS Publications Warehouse

    Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.

    1996-01-01

    Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.

  3. Catch me if you can: Comparing ballast water sampling skids to traditional net sampling

    NASA Astrophysics Data System (ADS)

    Bradie, Johanna; Gianoli, Claudio; Linley, Robert Dallas; Schillak, Lothar; Schneider, Gerd; Stehouwer, Peter; Bailey, Sarah

    2018-03-01

    With the recent ratification of the International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004, it will soon be necessary to assess ships for compliance with ballast water discharge standards. Sampling skids that allow the efficient collection of ballast water samples in a compact space have been developed for this purpose. We ran 22 trials on board the RV Meteor from June 4-15, 2015 to evaluate the performance of three ballast water sampling devices (traditional plankton net, Triton sampling skid, SGS sampling skid) for three organism size classes: ≥ 50 μm, ≥ 10 μm to < 50 μm, and < 10 μm. Natural sea water was run through the ballast water system and untreated samples were collected using paired sampling devices. Collected samples were analyzed in parallel by multiple analysts using several different analytic methods to quantify organism concentrations. To determine whether there were differences in the number of viable organisms collected across sampling devices, results were standardized and statistically treated to filter out other sources of variability, resulting in an outcome variable representing the mean difference in measurements that can be attributed to sampling devices. These results were tested for significance using pairwise Tukey contrasts. Differences in organism concentrations were found in 50% of comparisons between sampling skids and the plankton net for ≥ 50 μm, and ≥ 10 μm to < 50 μm size classes, with net samples containing either higher or lower densities. There were no differences for < 10 μm organisms. Future work will be required to explicitly examine the potential effects of flow velocity, sampling duration, sampled volume, and organism concentrations on sampling device performance.

  4. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    NASA Astrophysics Data System (ADS)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-12-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference ( p > 0.05).

  5. A Improved and Highly Effective Seabed Surface Sand Sampling Device

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    2017-04-01

    In marine geology research, it is necessary to obtain a sufficient quantity of seabed surface samples, while also ensuring that the samples are in their original state. Currently, there are a number of seabed surface sampling devices available, but it is very difficult to obtain sand samples using ordinary seabed surface sampling devices, whereas machine-controlled seabed surface sampling devices are unable to dive into deeper regions of water. To obtain larger quantities of samples in their original states, many researchers have tried to improve seabed surface sampling devices, but these efforts have generally produced ambiguous results. To resolve the aforementioned issue, we have designed an improved and highly effective seabed surface sand sampling device, which incorporates the strengths of a variety of sampling devices; it is capable of diving into deeper water regions to obtain sand samples, and is also suited for use in streams, rivers, lakes and seas with varying levels of flow velocities and depth.

  6. EPA Technology Available for Licensing: Portable Device to Concentrate Water Samples for Microorganism Analysis

    EPA Pesticide Factsheets

    Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.

  7. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    PubMed

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  8. Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment.

    PubMed

    Pogorzelec, Marta; Piekarska, Katarzyna

    2018-08-01

    The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    NASA Astrophysics Data System (ADS)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  10. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    PubMed

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  11. A Improved Seabed Surface Sand Sampling Device

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2017-12-01

    In marine geology research it is necessary to obtain a suf fcient quantity of seabed surface samples, while also en- suring that the samples are in their original state. Currently,there are a number of seabed surface sampling devices available, but we fnd it is very diffcult to obtain sand samples using these devices, particularly when dealing with fne sand. Machine-controlled seabed surface sampling devices are also available, but generally unable to dive into deeper regions of water. To obtain larger quantities of seabed surface sand samples in their original states, many researchers have tried to improve upon sampling devices,but these efforts have generally produced ambiguous results, in our opinion.To resolve this issue, we have designed an improved andhighly effective seabed surface sand sampling device that incorporates the strengths of a variety of sampling devices. It is capable of diving into deepwater to obtain fne sand samples and is also suited for use in streams, rivers, lakes and seas with varying levels of depth (up to 100 m). This device can be used for geological mapping, underwater prospecting, geological engineering and ecological, environmental studies in both marine and terrestrial waters.

  12. 15 CFR Appendix B to Subpart R of... - Minor Projects for Purposes of § 922.193(a)(2)(iii)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), the Michigan Department of Environmental Quality (Department) issues permits for projects that are of... values or interests, including navigation and water quality. (h) Fish or wildlife habitat structures..., water monitoring devices, water quality testing devices, survey devices, and core sampling devices, if...

  13. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  14. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  15. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  16. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  17. Occurrence of non-fermenting gram negative bacteria in drinking water dispensed from point-of-use microfiltration devices.

    PubMed

    Zanetti, Franza; de Luca, Giovanna; Leoni, Erica; Sacchetti, Rossella

    2014-01-01

    Many devices have been marketed in order to improve the organoleptic characteristics of tap water resulting from disinfection with chlorine derivates. The aim of the presented study was to assess the degree of contamination by non-fermenting Gram-negative bacteria (NF-GNB) of drinking water dispensed from microfiltration devices at point-of-use. Water samples were collected from 94 point-of-use water devices fitted with a filter (0.5 μm pore size) containing powdered activated carbon. The microbiological contamination of water entering and leaving the microfiltered water dispensers was compared. The NF-GNB loads were correlated to Total Heterotrophic Counts (HPCs) at 37 and 22 °C, residua chlorine, and some structural and functional features of the devices. NF-GNB were detected from 23% of supply water samples, 33% of still unchilled water, 33% of still chilled water and 18% of carbonated chilled water. The most frequent isolates were Pseudomonadaceae: Steno.maltophilia 30.2% of isolates, Pseudomonas 20.5%, Delftia acidovorans 13.4%, while the species more largely distributed was Ps. aeruginosa recovered from 13% of samples. The distribution of the various NF-GNB was different in the water entering and in that leaving the devices. Ps.aeruginosa and Steno.maltophilia were the predominant species in water leaving the microfiltration dispensers, probably due to their capacity to colonize the circuits and to prevail over the others. Recovery of NF-GNB was favoured by the reduction in residual chlorine of the supply water, occasional use, the absence of a bacteriostatic element in the filter and inadequate disinfection of the water lines. The presence of high concentrations of potentially pathogenic species of NF-GNB (Ps.aeruginosa, Steno. maltophilia, Burkhol.cepacia) in the water dispensed from microfiltration devices represents a risk of waterborne infections for vulnerable individuals. When these devices are used in environments such as hospitals, nursing homes for the elderly, etc., microbiological monitoring for the detection of NF-GNB is advisable.

  18. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  19. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  20. Evaluation of the Solar Water Disinfection Method Using an Ultraviolet Measurement Device

    NASA Astrophysics Data System (ADS)

    Leung, H.

    2015-12-01

    Drinking water security is a growing problem for the population of planet Earth. According to WHO, more than 750 million people on our planet lack access to safe drinking water, resulting in approximately 502,000 diarrhoea deaths in 2012. In order to solve this problem, the Swiss water research institute, Eawag, has developed a method of solar water disinfection, called, "SODIS" The theory of SODIS is simple to understand: a clear plastic bottle filled with water is placed under full sunlight for at least 6 hours. The ultraviolet radiation kills the pathogens in the water, making the originally contaminated water safe for drinking. In order to improve this method, Helioz, an Austrian social enterprise, has created the WADI, a UV measurement device which determines when water is safe for drinking using the SODIS method. When using the WADI, the device should be placed under the sun and surrounded with bottles of water that need to be decontaminated. There is a UV sensor on the WADI, and since the bottles of water and the WADI will have equal exposure to sunlight, the WADI will be able to measure the impact of the sunlight on the contaminated water. This experiment tests the accuracy of the WADI device regarding the time interval needed for contaminated water to be disinfected. The experiment involves using the SODIS method to purify bottles of water contaminated with controlled samples of E. coli. Samples of the water are taken at different time intervals, and the E. coli levels are determined by growing the bacteria from the water samples on agar plates. Ultimately, this helps determine when the water is safe for drinking, and are compared against the WADI's measurements to test the reliability of the device.

  1. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  2. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  4. Membrane-based microchannel device for continuous quantitative extraction of dissolved free sulfide from water and from oil.

    PubMed

    Toda, Kei; Ebisu, Yuki; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2012-09-05

    Underground fluids are important natural sources of drinking water, geothermal energy, and oil-based fuels. To facilitate the surveying of such underground fluids, a novel microchannel extraction device was investigated for in-line continuous analysis and flow injection analysis of sulfide levels in water and in oil. Of the four designs investigated, the honeycomb-patterned microchannel extraction (HMCE) device was found to offer the most effective liquid-liquid extraction. In the HMCE device, a thin silicone membrane was sandwiched between two polydimethylsiloxane plates in which honeycomb-patterned microchannels had been fabricated. The identical patterns on the two plates were accurately aligned. The extracted sulfide was detected by quenching monitoring of fluorescein mercuric acetate (FMA). The sulfide extraction efficiencies from water and oil samples of the HMCE device and of three other designs (two annular and one rectangular channel) were examined theoretically and experimentally. The best performance was obtained with the HMCE device because of its thin sample layer (small diffusion distance) and large interface area. Quantitative extraction from both water and oil could be obtained using the HMCE device. The estimated limit of detection for continuous monitoring was 0.05 μM, and sulfide concentrations in the range of 0.15-10 μM could be determined when the acceptor was 5 μM FMA alkaline solution. The method was applied to natural water analysis using flow injection mode, and the data agreed with those obtained using headspace gas chromatography-flame photometric detection. The analysis of hydrogen sulfide levels in prepared oil samples was also performed. The proposed device is expected to be used for real time survey of oil wells and groundwater wells. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Enhanced monitor system for water protection

    DOEpatents

    Hill, David E [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN

    2009-09-22

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  6. Semipermeable membrane devices used to estimate bioconcentration of polychlorinated biphenyls

    USGS Publications Warehouse

    Chambers, D.B.

    1999-01-01

    Aquatic organisms passively accumulate hydrophobic organic compounds, such as polychlorinated biphenyls, even when ambient water concentrations of the contaminant are below analytical detection limits. However, contaminant concentrations in tissue samples are subject to an inherently high level of variability due to differences in species, life stage, and gender bioconcentration potentials. Semipermeable membrane devices (SPMDs) were used to sample Aroclor 1254, a mixture of readily bioconcentrated polychlorinated biphenyls (PCBs), in a contaminated wetland near Flat Top, WV. The devices consisted of triolein, a lipid found in fish, enclosed in a polyethylene membrane. SPMDs were deployed in the water column and in direct contact with wetland sediments along a previously identified concentration gradient of PCBs. The devices were retrieved after a 25-day exposure period. Analytes were recovered by dialyzing the devices in nanograde hexane. Hexane dialysates were condensed and analyzed by gas chromatography. All deployed devices sequestered quantifiable amounts of Aroclor 1254. Water-column SPMDs accumulated PCBs far in excess of ambient water concentrations. The devices contacting sediments accumulated PCBs at all sites, though accumulated concentrations did not exceed concentrations in sediment. Patterns of PCB concentration in the devices corresponded to the identified gradient at the site. Results from the water-column SPMDs were used to estimate the concentration of the dissolved, bioavailable fraction of PCBs present in the water column. These concentrations ranged from 0.01 to 0.09 ??g/L of bioavailable Aroclor 1254.

  7. Collecting Ground Samples for Balloon-Borne Instruments

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Zimmerman, Wayne; Wu, Jiunn Jenq

    2009-01-01

    A proposed system in a gondola containing scientific instruments suspended by a balloon over the surface of the Saturn moon Titan would quickly acquire samples of rock or ice from the ground below. Prototypes of a sample-collecting device that would be a major part of the system have been tested under cryogenic and non-cryogenic conditions on Earth. Systems like this one could also be used in non-cryogenic environments on Earth to collect samples of rock, soil, ice, mud, or other ground material from such inaccessible or hazardous locations as sites of suspected chemical spills or biological contamination. The sample-collecting device would be a harpoonlike device that would be connected to the balloon-borne gondola by a tether long enough to reach the ground. The device would be dropped from the gondola to acquire a sample, then would be reeled back up to the gondola, where the sample would be analyzed by the onboard instruments. Each prototype of the sample-collecting device has a sharp front (lower) end, a hollow core for retaining a sample, a spring for holding the sample in the hollow core, and a rear (upper) annular cavity for retaining liquid sample material. Aerodynamic fins at the rear help to keep the front end pointed downward. In tests, these prototype devices were dropped from various heights and used to gather samples of dry sand, moist sand, cryogenic water ice, and warmer water ice.

  8. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.

    PubMed

    Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb

    2018-01-01

    A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.

  9. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    PubMed

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.

  10. Automated fluid analysis apparatus and techniques

    DOEpatents

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  11. Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016.

    PubMed

    Trudzinski, Franziska C; Schlotthauer, Uwe; Kamp, Annegret; Hennemann, Kai; Muellenbach, Ralf M; Reischl, Udo; Gärtner, Barbara; Wilkens, Heinrike; Bals, Robert; Herrmann, Mathias; Lepper, Philipp M; Becker, Sören L

    2016-11-17

    Mycobacterium chimaera, a non-tuberculous mycobacterium, was recently identified as causative agent of deep-seated infections in patients who had previously undergone open-chest cardiac surgery. Outbreak investigations suggested an aerosol-borne pathogen transmission originating from water contained in heater-cooler units (HCUs) used during cardiac surgery. Similar thermoregulatory devices are used for extracorporeal membrane oxygenation (ECMO) and M. chimaera might also be detectable in ECMO treatment settings. We performed a prospective microbiological study investigating the occurrence of M. chimaera in water from ECMO systems and in environmental samples, and a retrospective clinical review of possible ECMO-related mycobacterial infections among patients in a pneumological intensive care unit. We detected M. chimaera in 9 of 18 water samples from 10 different thermoregulatory ECMO devices; no mycobacteria were found in the nine room air samples and other environmental samples. Among 118 ECMO patients, 76 had bronchial specimens analysed for mycobacteria and M. chimaera was found in three individuals without signs of mycobacterial infection at the time of sampling. We conclude that M. chimaera can be detected in water samples from ECMO-associated thermoregulatory devices and might potentially pose patients at risk of infection. Further research is warranted to elucidate the clinical significance of M. chimaera in ECMO treatment settings. This article is copyright of The Authors, 2016.

  12. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety coliform count....127 Safety coliform count: Recirculating devices. Thirty-eight of forty samples of flush fluid from a recirculating device must have less than 240 fecal coliform bacteria per 100 milliliters. These samples must be...

  13. Development and testing of a sampling device for the analyses of suspended sediment concentrations

    NASA Astrophysics Data System (ADS)

    Schletterer, Martin; Reindl, Robert; Unterlercher, Franz; Hauer, Christoph

    2017-04-01

    Suspended sediment concentrations are not equal in time as well as within a cross section. For calibration, sampling is needed within a cross profile (using e.g. sampler US P-61-A1) or nearby of a SSC sensor. However, due to insufficient hydraulic efficiency, uncontrolled handling under water as well as lack in accuracy in starting and closing the suspended sediment sampling, the well-established extracting of water samples by hand (dip or grab sample) lacks reproducibility. Due to these shortcomings a novel measuring device has been developed for suspended sediment sampling in rivers. For the design of the presented sampler the experiences of previous technical concepts of direct suspended sediment sampling in rivers have been considered. The sampling device consists of 2 tubes: a filling pipe (8x1 mm = 6 mm inner diameter) and an exhaust pipe (6x1 mm = 4 mm inner diameter). The filling pipe is equipped thread (M8x1 mm) to attach the "measuring nozzle" made of brass. We compared three different nozzles (D4, D5, D6) in order to investigate possible effects of different filling times. Both tubes are connected (TIG -Tungsten Inert-Gaswelding) by a flat steel. All parts (despite the nozzles) are made from stainless steel. On the tubes a plastic screw cap is mounted which allows to attach (and quickly change) standard sampling bottles. A mount enables that the device can be attached to a commercially available "GARDENA aluminium handle", thus using this rod samples can be taken at certain localities. The measurement device has been designed to improve the accuracy of suspended sediment sampling in rivers. The target was to achieve an optimum in hydraulic efficiency without disturbing the natural transport dynamics. Thus, the water sample gained from this sampling device supports the calibration and validation of indirect suspended sediment sampling devices (e.g. SSC sensor). We present the design of the sampler as well as field data in comparison with conventional dip samples.

  14. Water Sample Concentrator

    ScienceCinema

    Idaho National Laboratory

    2017-12-09

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  15. [A novel ship-borne positive pressure solid phase extraction device to enrich organo chlorinated and pyrethroid pesticides in seawater].

    PubMed

    Ye, Jianglei

    2017-09-08

    A novel solid phase extraction (SPE) device driven by positive pressure was developed instead of negative pressure from a vacuum pump, in order to enrich organo chlorinated and pyrethroid pesticides in seawater. The water sampling bottles and the pipelines which touch water samples were made of plastic material without chlorine. In order to ensure the sealing and firmness, the whole device were tightened with nut and bolt. The inner pressure (0.1-0.3 MPa) in the water sampling bottle was provided by the small air pump (powered by 12 V cell) controlled by a microprogrammed control unit (MCU) and pressure sensor to keep the water flow rate (4.0-6.0 mL/min). The pre-conditioned SPE column can be used for the enrichment of pesticides within four weeks, and the loaded SPE column can be eluted for detection within six weeks with recoveries greater than 80%. The linearity of the method was good with the correlation coefficient more than 0.9. The limits of quantification (LOQs) were 0.8-6 ng/L. The recoveries of the pesticides at three spiked levels (3 parallel samples) were 86.1%-95.5% with the relative standard deviations less than 10%. The benzene hexachlorides (BHCs) and dichloro-diphenyl-trichloroethanes (DDTs) were detected in seawater samples. The device has good application in enriching organo chlorinated and pyrethroid pesticides in seawater.

  16. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples.

    PubMed

    Chen, Lei; Pei, Junxian; Huang, Xiaojia; Lu, Min

    2018-06-05

    On-site sample preparation is highly desired because it avoids the transportation of large-volume samples and ensures the accuracy of the analytical results. In this work, a portable prototype of tip microextraction device (TMD) was designed and developed for on-site sample pretreatment. The assembly procedure of TMD is quite simple. Firstly, polymeric ionic liquid (PIL)-based adsorbent was in-situ prepared in a pipette tip. After that, the tip was connected with a syringe which was driven by a bidirectional motor. The flow rates in adsorption and desorption steps were controlled accurately by the motor. To evaluate the practicability of the developed device, the TMD was used to on-site sample preparation of waters and combined with high-performance liquid chromatography with diode array detection to measure trace estrogens in water samples. Under the most favorable conditions, the limits of detection (LODs, S/N = 3) for the target analytes were in the range of 4.9-22 ng/L, with good coefficients of determination. Confirmatory study well evidences that the extraction performance of TMD is comparable to that of the traditional laboratory solid-phase extraction process, but the proposed TMD is more simple and convenient. At the same time, the TMD avoids complicated sampling and transferring steps of large-volume water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Removal of bacteria, protozoa and viruses through a multiple-barrier household water disinfection system.

    PubMed

    Espinosa-García, A C; Díaz-Ávalos, C; Solano-Ortiz, R; Tapia-Palacios, M A; Vázquez-Salvador, N; Espinosa-García, S; Sarmiento-Silva, R E; Mazari-Hiriart, M

    2014-03-01

    Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.

  19. A new design of groundwater sampling device and its application.

    PubMed

    Tsai, Yih-jin; Kuo, Ming-ching T

    2005-01-01

    Compounds in the atmosphere contaminate samples of groundwater. An inexpensive and simple method for collecting groundwater samples is developed to prevent contamination when the background concentration of contaminants is high. This new design of groundwater sampling device involves a glass sampling bottle with a Teflon-lined valve at each end. A cleaned and dried sampling bottle was connected to a low flow-rate peristaltic pump with Teflon tubing and was filled with water. No headspace volume was remained in the sampling bottle. The sample bottle was then packed in a PVC bag to prevent the target component from infiltrating into the water sample through the valves. In this study, groundwater was sampled at six wells using both the conventional method and the improved method. The analysis of trichlorofluoromethane (CFC-11) concentrations at these six wells indicates that all the groundwater samples obtained by the conventional sampling method were contaminated by CFC-11 from the atmosphere. The improved sampling method greatly eliminated the problems of contamination, preservation and quantitative analysis of natural water.

  20. Microbial contamination in dental unit waterlines: comparison between Er:YAG laser and turbine lines.

    PubMed

    Sacchetti, Rossella; Baldissarri, Augusto; De Luca, Giovanna; Lucca, Paola; Stampi, Serena; Zanetti, Franca

    2006-01-01

    The investigation was carried out by evaluating the microbiological characteristics of the water before and after treatment with Er:YAG laser and turbine. The study was carried out in 2 dental surgeries. In both cases the laser and dental units were served by two independent circuits, fed by the same potable tap water. Samples were taken from the water supplying and the water leaving the turbine and laser before and after treatment on the same patient. Total heterotrophic plate count was measured at 36 degrees C and at 22 degrees C, and the presence of Staphylococcus species and non-fermenting Gram negative bacteria was investigated. Bacterial contamination was found within the circuit, especially in the laser device. Pseudomonas aeruginosa was detected in only 1 sample of supply water, in 11.1 % and in 19.4 % of the samples from the turbine and the laser respectively. No evidence of Staphylococcus aureus was found. The contamination of supply water was low, whereas that of the water leaving the handpieces of the 2 devices was high, especially in the laser. Attention should be paid to the control of the water leaving laser devices, given the increasingly wide use of such instruments in dental treatment exposed to risk of infection.

  1. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  2. A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water.

    PubMed

    Amato, Elvio D; Covaci, Adrian; Town, Raewyn M; Hereijgers, Jonas; Bellekens, Ben; Giacometti, Valentina; Breugelmans, Tom; Weyn, Maarten; Dardenne, Freddy; Bervoets, Lieven; Blust, Ronny

    2018-06-14

    Passive sampling with in situ devices offers several advantages over traditional sampling methods (i.e., discrete spot sampling), however, data interpretation from conventional passive samplers is hampered by difficulties in estimating the thickness of the diffusion layer at the sampler/medium interface (δ), often leading to inaccurate determinations of target analyte concentrations. In this study, the performance of a novel device combining active and passive sampling was investigated in the laboratory. The active-passive sampling (APS) device is comprised of a diffusion cell fitted with a pump and a flowmeter. Three receiving phases traditionally used in passive sampling devices (i.e., chelex resin, Oasis HLB, and silicone rubber), were incorporated in the diffusion cell and allowed the simultaneous accumulation of cationic metals, polar, and non-polar organic compounds, respectively. The flow within the diffusion cell was accurately controlled and monitored, and, combined with diffusion coefficients measurements, enabled the average δ to be estimated. Strong agreement between APS and time-averaged total concentrations measured in discrete water samples was found for most of the substances investigated. Accuracies for metals ranged between 87 and 116%, except Cu and Pb (∼50%), whilst accuracies between 64 and 101%, and 92 and 151% were achieved for polar and non-polar organic compounds, respectively. These results indicate that, via a well-defined in situ preconcentration step, the proposed APS approach shows promise for monitoring the concentration of a range of pollutants in water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOEpatents

    Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  4. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?

    EPA Science Inventory

    After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...

  5. Effect of home-used water purifier on fluoride concentration of drinking water in southern Iran

    PubMed Central

    Jaafari-Ashkavandi, Zohreh; Kheirmand, Mehdi

    2013-01-01

    Background: Fluoride in drinking water plays a key role in dental health. Due to the increasing use of water-purifier, the effect of these devices on fluoride concentration of drinking water was evaluated. Materials and Methods: Drinking water samples were collected before and after passing through a home water-purifier, from four different water sources. The fluoride, calcium and magnesium concentration of the samples were measured using the quantitative spectrophotometery technique. Data were analyzed by the Wilcoxon test. P value < 0.1 was considered as significant. Results: The result showed that the concentration of fluoride was 0.05-0.61 ppm before purification and was removed completely afterward. Furthermore, other ions reduced significantly after treatment by the water purifier. Conclusion: This study revealed that this device decreases the fluoride content of water, an issue which should be considered in low and high-fluoridated water sources. PMID:24130584

  6. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  7. Preliminary performance assessment of biotoxin detection for UWS applications using a MicroChemLab device.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanderNoot, Victoria A.; Haroldsen, Brent L.; Renzi, Ronald F.

    2010-03-01

    In a multiyear research agreement with Tenix Investments Pty. Ltd., Sandia has been developing field deployable technologies for detection of biotoxins in water supply systems. The unattended water sensor or UWS employs microfluidic chip based gel electrophoresis for monitoring biological analytes in a small integrated sensor platform. This instrument collects, prepares, and analyzes water samples in an automated manner. Sample analysis is done using the {mu}ChemLab{trademark} analysis module. This report uses analysis results of two datasets collected using the UWS to estimate performance of the device. The first dataset is made up of samples containing ricin at varying concentrations andmore » is used for assessing instrument response and detection probability. The second dataset is comprised of analyses of water samples collected at a water utility which are used to assess the false positive probability. The analyses of the two sets are used to estimate the Receiver Operating Characteristic or ROC curves for the device at one set of operational and detection algorithm parameters. For these parameters and based on a statistical estimate, the ricin probability of detection is about 0.9 at a concentration of 5 nM for a false positive probability of 1 x 10{sup -6}.« less

  8. Construction and field test of a programmable and self-cleaning auto-sampler controlled by a low-cost one-board computer

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Zessner, Matthias

    2016-04-01

    This presentation describes in-depth how a low cost micro-computer was used for substantial improvement of established measuring systems due to the construction and implementation of a purposeful complementary device for on-site sample pretreatment. A fully automated on-site device was developed and field-tested, that enables water sampling with simultaneous filtration as well as effective cleaning procedure of the devicés components. The described auto-sampler is controlled by a low-cost one-board computer and designed for sample pre-treatment, with minimal sample alteration, to meet requirements of on-site measurement devices that cannot handle coarse suspended solids within the measurement procedure or -cycle. The automated sample pretreatment was tested for over one year for rapid and on-site enzymatic activity (beta-D-glucuronidase, GLUC) determination in sediment laden stream water. The formerly used proprietary sampling set-up was assumed to lead to a significant damping of the measurement signal due to its susceptibility to clogging, debris- and bio film accumulation. Results show that the installation of the developed apparatus considerably enhanced error-free running time of connected measurement devices and increased the measurement accuracy to an up-to-now unmatched quality.

  9. Field comparison of analytical results from discrete-depth ground water samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Delfino, T.A.; Gallinatti, J.D.

    1995-07-01

    Discrete-depth ground water samplers are used during environmental screening investigations to collect ground water samples in lieu of installing and sampling monitoring wells. Two of the most commonly used samplers are the BAT Enviroprobe and the QED HydroPunch I, which rely on differing sample collection mechanics. Although these devices have been on the market for several years, it was unknown what, if any, effect the differences would have on analytical results for ground water samples containing low to moderate concentrations of chlorinated volatile organic compounds (VOCs). This study investigated whether the discrete-depth ground water sampler used introduces statistically significant differencesmore » in analytical results. The goal was to provide a technical basis for allowing the two devices to be used interchangeably during screening investigations. Because this study was based on field samples, it included several sources of potential variability. It was necessary to separate differences due to sampler type from variability due to sampling location, sample handling, and laboratory analytical error. To statistically evaluate these sources of variability, the experiment was arranged in a nested design. Sixteen ground water samples were collected from eight random locations within a 15-foot by 15-foot grid. The grid was located in an area where shallow ground water was believed to be uniformly affected by VOCs. The data were evaluated using analysis of variance.« less

  10. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our continuous-flow water sample employs active control for all pertinent parameters, significantly increasing its stability and usability. We will present data from controlled laboratory experiments demonstrating sample-to-sample precision and long-term stability. We will also show experimental data that highlights the instrumental sample-to-sample memory, which we have decreased significantly from previous implementations of this technology. Additionally, we will present field results from the Sacramento River, CA. Dansgaard, W. (1964) 'Stable isotopes in precipitation', Tellus, 16(4), p. 436-468. Munksgaard, N.C., Wurster, C.M., Bass, A., Zagorskis, I., and Bird, M.I. (2012) 'First continuous shipboard d18O and dD measurements in seawater by diffusion sampling--cavity ring-down spectrometry', Environmental Chemistry Letters, 10, p.301-307. Munksgaard, N.C., Wurster, C.M., and Bird, M.I., (2011), 'Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters', Rapid Communications in Mass Spectrometry, 25, p. 3706-3712.

  11. Data on microbial and physiochemical characteristics of inlet and outlet water from household water treatment devices in Rasht, Iran.

    PubMed

    Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail

    2018-02-01

    In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.

  12. Microfluidic chip with optical sensor for rapid detection of nerve agent Sarin in water samples

    NASA Astrophysics Data System (ADS)

    Tan, Hsih Yin; Nguyen, Nam-Trung; Loke, Weng Keong; Tan, Yong Teng

    2007-12-01

    The chemical warfare agent Sarin is an organophosphate that is highly toxic to humans as they can act as cholinesterase inhibitors, that disrupts neuromuscular transmission. As these nerve agents are colorless, odorless and highly toxic, they can be introduced into drinking water as a means of terrorist sabotage. Hence, numerous innovative devices and methods have been developed for rapid detection of these organophosphates. Microfluidic technology allows the implementation of fast and sensitive detection of Sarin. In this paper, a micro-total analysis systems (TAS), also known as Lab-on-a-chip, fitted with an optical detection system has been developed to analyze the presence of the nerve agent sarin in water samples. In the present set-up, inhibition of co-introduced cholinesterase and water samples containing trace amounts of nerve agent sarin into the microfluidic device was used as the basis for selective detection of sarin. The device was fabricated using polymeric micromachining with PMMA (poly (methymethacrylate)) as the substrate material. A chromophore was utilized to measure the activity of remnant cholinesterase activity, which is inversely related to the amount of sarin present in the water samples. Comparisons were made between two different optical detection techniques and the findings will be presented in this paper. The presented measurement method is simple, fast and as sensitive as Gas Chromatography.

  13. A simple device for the collection of water and dissolved gases at defined depths

    USDA-ARS?s Scientific Manuscript database

    A device, consisting of a jar fitted with an inlet comprised of a gas-tight check valve and 2-way ball valve outlet connected via tubing to a portable peristaltic pump, was constructed to collect water samples without atmospheric contamination or loss of dissolved gases. A headspace void for dissol...

  14. Detection limit of Mycobacterium chimaera in water samples for monitoring medical device safety: insights from a pilot experimental series.

    PubMed

    Schreiber, P W; Köhler, N; Cervera, R; Hasse, B; Sax, H; Keller, P M

    2018-07-01

    A growing number of Mycobacterium chimaera infections after cardiosurgery have been reported by several countries. These potentially fatal infections were traced back to contaminated heater-cooler devices (HCDs), which use water as a heat transfer medium. Aerosolization of water contaminated with M. chimaera from HCDs enables airborne transmission to patients undergoing open chest surgery. Infection control teams test HCD water samples for mycobacterial growth to guide preventive measures. The detection limit of M. chimaera in water samples, however, has not previously been investigated. To determine the detection limit of M. chimaera in water samples using laboratory-based serial dilution tests. An M. chimaera strain representative of the international cardiosurgery-associated M. chimaera outbreak was used to generate a logarithmic dilution series. Two different water volumes, 50 and 1000mL, were inoculated, and, after identical processing (centrifugation, decantation, and decontamination), seeded on mycobacteria growth indicator tube (MGIT) and Middlebrook 7H11 solid media. MGIT consistently showed a lower detection limit than 7H11 solid media, corresponding to a detection limit of ≥1.44 × 10 4 cfu/mL for 50mL and ≥2.4cfu/mL for 1000mL water samples. Solid media failed to detect M. chimaera in 50mL water samples. Depending on water volume and culture method, major differences exist in the detection limit of M. chimaera. In terms of sensitivity, 1000mL water samples in MGIT media performed best. Our results have important implications for infection prevention and control strategies in mitigation of the M. chimaera outbreak and healthcare water safety in general. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Randomized controlled trial in rural Ethiopia to assess a portable water treatment device.

    PubMed

    Boisson, Sophie; Schmidt, Wolf-Peter; Berhanu, Tsegahiwot; Gezahegn, Henock; Clasen, Thomas

    2009-08-01

    We conducted a randomized controlled trial to assess the Lifestraw Personal pipe-style water treatment device among a rural population in Ethiopia. A total of 313 households (including 1516 persons) were randomly assigned either to an intervention group in which each householder received a Lifestraw Personal or a control. Households were visited fortnightly over a five-month intervention period and asked to report any episode of diarrhea during the previous week. A random sample of 160 devices was tested each month to assess the presence of thermotolerant coliforms (TTC) and residual iodine in treated water and to measure flow rate under simulated use. Members of the intervention group had 25% fewer weeks with diarrhea than those of the control group (longitudinal prevalence ratio = 0.75; 95% CI 0.60; 0.95). All 718 filtered water samples were free of TTC, were free of detectable iodine disinfectant, and showed a constant flow rate over time. After the five-month intervention period, 34% of participants reported use of device in the preceding week and 13% reported consistent use. While the device was associated with a 25% reduction in longitudinal prevalence of diarrhea, low levels of use suggest that much of this effect is likely to be attributable to reporting bias that is common in open trials with nonobjective outcomes.

  16. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  17. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  18. 33 CFR 159.317 - Sampling and reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel... cruise vessel that discharges treated sewage and/or graywater in the applicable waters of Alaska shall.../Quality Control Plan (QA/QCP) accepted by the COTP for sampling and analysis of treated sewage and/or...

  19. Compatible immuno-NASBA LOC device for quantitative detection of waterborne pathogens: design and validation.

    PubMed

    Zhao, Xinyan; Dong, Tao; Yang, Zhaochu; Pires, Nuno; Høivik, Nils

    2012-02-07

    Waterborne pathogens usually pose a global threat to animals and human beings. There has been a growing demand for convenient and sensitive tools to detect the potential emerging pathogens in water. In this study, a lab-on-a-chip (LOC) device based on the real-time immuno-NASBA (immuno-nucleic acid sequence-based amplification) assay was designed, fabricated and verified. The disposable immuno-NASBA chip is modelled on a 96-well ELISA microplate, which contains 43 reaction chambers inside the bionic channel networks. All valves are designed outside the chip and are reusable. The sample and reagent solutions were pushed into each chamber in turn, which was controlled by the valve system. Notably, the immuno-NASBA chip is completely compatible with common microplate readers in a biological laboratory, and can distinguish multiple waterborne pathogens in water samples quantitatively and simultaneously. The performance of the LOC device was demonstrated by detecting the presence of a synthetic peptide, ACTH (adrenocorticotropic hormone) and two common waterborne pathogens, Escherichia coli (E. coli) and rotavirus, in artificial samples. The results indicated that the LOC device has the potential to quantify traces of waterborne pathogens at femtomolar levels with high specificity, although the detection process was still subject to some factors, such as ribonuclease (RNase) contamination and non-specific adsorption. As an ultra-sensitive tool to quantify waterborne pathogens, the LOC device can be used to monitor water quality in the drinking water system. Furthermore, a series of compatible high-throughput LOC devices for monitoring waterborne pathogens could be derived from this prototype with the same design idea, which may render the complicated immuno-NASBA assays convenient to common users without special training.

  20. Membrane Based Thermal Control Development

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen

    1997-01-01

    The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.

  1. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  2. Application of a paper based device containing a new culture medium to detect Vibrio cholerae in water samples collected in Haiti.

    PubMed

    Briquaire, Romain; Colwell, Rita R; Boncy, Jacques; Rossignol, Emmanuel; Dardy, Aline; Pandini, Isabelle; Villeval, François; Machuron, Jean-Louis; Huq, Anwar; Rashed, Shah; Vandevelde, Thierry; Rozand, Christine

    2017-02-01

    Cholera is now considered to be endemic in Haiti, often with increased incidence during rainy seasons. The challenge of cholera surveillance is exacerbated by the cost of sample collection and laboratory analysis. A diagnostic tool is needed that is low cost, easy-to-use, and able to detect and quantify Vibrio cholerae accurately in water samples within 18-24h, and perform reliably in remote settings lacking laboratory infrastructure and skilled staff. The two main objectives of this study were to develop and evaluate a new culture medium embedded in a new diagnostic tool (PAD for paper based analytical device) for detecting Vibrio cholerae from water samples collected in Haiti. The intent is to provide guidance for corrective action, such as chlorination, for water positive for V. cholerae epidemic strains. For detecting Vibrio cholerae, a new chromogenic medium was designed and evaluated as an alternative to thiosulfate citrate bile salts sucrose (TCBS) agar for testing raw water samples. Sensitivity and specificity of the medium were assessed using both raw and spiked water samples. The Vibrio cholerae chromogenic medium was proved to be highly selective against most of the cultivable bacteria in the water samples, without loss of sensitivity in detection of V. cholerae. Thus, reliability of this new culture medium for detection of V. cholerae in the presence of other Vibrio species in water samples offers a significant advantage. A new paper based device containing the new chromogenic medium previously evaluated was compared with reference methods for detecting V. cholerae from spiked water sample. The microbiological PAD specifications were evaluated in Haiti. More precisely, a total of 185 water samples were collected at five sites in Haiti, June 2014 and again in June 2015. With this new tool, three V. cholerae O1 and 17 V. cholerae non-O1/O139 strains were isolated. The presence of virulence-associated and regulatory genes, including ctxA, zot, ace, and toxR, was confirmed using multiplex PCR. The three V. cholerae O1 isolates were positive for three of the four virulence-associated and regulatory genes. Twelve of the V. cholerae non-O1/O139 isolates were found to carry toxR, but none were ctxA+, zot+, or ace+. However, six of the V. cholerae non-O1/O139 isolates were resistant to penicillin, ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, and ciprofloxacin. The paper based analytical device (PAD) provides advantages in that standard culture methods employing agar plates are not required. Also, intermediary isolation steps were not required, including transfer to selective growth media, hence these steps being omitted reduced time to results. Furthermore, experienced technical skills also were not required. Thus, PAD is well suited for resource-limited settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  4. Enrichment and Detection of Escherichia coli O157:H7 from Water Samples Using an Antibody Modified Microfluidic Chip

    PubMed Central

    Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Osiri, John K.; Hupert, Mateusz L.; Bianchi, Thomas S.; Roelke, Daniel L.; Soper, Steven A.

    2010-01-01

    Low abundant (<100 cells mL-1) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip. The poly(methylmethacrylate), PMMA, chip contained 8 devices each equipped with 16 curvilinear high aspect ratio channels that were covalently decorated with polyclonal anti-O157 antibodies (pAb) and could search for rare cells through a pAb mediated process. The chip could process independently 8 different samples or one sample using 8 different parallel inputs to increase volume processing throughput. After cell enrichment, cells were released and enumerated using bench top real-time quantitative PCR, targeting genes which effectively discriminated the O157:H7 serotype from other non-pathogenic bacteria. The recovery of target cells from water samples was determined to be ~72%, and the limit-of-detection was found to be 6 colony forming units (cfu) using the slt1 gene as a reporter. We subsequently performed analysis of lake and waste water samples. The simplicity in manufacturing and ease of operation makes this device attractive for the selection of pathogenic species from a variety of water supplies suspected of containing bacterial pathogens at extremely low frequencies. PMID:20218574

  5. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly

    PubMed Central

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-01-01

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained. PMID:26371025

  6. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-09-09

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained.

  7. HOLISTIC APPROACH FOR ASSESSING THE PRESENCE ...

    EPA Pesticide Factsheets

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device (SPMD) has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler (POCIS) is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device (SLMD) is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler (PIMS) is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence o,f a wide variety of contaminants in , the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for fmal polishing of secondary- treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides (OCs), polycyclic aromatic hydrocarbons

  8. Coupling of multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction with pulse glow discharge-ion mobility spectrometry for analysis of triazine herbicides in water and soil samples.

    PubMed

    Zou, Nan; Yuan, Chunhao; Liu, Shaowen; Han, Yongtao; Li, Yanjie; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-07-29

    An analytical method based on stir bar sorptive extraction (SBSE) coupled with pulse glow discharge-ion mobility spectrometry (PGD-IMS) was developed for analysis of three triazine pesticide residues in water and soil samples. An injection port with sealing device and stir bars hold device were designed and constructed to directly position the SBSE fiber including the extracted samples into the heating device, making desorption and detection of analytes proceeded simultaneously. The extraction conditions such as SBSE solid phase material, extraction time, extraction temperature, pH value and salt concentration were optimized. Mixture of MWCNTs-COOH and PDMS were shown to be effective in enriching the triazines. The LODs and LOQs of three triazines were found to be 0.006-0.015μgkg(-1) and 0.02-0.05μgkg(-1), and the linear range was 0.05-10μgL(-1) with determination coefficients from 0.9987 to 0.9993. The SBSE-PGD-IMS method was environmentally friendly without organic solvent consumption in the entire experimental procedures, and it was demonstrated to be a commendable rapid analysis technique for analysis of triazine pesticide residues in environmental samples on site. The proposed method was applied for the analysis of real ground water, surface water and soil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of dissolved oxygen convection on well sampling

    USGS Publications Warehouse

    Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.

    2007-01-01

    Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.

  10. Development and evaluation of a gas chromatographic method for the determination of triazine herbicides in natural water samples

    USGS Publications Warehouse

    Steinheimer, T.R.; Brooks, M.G.

    1984-01-01

    A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.

  11. Icy Soil Acquisition Device for the 2007 Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Wilson, Jack; Davis, Kiel; Shiraishi, Lori; Burke, Kevin

    2008-01-01

    The Icy Soil Acquisition Device is a first of its kind mechanism that is designed to acquire ice-bearing soil from the surface of the Martian polar region and transfer the samples to analytical instruments, playing a critical role in the potential discovery of existing water on Mars. The device incorporates a number of novel features that further the state of the art in spacecraft design for harsh environments, sample acquisition and handling, and high-speed low torque mechanism design.

  12. Release Mechanisms, Control Strategies, and Implementation Challenges of Controlling Lead in Drinking Water

    EPA Science Inventory

    Even minimally or moderately corrosive water can cause unacceptable and dangerous lead contamination to be released from common plumbing materials and devices into drinking water. Designing sampling programs to uncover the potential for ingestion of lead in water and to protect ...

  13. Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies

    USGS Publications Warehouse

    Alvarez, David A.

    2010-01-01

    The success of an environmental monitoring study using passive samplers, or any sampling method, begins in the office or laboratory. Regardless of the specific methods used, the general steps include the formulation of a sampling plan, training of personnel, performing the field (sampling) work, processing the collected samples to recover chemicals of interest, analysis of the enriched extracts, and interpretation of the data. Each of these areas will be discussed in the following sections with emphasis on specific considerations with the use of passive samplers. Water is an extremely heterogeneous matrix both spatially and temporally (Keith, 1991). The mixing and distribution of dissolved organic chemicals in a water body are controlled by the hydrodynamics of the water, the sorption partition coefficients of the chemicals, and the amount of organic matter (suspended sediments, colloids, and dissolved organic carbon) present. In lakes and oceans, stratification because of changes in temperature, water movement, and water composition can occur resulting in dramatic changes in chemical concentrations with depth (Keith, 1991). Additional complications related to episodic events, such as surface runoff, spills, and other point source contamination, can result in isolated or short-lived pulses of contaminants in the water. The application of passive sampling technologies for the monitoring of legacy and emerging organic chemicals in the environment is becoming widely accepted worldwide. The primary use of passive sampling methods for environmental studies is in the area of surface-water monitoring; however, these techniques have been applied to air and groundwater monitoring studies. Although these samplers have no mechanical or moving parts, electrical or fuel needs which require regular monitoring, there are still considerations that need to be understood in order to have a successful study. Two of the most commonly used passive samplers for organic contaminants are the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS). The tips given in this document focus on these two samplers but are applicable to most types of passive sampling devices. The information in this guide is heavily weighted towards the sampling of water; however, information specific to the use of SPMDs for air sampling will also be covered.

  14. A Peltier-based freeze-thaw device for meteorite disaggregation

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.

    2018-02-01

    A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.

  15. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  16. Evaluation of bacterial contamination of dental unit waterlines and use of a newly designed measurement device to assess retraction of a dental chair unit.

    PubMed

    Ji, Xue-Yue; Fei, Chun-Nan; Zhang, Ying; Zhang, Wei; Liu, Jun; Dong, Jie

    2016-08-01

    Dental unit waterline (DUWL) output water is delivered through instruments of a dental chair unit (DCU) to irrigate and cool teeth. However, these waterlines can be heavily contaminated with bacteria. The purpose of the present study was to assess retraction and investigate the contamination level and prevalence of bacteria in DUWL output water. Fifty-eight DCUs were randomly selected from 30 hospitals in 10 districts of Tianjin, one of the four special municipalities of China. A unique sampling connector was used in place of the dental handpiece to collect water samples. Evaluation of retraction was accomplished using a retraction measurement device designed in accordance with the International Standard ISO 7494-2:2015(E). A total of 263 water samples were collected, and the highest concentration of bacteria [1.8 × 10(6) colony-forming units (CFU)/mL] was found in the handpiece group. Thirty (51.72%) water samples in the handpiece group and 21 (36.21%) in the air/water syringe groups were cultured, yielding colony counts of > 500 CFU/mL. Potential infectious agents, such as Bacillus cereus, Kocuria kristinae and Pseudomonas fluorescens, were isolated from the water samples. Thirty (51.72%) DCUs failed the retraction evaluation. There was a significant, positive correlation (P < 0.05) between the concentration of bacteria in the water sample and the retracted volume. It is of paramount importance to increase compliance with the standards for controlling DUWL contamination. Routine microbial monitoring and evaluation of retraction are necessary to provide high-quality water for use in dental treatment. © 2016 FDI World Dental Federation.

  17. Evaluation of selected information on splitting devices for water samples

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    1996-01-01

    Four devices for splitting water samples into representative aliquots are used by the U.S. Geological Survey's Water Resources Division. A thorough evaluation of these devices (14-liter churn, 8-liter churn, plastic cone, and Teflon cone) encompasses a wide variety of concerns, based on both chemical and physical considerations. This report surveys the existing data (as of April 1994) on cleaning efficiency and splitting capability of these devices and presents the data in a systematic framework for evaluation. From the existing data, some of these concerns are adequately or partially addressed, but the majority of concerns could not be addressed because of the lack of data. In general, the existing cleaning and transport protocols are adequate at the milligram per liter level, but the adequacy is largely unknown for trace elements and organic chemicals at lower concen- trations. The existing data indicate that better results are obtained when the splitters are cleaned in the laboratory rather than in the field. Two conclusions that can be reached on the splitting capability of solids are that more work must be done with all four devices to characterize and quantify their limitations and range of usefulness, and that the 14-liter churn (and by association, the 8-liter churn) is not useful in obtaining representative splits of sand-sized particles.

  18. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  19. Development of a silicone-membrane passive sampler for monitoring cylindrospermopsin and microcystin LR-YR-RR in natural waters

    NASA Astrophysics Data System (ADS)

    Nyoni, Hlengilizwe; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Silicone membrane tubes were functionalised by filling them with synthesised γ-Fe2O3 nanoparticles and used as a passive sampling device for monitoring microcystins and cylindrospermopsin in aquatic environments. This novel device was calibrated for the measurement of microcystin and cylindrospermopsin concentrations in water. The effect of temperature and hydrodynamics on the sampler performance was studied in a flow-through system under controlled conditions. The chemical uptake of microcystins (MCs) and cylindrospermopsin (CYN) into the passive sampler remained linear and integrative throughout the exposure period. The rate of accumulation of most of the MC compounds tested was dependent on temperature and flow velocity. The use of 13C labelled polychlorinated biphenyls as performance reference compounds (PRCs) in silicone membrane/γ-Fe2O3 nanoparticle passive sampler, Chemcatcher and polar organic chemical integrative sampler (POCIS) was evaluated. The majority of PRCs improved the semi quantitative nature of water concentration estimated by the three samplers. The corrected sampling rate values of model biotoxin compounds were used to estimate the time-weighted average concentrations in natural cyanobacterial water blooms of the Hartbeespoort dam. The corrected sampling rates RScorr values varied from 0.1140 to 0.5628 Ld-1 between samplers with silicone membrane having the least RScorr values compared to the Chemcatcher and POCIS. The three passive sampling devises provided a more relevant picture of the biotoxin concentration in the Hartbeespoort dam. The results suggested that the three sampling devices are suitable for use in monitoring microcystins and cylindrospermopsin concentrations in aquatic environments.

  20. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  1. Qualification of heavy water based irradiation device in the JSI TRIGA reactor for irradiations of FT-TIMS samples for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Kolšek, Aljaž; Fauré, Anne-Laure; Pottin, Anne-Claire; Pointurier, Fabien; Snoj, Luka

    2018-03-01

    The Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS) method is considered as the reference method for particle analysis in the field of nuclear Safeguards for measurements of isotopic compositions (fissile material enrichment levels) in micrometer-sized uranium particles collected in nuclear facilities. An integral phase in the method is the irradiation of samples in a very well thermalized neutron spectrum. A bilateral collaboration project was carried out between the Jožef Stefan Institute (JSI, Slovenia) and the Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA, France) to determine whether the JSI TRIGA reactor could be used for irradiations of samples for the FT-TIMS method. This paper describes Monte Carlo simulations, experimental activation measurements and test irradiations performed in the JSI TRIGA reactor, firstly to determine the feasibility, and secondly to design and qualify a purpose-built heavy water based irradiation device for FT-TIMS samples. The final device design has been shown experimentally to meet all the required performance specifications.

  2. Fixation filter, device for the rapid in situ preservation of particulate samples

    NASA Astrophysics Data System (ADS)

    Taylor, C. D.; Edgcomb, V. P.; Doherty, K. W.; Engstrom, I.; Shanahan, T.; Pachiadaki, M. G.; Molyneaux, S. J.; Honjo, S.

    2015-02-01

    Niskin bottle rosettes have for years been the workhorse technology for collection of water samples used in biological and chemical oceanography. Studies of marine microbiology and biogeochemical cycling that aim to analyze labile organic molecules including messenger RNA, must take into account factors associated with sampling methodology that obscure an accurate picture of in situ activities/processes. With Niskin sampling, the large and often variable times between sample collection and preservation on deck of a ship, and the sometimes significant physico-chemical changes (e.g., changes in pressure, light, temperature, redox state, etc.) that water samples and organisms are exposed to, are likely to introduce artifacts. These concerns are likely more significant when working with phototrophs, deep-sea microbes, and/or organisms inhabiting low-oxygen or anoxic environments. We report here the development of a new technology for the in situ collection and chemical preservation of particulate microbial samples for a variety of downstream analyses depending on preservative choice by the user. The Fixation Filter Unit, version 3 (FF3) permits filtration of water sample through 47 mm diameter filters of the user's choice and upon completion of filtration, chemically preserves the retained sample within 10's of seconds. The stand-alone devices can be adapted to hydrocasting or mooring-based platforms.

  3. DipTest: A litmus test for E. coli detection in water.

    PubMed

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb; Mitra, Sushanta K

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source.

  4. DipTest: A litmus test for E. coli detection in water

    PubMed Central

    Gunda, Naga Siva Kumar; Dasgupta, Saumyadeb

    2017-01-01

    We have developed a new litmus paper test (DipTest) for detecting Escherichia coli (E. coli) in water samples by performing enzymatic reactions directly on the porous paper substrate. The paper strip consists of a long narrow piece of cellulose blotting paper coated with chemoattractant (at bottom edge), wax hydrophobic barrier (at the top edge), and custom formulated chemical reagents (at reaction zone immediately below the wax hydrophobic barrier). When the paper strip is dipped in water, E. coli in the water sample is attracted toward the paper strip due to a chemotaxic mechanism followed by the ascent along the paper strip toward the reaction zone due to a capillary wicking mechanism, and finally the capillary motion is arrested at the top edge of the paper strip by the hydrophobic barrier. The E. coli concentrated at the reaction zone of the paper strip will react with custom formulated chemical reagents to produce a pinkish-red color. Such a color change on the paper strip when dipped into water samples indicates the presence of E. coli contamination in potable water. The performance of the DipTest device has been checked with different known concentrations of E. coli contaminated water samples using different dip and wait times. The DipTest device has also been tested with different interfering bacteria and chemical contaminants. It has been observed that the different interfering contaminants do not have any impact on the DipTest, and it can become a potential solution for screening water samples for E. coli contamination at the point of source. PMID:28877199

  5. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  6. Ultrasensitive environmental assessment of xeno-estrogens in water samples using label-free graphene immunosensors.

    PubMed

    Barton, Huw; Berbel-Filho, Waldir M; Consuegra, Sofia; Francis, Lewis; Tizaoui, Chedly; Conlan, R Steven; Teixeira, Sofia Rodrigues

    2018-05-01

    There is a growing interest in the possible environmental health impact posed by endocrine-disrupting chemicals (EDCs). A challenge to the field of endocrine disruption is that these substances are diverse and may not appear to share any structural similarity other than usually being low molecular mass (<1000 Da) compounds. Here we demonstrate the effectiveness of sensor device for the detection of low molecular weight, poorly water soluble, estrogenic compounds E1, E2 and EE2, fabricated by electropolymerization over graphene screen printed electrode (SPE). The PANI/Gr-SPE-devices displayed linear responses to estrogenic substances, in EIS assays, from 0.0975 ng/L to 200 ng/L in water samples, with a detection limit of 0.043 pg/L for E1, 0.19 ng/L for E2 and 0.070 pg/L for EE2 which is lower than other current biosensing techniques. This portable, disposable immunosensor offers a solution for immediate measurement at sample collection sites, due to its excellent sensitivity and selectivity when testing water samples obtained directly from rivers and waste water treatment facilities. The simple screen printing production method will enable the low cost, high volume production required for this type of environmental analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  8. Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Yan; Qu, Shiliang; Guo, Zhongyi

    2011-07-01

    We have fabricated a microdiverter with a protrusion and a complicated micromixer with grid-like structures in silica glass by using water-assisted femtosecond laser ablation. When distilled water is introduced into the fabricated microchannel, the blocking and redepositing effects of ablated debris can be reduced greatly. The total length of the fabricated microfluidic devices is 6 mm without any deformation. The diameters of the fabricated microchannels can be controlled by changing the used pulse energies and the width of the laser-scanning region inside the sample. The experimental results show that it is possible to fabricate high-quality and high-aspect-ratio complicated microfluidic devices in single step without the need of using photosensitive glass or post-processing.

  9. A microfluidic needle for sampling and delivery of chemical signals by segmented flows

    NASA Astrophysics Data System (ADS)

    Feng, Shilun; Liu, Guozhen; Jiang, Lianmei; Zhu, Yonggang; Goldys, Ewa M.; Inglis, David W.

    2017-10-01

    We have developed a microfluidic needle-like device that can extract and deliver nanoliter samples. The device consists of a T-junction to form segmented flows, parallel channels to and from the needle tip, and seven hydrophilic capillaries at the tip that form a phase-extraction region. The main microchannel is hydrophobic and carries segmented flows of water-in-oil. The hydrophilic capillaries transport the aqueous phase with a nearly zero pressure gradient but require a pressure gradient of 19 kPa for mineral oil to invade and flow through. Using this device, we demonstrate the delivery of nanoliter droplets and demonstrate sampling through the formation of droplets at the tip of our device. During sampling, we recorded the fluorescence intensities of the droplets formed at the tip while varying the concentration of dye outside the tip. We measured a chemical signal response time of approximately 3 s. The linear relationship between the recorded fluorescence intensity of samples and the external dye concentration (10-40 μg/ml) indicates that this device is capable of performing quantitative, real-time measurements of rapidly varying chemical signals.

  10. In-situ continuous water monitoring system

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  11. In-situ continuous water monitoring system

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  12. A device for measuring soil frost

    Treesearch

    James H. Patric; Burley D. Fridley

    1969-01-01

    A water-filled plastic tube buried vertically in the soil in a copper casing permitted repeated observation of frost depth without damaging the sampling site. The device is simple and inexpensive and provides data on soil freezing at least as accurate as direct observation by digging through frozen soil.

  13. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    NASA Astrophysics Data System (ADS)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.

  14. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Treesearch

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  15. Water Collection from Air Humidity in Bahrain

    NASA Astrophysics Data System (ADS)

    Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.

    2017-11-01

    The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  16. Influence of In-Well Convection on Well Sampling

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Lowery, Mark A.

    2006-01-01

    Convective transport of dissolved oxygen (DO) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of DO to maintain oxygenated conditions in a well was diminished as ground-water exchange through the well screen increased and as oxygen demand increased. Convective flow did not transport oxygen to the screened interval when the screened interval was deeper than the range of the convective cell. The convective movement of water in wells has potential implications for passive, or no-purge, and low-flow sampling approaches. Transport of DO to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes, such as iron. Other potential consequences include mixing the screened-interval water with casing water and potentially allowing volatilization loss at the water surface. A field test of diffusion samplers in a convecting well during the winter, however, showed good agreement of chlorinated solvent concentrations with pumped samples, indicating that there was no negative impact of the convection on the utility of the samplers to collect volatile organic compound concentrations in that well. In the cases of low-flow sampling, convective circulation can cause the pumped sample to be a mixture of casing water and aquifer water. This can substantially increase the equilibration time of oxygen as an indicator parameter and can give false indications of the redox state. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple baffle systems.

  17. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water

    USGS Publications Warehouse

    Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.

    1999-01-01

    The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity-turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (KOW); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD RS values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26??C) on RS values appeared to be complex but were relatively small.

  18. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.

    PubMed

    Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua

    2017-09-14

    Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.

  19. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices.

    PubMed

    Williamson, Kelly S; Petty, Jimmie D; Huckins, James N; Lebo, Jon A; Kaiser, Edwin M

    2002-11-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri-Columbia, USA; Williamson et al., Chemosphere (This issue--PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  20. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  1. Different Types of Heater-Cooler Units and Their Risk of Transmission of Mycobacterium chimaera During Open-Heart Surgery: Clues From Device Design.

    PubMed

    Kuehl, Richard; Banderet, Florian; Egli, Adrian; Keller, Peter M; Frei, Reno; Döbele, Thomas; Eckstein, Friedrich; Widmer, Andreas F

    2018-05-28

    OBJECTIVEWorldwide, Mycobacterium chimaera infections have been linked to contaminated aerosols from heater-cooler units (HCUs) during open-heart surgery. These infections have mainly been associated with the 3T HCU (LivaNova, formerly Sorin). The reasons for this and the risk of transmission from other HCUs have not been systematically assessed.DESIGNProspective observational study.SETTINGUniversity Hospital Basel, Switzerland.METHODSContinuous microbiological surveillance of 3 types of HCUs in use (3T from LivaNova/Sorin and HCU30 and HCU40 from Maquet) was initiated in June 2014, coupled with an epidemiologic workup. Monthly water and air samples were taken. Construction design was analyzed, and exhausted airflow was measured.RESULTS Mycobacterium chimaera grew in 8 of 12 water samples (66%) and 22 of 24 air samples (91%) of initial 3T HCUs in use, and in 2 of 83 water samples (2%) and 0 of 41 (0%) air samples of new replacement 3T HCUs. Moreover, 7 of 12 water samples (58%) and 0 of 4 (0%) air samples from the HCU30 were positive, and 0 of 64 (0%) water samples and 0 of 50 (0%) air samples from the HCU40 were positive. We identified 4 relevant differences in HCU design compared to the 3T: air flow direction, location of cooling ventilators, continuous cooling of the water tank at 4°C, and an electronic alarm in the HCU40 reminding the user of the next disinfection cycle.CONCLUSIONSAll infected patients were associated with a 3T HCU. The individual HCU design may explain the different risk of disseminating M. chimaera into the air of the operating room. These observations can help the construction of improved devices to ensure patient safety during cardiac surgery.Infect Control Hosp Epidemiol 2018;1-7.

  2. Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho

    2018-02-01

    A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis system. Therefore, our device could be directly employed in water quality monitoring as an alternative to conventional TP analysis systems.

  3. DISCRETE-LEVEL GROUND-WATER MONITORING SYSTEM FOR CONTAINMENT AND REMEDIAL PERFORMANCE ASSESSMENT OBJECTIVES

    EPA Science Inventory

    A passive discrete-level multilayer ground-water sampler was evaluated to determine its capability to obtain representative discrete-interval samples within the screen intervals of traditional monitoring wells without purging. Results indicate that the device is able to provide ...

  4. All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters.

    PubMed

    López Marzo, Adaris M; Pons, Josefina; Blake, Diane A; Merkoçi, Arben

    2013-04-02

    Nowadays, the development of systems, devices, or methods that integrate several process steps into one multifunctional step for clinical, environmental, or industrial purposes constitutes a challenge for many ongoing research projects. Here, we present a new integrated paper based cadmium (Cd(2+)) immunosensing system in lateral flow format, which integrates the sample treatment process with the analyte detection process. The principle of Cd(2+) detection is based on competitive reaction between the cadmium-ethylenediaminetetraacetic acid-bovine serum albumin-gold nanoparticles (Cd-EDTA-BSA-AuNP) conjugate deposited on the conjugation pad strip and the Cd-EDTA complex formed in the analysis sample for the same binding sites of the 2A81G5 monoclonal antibody (mAb), specific to Cd-EDTA but not Cd(2+) free, which is immobilized onto the test line. This platform operates without any sample pretreatment step for Cd(2+) detection thanks to an extra conjugation pad that ensures Cd(2+) complexation with EDTA and interference masking through ovalbumin (OVA). The detection and quantification limits found for the device were 0.1 and 0.4 ppb, respectively, these being the lowest limits reported up to now for metal sensors based on paper. The accuracy of the device was evaluated by addition of known quantities of Cd(2+) to different drinking water samples and subsequent Cd(2+) content analysis. Sample recoveries ranged from 95 to 105% and the coefficient of variation for the intermediate precision assay was less than 10%. In addition, the results obtained here were compared with those obtained with the well-established inductively coupled plasma emission spectroscopy (ICPES) and the analysis of certificate standard samples.

  5. Simultaneous derivatization and lighter-than-water air-assisted liquid-liquid microextraction using a homemade device for the extraction and preconcentration of some parabens in different samples.

    PubMed

    Farajzadeh, Mir Ali; Aghdam, Mehri Bakhshizadeh; Mogaddam, Mohammad Reza Afshar; Nabil, Ali Akbar Alizadeh

    2018-06-06

    Simultaneous derivatization and air-assisted liquid-liquid microextraction using an organic solvent lighter than water has been developed for the extraction of some parabens in different samples with the aid of a newly designed device for collecting the extractant. For this purpose, the sample solution is transferred into a glass test tube and a few microliters of acetic anhydride (as a derivatization agent) and p-xylene (as an extraction solvent) are added to the solution. After performing the procedure, the homemade device consists of an inverse funnel with a capillary tube placed into the tube. In this step, the collected extraction solvent and a part of the aqueous solution are transferred into the device and the organic phase indwells in the capillary tube of the device. Under the optimal conditions, limits of detection and quantification for the analytes were obtained in the ranges of 0.90-2.7 and 3.0-6.1 ng mL -1 , respectively. The enrichment and enhancement factors were in the ranges of 370-430 and 489-660, respectively. The method precision, expressed as the relative standard deviation, was within the ranges of 4-6% (n = 6) and 4-9% (n = 4) for intra- and inter-day precisions, respectively. The proposed method was successfully used for the determination of methyl-, ethyl-, and propyl parabens in cosmetic, hygiene, and food samples, and personal care products. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Evaluation of lipid-containing semipermeable membrane devices for monitoring organochlorine contaminants in the Upper Mississippi river

    USGS Publications Warehouse

    Ellis, Geoffrey S.; Rostad, Colleen E.; Huckins, James N.; Schmitt, Christopher J.; MacCarthy, Patrick

    1995-01-01

    Organochlorine contaminants sequestered in lipid-containing semipermeable membrane devices (SPMDs) were compared to those found in tangential-flow ultrafilter permeates as part of a pilot study at 10 sites in the Upper Mississippi River system. Caged and feral fish from three primary sites were also analyzed for comparison. Concentrated organochlorine (OC) compounds were readily extracted from the SPMDs by dialysis into hexane, and samples were analyzed by gas chromatography-negative chemical ionization-mass spectrometry. Fish and water samples were processed by conventional methods. Reasonable agreement was found between analyte SPMD-derived water concentrations and measured values of ultrafilter permeates; however, concentrations of the same analytes in caged fish did not appear to be proportional to water concentrations derived from SPMDs and ultrafilter permeates. The greatest number of OC compounds was detected in SPMDs; fewer were detected in caged fish and feral fish.

  7. Cellulose membrane modified with polypyrrole as an extraction device for the determination of emerging contaminants in river water with GC-MS.

    PubMed

    de Noronha, Bárbara Viero; Bergamini, Márcio Fernando; Marcolino Junior, Luiz Humberto; da Silva, Bruno José Gonçalves

    2018-05-21

    In this study, a simple, efficient, and reusable device based on cellulose membranes modified with polypyrrole was developed to extract 14 emerging contaminants from aqueous matrices. For chemical polymerization, a low-cost cellulose membrane was immersed in 0.1 mol L -1 pyrrole and 0.5 mol L -1 ammonium persulfate for 40 min in an ice/water bath. The cellulose membranes modified with polypyrrole were accommodated in a polycarbonate holder suitable for solid-phase extraction disks. Solid-phase extraction parameters that affect extraction efficiency, such as sample volume, pH, flow-rate, and desorption were optimized. Subsequently, determination of target compounds was performed by gas chromatography with mass spectrometry. The linear range for analytes ranged from 0.05 to 500 μg L -1 , with coefficients of determination above 0.990. The limits of quantification varied between 0.05 and 10 μg L -1 , with relative standard deviations lower than 17%. The performance of the proposed cellulose membranes modified with polypyrrole device for real samples was evaluated after extraction of emerging contaminants from a river water sample from the city of Curitiba-Brazil. Bisphenol A (6.39 μg L -1 ), caffeine (17.83 μg L -1 ), and paracetamol (19.28 μg L -1 ) were found in these samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Douching for perceived vaginal odor with no infectious cause of vaginitis: a randomized controlled trial.

    PubMed

    Hassan, Sarmina; Chatwani, Ashwin; Brovender, Herman; Zane, Richard; Valaoras, Thomas; Sobel, Jack D

    2011-04-01

    To demonstrate the effectiveness of medical-grade stainless steel Water Works Douching Device for treating abnormal vaginal odor in comparison with a commercially available over-the-counter plastic douching device. In a multicenter study, 140 women with perceived vaginal odor with no vaginal infection were randomized to either Water Works or control group in a 1:1 ratio and were douched daily for 4 weeks. A visual analog scale (VAS) was used to assess the intensity of vaginal odor. Primary outcome included subject assessment of odor improvement and Nugent Gram stain score of vaginal secretions. Secondary outcome compared the efficacy and safety of Water Works with control douching device. Each patient underwent baseline, week 2, and week 4 visits. The final analytic sample consisted of 96 women. Success score at 4 weeks was 78% for the Water Works group and 38.5% for the control group. Mean VAS was significantly reduced, and Nugent and Lactobacillus scores were maintained in both groups. In the Water Works group, VAS was reduced from 7.3 ± 0.3 to 1.8 ± 0.6 (p < .001) after 4 weeks. In the control group, baseline versus 4 weeks VAS was 7.2 ± 0.3 and 3.4 ± 0.8 (p < .003). Women reported significant reduction of vaginal odor after douching with water for 4 weeks without any alteration of vaginal flora. The Water Works Douching Device was superior to over- the-counter device in reducing vaginal odor.

  9. Market Survey: Biological Detectors. Guide for Selection of Detection Devices and Systems

    DTIC Science & Technology

    2006-02-01

    samples. There are no real concerns with logistical or operational concerns, as issues such as size, weight, signature, transportation , additional equipment...of the detection system or device on support and logistical systems. 2.1 Transportation Measure. Ability to transport the detection system or device...supplied, such as water, fuel, batteries, chemical, power, etc.) that have to be transported to the site for detection. 100 0-1 consumable or

  10. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  11. An innovative distillation device for tritiated water analysis with high decontamination factor.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Wang, Jeng-Jong

    2013-11-01

    Institute of Nuclear Energy Research (INER) has designed an air-cooling distillation device and got a US patent. The decontamination factor (60)Co and (137)Cs is above 23,000. Tritium loss rate is one of testing items in ASTM D4107 Standard Test Method for Tritium in Drinking Water. In this study, the 3 levels (high, middle and low level) of tritium concentration of testing samples for the loss rate test were prepared similar to the concentrations reported in ASTM D4107. The loss rate of the high level is -2.37%, the middle is -2.31% and the low level is -2.47%. These results show that the air-cooling distillation device has good performance in the environmental water tritium analysis work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Determination of the water retention of peat soils in the range of the permanent wilting point.

    NASA Astrophysics Data System (ADS)

    Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang

    2017-04-01

    Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.

  13. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  14. Comparison of Passive Sampling Devices for Measuring Dissolved PCBs in the Water Column of a Marine Superfund Site

    EPA Science Inventory

    The presence of contaminated sediments in aquatic environments results in several potential sources of ecological risk. These risks include the release of contaminants into the water column causing exposure to pelagic organisms. Possible adverse biological effects of this exposu...

  15. 33 CFR 159.126a - Suspended solids test: Type II devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Suspended solids test: Type II... Suspended solids test: Type II devices. During the sewage processing test (§ 159.121) 40 effluent samples... suspended solids in accordance with 40 CFR part 136. The arithmetic mean of the total suspended solids in 38...

  16. The evaluation of uncertainty in low-level LSC measurements of water samples.

    PubMed

    Rusconi, R; Forte, M; Caresana, M; Bellinzona, S; Cazzaniga, M T; Sgorbati, G

    2006-01-01

    The uncertainty in measurements of gross alpha and beta activities in water samples by liquid scintillation counting with alpha/beta discrimination has been evaluated considering the problems typical of low-level measurements of environmental samples. The use of a pulse shape analysis device to discriminate alpha and beta events introduces a correlation between some of the input quantities, and it has to be considered. Main contributors to total uncertainty have been assessed by specifically designed experimental tests. Results have been fully examined and discussed.

  17. A compact field fluorometer and its application to dye tracing in karst environments

    NASA Astrophysics Data System (ADS)

    Poulain, Amaël; Rochez, Gaëtan; Van Roy, Jean-Pierre; Dewaide, Lorraine; Hallet, Vincent; De Sadelaer, Geert

    2017-08-01

    Dye tracing is a classic technique in hydrogeology to investigate surface-water or groundwater flow characteristics, and it is useful for many applications including natural or industrial issues. The Fluo-Green field fluorometer has been successfully tested in a karst environment and is specifically suitable for in-cave karst water monitoring. Karst research often uses dyes to obtain information about groundwater flow in unexplored cave passages. The compact device, alternatively named Fluo-G, meets the requirements of cave media: small (10 × 16 × 21 cm), lightweight (0.75 kg without ballast) and simple in conception. It is easy for cavers to set up and handle compared to other sampling methods. The fluorometer records uranine, turbidity and temperature with a user-defined time-step (1 min - 1 day). Very low energy consumption allows 9,000 measurements with six AA batteries. The device was calibrated and tested in the laboratory and in field conditions in Belgian karst systems. Results are in good fit with other sampling methods: in-situ fluorometers and automatic water sampling plus laboratory analysis. Recording high quality data (breakthrough curves) in karst with in-cave monitoring is valuable to improve knowledge of karst systems. Many hydrological and hydrogeological applications can benefit from such a low-cost and compact device, and finding the best compromise between resources and quality data is essential. Several improvements are possible but preliminary field tests are very promising.

  18. Selective sampling and measurement of Cr (VI) in water with polyquaternary ammonium salt as a binding agent in diffusive gradients in thin-films technique.

    PubMed

    Chen, Hong; Zhang, Yang-Yang; Zhong, Ke-Li; Guo, Lian-Wen; Gu, Jia-Li; Bo, Le; Zhang, Meng-Han; Li, Jian-Rong

    2014-04-30

    A diffusive gradients in thin films (DGT) device with polyquaternary ammonium salt (PQAS) as a novel binding agent (PQAS DGT) combined with graphite furnace atomic absorption spectrometry (GFAAS) was developed for the selective sampling and measurement of Cr (VI) in water. The performance of PQAS DGT was independent of pH 3-12 and ionic strength from 1 × 10(-3) to 1 molL(-1). DGT validation experiments showed that Cr (VI) was measured accurately as well as selectively by PQAS DGT, whereas Cr (III) was not determined quantitatively. Compared with diphenylcarbazide spectrophotometric method (DPC), the measurement of Cr (VI) with PQAS DGT was agreement with that of DPC method in the industrial wastewater. PQAS-DGT device had been successfully deployed in local freshwater. The concentrations of Cr (VI) determined by PQAS DGT coupled with GFAAS in Nuer River, Ling River and North Lake were 0.73 ± 0.09 μg L(-1), 0.50 ± 0.07 μg L(-1) and 0.61 ± 0.07 μg L(-1), respectively. The results indicate that PQAS DGT device can be used for the selective sampling and measurement Cr (VI) in water and its detection limit is lower than that of DPC method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Point-of-use Unit Based on Gravity Ultrafiltration Removes Waterborne Gastrointestinal Pathogens from Untreated Water Sources in Rural Communities.

    PubMed

    Chaidez, Cristóbal; Ibarra-Rodríguez, Juan R; Valdez-Torres, José Benigno; Soto, Marcela; Gerba, Charles P; Castro-Del Campo, Nohelia

    2016-09-01

    In developing countries, rural communities often face the lack of potable water infrastructure and must rely on untreated sources for drinking, which are often contaminated with waterborne pathogens. The use of home water treatment devices is seen as one means of reducing the risk of exposure to waterborne pathogens. The aim of this study was to evaluate the microbiological and physicochemical performance of a simple in-home point-of-use device based on gravity ultrafiltration through an ultrafilter membrane. Twenty-five randomly selected households from 2 rural communities in Culiacán, Mexico, were enrolled. Water samples were collected before and after treatment and during storage for a period of 8 weeks. Heterotrophic bacteria, total coliforms, fecal coliforms, Escherichia coli, and Giardia spp were quantified, as well as various physicochemical parameters. All of the untreated water samples contained high levels of indicator bacteria, but none were detected in the treated water fulfilling the requirements set by the Mexican Norm (NOM-127-SSA1-1994) and the World Health Organization guidelines for drinking water. However, indicator bacteria (fecal coliforms and E coli) were detected in every sample from water stored 24 hours after treatment. This study demonstrated that point-of-use filters using gravity-fed ultrafilters are a low-cost, effective water treatment technology for water of poor microbial quality. However, further identification of the sources and mechanisms by which water is contaminated when stored after treatment will help with designing and implementing better strategies for keeping water safe for domestic use. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  20. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1989-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  1. Contained radiological analytical chemistry module

    DOEpatents

    Barney, David M.

    1990-01-01

    A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

  2. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water.

    PubMed

    Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M

    2012-06-15

    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Radio Frequency Detection and Characterization of Water-Ethanol Solution through Spiral-Coupled Passive Micro-Resonator Sensor.

    PubMed

    Koirala, Gyan Raj; Dhakal, Rajendra; Kim, Eun-Seong; Yao, Zhao; Kim, Nam-Young

    2018-04-03

    We present a microfabricated spiral-coupled passive resonator sensor realized through integrated passive device (IPD) technology for the sensitive detection and characterization of water-ethanol solutions. In order to validate the performance of the proposed device, we explicitly measured and analyzed the radio frequency (RF) characteristics of various water-ethanol solution compositions. The measured results showed a drift in the resonance frequency from 1.16 GHz for deionized (DI) water to 1.68 GHz for the solution containing 50% ethanol, whereas the rejection level given by the reflection coefficient decreased from -29.74 dB to -14.81 dB. The obtained limit of detection was 3.82% volume composition of ethanol in solution. The derived loaded capacitance was 21.76 pF for DI water, which gradually decreased to 8.70 pF for the 50% ethanol solution, and the corresponding relative permittivity of the solution decreased from 80.14 to 47.79. The dissipation factor increased with the concentration of ethanol in the solution. We demonstrated the reproducibility of the proposed sensor through iterative measures of the samples and the study of surface morphology. Successive measurement of different samples had no overlapping and had very minimum bias between RF characteristics for each measured sample. The surface profile for bare sensors was retained after the sample test, resulting a root mean square (RMS) value of 11.416 nm as compared to 10.902 nm for the bare test. The proposed sensor was shown to be a viable alternative to existing sensors for highly sensitive water-ethanol concentration detection.

  4. Using bioavailability to assess contaminated sediment risk: Passive sampling and Pore Water Remedial Guidelines (PWRGs)

    EPA Science Inventory

    Hosted by the Contaminated Sediment Forum, this half-day course will introduce the RPM to the use of passive samplers to assess bioavailability and in ecological risk assessment. Passive sampling devices (PSD) are a technology with growing acceptance for measuring porewater conce...

  5. Inventory Control.

    ERIC Educational Resources Information Center

    Rich, Joe, Ed.

    1990-01-01

    Described are the design, construction, and uses of two pieces of laboratory equipment. Included are a multipurpose meter, "Calo-pH Meter," and a device for collecting water samples for determining dissolved oxygen content. (CW)

  6. Use of Passive Samplers to Determine the Source of Dissolved PAHs in the Ottawa River, Toledo, Ohio

    EPA Science Inventory

    As part of a larger study on the remedy effectiveness on the Ottawa River, (Ohio, USA), research was focused on the source of PAHs to water and sediment. Polyethylene passive samplers, or polyethylene devices (PEDs), were deployed and analyzed, along with whole water samples and...

  7. 46 CFR 160.062-4 - Inspections and tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...

  8. 46 CFR 160.062-4 - Inspections and tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...

  9. 46 CFR 160.062-4 - Inspections and tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...

  10. 46 CFR 160.062-4 - Inspections and tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... required under § 160.062-3(b) while the device is submerged in water or in a water-filled pressure testing... manual control as a result of the low temperature exposure. (iii) Corrosion resisting test. After the completion of its temperature test, a hydraulic release sample shall be exposed to a 20 percent salt spray...

  11. Characterization of five passive sampling devices for monitoring of pesticides in water.

    PubMed

    Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny

    2015-07-31

    Five different passive sampler devices were characterized under laboratory conditions for measurement of 124 legacy and current used pesticides in water. In addition, passive sampler derived time-weighted average (TWA) concentrations were compared to time-integrated active sampling in the field. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for individual pesticides using silicone rubber (SR), polar organic chemical integrative sampler (POCIS)-A, POCIS-B, Chemcatcher(®) SDB-RPS and Chemcatcher(®) C18. The median RS (Lday(-1)) decreased as follows: SR (0.86)>POCIS-B (0.22)>POCIS-A (0.18)>Chemcatcher(®) SDB-RPS (0.05)>Chemcatcher(®) C18 (0.02), while the median logKPW (Lkg(-1)) decreased as follows: POCIS-B (4.78)>POCIS-A (4.56)>Chemcatcher(®) SDB-RPS (3.17)>SR (3.14)>Chemcatcher(®)C18 (2.71). The uptake of the selected compounds depended on their physicochemical properties, i.e. SR showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW)>5.3), whereas POCIS-A, POCIS-B and Chemcatcher(®) SDB-RPS were more suitable for hydrophilic compounds (logKOW<0.70). Overall, the comparison between passive sampler and time-integrated active sampler concentrations showed a good agreement and the tested passive samplers were suitable for capturing compounds with a wide range of KOW's in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Simultaneous monitoring of faecal indicators and harmful algae using an in-situ autonomous sensor.

    PubMed

    Yamahara, K M; Demir-Hilton, E; Preston, C M; Marin, R; Pargett, D; Roman, B; Jensen, S; Birch, J M; Boehm, A B; Scholin, C A

    2015-08-01

    Faecal indicator bacteria (FIB) and harmful algal blooms (HABs) threaten the health and the economy of coastal communities worldwide. Emerging automated sampling technologies combined with molecular analytical techniques could enable rapid detection of micro-organisms in-situ, thereby improving resource management and public health decision-making. We evaluated this concept using a robotic device, the Environmental Sample Processor (ESP). The ESP automates in-situ sample collection, nucleic acid extraction and molecular analyses. Here, the ESP measured and reported concentrations of FIB (Enterococcus spp.), a microbial source-tracking marker (human-specific Bacteriodales) and a HAB species (Psuedo-nitzschia spp.) over a 45-day deployment on the Santa Cruz Municipal Wharf (Santa Cruz, CA, USA). Both FIB and HABs were enumerated from single in-situ collected water samples. The in-situ qPCR efficiencies ranged from 86% to 105%, while the limit of quantifications during the deployment was 10 copies reaction(-1) . No differences were observed in the concentrations of enterococci, the human-specific marker in Bacteroidales spp., and P. australis between in-situ collected sample and traditional hand sampling methods (P > 0·05). Analytical results were Internet-accessible within hours of sample collection, demonstrating the feasibility of same-day public notification of current water quality conditions. This study presents the first report of in-situ qPCR enumeration of both faecal indicators and harmful algal species in coastal marine waters. We utilize a robotic device for in-situ quantification of enterococci, the human-specific marker in Bacteriodales and Pseudo-nitzschia spp. from the same water samples collected and processed in-situ. The results demonstrate that rapid, in-situ monitoring can be utilized to identify and quantify multiple health-relevant micro-organisms important in water quality monitoring and that this monitoring can be used to inform same-day notifications. © 2015 The Society for Applied Microbiology.

  13. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device.

    PubMed

    Yamashita, Hitoyoshi; Morita, Masamune; Sugiura, Haruka; Fujiwara, Kei; Onoe, Hiroaki; Takinoue, Masahiro

    2015-04-01

    We report an easy-to-use generation method of biologically compatible monodisperse water-in-oil microdroplets using a glass-capillary-based microfluidic device in a tabletop mini-centrifuge. This device does not require complicated microfabrication; furthermore, only a small sample volume is required in experiments. Therefore, we believe that this method will assist biochemical and cell-biological experiments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water

    PubMed Central

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. PMID:24300075

  15. Field tests of nylon-screen diffusion samplers and pushpoint samplers for detection of metals in sediment pore water, Ashland and Clinton, Massachusetts, 2003

    USGS Publications Warehouse

    Zimmerman, Marc J.; Vroblesky, Don A.; Campo, Kimberly W.; Massey, Andrew J.; Scheible, Walter

    2005-01-01

    Efficient and economical screening methods are needed to detect and to determine the approximate concentrations of potentially toxic trace-element metals in shallow groundwater- discharge areas (pore water) where the metals may pose threats to aquatic organisms; such areas are likely to be near hazardous-waste sites. Pushpoint and nylon-screen diffusion samplers are two complementary options for use in such environments. The pushpoint sampler, a simple well point, is easy to insert manually and to use. Only 1 day is required to collect samples. The nylon-screen diffusion sampler is well suited for use in sediments that do not allow a pump to draw water into a pushpoint sampler. In this study, both types of devices were used in sediments suitable for the use of the pushpoint sampler. Sampling with the nylon-screen diffusion sampler requires at least two site visits: one to deploy the samplers in the sediment, and a second to retrieve the samplers and collect the samples after a predetermined equilibration period. Extensive laboratory quality-control studies, field testing, and laboratory analysis of samples collected at the Nyanza Chemical Waste Dump Superfund site along the Sudbury River in Ashland, Massachusetts, and at a Superfund site-assessment location on Rigby Brook in Clinton, Massachusetts, indicate that these two devices yield comparable results for most metals and should be effective tools for pore-water studies. The nylon-screen diffusion samplers equilibrated within 1-2 days in homogeneous, controlled conditions in the laboratory. Nylon-screen diffusion samplers that were not purged of dissolved oxygen prior to deployment yielded results similar to those that were purged. Further testing of the nylon-screen diffusion samplers in homogeneous media would help to resolve any ambiguities about the data variability from the field studies. Comparison of data from replicate samples taken in both study areas shows that even samples taken from sites within a half-meter radius of one another have distinct differences in pore-water trace-element concentrations. Sequential replicate samples collected with the pushpoint sampler yield consistent results; moving the pushpoint sampler even 5 to 10 centimeters, however, generally produces a second set of data that differs enough from the first set of data to indicate a heterogeneous environment. High concentration biases for barium and zinc in laboratory and field samples collected with nylon-screen diffusion samplers, however, may make their use inappropriate for studies of these metals. Analyzing samples with high iron concentrations required sample dilution by factors of 2 or 10. Because these dilutions caused increases in the reporting levels by the same proportion, a substantial fraction of the data was censored. The results from undiluted samples, however, indicate that both devices should be useful for sampling ground water with metal concentrations close to reporting limits.

  16. Cavity ring down spectroscopy for the isotope composition measurement of water from fluid inclusion in stalagmites using heating and crushing techniques

    NASA Astrophysics Data System (ADS)

    Nakamoto, M.; Uemura, R.; Gibo, M.; Mishima, S.; Asami, R.

    2013-12-01

    Oxygen isotope record in stalagmites is useful to reconstruct past environmental changes. However, the interpretation of calcite isotope record is not straightforward because it is affected by various factors such as amount of precipitation and temperature. Water isotope composition of fluid inclusions, and oxygen isotope difference between water and host calcite, from stalagmite are potentially important proxies to estimate the paleo-temperature. Recently, infrared spectroscopy (IRIS) has been widely used for stable isotope ratio measurement of water. Unlike traditional isotope mass spectrometer (IRMS), the IRIS does not require pre-treatment processes (e.g., high-temperature furnace or equilibration device). A limitation of IRIS is that commercially available IRIS systems need large sample volume (1 - 2 micro litres) for liquid water measurement. In this study, we first developed a device suitable for measurement of smaller volume of water, and tested two extraction methods (thermal extraction and mechanical crushing). Oxygen and hydrogen isotope ratios of water were measured using cavity ring down spectroscopy (IRIS: WS-CRDS Picarro L2120-i, L2130-i). Stalagmite samples, which appear to be still growing, were collected in several caves in Okinawa, Japan. Reproducibility of a reference water (0.1 micro litres) was within 0.2 permil for δ18O and 1 permil for δD. The results showed that the IRIS is useful for small amount discrete sample. Although the δ18O value of inclusion water generally showed values resembling those of cave dripwaters, the δD value showed large depletion against that of dripwaters. The δD deviation was reduced at lower temperature extraction, suggesting that the erroneous δD values would be caused by spectral interference from organic contaminants produced by thermal decomposition.

  17. Development of an evaporation-based microfluidic sample concentrator

    NASA Astrophysics Data System (ADS)

    Sharma, Nigel R.; Lukyanov, Anatoly; Bardell, Ron L.; Seifried, Lynn; Shen, Mingchao

    2008-02-01

    MicroPlumbers Microsciences LLC, has developed a relatively simple concentrator device based on isothermal evaporation. The device allows for rapid concentration of dissolved or dispersed substances or microorganisms (e.g. bacteria, viruses, proteins, toxins, enzymes, antibodies, etc.) under conditions gentle enough to preserve their specific activity or viability. It is capable of removing of 0.8 ml of water per minute at 37°C, and has dimensions compatible with typical microfluidic devices. The concentrator can be used as a stand-alone device or integrated into various processes and analytical instruments, substantially increasing their sensitivity while decreasing processing time. The evaporative concentrator can find applications in many areas such as biothreat detection, environmental monitoring, forensic medicine, pathogen analysis, and agricultural industrial monitoring. In our presentation, we describe the design, fabrication, and testing of the concentrator. We discuss multiphysics simulations of the heat and mass transport in the device that we used to select the design of the concentrator and the protocol of performance testing. We present the results of experiments evaluating water removal performance.

  18. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests—extraction, storage, and handling techniques

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.

    1995-01-01

    A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.

  19. The Detection Method of Escherichia coli in Water Resources: A Review

    NASA Astrophysics Data System (ADS)

    Nurliyana, M. R.; Sahdan, M. Z.; Wibowo, K. M.; Muslihati, A.; Saim, H.; Ahmad, S. A.; Sari, Y.; Mansor, Z.

    2018-04-01

    This article reviews several approaches for Escherichia coli (E. coli) bacteria detection from conventional methods, emerging method and goes to biosensor-based techniques. Detection and enumeration of E. coli bacteria usually required long duration of time in obtaining the result since laboratory-based approach is normally used in its assessment. It requires 24 hours to 72 hours after sampling to process the culturing samples before results are available. Although faster technique for detecting E. coli in water such as Polymerase Chain Reaction (PCR) and Enzyme-Linked Immunosorbent Assay (ELISA) have been developed, it still required transporting the samples from water resources to the laboratory, high-cost, complicated equipment usage, complex procedures, as well as the requirement of skilled specialist to cope with the complexity which limit their wide spread practice in water quality detection. Recently, development of biosensor device that is easy to perform, portable, highly sensitive and selective becomes indispensable in detecting extremely lower consolidation of pathogenic E. coli bacteria in water samples.

  20. A household LOC device for online monitoring bacterial pathogens in drinking water with green design concept.

    PubMed

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.

  1. A Simplified Method for Sampling and Analysis of High Volume Surface Water for Organic Contaminants Using XAD-2

    USGS Publications Warehouse

    Datta, S.; Do, L.V.; Young, T.M.

    2004-01-01

    A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.

  2. Nanoporous impedemetric biosensor for detection of trace atrazine from water samples.

    PubMed

    Pichetsurnthorn, Pie; Vattipalli, Krishna; Prasad, Shalini

    2012-02-15

    Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Demonstration/Validation of the Snap Sampler Passive Ground Water Sampling Device for Sampling Inorganic Analytes at the Former Pease Air Force Base

    DTIC Science & Technology

    2009-07-01

    viii Unit Conversion Factors...sampler is also an economic alternative for sampling for inorganic analytes. ERDC/CRREL TR-09-12 xii Unit Conversion Factors Multiply By To Obtain...head- space and then covered with two layers of tightly fitting aluminum foil. To dissolve the analytes, the solutions were stirred for approximately

  4. Analysis of flavor and perfume using an internally cooled coated fiber device.

    PubMed

    Chen, Yong; Begnaud, Frédéric; Chaintreau, Alain; Pawliszyn, Janusz

    2007-05-01

    A miniaturized internally cooled coated fiber device was applied for the analysis of flavors and fragrances from various matrices. Its integration with a CTC CombiPAL autosampler enabled high throughput for the analysis of analytes in complex matrices that required simultaneous heating of the matrices and cooling of the fiber coating to achieve high extraction efficiency. It was found that up to ten times increase of extraction efficiencies was observed when the device was used to extract flavor compounds in water, even when limited sample temperatures were used to preserve the integrity of target compounds. The extraction of the flavor compounds in water with the device was reproducible, with RSD not larger than 15%. The lower limits of the linear ranges were in the low ppb range, which was about one order of magnitude smaller than those obtained with the commercialized 100 microm PDMS fibers. Exhaustive extraction of some perfume ingredients from a complex matrix (shampoo) was realized. All achieved recoveries were not less than 80%. The repeatability of the extraction of the perfume compounds from shampoo was better than 10%. The linear ranges were about 1-3000 microg/g, and the LOD was about 0.2-1 microg/g. The automated internally cooled coated fiber device was demonstrated to be a powerful sample preparation tool in flavor and fragrance analysis.

  5. Development and deployment of a passive sampling system in groundwater to characterize the critical zone through isotope tracing

    NASA Astrophysics Data System (ADS)

    Gal, Frédérick; Négrel, Philippe; Chagué, Bryan

    2017-04-01

    The Critical Zone (CZ) is the evolving boundary layer where rock, soil, water, air, and living organisms interact, zone controlling the transfer and storage of water and chemical elements. For investigating the CZ, we have developed an integrative sampling system to concentrate the chemical elements in groundwater (CRITEX project). Aims are to measure concentrations and isotopic ratios in groundwater through integrative sampling. In the frame of the groundwater analysis, particularly those located in the critical zone (0-100 m depth), this system makes it possible to create a water flow in a support of passive samplers using Diffusive Gradient in Thin type (DGT) and thus to pre-concentrate the chemical species on a chelating resin by diffusion through a membrane and over a given period in order to facilitate subsequent laboratory measurements. Because DGTs are generally used in surface waters with a high flow rate, the current objective is to create a sufficient flow of water in the sampler to optimize the trapping of elements. Different options and geometries have been modelled by simulation of the flow (agitation of water supplied by a motor and a propeller, pumping ...). The economic model of the device is based on an assembly of commercially available equipment, the novation is based on the support, fully designed in house (patent pending). The device aims to recreate sufficient water flow to avoid the creation of a too large Diffusion Boundary Layer (DBL) on the DGT surface and then to mimic the uptake conditions that prevail in surface waters. The simulations made it possible to optimize the position of the DGT and the velocity of the fluid in order to obtain the maximum flow at its surface and avoid the creation of the DBL. Conditions equivalent to those of a circulation of weakly agitated surface water are thus recreated. The first tests were carried out at lab, in a column simulating a piezometer, including pump, DGT holder and flow meter. Initial functional tests were carried out with tap water to observe the flow of water in the device, to determine the technical characteristics of the system (current, voltage, flow...) and to perform blank measurements to ensure that the device brings no contamination. We then carried out 6 days of immersion of the system on a piezometer of the BRGM site. In parallel, daily sampling was performed using conventional pumping method. Finally, we carried out tests on drillings in the Coët Dan experimental basin (Naizin, Morbihan, France). We established a screening of chemical elements on which isotopic measurements can be done by comparing the accumulated mass in the DGT with respect to the concentration of the elements in water. This suggests that the isotopic determination is possible for U, Sr, Nd and Ni with the exception of Cu and Zn at the moment. Possible contamination of DGTs themselves and/or during field investigations should be further studied in order to rule if Cu or Zn isotope analyses can be foreseen in the future.

  6. Development of Monitors for Assessing Exposure of Military Personnel to Toxic Chemicals.

    DTIC Science & Technology

    2000-01-01

    Residues " S ampler Preparation 7 Transfer and Analysis 7 Temperature Effects on PIMS Sampling Rate 8 Environmental Air Sampling 8 Results and...of exposure and potential toxicity to personnel. While progress has been made in improving active water and air sampling technology, such devices...streams, 3) the apparatus is also applicable for use in air sampling deployments in indoor and outdoor scenarios, and 4) the apparatus is commercially

  7. A sample-freezing drive shoe for a wire line piston core sampler

    USGS Publications Warehouse

    Murphy, F.; Herkelrath, W.N.

    1996-01-01

    Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.

  8. Multiplexed operation of a micromachined ultrasonic droplet ejector array.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2007-10-01

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.

  9. Multiplexed operation of a micromachined ultrasonic droplet ejector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2007-10-15

    A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less

  10. Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures

    NASA Astrophysics Data System (ADS)

    Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.

    2017-05-01

    Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.

  11. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    NASA Astrophysics Data System (ADS)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  12. Effects of Sample Impurities on the Analysis of MS2 Bacteriophage by Small-Angle Neutron Scattering

    DTIC Science & Technology

    2005-08-01

    and the efficiency of water treatment plants and filtration devices (Jolis et al., 1999;3 Oppenheimer et al., 1997;4 Woolwine and Gerberding, 1995;5...the solvent water to deuterated water ratio so that structural information about the protein and nucleic acid components can be obtained separately...de-stained in a 30% methanol: 10% acetic acid:60% (v/v) water solution for 8 hr (Maniatis, Fritsch et al., 1982).37 2.4 SANS Measurements. SANS

  13. [Identification and isolation of non-tuberculous mycobacteria from environmental samples].

    PubMed

    Cafri, Uğur; Aslan, Gönül; Direkel, Sahin; Tarhan, Gülnur; Ceyhan, Ismail; Emekdaş, Gürol

    2010-07-01

    Non-tuberculous mycobacteria (NTM) found frequently in tap water and environment cause important opportunistic infections in immunocompromised patients. The aim of this study was to isolate and identify non-tuberculous mycobacteria in soil, raw milk and water distribution system samples in Mersin (a province located at Mediterranean region of Turkey). A total of 101 water, 124 soil and 40 milk samples collected from the central part and suburban parts of Mersin during November 2003-May 2004 period were included in the study. Water samples were collected from 29 different water distribution systems; soil samples from different parks and gardens and milk samples from raw milks sold at different districts. After the samples were processed by homogenization and decontamination, acid-fast staining and culture into Löwenstein-Jensen medium were performed. Acid-fast bacilli isolated from culture medium were identified by using conventional methods, polymerase chain reaction (PCR)-RFLP (Restriction Fragment Length Polymorphism) and INNO-LIPA Mycobacteria methods. NTM were identified from 4.9% (5/101) of water samples and 0.8% (1/124) of soil samples by culture and PCR. No NTM were detected in the raw milk samples. Three of the NTM strains isolated from water samples were defined as Mycobacterium chelonae type III and two as Mycobacterium kansasii type II. One NTM strain isolated from soil was defined as Mycobacterium fortuitum. It was of note that two of the five NTM positive water samples were tap water samples collected from hospitals. It was concluded that NTM colonization/contamination of water and environment in the hospitals was a potential risk factor in terms of nosocomial infections. Thus surveillance cultures of the water systems and the medical devices in the hospital are necessary to fix the source of NTM, to identify and type the strains and to establish effective control measures such as sterilization, disinfection, maintenance and modernization of water systems.

  14. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.

    PubMed

    Li, Bowei; Fu, Longwen; Zhang, Wei; Feng, Weiwei; Chen, Lingxin

    2014-04-01

    This paper presents a novel paper-based analytical device based on the colorimetric paper assays through its light reflectance. The device is portable, low cost (<20 dollars), and lightweight (only 176 g) that is available to assess the cost-effectiveness and appropriateness of the original health care or on-site detection information. Based on the light reflectance principle, the signal can be obtained directly, stably and user-friendly in our device. We demonstrated the utility and broad applicability of this technique with measurements of different biological and pollution target samples (BSA, glucose, Fe, and nitrite). Moreover, the real samples of Fe (II) and nitrite in the local tap water were successfully analyzed, and compared with the standard UV absorption method, the quantitative results showed good performance, reproducibility, and reliability. This device could provide quantitative information very conveniently and show great potential to broad fields of resource-limited analysis, medical diagnostics, and on-site environmental detection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A minimally invasive method for extraction of sturgeon oocytes

    USGS Publications Warehouse

    Candrl, James S.; Papoulias, Diana M.; Tillitt, Donald E.

    2010-01-01

    Fishery biologists, hatchery personnel, and caviar fishers routinely extract oocytes from sturgeon (Acipenseridae) to determine the stage of maturation by checking egg quality. Typically, oocytes are removed either by inserting a catheter into the oviduct or by making an incision in the body cavity. Both methods can be time-consuming and stressful to the fish. We describe a device to collect mature oocytes from sturgeons quickly and effectively with minimal stress on the fish. The device is made by creating a needle from stainless steel tubing and connecting it to a syringe with polyvinyl chloride tubing. The device is filled with saline solution or water, the needle is inserted into the abdominal wall, and eggs are extracted from the fish. Using this device, an oocyte sample can be collected in less than 30 s. Such sampling leaves a minute wound that heals quickly and does not require suturing. The extractor device can easily be used in the field or hatchery, reduces fish handling time, and minimizes stress.

  16. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis.

    PubMed

    Trefz, Phillip; Rösner, Lisa; Hein, Dietmar; Schubert, Jochen K; Miekisch, Wolfram

    2013-04-01

    Needle trap devices (NTDs) have shown many advantages such as improved detection limits, reduced sampling time and volume, improved stability, and reproducibility if compared with other techniques used in breath analysis such as solid-phase extraction and solid-phase micro-extraction. Effects of sampling flow (2-30 ml/min) and volume (10-100 ml) were investigated in dry gas standards containing hydrocarbons, aldehydes, and aromatic compounds and in humid breath samples. NTDs contained (single-bed) polymer packing and (triple-bed) combinations of divinylbenzene/Carbopack X/Carboxen 1000. Substances were desorbed from the NTDs by means of thermal expansion and analyzed by gas chromatography-mass spectrometry. An automated CO2-controlled sampling device for direct alveolar sampling at the point-of-care was developed and tested in pilot experiments. Adsorption efficiency for small volatile organic compounds decreased and breakthrough increased when sampling was done with polymer needles from a water-saturated matrix (breath) instead from dry gas. Humidity did not affect analysis with triple-bed NTDs. These NTDs showed only small dependencies on sampling flow and low breakthrough from 1-5 %. The new sampling device was able to control crucial parameters such as sampling flow and volume. With triple-bed NTDs, substance amounts increased linearly with increasing sample volume when alveolar breath was pre-concentrated automatically. When compared with manual sampling, automatic sampling showed comparable or better results. Thorough control of sampling and adequate choice of adsorption material is mandatory for application of needle trap micro-extraction in vivo. The new CO2-controlled sampling device allows direct alveolar sampling at the point-of-care without the need of any additional sampling, storage, or pre-concentration steps.

  17. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water.

    PubMed

    Xing, Changrui; Liu, Liqiang; Song, Shanshan; Feng, Min; Kuang, Hua; Xu, Chuanlai

    2015-04-15

    In this paper, we describe the development of a multicomponent lateral-flow assay based on an antibody-antigen reaction for the rapid and simultaneous detection of trace contaminants in water, including a heavy metal, algal toxin, antibiotic, hormone, and pesticide. The representative analytes chosen for the study were lead (Pb(II), microcystin-leucine-arginine (MC-LR), chloramphenicol (CAP), testosterone (T), and chlorothalonil (CTN). Five different antigens were immobilized separately in five test lines on a nitrocellulose membrane. The monoclonal antibodies specifically recognized the corresponding antigens, and there was no cross-reactivity between the antibodies in the detection assay. Samples or standards containing the five analytes were preincubated with the freeze-dried colloidal-gold-labeled monoclonal antibody conjugates to improve the sensitivity of the assay. The results were obtained within 20min with a paper-based sensor. The cut-off values for the strip test were 4ng/mL for Pb(II), 1ng/mL for MC-LR, 0.1ng/mL for CAP, 5ng/mL for T, and 5ng/mL for CTN. The assay was evaluated using spiked water samples, and the accuracy and reproducibility of the results were good. In summary, this lateral-flow device provides an effective and rapid method for the onsite detection of multiple contaminants in water samples, with no treatment or devices required. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An Inexpensive, Implantable Electronic Sensor for Autonomous Measurement of Snow Pack Parameters

    NASA Astrophysics Data System (ADS)

    De Roo, R. D.; Haengel, E.; Rogacki, S.

    2015-12-01

    Snow accumulations on the ground are an important source of water in many parts of the world. Mapping the accumulation, usually represented as the snow water equivalent (SWE), is valuable for water resource management. The longest record of regional and global maps of SWE are from orbiting microwave radiometers, which do not directly measure SWE but rather measure the scatter darkening from the snow pack. Robustly linking the scatter darkening to SWE eludes us to this day, in part because the snow pack is highly variable in both time and space. The data needed is currently collected by hand in "snow pits," and the labor-intensive process limits the size of the data sets that can be obtained. In particular, time series measurements are only a one or two samples per day at best, and come at the expense of spatial sampling. We report on the development of a low-power wireless device that can be embedded within a snow pack to report on some of the critical parameters needed to understand scatter darkening. The device autonomously logs temperature, the microwave dielectric constant and infrared backscatter local to the device. The microwave dielectric constant reveals the snow density and the presence of liquid water, while the infrared backscatter measurement, together with the density measurement, reveals a characteristic grain size of the snow pack. The devices are made to be inexpensive (less than $200 in parts each) and easily replicated, so that many can be deployed to monitor variations vertically and horizontally in the snow pack. The low-power operation is important both for longevity of observations as well as insuring minimal anomalous metamorphism of the snow pack. The hardware required for the microwave measurement is intended for wireless communications, and this feature will soon be implemented for near real-time monitoring of snow conditions. We will report on the design, construction and initial deployment of about 30 of these devices in northern lower Michigan, and, data permitting, on the measurements that these novel devices have acquired.

  19. Long-lasting solid-polymer electrolytic hygrometer

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1978-01-01

    Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.

  20. Development of a flat membrane based device for electromembrane extraction: a new approach for exhaustive extraction of basic drugs from human plasma.

    PubMed

    Huang, Chuixiu; Eibak, Lars Erik Eng; Gjelstad, Astrid; Shen, Xiantao; Trones, Roger; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2014-01-24

    In this work, a single-well electromembrane extraction (EME) device was developed based on a thin (100μm) and flat porous membrane of polypropylene supporting a liquid membrane. The new EME device was operated with a relatively large acceptor solution volume to promote a high recovery. Using this EME device, exhaustive extraction of the basic drugs quetiapine, citalopram, amitriptyline, methadone and sertraline was investigated from both acidified water samples and human plasma. The volume of acceptor solution, extraction time, and extraction voltage were found to be important factors for obtaining exhaustive extraction. 2-Nitrophenyl octyl ether was selected as the optimal organic solvent for the supported liquid membrane. From spiked acidified water samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 15min and with an extraction voltage of 250V. Under these conditions, extraction recoveries were in the range 89-112%. From human plasma samples (600μl), EME was carried out with 600μl of 20mM HCOOH as acceptor solution for 30min and with an extraction voltage of 300V. Under these conditions, extraction recoveries were in the range of 83-105%. When combined with LC-MS, the new EME device provided linearity in the range 10-1000ng/ml for all analytes (R(2)>0.990). The repeatability at low (10ng/ml), medium (100ng/ml), and high (1000ng/ml) concentration level for all five analytes were less than 10% (RSD). The limits of quantification (S/N=10) were found to be in the range 0.7-6.4ng/ml. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Evaluations of sampling methods for darkling beetles (Alphitobius diaperinus) in the litter of turkey and broiler houses.

    PubMed

    Safrit, R D; Axtell, R C

    1984-12-01

    Materials placed on the litter in turkey and broiler houses were evaluated as sampling devices for the larvae and adults of Alphitobius diaperinus (lesser mealworm or darkling beetle). Insects harbored in, on, and between pieces of the materials were counted after 1-week exposure. Pan traps consisting of two stacked pieces of 1.3-cm thick foil-covered polyisocyanurate insulation (Celotex) placed under a protective metal pan staked to the litter surface was a more effective sampling device than pan traps using thicker (5 cm) Celotex, 3.8 cm thick polystyrene (Styrofoam), or two stacked pieces of wood. A tube trap consisting of rolled fluted corrugated cardboard inserted in a section of polyvinyl chloride pipe was as effective a sampling device as the two pieces of Celotex in a pan trap and was more convenient to use. Six pieces of corrugated cardboard stacked under a pan caught larger numbers of beetle larvae and adults but was awkward to handle and impractical. Placement of sampling devices in the major subhabitats (open center, near walls, near feeders, and near waterers) in turkey and broiler houses affected catches of beetle larvae and adults. The open center area was satisfactory and most convenient.

  2. Cytotoxic and genotoxic potential of drinking water: a comparison between two different concentration methods.

    PubMed

    Buschini, Annamaria; Giordani, Federica; Pellacani, Claudia; Rossi, Carlo; Poli, Paola

    2008-04-01

    The level of exposure to hazardous compounds through drinking water is low but it is maintained throughout life, therefore representing a risk factor for human health. The use of techniques averaging the consumer's exposure over time could be more useful than relying on intermittent grab samples that may misrepresent average tap water concentrations due to short-term temporal variability. In this study, we compared the induction of in vitro cytotoxic and genotoxic effects (DNA damage by the comet assay) in relation to different sampling methods, i.e. exposure over time (semipermeable membrane devices, SPMDs, exposed for 30 days) or intermittent grab samples (5 weekly water sampling, C18 concentration). Waters with different chemical characteristics were sampled to test the sensitivity of the two methods. We did not found any positive correlation between the biological findings and water chemical parameters. SPMD extracts induced a significantly greater DNA damage than C18. The different behaviour was specially found for the water samples with a low level of organic compounds and when C18 extracts were highly cytotoxic. Our findings suggest that SPMD could be of a great interest in assessing genotoxic contaminants in both raw and drinking water, with great suitability for continuous monitoring. Furthermore, the results of this study have confirmed the great importance of the biological assays in evaluating the effects of a complex mixture such as water in addition to the conventional chemical examination of water quality.

  3. A simple capacitive method to evaluate ethanol fuel samples

    NASA Astrophysics Data System (ADS)

    Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.

    2017-02-01

    Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.

  4. Device and method for measuring the energy content of hot and humid air streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, H. N.; Girod, G. F.; Kent, A. C.

    1985-12-24

    a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.

  5. Quality of drinking water from the agricultural area treated with pitcher water filters

    PubMed

    Królak, Elżbieta; Raczuk, Jolanta; Sakowicz, Danuta; Biardzka, Elżbieta

    Home methods of drinking water treatment through filtration have recently become quite popular. The aim of the study was to compare chemical composition of unfiltered water with water filtered in households with pitcher water filters. Obtained results were discussed in view of the effect of analysed chemical components of water on human health. Water samples were taken from water works supplies and from home dug wells from the agricultural area. Unfiltered water and water filtered through filters filled with active carbon and ion-exchanging resin and placed in a pitcher were analysed. Electrolytic conductivity, pH, hardness and the concentrations of calcium, magnesium, nitrate, phosphate and chloride ions were determined in water samples. Results of analyses were statistically processed. As a result of water filtration, the concentration of phosphates significantly increased and the concentrations of calcium, magnesium, electrolytic conductivity and pH decreased. No changes were noted in the concentration of chloride ions. Filtering water decreased the concentration of nitrates in dug wells samples. Using water purification devices is justified in the case of water originating from home dug wells contaminated with nitrates when, at the same time, consumers’ diet is supplemented with calcium and magnesium. Filtration of water from water works supplies, controlled by sanitary inspection seems aimless.

  6. New device for time-averaged measurement of volatile organic compounds (VOCs).

    PubMed

    Santiago Sánchez, Noemí; Tejada Alarcón, Sergio; Tortajada Santonja, Rafael; Llorca-Pórcel, Julio

    2014-07-01

    Contamination by volatile organic compounds (VOCs) in the environment is an increasing concern since these compounds are harmful to ecosystems and even to human health. Actually, many of them are considered toxic and/or carcinogenic. The main sources of pollution come from very diffuse focal points such as industrial discharges, urban water and accidental spills as these compounds may be present in many products and processes (i.e., paints, fuels, petroleum products, raw materials, solvents, etc.) making their control difficult. The presence of these compounds in groundwater, influenced by discharges, leachate or effluents of WWTPs is especially problematic. In recent years, law has been increasingly restrictive with the emissions of these compounds. From an environmental point of view, the European Water Framework Directive (2000/60/EC) sets out some VOCs as priority substances. This binding directive sets guidelines to control compounds such as benzene, chloroform, and carbon tetrachloride to be at a very low level of concentration and with a very high frequency of analysis. The presence of VOCs in the various effluents is often highly variable and discontinuous since it depends on the variability of the sources of contamination. Therefore, in order to have complete information of the presence of these contaminants and to effectively take preventive measures, it is important to continuously control, requiring the development of new devices which obtain average concentrations over time. As of today, due to technical limitations, there are no devices on the market that allow continuous sampling of these compounds in an efficient way and to facilitate sufficient detection limits to meet the legal requirements which are capable of detecting very sporadic and of short duration discharges. LABAQUA has developed a device which consists of a small peristaltic pump controlled by an electronic board that governs its operation by pre-programming. A constant flow passes through a glass cell containing adsorbent material where the VOCs are retained. The adsorbent used, made in LABAQUA, is a mixture of alginic acid and activated carbon. Due to its high permeability it allows the passage and retention of THMs in a suitable way, thus solving many of the problems of other common adsorbents. Also, to avoid degradation of the adsorbent, it is wrapped in a low density polyethylene (LDPE) membrane. After a sampling period of between 1 and 14 days, the adsorbent is collected and analyzed in the laboratory to quantify the VOC average concentration. This device resolves some of the limitations of the classical sampling system (spot samples), since we will take into account the fluctuations in the concentration of VOCs by averaging the same over time. This study presents the results obtained by the device for quantifying the VOCs legislated in the Directive 2000/60/EC. We present the validation of linearity over time and the limits of quantification, as well as the results of sample rate (Rs) obtained for each compound. The results demonstrate the high robustness and high sensitivity of the device. In addition the system has been validated in real waste water samples, comparing the results obtained with this device with the values of classical spot sampling, obtaining excellent results. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Seasonal and high-resolution variability in hydrochemistry of the Andes-Amazon

    NASA Astrophysics Data System (ADS)

    Burt, E.; West, A. J.

    2017-12-01

    Stream hydrochemistry acts as a record of integrated catchment processes such as the amount of time it takes precipitation to flow through the subsurface and become streamflow (water transit times), water-rock interaction and biogeochemical cycling. Although it is understood that sampling interval affects observed patterns in hydrochemistry, most studies collect samples on a weekly, bi-weekly or monthly schedule due to lack of resources or the difficulty of maintaining automated sampling devices. Here, we attempt to combine information from two sampling time scales, comparing a year-long hydrochemical time series to data from a recent sub-daily sampling campaign. Starting in April 2016, river, soil and rain waters have been collected every two weeks at five small catchments spanning the tropical Andes and Amazon - a natural laboratory for its gradients in topography, erosion rates, precipitation, temperature and flora. Between January and March, 2017, we conducted high frequency sampling for approximately one week at each catchment, sampling at least every four hours including overnight. We will constrain young water fractions (Kirchner, 2016) and storm water fluxes for the experimental catchments using stable isotopes of water as conservative tracers. Major element data will provide the opportunity to make initial constraints on geochemical and hydrologic coupling. Preliminary results suggest that in the Amazon, hydrochemistry patterns are dependent on sampling frequency: the seasonal cycle in stable isotopes of water is highly damped, while the high resolution sampling displays large variability. This suggests that a two-week sampling interval is not frequent enough to capture rapid transport of water, perhaps through preferential flow networks. In the Andes, stable isotopes of water are highly damped in both the seasonal and high resolution cycle, suggesting that the catchment behaves as a "well-mixed" system.

  8. Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135

    NASA Technical Reports Server (NTRS)

    Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.

    2011-01-01

    The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in microgravity suggests that mass transport was dominated by diffusion, slowing the rate of permeate production across the membrane. It is possible that a predicted reduction in concentration polarization at the membrane surface that may have acted to increase the rate of permeate production in microgravity was negligible under the described test conditions.

  9. Evaluation of a low-cost commercially available extraction device for assessing lead bioaccessibility in contaminated soils.

    PubMed

    Nelson, Clay M; Gilmore, Thomas M; Harrington, M; Scheckel, Kirk G; Miller, Bradley W; Bradham, Karen D

    2013-03-01

    The U.S. EPA's in vitro bioaccessibility (IVBA) method 9200.1-86 defines a validated analytical procedure for the determination of lead bioaccessibility in contaminated soils. The method requires the use of a custom-fabricated extraction device that uses a heated water bath for sample incubation. In an effort to improve ease of use, increase sample throughput, and reduce equipment acquisition and maintenance costs, an alternative low-cost, commercially available extraction device capable of sample incubation via heated air and end-over-end rotation was evaluated. An intra-laboratory study was conducted to compare lead bioaccessibility values derived using the two extraction devices. IVBA values were not statistically different (α = 0.05) between the two extraction devices for any of the soils (n = 6) evaluated in this study, with an average difference in mean lead IVBA of 0.8% (s.d. = 0.5%). The commercially available extraction device was able to generate accurate lead IVBA data as compared to the U.S. EPA's expected value for a National Institute of Standards and Technology standard reference material soil. The relative percent differences between high and low IVBA values for each soil, a measure of instrument precision, were also not statistically different (α = 0.05) between the two extraction devices. The statistical agreement of lead IVBA values observed using the two extraction devices supports the use of a low-cost, commercially available extraction device as a reliable alternative to a custom-fabricated device as required by EPA method 9200.1-86.

  10. Apparatus for Sampling Surface Contamination

    NASA Technical Reports Server (NTRS)

    Wells, Mark

    2008-01-01

    An apparatus denoted a swab device has been developed as a convenient means of acquiring samples of contaminants from surfaces and suspending the samples in liquids. (Thereafter, the liquids can be dispensed, in controlled volumes, into scientific instruments for analysis of the contaminants.) The swab device is designed so as not to introduce additional contamination and to facilitate, simplify, and systematize the dispensing of controlled volumes of liquid into analytical instruments. The swab device is a single apparatus into which are combined all the equipment and materials needed for sampling surface contamination. The swab device contains disposable components stacked together on a nondisposable dispensing head. One of the disposable components is a supply cartridge holding a sufficient volume of liquid for one complete set of samples. (The liquid could be clean water or another suitable solvent, depending on the application.) This supply of liquid is sealed by Luer valves. At the beginning of a sampling process, the user tears open a sealed bag containing the supply cartridge. A tip on the nondisposable dispensing head is engaged with a Luer valve on one end of the supply cartridge and rotated, locking the supply cartridge on the dispensing head and opening the valve. The swab tip includes a fabric swab that is wiped across the surface of interest to acquire a sample. A sealed bag containing a disposable dispensing tip is then opened, and the swab tip is pushed into the dispensing tip until seated. The dispensing head contains a piston that passes through a spring-loaded lip seal. The air volume displaced by this piston forces the liquid out of the supply cartridge, over the swab, and into the dispensing tip. The piston is manually cycled to enforce oscillation of the air volume and thereby to cause water to flow to wash contaminants from the swab and cause the resulting liquid suspension of contaminants to flow into the dispensing tip. After several cycles to ensure adequate mixing, liquid containing the suspended contaminant sample is dispensed. The disposable components are then removed from the dispensing head, which may then be reused with a fresh set of disposable components.

  11. An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests

    USGS Publications Warehouse

    Petty, J.D.; Jones, S.B.; Huckins, J.N.; Cranor, W.L.; Parris, J.T.; McTague, T.B.; Boyle, T.P.

    2000-01-01

    As an integral part of our continued development of water quality assessment approaches, we combined integrative sampling, instrumental analysis of widely occurring anthropogenic contaminants, and the application of a suite of bioindicator tests as a specific part of a broader survey of ecological conditions, species diversity, and habitat quality in the Santa Cruz River in Arizona, USA. Lipid-containing semipermeable membrane devices (SPMDs) were employed to sequester waterborne hydrophobic chemicals. Instrumental analysis and a suite of bioindicator tests were used to determine the presence and potential toxicological relevance of mixtures of bioavailable chemicals in two major water sources of the Santa Cruz River. The SPMDs were deployed at two sites; the effluent weir of the International Wastewater Treatment Plant (IWWTP) and the Nogales Wash. Both of these systems empty into the Santa Cruz River and the IWWTP effluent is a potential source of water for a constructed wetland complex. Analysis of the SPMD sample extracts revealed the presence of organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The bioindicator tests demonstrated increased liver enzyme activity, perturbation of neurotransmitter systems and potential endocrine disrupting effects (vitellogenin induction) in fish exposed to the extracts. With increasing global demands on limited water resources, the approach described herein provides an assessment paradigm applicable to determining the quality of water in a broad range of aquatic systems.

  12. Design and initial evaluation of a portable in situ runoff and sediment monitoring device

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi

    2014-11-01

    An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.

  13. Smartstones: a small e-compass, accelerometer and gyroscope embedded in stones

    NASA Astrophysics Data System (ADS)

    Gronz, Oliver; Hiller, Priska H.; Wirtz, Stefan; Becker, Kerstin; Iserloh, Thomas; Aberle, Jochen; Casper, Markus C.

    2015-04-01

    Pebbles or rock fragments influence soil erosion processes in various ways: they can protect the soil but also enhance the erosion as soon as they are moved by water and impact onto soil. So far, stone-embedded devices to measure the movements have been quite big, up to several decimetres, which does not allow for the analysis of pebbles from medium and coarse gravel classes. In this study, we used a novel device called Smartstones, which is significantly smaller. The Smartstone device's dimensions are 55 mm in length, 8 mm in diameter and an approximately 70 mm long flexible antenna (device developer: SMART-RFID solutions Rheinberg, Germany). It is powered by two button cells, contains an own data storage and is able to wait inactive for longer times until it is activated by movement. It communicates via active RFID (radio frequency identification) technology to a Linux gateway, which stores the sensor data in a database after transmission and is able to handle several devices simultaneously. The device contains a Bosch sensor that measures magnetic flux density, acceleration and rotation, in each case for / around three axes. In our study, the device has been used in a laboratory flume (270 cm in length, 5° to 10° slope, approx. 2 cm water level, mean flow velocities between 0.66 and 1 ms-1) in combination with a high speed camera to capture the movement of the pebbles. The simultaneous usage of two capture devices allows for a comparison of the results: movement patterns derived from image analysis and sensor data analysis. In the device's first software version, all three sensors - acceleration, compass, and gyroscope - were active. The acquisition of all values resulted in a sampling rate of 10 Hz. After the experiments using this setup, the data analysis of the high speed images and the device's data showed that the pebble reached rotation velocities beyond 5 rotations per second, even on the relatively short flume and low water levels. Thus, the device produced only sub-Nyquist sampling values and the rotation velocity of the pebble could not be derived correctly using solely the device's data. Consequently, the device's software was adapted by the developers: the second (and current) version of the device only acquires acceleration and compass, as the acquisition of the gyroscope's value does not allow for higher sampling rates. The second version samples every 12 ms. All aforementioned experiments have been repeated using the adapted device. For data analysis, the high-speed camera images were merged with the device data using a MATLAB script. Furthermore, the derived relative pebble orientation - yaw, pitch and roll - is illustrated using a rotated CAD model of the pebble. The pebble's orientation is derived from compass and accelerometer data using sensor fusion and algorithms for tilt compensated compasses. The results show that the device is perfectly able to capture the movement of the pebble such as rotation (including the rotation axis), sliding or saltation. The interacting forces between the pebble and the underground can be calculated from the acceleration data. However, the accelerometer data also showed that the range of the sensor is not sufficiently large: clipping of values occurred. According to present instrument specifications, the sensor is able to capture up to 4 g for each axis but the resulting vectors for acceleration along all three axes showed values greater than 4 g, even up to the theoretical maximum of approximately 6.9 g. Thus, an impact of this strength that only stresses one axis cannot be measured. As a result of this clipping, the derivation of the pebble's absolute position using double integration of acceleration values is associated with flaws. Besides this clipping, the derived position will deviate from the true position for larger distances or longer experiment durations as the noise of the data will be integrated, too. Several requirements for the next device version were formulated: The range of the accelerometer will be set to the sensor's maximum of 16 g. The device will be water proof. Data analysis will include further methods like Hidden Markov Models or Kalman Filtering as the tilt-compensation is actually not intended for irregular moving devices. These techniques are well-established for other devices and purposes like navigation using GPS. In near future, the Smartstone device will be used outside the laboratory in natural rills and rill experiments. In these experiments, the water is turbid and the pebble will not be visible at all, which does not allow for the usage of the high speed camera. However, the present results showed that the movement of the pebble in addition to the applied forces to the underground and the rill's sidewalls can be captured solely by the Smartstone.

  14. Benthic Flux Sampling Device. Operations, Methods, and Procedures

    DTIC Science & Technology

    1993-02-01

    nitric acid (HNO3) overnight, then rinse with D.I. water. When in doubt, consult with the chemist for proper cleaning protocols. CHARGE BATTERIES...sis being performed. The system will be flushed with methanol to remove organic com- pounds and with nitric acid to remove metals. The nitric acid ... acid -washed, 500-me Teflon (TFE) sampling bottles aboard the BFSD. After each deployment, blank ferrules are fitted in place of the sampling lines and

  15. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  16. Use of the semipermeable membrane device (SPMD) to sample polycyclic aromatic hydrocarbon pollution in a lotic system

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Orazio, Carl E.; Petty, Jimmie D.; Huckins, James; Douglas, Ernest H.

    1996-01-01

    Relative concentrations of aqueous polycyclic aromatic hydrocarbons (PAH) were investigated in an urban creek. Samples were obtained at five sites within a 600-m segment of the creek that is critical habitat for an endangered species of fish. the sampling technique entailed immersion of semipermeable membrane devices (SPMDs) in the water for intervals as long as 64 d. SPMDs are passive, in situ, mtegrative samplers of bioavailable (truly dissolved) PAH and other hydrophobic organic contaminants. Two point sources of PAH to the 600-m segment of the creek were differentiated. Aqueous concentrations were found to wane dramatically over the relatively short section of the creek between the point sources. All samples were almost devoid of alkyl-substituted PAH, indicating that the ultimate sources were probably of pyrogenic nature.

  17. Comparing polychlorinated biphenyl concentrations and patterns in the Saginaw River using sediment, caged fish, and semipermeable membrane devices

    USGS Publications Warehouse

    Echols, K.R.; Gale, R.W.; Schwartz, T.R.; Huckins, J.N.; Williams, L.L.; Meadows, J.C.; Morse, D.; Petty, J.D.; Orazio, C.E.; Tillitt, D.E.

    2000-01-01

    Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, MI, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in caged fish, and 77 to 790 ng/g in SPMDs. Previously reported rates of PCB accumulation by SPMDs were used to estimate aqueous concentrations from the PCB concentrations detected in the SPMDs. Sediment-water partition coefficients were used to estimate aqueous PCB concentrations from sediment. Steady-state bioconcentration factors and depuration rate constants were used to estimate dissolved PCB concentrations from caged channel catfish. Relative PCB patterns from the SPMDs, caged fish, and sediment were compared using principal components analysis. SPMD and sediment samples provide complementary information. Sediments reflect long-term accumulation and weathering, while SPMDs integrate water concentrations only during the sampling period. Because of higher water solubilities of lower-chlorinated PCBs these predominate in the SPMDs as compared to in the fish and sediments. Contaminant profile differences between caged fish and SPMDs are likely due to metabolism and depuration of certain PCB congeners by fish.Three techniques of assessing bioavailable polychlorinated biphenyls (PCBs) in the Saginaw River, Ml, were compared: sediments, caged fish, and semipermeable membrane devices (SPMDs). SPMDs and caged fish were placed in the river for 28 days at five sites where sediments were also sampled. The samples were analyzed for PCB congeners to determine concentrations and patterns. Total PCB concentrations ranged from 33 to 280 ng/g (dry weight) in sediments, 46 to 290 ng/g (wet weight) in caged fish, and 77 to 790 ng/g in SPMDs. Previously reported rates of PCB accumulation by SPMDs were used to estimate aqueous concentrations from the PCB concentrations detected in the SPMDs. Sediment-water partition coefficients were used to estimate aqueous PCB concentrations from sediment. Steady-state bioconcentration factors and depuration rate constants were used to estimate dissolved PCB concentrations from caged channel catfish. Relative PCB patterns from the SPMDs, caged fish, and sediment were compared using principal components analysis. SPMD and sediment samples provide complementary information. Sediments reflect long-term accumulation and weathering, while SPMDs integrate water concentrations only during the sampling period. Because of higher water solubilities of lower-chlorinated PCBs these predominate in the SPMDs as compared to in the fish and sediments. Contaminant profile differences between caged fish and SPMDs are likely due to metabolism and depuration of certain PCB congeners by fish.At five sites in the Saginaw River, MI, PCB concentrations were determined in the summer of 1993 using three methods: sediment analysis, concentrations in caged fish, and concentrations in semipermeable membrane devices (SPMDs). On average, total PCB concentrations in the SPMDs were twice those found in caged fish, and the SPMD-to-fish concentration ratios of di-, tri-, tetra-, and pentaCB homologues were 10.0, 3.0, 2.5, and 1.4, respectively. Average concentrations in the sediments were approximately half those in the SPMDs, and the caged fish showed a greater preponderance of higher log octanol-water partition coefficient PCBs similar to the sediment pattern. On average, the water PCB concentrations estimated from sediment concentrations were five times higher than those calculated from SPMDs and three times higher than those estimated from caged fish. The total PCB concentrations in sediment, caged fish, and SPMDs ranged 33-280, 46-290, and 77-790 ng/g, respectiv

  18. Novel Biomedical Device Utilizing Light-Emitting Nanostructures Developed

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Goldman, Rachel

    2004-01-01

    Sketches and chemical diagrams of state-of-the-art device and novel proposed device are presented. Current device uses a diode laser that emits into a fluorescent fluid only one wavelength and a photodetector diode that detects only one wavelength. Only one type of bacteria can be detected. The proposed device uses a quantum dot array that emits into a fluorescent fluid multiple wavelengths and an NIR 512 spectrometer that scans 0.8- to 1.7-mm wavelengths. Hundreds of different bacteria and viruses can be detected. A novel biomedical device is being developed at the NASA Glenn Research Center in cooperation with the University of Michigan. This device uses nano-structured quantum dots that emit light in the near-infrared (IR) region. The nanostructured quantum dots are used as a source and excite fluorochrome polymers coupled with antibodies that seek out and attach to specific bacteria and viruses. The fluorochrome polymers/antibodies fluoresce at specific wavelengths in the near-IR spectrum, but these wavelengths are offset from the excitation wavelength and can be detected with a tunable spectrometer. The device will be used to detect the presence of viruses and bacteria in simple fluids and eventually in more complex fluids, such as blood. Current state-of-the-art devices are limited to single bacteria or virus detection and a considerable amount of time and effort is required to prepare samples for analysis. Most importantly, the devices are quite large and cumbersome, which prohibits them from being used on the International Space Station and the space shuttles. This novel device uses nanostructured quantum dots which, through molecular beam epitaxy and highly selective annealing processes, can be developed into an illumination source that could potentially generate hundreds of specific wavelengths. As a result, this device will be able to excite hundreds of antibody/fluorochrome polymer combinations, which in turn could be used to detect hundreds of bacteria and viruses in fluids. A novel sample preparation technique that exploits micromembrane filtration and centrifugation methods has been developed for this device. The technique greatly reduces the time required to prepare the sample and the amount of sample needed to perform an accurate and comprehensive analysis. Last, and probably most important, because of the nano-light-emitting source and the novel sample preparation technique, the overall size of the device could be reduced dramatically. This device will serve as a nanoscale lab-on-a-chip for in situ microorganism detection and will enable tests to be performed on a time scale of minutes rather than days. Thus, it is ideally suited for monitoring the environmental conditions onboard the International Space Station and the space shuttles, thereby enhancing the safety of the astronauts. In addition, the device has important commercial applications, such as detecting the presence of bacteria and viruses in water at food- and beverage-processing centers, water treatment plants, and restaurants. Also, this technology has the potential to be used to detect bacteria and viruses in more complex fluids, such as blood--which in all likelihood would revolutionize blood analysis as it is performed today. This project was made possible through the Director's Discretionary Fund and is ongoing. In addition, this project provides funding to Dr. Rachel Goldman of the University of Michigan for the research and development of nanostructured quantum dots.

  19. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer.

    PubMed

    Baker, Andy; Ward, David; Lieten, Shakti H; Periera, Ryan; Simpson, Ellie C; Slater, Malcolm

    2004-07-01

    Protein-like fluorescence intensity in rivers increases with increasing anthropogenic DOM inputs from sewerage and farm wastes. Here, a portable luminescence spectrophotometer was used to investigate if this technology could be used to provide both field scientists with a rapid pollution monitoring tool and process control engineers with a portable waste water monitoring device, through the measurement of river and waste water tryptophan-like fluorescence from a range of rivers in NE England and from effluents from within two waste water treatment plants. The portable spectrophotometer determined that waste waters and sewerage effluents had the highest tryptophan-like fluorescence intensity, urban streams had an intermediate tryptophan-like fluorescence intensity, and the upstream river samples of good water quality the lowest tryptophan-like fluorescence intensity. Replicate samples demonstrated that fluorescence intensity is reproducible to +/- 20% for low fluorescence, 'clean' river water samples and +/- 5% for urban water and waste waters. Correlations between fluorescence measured by the portable spectrophotometer with a conventional bench machine were 0.91; (Spearman's rho, n = 143), demonstrating that the portable spectrophotometer does correlate with tryptophan-like fluorescence intensity measured using the bench spectrophotometer.

  20. Multiscale spectroscopy using a monolithic liquid core waveguide with laterally attached fiber ports.

    PubMed

    Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A

    2015-05-22

    In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Genesis Ultrapure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Stansbery, Eileen K.; Calaway, Michael J.; Rodriquez, Melissa C.

    2013-01-01

    A device removes, with high precision, the majority of surface particle contamination greater than 1-micron-diameter in size from ultrapure semiconductor wafer materials containing implanted solar wind samples returned by NASA's Genesis mission. This cleaning device uses a 1.5-liter/minute flowing stream of heated ultrapure water (UPW) with 1- MHz oscillating megasonic pulse energy focused at 3 to 5 mm away from the wafer surface spinning at 1,000 to 10,000 RPM, depending on sample size. The surface particle contamination is removed by three processes: flowing UPW, megasonic cavitations, and centripetal force from the spinning wafer. The device can also dry the wafer fragment after UPW/megasonic cleaning by continuing to spin the wafer in the cleaning chamber, which is purged with flowing ultrapure nitrogen gas at 65 psi (.448 kPa). The cleaner also uses three types of vacuum chucks that can accommodate all Genesis-flown array fragments in any dimensional shape between 3 and 100 mm in diameter. A sample vacuum chuck, and the manufactured UPW/megasonic nozzle holder, replace the human deficiencies by maintaining a consistent distance between the nozzle and wafer surface as well as allowing for longer cleaning time. The 3- to 5-mm critical distance is important for the ability to remove particles by megasonic cavitations. The increased UPW sonication time and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.

  2. Determination of nitrite and nitrate in water samples by an automated hydrodynamic sequential injection method.

    PubMed

    Somnam, Sarawut; Jakmunee, Jaroon; Grudpan, Kate; Lenghor, Narong; Motomizu, Shoji

    2008-12-01

    An automated hydrodynamic sequential injection (HSI) system with spectrophotometric detection was developed. Thanks to the hydrodynamic injection principle, simple devices can be used for introducing reproducible microliter volumes of both sample and reagent into the flow channel to form stacked zones in a similar fashion to those in a sequential injection system. The zones were then pushed to the detector and a peak profile was recorded. The determination of nitrite and nitrate in water samples by employing the Griess reaction was chosen as a model. Calibration graphs with linearity in the range of 0.7 - 40 muM were obtained for both nitrite and nitrate. Detection limits were found to be 0.3 muM NO(2)(-) and 0.4 muM NO(3)(-), respectively, with a sample throughput of 20 h(-1) for consecutive determination of both the species. The developed system was successfully applied to the analysis of water samples, employing simple and cost-effective instrumentation and offering higher degrees of automation and low chemical consumption.

  3. Occurrence of contaminants of emerging concern along the California coast (2009-10) using passive sampling devices.

    PubMed

    Alvarez, David A; Maruya, Keith A; Dodder, Nathan G; Lao, Wenjian; Furlong, Edward T; Smalling, Kelly L

    2014-04-30

    Three passive sampling devices (PSDs), polar organic chemical integrative samplers (POCIS), polyethylene devices (PEDs), and solid-phase microextraction (SPME) samplers were used to sample a diverse set of chemicals in the coastal waters of San Francisco Bay and the Southern California Bight. Seventy one chemicals (including fragrances, phosphate flame retardants, pharmaceuticals, PAHs, PCBs, PBDEs, and pesticides) were measured in at least 50% of the sites. The chemical profile from the San Francisco Bay sites was distinct from profiles from the sites in the Southern California Bight. This distinction was not due to a single compound or class, but by the relative abundances/concentrations of the chemicals. Comparing the PSDs to mussel (Mytilus spp.) tissues, a positive correlation exists for the 25 and 26 chemicals in common for the PEDs and SPME, respectively. Diphenhydramine was the only common chemical out of 40 analyzed in both POCIS and tissues detected at a common site. Published by Elsevier Ltd.

  4. Occurrence of contaminants of emerging concern along the California coast (2009-10) using passive sampling devices

    USGS Publications Warehouse

    Alvarez, David A.; Maruya, Keith A.; Dodder, Nathan G.; Lao, Wenjian; Furlong, Edward T.; Smalling, Kelly L.

    2014-01-01

    Three passive sampling devices (PSDs), polar organic chemical integrative samplers (POCIS), polyethylene devices (PEDs), and solid-phase microextraction (SPME) samplers were used to sample a diverse set of chemicals in the coastal waters of San Francisco Bay and the Southern California Bight. Seventy one chemicals (including fragrances, phosphate flame retardants, pharmaceuticals, PAHs, PCBs, PBDEs, and pesticides) were measured in at least 50% of the sites. The chemical profile from the San Francisco Bay sites was distinct from profiles from the sites in the Southern California Bight. This distinction was not due to a single compound or class, but by the relative abundances/concentrations of the chemicals. Comparing the PSDs to mussel (Mytilus spp.) tissues, a positive correlation exists for the 25 and 26 chemicals in common for the PEDs and SPME, respectively. Diphenhydramine was the only common chemical out of 40 analyzed in both POCIS and tissues detected at a common site.

  5. Rapid Waterborne Pathogen Detection with Mobile Electronics.

    PubMed

    Wu, Tsung-Feng; Chen, Yu-Chen; Wang, Wei-Chung; Kucknoor, Ashwini S; Lin, Che-Jen; Lo, Yu-Hwa; Yao, Chun-Wei; Lian, Ian

    2017-06-09

    Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal-oxide-semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.

  6. Device and method for determining oxygen concentration and pressure in gases

    DOEpatents

    Ayers, Michael R.; Hunt, Arlon J.

    1999-01-01

    Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material.

  7. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  8. Handheld Device Adapted to Smartphone Cameras for the Measurement of Sodium Ion Concentrations at Saliva-Relevant Levels via Fluorescence

    PubMed Central

    Lipowicz, Michelle; Garcia, Antonio

    2015-01-01

    The use of saliva sampling as a minimally-invasive means for drug testing and monitoring physiology is a subject of great interest to researchers and clinicians. This study describes a new optical method based on non-axially symmetric focusing of light using an oblate spheroid sample chamber. The device is simple, lightweight, low cost and is easily attached to several different brands/models of smartphones (Apple, Samsung, HTC and Nokia) for the measurement of sodium ion levels at physiologically-relevant saliva concentrations. The sample and fluorescent reagent solutions are placed in a specially-designed, lightweight device that excludes ambient light and concentrates 470-nm excitation light, from a low-power photodiode, within the sample through non-axially-symmetric refraction. The study found that smartphone cameras and post-image processing quantitated sodium ion concentration in water over the range of 0.5–10 mM, yielding best-fit regressions of the data that agree well with a data regression of microplate luminometer results. The data suggest that fluorescence can be used for the measurement of salivary sodium ion concentrations in low-resource or point-of-care settings. With further fluorescent assay testing, the device may find application in a variety of enzymatic or chemical assays. PMID:28955016

  9. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples

    NASA Astrophysics Data System (ADS)

    Edgcomb, V. P.; Taylor, C.; Pachiadaki, M. G.; Honjo, S.; Engstrom, I.; Yakimov, M.

    2016-07-01

    Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler - In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved in situ were significantly different from potentially more stressful Niskin sampling and preservation on deck. Some categories of transcribed genes also appear to be affected by sample handling more than others. This suggests that for future studies of marine microbial ecology, particularly targeting deep sea samples, an in situ sample collection and preservation approach should be considered.

  10. Decontaminating materials used in ground water sampling devices: Organic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants weremore » removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.« less

  11. Authenticity screening of seized whiskey samples using electrophoresis microchips coupled with contactless conductivity detection.

    PubMed

    Rezende, Kariolanda C A; Moreira, Roger Cardoso; Logrado, Lucio Paulo Lima; Talhavini, Márcio; Coltro, Wendell K T

    2016-10-01

    This report describes for the first time the use of microchip electrophoresis (ME) devices integrated with capacitively coupled contactless conductivity detection (C 4 D) to investigate the authenticity of seized whiskey samples, which were probably adulterated by simple dilution with tap water. The proposed microfluidic platform was explored for the monitoring of anionic species (Cl - and F - ) in both original and tampered samples. The best separations were achieved within 70 s using a running buffer composed of lactic acid and histidine (pH = 5.9). ME-C 4 D devices were used to analyze samples from three different brands (five samples each). Based on the presence of inorganic anions like Cl - , F - , SO 4 2- and NO 2 - in different amounts, the authenticity of seized whiskeys was compared to original samples. According to the reported data, the proposed microfluidic platform can be useful to help regulatory authorities in the investigation and monitoring of authenticity of commercialized whiskey beverages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  13. Miniaturized Temperature-Controlled Planar Chromatography (Micro-TLC) as a Versatile Technique for Fast Screening of Micropollutants and Biomarkers Derived from Surface Water Ecosystems and During Technological Processes of Wastewater Treatment.

    PubMed

    Ślączka-Wilk, Magdalena M; Włodarczyk, Elżbieta; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2017-07-01

    There is increasing interest in the development of simple analytical systems enabling the fast screening of target components in complex samples. A number of newly invented protocols are based on quasi separation techniques involving microfluidic paper-based analytical devices and/or micro total analysis systems. Under such conditions, the quantification of target components can be performed mainly due to selective detection. The main goal of this paper is to demonstrate that miniaturized planar chromatography has the capability to work as an efficient separation and quantification tool for the analysis of multiple targets within complex environmental samples isolated and concentrated using an optimized SPE method. In particular, we analyzed various samples collected from surface water ecosystems (lakes, rivers, and the Baltic Sea of Middle Pomerania in the northern part of Poland) in different seasons, as well as samples collected during key wastewater technological processes (originating from the "Jamno" wastewater treatment plant in Koszalin, Poland). We documented that the multiple detection of chromatographic spots on RP-18W microplates-under visible light, fluorescence, and fluorescence quenching conditions, and using the visualization reagent phosphomolybdic acid-enables fast and robust sample classification. The presented data reveal that the proposed micro-TLC system is useful, inexpensive, and can be considered as a complementary method for the fast control of treated sewage water discharged by a municipal wastewater treatment plant, particularly for the detection of low-molecular mass micropollutants with polarity ranging from estetrol to progesterone, as well as chlorophyll-related dyes. Due to the low consumption of mobile phases composed of water-alcohol binary mixtures (less than 1 mL/run for the simultaneous separation of up to nine samples), this method can be considered an environmentally friendly and green chemistry analytical tool. The described analytical protocol can be complementary to those involving classical column chromatography (HPLC) or various planar microfluidic devices.

  14. Design of a portable gas chromatography with a conducting polymer nanocomposite detector device and a method to analyze a gas mixture.

    PubMed

    Pirsa, Sajad

    2017-04-01

    A portable chromatography device and a method were developed to analyze a gas mixture. The device comprises a chromatographic column for separating components of a sample of the gas mixture. It has an air pump coupled to the inlet of a chromatographic column for pumping air and an injector coupled to the inlet of chromatographic column for feeding the sample using the air as a carrier gas. A detector is arranged downstream from and coupled to the outlet of the chromatographic column. The detector is a nanostructure semiconductive microfiber. The device further comprises an evaluation unit arranged and configured to evaluate each detected component to determine the concentration. The designed portable system was used for simultaneous detection of amines. The possibility of applying dispersive liquid-liquid microextraction for the determination of analytes in trace levels is demonstrated. The reproducibility of this method is acceptable, and good standard deviations were obtained. The relative standard deviation value is less than 6% for all analytes. Finally, the method was successfully applied to the extraction and determination of analytes in water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Automation of preparation of nonmetallic samples for analysis by atomic absorption and inductively coupled plasma spectrometry

    NASA Technical Reports Server (NTRS)

    Wittmann, A.; Willay, G.

    1986-01-01

    For a rapid preparation of solutions intended for analysis by inductively coupled plasma emission spectrometry or atomic absorption spectrometry, an automatic device called Plasmasol was developed. This apparatus used the property of nonwettability of glassy C to fuse the sample in an appropriate flux. The sample-flux mixture is placed in a composite crucible, then heated at high temperature, swirled until full dissolution is achieved, and then poured into a water-filled beaker. After acid addition, dissolution of the melt, and filling to the mark, the solution is ready for analysis. The analytical results obtained, either for oxide samples or for prereduced iron ores show that the solutions prepared with this device are undistinguished from those obtained by manual dissolutions done by acid digestion or by high temperature fusion. Preparation reproducibility and analytical tests illustrate the performance of Plasmasol.

  16. Collection of Pyrethroids in Water and Sediment Matrices: Development and Validation of a Standard Operating Procedure

    USGS Publications Warehouse

    Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn

    2009-01-01

    Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.

  17. GIS-based smartphone application to support water quality data collection

    USDA-ARS?s Scientific Manuscript database

    Thorough registration of locations, conditions, and operations at sampling sites is essential for any field survey work. The collected information of this type has to be systematic, transferable, and accessible from different locations of data analysis. The handheld data-recording with smart devices...

  18. European ring exercise on water toxicity using different bioluminescence inhibition tests based on Vibrio fischeri, in support to the implementation of the water framework directive.

    PubMed

    Farré, Marinella; Martínez, Elena; Hernando, M-D; Fernández-Alba, Amadeo; Fritz, Johann; Unruh, Eckehardt; Mihail, Otilia; Sakkas, Vasilis; Morbey, Ana; Albanis, Triantafyllos; Brito, Fatima; Hansen, Peter D; Barceló, Damià

    2006-04-15

    An inter-laboratory comparison exercise was conducted under the European Union funded project entitled: Screening Methods for Water Data Information in Support of the Implementation of the Water Framework Directive (SWIFT-WFD) and coordinated by the Consejo Superior de Investigaciones Científicas (CSIC), in order to evaluate the reproducibility of different toxicity tests based on the bioluminescence inhibition of Vibrio fischeri, for the rapid water toxicity assessment. For the first time, this type of exercise has been organized in Europe, and using different tests based on the same principle. In this exercise, 10 laboratories from 8 countries (Austria, Cyprus, Germany, Greece, Italy, Portugal, Romania, and Spain) took place, and a total number of 360 samples were distributed. During the exercise, six series of six samples were analyzed along 5 months. Every batch of samples was composed by three real samples and three standard solutions. The real samples were: a raw influent and the effluent of a wastewater treatment plant (WWTP), and a sample from a first settlement of the WWTP spiked with a mixture of toxicant standards. A final number of 330 (91.7%) samples was analyzed, 3300 values in duplicate were collected, and the results for each sample were expressed as the 50% effective concentration (EC(50)) values calculated through five points of dilution inhibition curves, after 5 and 15min of incubation times. A statistical study was initiated using 660 results. The mean values, standard deviations (sigma), variances (sigma(2)), and upper and lower warning limits (UWL and LWL) were obtained, using the EC(50) values calculated with the result from the participating laboratories. The main objectives of this toxicity ring study were to evaluate the repeatability (r) and reproducibility (R) when different laboratories conduct the test, the influence of complex matrix samples, the variability between different tests based on the same principle, and to determine the rate at which participating laboratories successfully completed tests initiated. In this exercise, the 3.93% toxicity values were outliers according with the Z-score values and the Dixon test. The samples with the greater number of outliers were those with the smallest variability coefficient, corresponding to the greater and the smaller toxicity level. No relation was found through the cluster analysis, between the final results and the different commercial devices involved. Testing by multiple commercial devices did not appear to reduce the precision of the results, and the variability coefficient for the exercise was nearby to the average value for past editions carried out at national level, where the different participants used the same commercial device. Stability of samples was also followed during the exercise. While statistical significance differences were not found for the greater part of samples, for the sample from the WWTP influent, a significant decrease of the toxicity value was found along this study. Nevertheless, this was a type of sample with a high toxicity level during all the exercise. On the other hand, in order to obtain the chemical characterization of real samples, those were analyzed by chromatographic techniques, using different sequential solid phase extraction (SSPE) procedures, followed by liquid chromatography coupled with mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS). Good agreement was found between the chemical analysis results and the toxicity level of the samples.

  19. Perylene dominates the organic contaminant profile in the Berau delta, East Kalimantan, Indonesia.

    PubMed

    Booij, Kees; Arifin, Zainal; Purbonegoro, Triyoni

    2012-05-01

    The geographical distributions of polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorobenzene, and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (4,4'-DDE) were studied in the Berau delta (East Kalimantan, Indonesia), using sediment sampling and passive water sampling with semipermeable membrane devices. High concentrations of perylene were observed in sediments (54-580 ng g(-1) dry weight), and water (1-680 pg L(-1)). Perylene accounted for about 60% of the total concentrations of PAHs in the sediment. The relative abundance of the other PAHs was indicative of petrogenic sources. Concentrations of PCBs, hexachlorobenzene, and 4,4'-DDE in sediments were below or close to the detection limit (∼ 0.02 ng g(-1)). The analysis of a sediment core revealed no appreciable changes in the concentration of target compounds over the past three decades. We show that sediment sampling and passive water sampling are complementary techniques, and propose to bring the results of both methods to the same concentration scale, using locally derived sediment-water partition coefficients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    PubMed

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  1. Device and method for determining oxygen concentration and pressure in gases

    DOEpatents

    Ayers, M.R.; Hunt, A.J.

    1999-03-23

    Disclosed are oxygen concentration and/or pressure sensing devices and methods which incorporate photoluminescent silica aerogels. Disclosed sensors include a light proof housing for holding the photoluminescent aerogel, a source of excitation radiation (e.g., a UV source), a detector for detecting radiation emitted by the aerogel, a system for delivering a sample gas to the aerogel, and a thermocouple. Also disclosed are water resistant oxygen sensors having a photoluminescent aerogel coated with a hydrophobic material. 6 figs.

  2. 3D-printed, TiO2 NP-incorporated minicolumn coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt-content samples.

    PubMed

    Su, Cheng-Kuan; Chen, Wei-Cheng

    2018-04-25

    To extend the applicability of solid phase extraction devices manufactured using 3D printing technologies, a stereolithographic 3D printer and resins incorporating titanium dioxide nanoparticles (TiO 2 NPs) were employed to fabricate a demountable minicolumn with TiO 2 NP-incorporated packing as a sample pretreatment device for the selective extraction of inorganic As and Se species from high-salt-content samples, and to facilitate their analyses when coupled to an inductively coupled plasma mass spectrometer. After optimization, the automatic system enabled highly sensitive determinations of As and Se species with detection limits as low as 0.004-0.033 μg L -1 for As and 0.061-0.128 μg L -1 for Se. Reliability was confirmed through analyses of the reference materials 1643f, SLEW-3, CASS-4, and 2670a, as well as spike analyses of samples of water and human urine. These 3D-printed minicolumns appear to be very useful for multi-elemental speciation of these elements from high-salt-content samples. Thus, the incorporation of active nanomaterials into raw printing resins can enable 3D printing technologies-not only to fabricate functionalized devices for diverse sample pretreatment applications but also to encourage the future development of multifunctional devices for analytical science. Graphical abstract Schematic presentation of a demountable minicolumn fabricated using a stereolithographic 3D printer and the resins incorporating with TiO 2 NPs. They were used to selectively extract As and Se species through controlling the sample acidities.

  3. An assessment of the isotopic (2H/18O) integrity of water samples collected and stored by unattended precipitation totalizers

    NASA Astrophysics Data System (ADS)

    Terzer, Stefan; Wassenaar, Leonard I.; Douence, Cedric; Araguas-Araguas, Luis

    2016-04-01

    The IAEA-WMO Global Network of Isotopes in Precipitation (GNIP) provides worldwide δ18O and δ2H data for numerous hydrological and climatological studies. The traditional GNIP sample collection method relies on weather station operators to accumulate precipitation obtained from manual rain gauges. Over the past decades, widespread weather station automatization resulted in the increased use of unattended precipitation totalizers that accumulate and store the rainwater in the field for up to one month. Several low-tech measures were adopted to prevent in situ secondary evaporative isotopic enrichment (SEE) of totalized water samples (i.e. disequilibrium isotopic fractionation after precipitation is stored in the collection device). These include: (a) adding a 0.5-1 cm floating layer of paraffin oil to the totalizer bottle, (b) using an intake tube leading from the collection funnel and submerged to the bottom of the totalizer bottle, or (c) placing a table tennis ball in the funnel aiming to reduce evaporation of the collected water from the receiving bottle to the atmosphere. We assessed the isotopic integrity of stored rainwater samples for three totalizers under controlled settings: each aforementioned totalizer was filled with a 100 or 500 mL of isotopically known water and installed in the field with the intake funnels sheltered to prevent rainwater collection. Potential evapotranspiration (PET) was obtained from on-site meteorological recordings. Stored evaporative loss from each totalizer was evaluated on a monthly basis; gravimetrically and by analysing δ18O and δ2H of the stored water, for a period of 6 months and a cumulative PET of ˜500 mm. The gravimetric and isotope results revealed that for smaller water volumes (100 ml, corresponding to ca. 5 mm of monthly precipitation), negligible isotope enrichment (δ18O) was observed in the paraffin-oil based totalizer, whereas unacceptable evaporative isotope effects were observed for the ball-in-funnel collector. For the submerged-tube sampler, the evaporative effect depended on the amount of stored water: 100 ml showed unacceptable isotopic enrichment, whereas the SEE of 500 ml stored water was acceptable. These data allowed us to estimate the impact of secondary evaporative enrichment on a device-specific basis as a function of PET. Based on global PET grids (e.g. CGIAR data), and benchmarking the expected SEE against the reasonable uncertainty of isotope spectrometry (< ±0.1‰ for δ18O), these findings reveal the most suitable totalizer device for any given climatic condition. Under extreme conditions (e.g. high aridity, little precipitation vs. high PET), a paraffin-oil based rain totalizer is most appropriate for monthly collections. Submerged-tube samplers may be considered if either a higher frequency of collection were possible, or monthly under pluvial/temperate climate conditions. The use of ball-in-funnel type totalizers are not recommended at all, unless samples could be collected on a daily basis.

  4. Photodegradation of PAHs in passive water samplers.

    PubMed

    Allan, Ian J; Christensen, Guttorm; Bæk, Kine; Evenset, Anita

    2016-04-15

    Losses of deuterated polycyclic aromatic hydrocarbons (PAHs) used as performance reference compounds (PRCs) in semipermeable membrane devices deployed at fifteen coastal sampling sites near Harstad harbour in Northern Norway were used to investigate photodegradation of these photosensitive compounds. Unusual PRC dissipation profiles, especially for samplers exposed <5m below the water surface are indicative of photodegradation. A strong correlation between loss rates for d12-chrysene and d12-benzo[e]pyrene with consistently higher losses of the latter was found. The observed photodegradation rates may be sufficiently high to impact PAH masses absorbed by a factor of two. This study demonstrates that photodegradation during exposure of passive water samplers needs to be taken into account, particularly with deployments close to the water surface, when using SPMD canisters, or when sampling in the Arctic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cloud condensation nucleus counter by impactor sampling technique

    NASA Technical Reports Server (NTRS)

    Ohtake, T.

    1981-01-01

    Unlike typical CCN counters, this device counts the numbers of water droplets condensed on aerosol particles sampled on a microcover glass at various different relative humidities. The relative humidities ranged from 75 percent to a calculated value of 110 percent. A schematic of the apparatus is shown. The individual CCN can be identified in an optical micrograph and scanning electron micrograph and may be inspected for their chemical composition later.

  6. 40 CFR Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bubbled through a 5-mL water sample contained in a specially-designed purging chamber at ambient... now commercially available. 5.2.1The purging device must be designed to accept 5-mL samples with a... design criteria. 5.2.2The trap must be at least 25 cm long and have an inside diameter of at least 0.105...

  7. 40 CFR Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bubbled through a 5-mL water sample contained in a specially-designed purging chamber at ambient... now commercially available. 5.2.1The purging device must be designed to accept 5-mL samples with a... design criteria. 5.2.2The trap must be at least 25 cm long and have an inside diameter of at least 0.105...

  8. 40 CFR Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bubbled through a 5-mL water sample contained in a specially-designed purging chamber at ambient... now commercially available. 5.2.1The purging device must be designed to accept 5-mL samples with a... design criteria. 5.2.2The trap must be at least 25 cm long and have an inside diameter of at least 0.105...

  9. Low-density solvent based ultrasound-assisted emulsification microextraction and on-column derivatization combined with gas chromatography-mass spectrometry for the determination of carbamate pesticides in environmental water samples.

    PubMed

    Guo, Liang; Lee, Hian Kee

    2012-04-27

    A fast and efficient method for the determination of trace level of carbamate pesticides using a lower-density-than-water solvent for ultrasound-assisted emulsification microextraction coupled to on-column derivatization and analysis by GC-MS has been developed and studied. In this approach, a soft plastic Pasteur pipette was employed as a convenient extraction device. Fifty microliters of extraction solvent, of lower density than water, was injected into the sample solution held in the pipette. The latter was immediately immersed in an ultrasound water bath to form an emulsion. After 2 min extraction, the emulsion was fractionated into two layers by centrifugation. The upper layer (organic extract) could be collected conveniently by squeezing the bulb of the pipette, now held upside down, to move it into the narrow stem of the device, facilitating its retrieval for analysis. The extract was then combined with trimethylphenylammonium hydroxide and directly injected into a gas chromatography-mass spectrometry (GC-MS) system for on-column derivatization and analysis. The on-column derivatization provided an added convenience (since a separate step was not necessary). Parameters affecting the derivatization and extraction were investigated. Under the most favorable conditions, the method demonstrated high extraction efficiency with low limits of detection of between 0.01 and 0.1 μg/L, good linearity in the range of 0.05-50 μg/L, to 0.5-100 μg/L, and good repeatability (RSD below 9.2%, n=5). The proposed method was evaluated by determining carbamate pesticides in river water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. 33 CFR 159.125 - Visible floating solids: Type I devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determined in accordance with 40 CFR part 136 or at least 38 of the 40 samples. Note: 33 U.S.C. 1321(b)(3... adjoining shorelines or into or upon the waters of the contiguous zone. Under 40 CFR 110.3 and 110.4 such...

  11. Predicting aged pork quality using a portable raman device

    USDA-ARS?s Scientific Manuscript database

    Objectives: A need exists for a better on-line evaluation method for pork quality. Raman spectroscopy evaluates structure and composition of food samples, with advantage of being portable, non-invasive and insensitive to water. The objectives of this study were to evaluate the correlation between Ra...

  12. Should electronic faucets be used in intensive care and hematology units?

    PubMed

    Merrer, Jacques; Girou, Emmanuelle; Ducellier, David; Clavreul, Nicole; Cizeau, Florence; Legrand, Patrick; Leneveu, Michel

    2005-12-01

    To compare bacterial contamination associated with electronic faucets and manual faucets in wards admitting patients highly susceptible to infection. Water samples from electronic faucets and manual faucets were taken according to the French recommendations on water surveillance in healthcare settings. Hematology and intensive care units (ICUs) of a 900-bed university hospital and a 500-bed general hospital. Overall 227 water samples were collected, 92 from electronic faucets and 135 from manual faucets. Thirty-six (39%) of the water samples from electronic faucets and 2 (1%) from manual faucets yielded pathogenic bacteria. In hematology wards 17 (30%) samples from electronic faucets and 2 (2%) from manual faucets were contaminated. In ICUs 19 (53%) samples from electronic faucets and none of 48 from manual faucets were contaminated. All samples were contaminated with various strains of Pseudomonas aeruginosa (8 to >100 CFU/100 ml). Despite hyperchlorination the electronic faucets remained contaminated. Replacing the contaminated electronic faucets by manual faucets led to a complete and sustained elimination of bacterial contamination. Contamination was not associated with a particular brand of electronic faucets. Our findings demonstrate that electronic faucets are significantly more frequently contaminated than manual faucets and could be a major reservoir for P. aeruginosa. Wards admitting patients highly susceptible to infection and using electronic faucets should be aware of this potential threat. Moreover, units already equipped with these devices, should check water quality periodically.

  13. A self-heating cartridge for molecular diagnostics.

    PubMed

    Liu, Changchun; Mauk, Michael G; Hart, Robert; Qiu, Xianbo; Bau, Haim H

    2011-08-21

    A disposable, water-activated, self-heating, easy-to-use, polymeric cartridge for isothermal nucleic acid amplification and visual fluorescent detection of the amplification products is described. The device is self-contained and does not require any special instruments to operate. The cartridge integrates chemical, water-triggered, exothermic heating with temperature regulation facilitated with a phase-change material (PCM) and isothermal nucleic acid amplification. The water flows into the exothermic reactor by wicking through a porous paper. The porous paper's characteristics control the rate of water supply, which in turn controls the rate of exothermic reaction. The PCM material enables the cartridge to maintain a desired temperature independent of ambient temperatures in the range between 20 °C and 40 °C. The utility of the cartridge is demonstrated by amplifying and detecting Escherichia coli DNA with loop mediated isothermal amplification (LAMP). The device can detect consistently as few as 10 target molecules in the sample. With proper modifications, the cartridge also can work with other isothermal nucleic acid amplification technologies for detecting nucleic acids associated with various pathogens borne in blood, saliva, urine, and other body fluids as well as in water and food. The device is suitable for use at home, in the field, and in poor-resource settings, where access to sophisticated laboratories is impractical, unaffordable, or nonexistent. This journal is © The Royal Society of Chemistry 2011

  14. Spatial and temporal analogies in microbial communities in natural drinking water biofilms.

    PubMed

    Douterelo, I; Jackson, M; Solomon, C; Boxall, J

    2017-03-01

    Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  16. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  17. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  18. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  19. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  20. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  1. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  2. 21 CFR 868.1975 - Water vapor analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water vapor analyzer. 868.1975 Section 868.1975...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1975 Water vapor analyzer. (a) Identification. A water vapor analyzer is a device intended to measure the concentration of water vapor in a...

  3. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling water...

  4. Chromatographic Separation and Visual Detection on Wicking Microfluidic Devices: Quantitation of Cu2+ in Surface, Ground, and Drinking Water.

    PubMed

    Bandara, Gayan C; Heist, Christopher A; Remcho, Vincent T

    2018-02-20

    Copper is widely applied in industrial and technological applications and is an essential micronutrient for humans and animals. However, exposure to high environmental levels of copper, especially through drinking water, can lead to copper toxicity, resulting in severe acute and chronic health effects. Therefore, regular monitoring of aqueous copper ions has become necessary as recent anthropogenic activities have led to elevated environmental concentrations of copper. On-site monitoring processes require an inexpensive, simple, and portable analytical approach capable of generating reliable qualitative and quantitative data efficiently. Membrane-based lateral flow microfluidic devices are ideal candidates as they facilitate rapid, inexpensive, and portable measurements. Here we present a simple, chromatographic separation approach in combination with a visual detection method for Cu 2+ quantitation, performed in a lateral flow microfluidic channel. This method appreciably minimizes interferences by incorporating a nonspecific polymer inclusion membrane (PIM) based assay with a "dot-counting" approach to quantification. In this study, hydrophobic polycaprolactone (PCL)-filled glass microfiber (GMF) membranes were used as the base substrate onto which the PIM was evenly dispensed as an array of dots. The devices thus prepared were then selectively exposed to oxygen radicals through a mask to generate a hydrophilic surface path along which the sample was wicked. Using this approach, copper concentrations from 1 to 20 ppm were quantified from 5 μL samples using only visual observation of the assay device.

  5. Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters.

    PubMed

    Chen, Wei; Pan, Suhong; Cheng, Hao; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2018-06-15

    A passive water sampler based on the diffusive gradients in thin-films (DGT) technique was developed and tested for 3 groups of endocrine disrupting chemicals (EDCs, including oestrogens, alkyl-phenols and bisphenols). Three different resins (hydrophilic-lipophilic-balanced (HLB), XAD18 and Strata-XL-A (SXLA)) were investigated for their suitability as the binding phase for DGT devices. Laboratory tests across a range of pH (3.5-9.5), ionic strength (0.001-0.5 M) and dissolved organic matter concentration (0-20 mg L -1 ) showed HLB and XAD18-DGT devices were more stable compared to SXLA-DGT. HLB-DGT and XAD18-DGT accumulated test chemicals with time consistent with theoretical predictions, while SXLA-DGT accumulated reduced amounts of chemical. DGT performance was also compared in field deployments up to 28 days, alongside conventional active sampling at a wastewater treatment plant. Uptake was linear to the samplers over 18 days, and then began to plateau/decline, indicating the maximum deployment time in those conditions. Concentrations provided by the DGT samplers compared well with those provided by auto-samplers. DGT integrated concentrations over the deployment period in a way that grab-sampling cannot. The advantages of the DGT sampler over active sampling include: low cost, ease of simultaneous multi-site deployment, in situ analyte pre-concentration and reduction of matrix interferences compared with conventional methods. Compared to other passive sampler designs, DGT uptake is independent of flow rate and therefore allows direct derivation of field concentrations from measured compound diffusion coefficients. This passive DGT sampler therefore constitutes a viable and attractive alternative to conventional grab and active water sampling for routine monitoring of selected EDCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Reiter works with SWAB ASD Filter Kit in the U.S. Laboratory during Expedition 13

    NASA Image and Video Library

    2006-09-10

    ISS013-E-80066 (10 Sept. 2006) --- European Space Agency (ESA) astronaut Thomas Reiter, Expedition 13 flight engineer, works with the surface, water and air biocharacterization (SWAB) air sampling device (ASD) filter kit in the Destiny laboratory of the International Space Station.

  7. A passive integrative sampler for mercury vapor in air and neutral mercury species in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.

    2000-01-01

    A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress.

  8. A survey of recent results in passive sampling of water and air by semipermeable membrane devices

    USGS Publications Warehouse

    Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti

    1995-01-01

    A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.

  9. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  10. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  11. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  12. 21 CFR 868.5995 - Tee drain (water trap).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tee drain (water trap). 868.5995 Section 868.5995...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5995 Tee drain (water trap). (a) Identification. A tee drain (water trap) is a device intended to trap and drain water that collects in ventilator...

  13. Microfabricated valveless devices for thermal bioreactions based on diffusion-limited evaporation.

    PubMed

    Wang, Fang; Yang, Ming; Burns, Mark A

    2008-01-01

    Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.

  14. Microfluidic Analysis with Front-Face Fluorometric Detection for the Determination of Total Inorganic Iodine in Drinking Water.

    PubMed

    Inpota, Prawpan; Strzelak, Kamil; Koncki, Robert; Sripumkhai, Wisaroot; Jeamsaksiri, Wutthinan; Ratanawimarnwong, Nuanlaor; Wilairat, Prapin; Choengchan, Nathawut; Chantiwas, Rattikan; Nacapricha, Duangjai

    2018-01-01

    A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO 3 - and I - ) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10 -6 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.

  15. Assessment of bioavailable fraction of POPS in surface water bodies in Johannesburg City, South Africa, using passive samplers: an initial assessment.

    PubMed

    Amdany, Robert; Chimuka, Luke; Cukrowska, Ewa; Kukučka, Petr; Kohoutek, Jiří; Tölgyessy, Peter; Vrana, Branislav

    2014-09-01

    In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l(-1) for PAHs, from 20.9 to 120.9 pg l(-1) for PCBs and from 0.2 to 36.9 ng l(-1) for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15-36.9 ng l(-1)) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03-0.55 ng l(-1)). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.

  16. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  17. Rapid determination of 210Po in water samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-08-02

    A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alphamore » spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.« less

  18. Environmental sensing systems: some myths and some realities

    NASA Astrophysics Data System (ADS)

    Estrin, D.; Harmon, T.

    2007-12-01

    While it is true that miniaturization and Moore's law has enabled us to combine sensing, computation and wireless communication in integrated devices, and to embed networks of these devices in the physical world. We have found that it takes far more than embeddable devices to achieve the holy grail of "revealing the previously unobservable". Looking back over the past few years we have made our greatest strides using mobility at multiple scales, as well as judicious application of server-side models and processing. We will use examples from soil, river, and coastal water environments, where the respective science objectives include observing respiration and nutrient cycling, contaminant transport and mixing, and algal dynamics. In the context of these applications, this presentation will describe innovations in sensor devices, sampling algorithms, and data management.

  19. Quantitative Analysis of Heavy Metals in Water Based on LIBS with an Automatic Device for Sample Preparation

    NASA Astrophysics Data System (ADS)

    Hu, Li; Zhao, Nanjing; Liu, Wenqing; Meng, Deshuo; Fang, Li; Wang, Yin; Yu, Yang; Ma, Mingjun

    2015-08-01

    Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection. supported by National Natural Science Foundation of China (No. 60908018), National High Technology Research and Development Program of China (No. 2013AA065502) and Anhui Province Outstanding Youth Science Fund of China (No. 1108085J19)

  20. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water.

    PubMed

    Quinn, Casey W; Cate, David M; Miller-Lionberg, Daniel D; Reilly, Thomas; Volckens, John; Henry, Charles S

    2018-03-20

    Metal contamination of natural and drinking water systems poses hazards to public and environmental health. Quantifying metal concentrations in water typically requires sample collection in the field followed by expensive laboratory analysis that can take days to weeks to obtain results. The objective of this work was to develop a low-cost, field-deployable method to quantify trace levels of copper in drinking water by coupling solid-phase extraction/preconcentration with a microfluidic paper-based analytical device. This method has the advantages of being hand-powered (instrument-free) and using a simple "read by eye" quantification motif (based on color distance). Tap water samples collected across Fort Collins, CO, were tested with this method and validated against ICP-MS. We demonstrate the ability to quantify the copper content of tap water within 30% of a reference technique at levels ranging from 20 to 500 000 ppb. The application of this technology, which should be sufficient as a rapid screening tool, can lead to faster, more cost-effective detection of soluble metals in water systems.

  1. Automated stopped-in-dual-loop flow analysis system for catalytic determination of vanadium in drinking water.

    PubMed

    Teshima, Norio; Kuno, Masami; Ueda, Minoru; Ueda, Hisashi; Ohno, Shinsuke; Sakai, Tadao

    2009-07-15

    An automated stopped-in-dual-loop flow analysis (SIDL-FA) system is proposed for the determination of vanadium in drinking water. The chemistry is based on the vanadium-catalyzed oxidation reaction of p-anisidine by bromate in the presence of Tiron as an activator to produce a dye (lambda(max)=510 nm). A SIDL-FA system basically consists of a selection valve, three pumps (one is for delivering of standard/sample, and others are for reagents), two six-way injection valves, a spectrophotometric detector and a data acquisition device. A 100-microL coiled loop around a heated device is fitted onto each six-way injection valve. A well-mixed solution containing reagents and standard/sample is loaded into the first loop on a six-way valve, and then the same solution is loaded into the second loop on another six-way valve. The solutions are isolated by switching these two six-way valves, so that the catalytic reaction can be promoted. The net waste can be zero in this stage, because all pumps are turned off. Then each resulting solution is dispensed to the detector with suitable time lag. A touchscreen controller is developed to automatically carry out the original SIDL-FA protocol. The proposed SIDL-FA method allows vanadium to be quantified in the range of 0.1-2 microg L(-1) and is applied to the determination of vanadium in drinking water samples.

  2. Automation of liquid-liquid extraction-spectrophotometry using prolonged pseudo-liquid drops and handheld CCD for speciation of Cr(VI) and Cr(III) in water samples.

    PubMed

    Chen, Wen; Zhong, Guanping; Zhou, Zaide; Wu, Peng; Hou, Xiandeng

    2005-10-01

    A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.

  3. Eco-friendly sonoluminescent determination of free glycerol in biodiesel samples.

    PubMed

    Diniz, Paulo Henrique Gonçalves Dias; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino; Band, Beatriz Susana Fernández

    2013-09-30

    This paper proposes a flow-batch methodology for the determination of free glycerol in biodiesel that is notably eco-friendly, since non-chemical reagents are used. Deionized water (the solvent) was used alone for glycerol (sample) extractions from the biodiesel. The same water was used to generate water-cavitation sonoluminescence signals, which were modulated by the quenching effect associated with the amount of extracted glycerol. The necessarily reproducible signal generation was achieved by using a simple and inexpensive piezoelectric device. A linear response was observed for glycerol within the 0.001-100 mg/L range, equivalent to 0.004-400 mg/kg free glycerol in biodiesel. The lowest measurable concentration of free glycerol was estimated at 1.0 µg/L. The selectivity of the proposed method was confirmed by comparing the shape and retention of both real and calibration samples to standard solution chromatograms, presenting no peaks other than glycerol. All samples (after extraction) are greatly diluted; this minimizes (toward non-detectability) potential interference effects. The methodology was successfully applied to biodiesel analysis at a high sampling rate, with neither reagent nor solvent (other than water), and with minimum waste generation. The results agreed with the reference method (ASTM D6584-07), at a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives

    DTIC Science & Technology

    2007-08-01

    prevent losses due to sorption . The time needed for equilibration will depend on the sampling device (and the materials in the sampler), the physical...bottles contain a perfluoroalkoxy ( PFA ) Teflon-coated spring mechanism that is connected to PFA Teflon end caps at both ends of the bottles...materials: polyvinylidene fluoride (PVDF) Kynar tubing or PFA Teflon tubing. These samplers are deployed in the well with the end caps of the bottle

  5. On-line classification of pollutants in water using wireless portable electronic noses.

    PubMed

    Herrero, José Luis; Lozano, Jesús; Santos, José Pedro; Suárez, José Ignacio

    2016-06-01

    A portable electronic nose with database connection for on-line classification of pollutants in water is presented in this paper. It is a hand-held, lightweight and powered instrument with wireless communications capable of standalone operation. A network of similar devices can be configured for distributed measurements. It uses four resistive microsensors and headspace as sampling method for extracting the volatile compounds from glass vials. The measurement and control program has been developed in LabVIEW using the database connection toolkit to send the sensors data to a server for training and classification with Artificial Neural Networks (ANNs). The use of a server instead of the microprocessor of the e-nose increases the capacity of memory and the computing power of the classifier and allows external users to perform data classification. To address this challenge, this paper also proposes a web-based framework (based on RESTFul web services, Asynchronous JavaScript and XML and JavaScript Object Notation) that allows remote users to train ANNs and request classification values regardless user's location and the type of device used. Results show that the proposed prototype can discriminate the samples measured (Blank water, acetone, toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, dichloromethane, acetic acid, xylene and dimethylacetamide) with a 94% classification success rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nanofiber Enabled, Multi - Target Passive Sampling Device for Determination of the Freely Dissolved Sediment Pore Water Concentrations of Organic Contaminants

    DTIC Science & Technology

    2016-06-01

    foil. Nanofiber diameters were adjusted between ~100-200 nm by controlling the electrospinning solution (e.g., viscosity , dielectric constant...acetate)/ Clay Nanocomposite Fibers. J Polym Sci Pol Phys 2009, 47, (24), 2501-2508. 36. Piperno, S.; Lozzi, L.; Rastelli, R.; Passacantando, M.; Santucci

  7. A simple, accurate, field-portable mixing ratio generator and Rayleigh distillation device

    USDA-ARS?s Scientific Manuscript database

    Routine field calibration of water vapor analyzers has always been a challenging problem for those making long-term flux measurements at remote sites. Automated sampling of standard gases from compressed tanks, the method of choice for CO2 calibration, cannot be used for H2O. Calibrations are typica...

  8. Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters.

    PubMed

    Alonso, Monica; Cerdan, Laura; Godayol, Anna; Anticó, Enriqueta; Sanchez, Juan M

    2011-11-11

    Combining headspace (HS) sampling with a needle-trap device (NTD) to determine priority volatile organic compounds (VOCs) in water samples results in improved sensitivity and efficiency when compared to conventional static HS sampling. A 22 gauge stainless steel, 51-mm needle packed with Tenax TA and Carboxen 1000 particles is used as the NTD. Three different HS-NTD sampling methodologies are evaluated and all give limits of detection for the target VOCs in the ng L⁻¹ range. Active (purge-and-trap) HS-NTD sampling is found to give the best sensitivity but requires exhaustive control of the sampling conditions. The use of the NTD to collect the headspace gas sample results in a combined adsorption/desorption mechanism. The testing of different temperatures for the HS thermostating reveals a greater desorption effect when the sample is allowed to diffuse, whether passively or actively, through the sorbent particles. The limits of detection obtained in the simplest sampling methodology, static HS-NTD (5 mL aqueous sample in 20 mL HS vials, thermostating at 50 °C for 30 min with agitation), are sufficiently low as to permit its application to the analysis of 18 priority VOCs in natural and waste waters. In all cases compounds were detected below regulated levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    DTIC Science & Technology

    2016-03-07

    and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the...broad spectrum of toxic industrial compounds rapidly (within an hour) at concentrations relevant to human health , that the device be field-portable...laboratory setting and was able to detect potential water contaminants at concentrations that are relevant to human health . The portability and

  10. Operational Test of a Sensor to Detect Aqueous Film Forming Foam (AFFF) in Ship Bilge Water

    DTIC Science & Technology

    2001-06-01

    aqueous film forming foam ( AFFF ) in bilge water off-loaded from a ship to a shore-side wastewater treatment plant. The foam sensor uses a combination of...A sensor system was developed to detect the presence of foam producing chemicals. The sensor was primarily developed to detect the presence of...photo-optical and acoustic range measuring devices to determine the density and height of a column of foam produced by aeration of the wastewater sample

  11. Plausibility check of a redesigned rain-on-snow simulator (RASA)

    NASA Astrophysics Data System (ADS)

    Rössler, Ole; Probst, Sabine; Weingartner, Rolf

    2016-04-01

    Rain-on-snow events are fascinating but still not completely understood processes. Although, several studies and equations have been published since decades that describe past events and theoretical descriptions, empirical data of what is happening in the snow cover is far less available. A way to fill this gap of empirical data, rain-on-snow-simulators might be of help. In 2013, Juras et al. published their inspiring idea of a portable rain-on-snow simulator. The huge advantage of this devise - in contrast to other purely field-based experiments - are their fixed, and mostly standardized conditions and the possibility to measure all required data to monitor the water fluxes and melting processes at a time. Mounted in a convenient location, a large number of experiments are relatively easy conductible. We applied and further developed the original device and plausified the results of this redesigned version, called RASA. The principal design was borrowed from the original version being a frame with a sprinkler on top and a snow sample in a box at the bottom, from which the outflow is measured with a tipping gauge. We added a moving sprinkling plate to ensure a uniform distribution of raindrops on the snow, and - most importantly - we suspended the watered snow sampled on weighting cells. The latter enables to continuous measurement of the snow sample throughout the experiment and thus the indirect quantification of liquid water saturation, water holding capacity, and snowmelt amount via balance equations. As it is remains unclear if this device is capable to reproduce known processes, a hypothesis based plausibility check was accomplished. Thus, eight hypothesizes were derived from literature and tested in 28 experiments with the RASA mounted at 2000 m elevation. In general, we were able to reproduce most of the hypotheses. The RASA proved to be a very valuable device that can generate suitable results and has the potential to extend the empirical-experimental data set on rain-on-snow events. Juras R., et al. (2013): A portable simulator for investigating rain-on-snow events, Zeitschrift für Geomorphologie, 57, Suppl.1, 73-89.

  12. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food...

  13. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  14. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  15. 21 CFR 876.4650 - Water jet renal stone dislodger system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water jet renal stone dislodger system. 876.4650... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4650 Water jet renal stone dislodger system. (a) Identification. A water jet renal stone dislodger system is a device used to...

  16. 21 CFR 876.4650 - Water jet renal stone dislodger system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water jet renal stone dislodger system. 876.4650... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4650 Water jet renal stone dislodger system. (a) Identification. A water jet renal stone dislodger system is a device used to...

  17. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  18. 21 CFR 868.2450 - Lung water monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  19. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid.

    PubMed

    Wang, Yijia; Zeinhom, Mohamed M A; Yang, Mingming; Sun, Rongrong; Wang, Shengfu; Smith, Jordan N; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicides and herbicide residuals in environmental and biological specimens are important for agriculture, environmental concerns, food safety, and health care. The traditional method for herbicide detection requires expensive laboratory equipment and a long turnaround time. In this work, we developed a single-stripe microliter plate smartphone-based colorimetric device for rapid and low-cost in-field tests. This portable smartphone platform is capable of screening eight samples in a single-stripe microplate. The device combined the advantages of small size (50 × 100 × 160 mm 3 ) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and rhodamine B, for the red and green channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for detection of the herbicide 2,4-dichlorophenoxyacetic acid in the range of 1 to 80 ppb. Spiked samples of tap water, rat serum, plasma, and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all of the spiked samples using the microplate reader and from 93.7% to 106.9% for all of the samples using the smartphone device. This work validated that the smartphone optical-sensing platform is comparable to the commercial microplate reader; it is eligible for onsite, rapid, and low-cost detection of herbicides for environmental evaluation and biological monitoring.

  20. Development of an elution device for ViroCap virus filters.

    PubMed

    Fagnant, Christine Susan; Toles, Matthew; Zhou, Nicolette Angela; Powell, Jacob; Adolphsen, John; Guan, Yifei; Ockerman, Byron; Shirai, Jeffry Hiroshi; Boyle, David S; Novosselov, Igor; Meschke, John Scott

    2017-10-19

    Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.

  1. A glass capillary based microfluidic electromembrane extraction of basic degradation products of nitrogen mustard and VX from water.

    PubMed

    Tak, Vijay; Kabra, Ankur; Pardasani, Deepak; Goud, D Raghavender; Jain, Rajeev; Dubey, D K

    2015-12-24

    In this work, a glass capillary based microfluidic electromembrane extraction (μ-EME) was demonstrated for the first time. The device was made by connecting an auxillary borosilicate glass tubing (O.D. 3mm, I.D. 2mm) perpendicular to main borosilicate glass capillary just below one end of the capillary (O.D. 8mm, I.D. 1.2mm). It generated the distorted T-shaped device with inlet '1' and inlet '2' for the introduction of sample and acceptor solutions, respectively. At one end of this device (inlet '2'), a microsyringe containing acceptor solution along with hollow fiber (O.D. 1000μm) was introduced. This configuration creates the micro-channel between inner wall of glass capillary and outer surface of hollow fiber. Sample solution was pumped into the system through another end of glass capillary (inlet '1'), with a micro-syringe pump. The sample was in direct contact with the supported liquid membrane (SLM), consisted of 20% (w/w) di-(2-ethylhexyl)phosphate in 2-nitrophenyl octyl ether immobilized in the pores of the hollow fiber. In the lumen of the hollow fiber, the acceptor phase was present. The driving force for extraction was direct current (DC) electrical potential sustained over the SLM. Highly polar (logP=-2.5 to 1.4) basic degradation products of nitrogen mustard and VX were selected as model analytes. The influence of chemical composition of SLM, extraction time, voltage and pH of donor and acceptor phase were investigated. The model analytes were extracted from 10μL of pure water with recoveries ranging from 15.7 to 99.7% just after 3min of operation time. Under optimized conditions, good limits of detection (2-50ngmL(-1)), linearity (from 5-1000 to 100-1000ngmL(-1)), and repeatability (RSDs below 11.9%, n=3) were achieved. Applicability of the proposed μ-EME was proved by recovering triethanolamine (31.3%) from 10μL of five times diluted original water sample provided by the Organization for the Prohibition of Chemical Weapons during 28th official proficiency test. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    PubMed Central

    Brennan, Linda M.; Widder, Mark W.; McAleer, Michael K.; Mayo, Michael W.; Greis, Alex P.; van der Schalie, William H.

    2016-01-01

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities. PMID:27023147

  3. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.

    PubMed

    Brennan, Linda M; Widder, Mark W; McAleer, Michael K; Mayo, Michael W; Greis, Alex P; van der Schalie, William H

    2016-03-07

    This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity testing of drinking water. The manuscript further describes how to run a toxicity test using the prepared biochips. A control water sample and the test water sample are mixed with pre-measured powdered media and injected into separate channels of the biochip. Impedance readings from the sensing electrodes in each of the biochip channels are measured and compared by an automated statistical software program. The screen on the ECIS instrument will indicate either "Contamination Detected" or "No Contamination Detected" within an hour of sample injection. Advantages are ease of use and rapid response to a broad spectrum of inorganic and organic chemicals at concentrations that are relevant to human health concerns, as well as the long-term stability of stored biochips in a ready state for testing. Limitations are the requirement for cold storage of the biochips and limited sensitivity to cholinesterase-inhibiting pesticides. Applications for this toxicity detector are for rapid field-portable testing of drinking water supplies by Army Preventative Medicine personnel or for use at municipal water treatment facilities.

  4. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  5. Spintronic microfluidic platform for biomedical and environmental applications

    NASA Astrophysics Data System (ADS)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were performed as described elsewhere [2]. Briefly, a 20 μl sample droplet is manually dispensed over the chip, limited by a polymeric frame. When using the microfluidic system for sample loading, a known volume of sample is introduced into the fluidic system through the help of a syringe pump at a controlled velocity.

  6. Comparative Study of Radon Concentration with Two Techniques and Elemental Analysis in Drinking Water Samples of the Jammu District, Jammu and Kashmir, India.

    PubMed

    Kumar, Ajay; Kaur, Manpreet; Mehra, Rohit; Sharma, Dinesh Kumar; Mishra, Rosaline

    2017-10-01

    The level of radon concentration has been assessed using the Advanced SMART RnDuo technique in 30 drinking water samples from Jammu district, Jammu and Kashmir, India. The water samples were collected from wells, hand pumps, submersible pumps, and stored waters. The randomly obtained 14 values of radon concentration in water sources using the SMART RnDuo technique have been compared and cross checked by a RAD7 device. A good positive correlation (R = 0.88) has been observed between the two techniques. The overall value of radon concentration in various water sources has ranged from 2.45 to 18.43 Bq L, with a mean value of 8.24 ± 4.04 Bq L, and it agreed well with the recommended limit suggested by the European Commission and UNSCEAR. However, the higher activity of mean radon concentration was found in groundwater drawn from well, hand and submersible pumps as compared to stored water. The total annual effective dose due to radon inhalation and ingestion ranged from 6.69 to 50.31 μSv y with a mean value of 22.48 ± 11.03 μSv y. The total annual effective dose was found to lie within the safe limit (100 μSv y) suggested by WHO. Heavy metal analysis was also carried out in various water sources by using an atomic absorption spectrophotometer (AAS), and the highest value of heavy metals was found mostly in groundwater samples. The obtained results were compared with Indian and International organizations like WHO and the EU Council. Among all the samples, the elemental analysis is not on the exceeding side of the permissible limit.

  7. Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.

    2007-12-01

    These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.

  8. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a pushpoint sampler as a highly effective tool for mapping the extent of contaminated subsurface plumes, determining their constituents and loadings, and performing technical studies that may be relevant to bioremediation and other activities.

  9. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection.

    PubMed

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A

    2018-02-06

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.

  10. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection

    PubMed Central

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.

    2018-01-01

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration. PMID:29415468

  11. Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer.

    PubMed

    Small, Ward; Buckley, Patrick R; Wilson, Thomas S; Loge, Jeffrey M; Maitland, Kristen D; Maitland, Duncan J

    2008-01-01

    We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  12. Fabrication and characterization of cylindrical light diffusers comprised of shape memory polymer

    PubMed Central

    Small, Ward; Buckley, Patrick R.; Wilson, Thomas S.; Loge, Jeffrey M.; Maitland, Kristen D.; Maitland, Duncan J.

    2009-01-01

    We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications. PMID:18465981

  13. Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim.

    PubMed

    Almeida, S A A; Arasa, E; Puyol, M; Martinez-Cisneros, C S; Alonso-Chamarro, J; Montenegro, M C B S M; Sales, M G F

    2011-12-15

    Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol-gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about -58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes -54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Development of a polydimethylsiloxane-thymol/nitroprusside composite based sensor involving thymol derivatization for ammonium monitoring in water samples.

    PubMed

    Prieto-Blanco, M C; Jornet-Martínez, N; Moliner-Martínez, Y; Molins-Legua, C; Herráez-Hernández, R; Verdú Andrés, J; Campins-Falcó, P

    2015-01-15

    This report describes a polydimethylsiloxane (PDMS)-thymol/nitroprusside delivery composite sensor for direct monitoring of ammonium in environmental water samples. The sensor is based on a PDMS support that contains the Berthelot's reaction reagents. To prepare the PDMS-thymol/nitroprusside composite discs, thymol and nitroprusside have been encapsulated in the PDMS matrix, forming a reagent release support which significantly simplifies the analytical measurements, since it avoids the need to prepare derivatizing reagents and sample handling is reduced to the sampling step. When, the PDMS-thymol/nitroprusside composite was introduced in water samples spontaneous release of the chromophore and catalyst was produced, and the derivatization reaction took place to form the indothymol blue. Thus, qualitative analysis of NH4(+) could be carried out by visual inspection, but also, it can be quantified by measuring the absorbance at 690 nm. These portable devices provided good sensitivity (LOD<0.4 mg L(-1)) and reproducibility (RSD <10%) for the rapid detection of ammonium. The PDMS-NH4(+) sensor has been successfully applied to determine ammonium in water samples and in the aqueous extracts of particulate matter PM10 samples. Moreover, the reliability of the method for qualitative analysis has been demonstrated. Finally, the advantages of the PDMS-NH4(+) sensor have been examined by comparing some analytical and complementary characteristics with the properties of well-established ammonium determination methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A new submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  16. Demonstration/Validation of the Snap Sampler Passive Ground Water Sampling Device

    DTIC Science & Technology

    2011-06-01

    Total Magnesium 0 10 20 30 40 50 60 0 10 20 30 40 50 60 Low Flow (mg/L) S n ap S am p le r (m g /L ) Total Iron 0 5 10 15 20 25 0 5 10 15 20 25 Low... 5 3.1 TECHNOLOGY DESCRIPTION... 5 3.2 TECHNOLOGY DEVELOPMENT

  17. Automatic devices to take water samples and to raise trash screens at weirs

    Treesearch

    K. G. Reinhart; R. E. Leonard; G. E. Hart

    1960-01-01

    Experimentation on small watersheds is assuming increasing importance in watershed-management research. Much has been accomplished in developing adequate instrumentation for use in these experiments. Yet many problems still await solution. One difficulty encountered is that small streams are subject to wide variations in flow and that these variations are generally...

  18. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of the hypothetical numerical experiments and the analysis of the field data both corroborate the impact of physical and chemical heterogeneity in the aquifer on water-quality samples obtained from wells. If temporal variations in concentrations of chemical constituents are observed, they may indicate variability in the ground-water system being sampled, which may give insight into the chemical distributions within the aquifer and provide guidance in the positioning of new sampling devices or wells.

  19. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.

  20. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  1. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  2. 30 CFR 75.1107-8 - Fire suppression devices; extinguishant supply systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fire suppression devices; extinguishant supply systems. (a) Fire suppression systems using water or... equivalent protective devices and a rising stem or other visual indicator-type shutoff valve. (b) Water supplies for fire suppression devices installed on underground equipment may be maintained in mounted water...

  3. Microfluidic Biochip Design

    NASA Technical Reports Server (NTRS)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a-Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments.

  4. Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters.

    PubMed

    Jálová, V; Jarošová, B; Bláha, L; Giesy, J P; Ocelka, T; Grabic, R; Jurčíková, J; Vrana, B; Hilscherová, K

    2013-09-01

    Passive and composite sampling in combination with in vitro bioassays and identification and quantification of individual chemicals were applied to characterize pollution by compounds with several specific modes of action in urban area in the basin of two rivers, with 400,000 inhabitants and a variety of industrial activities. Two types of passive samplers, semipermeable membrane devices (SPMD) for hydrophobic contaminants and polar organic chemical integrative samplers (POCIS) for polar compounds such as pesticides and pharmaceuticals, were used to sample wastewater treatment plant (WWTP) influent and effluent as well as rivers upstream and downstream of the urban complex and the WWTP. Compounds with endocrine disruptive potency were detected in river water and WWTP influent and effluent. Year-round, monthly assessment of waste waters by bioassays documented estrogenic, androgenic and dioxin-like potency as well as cytotoxicity in influent waters of the WWTP and allowed characterization of seasonal variability of these biological potentials in waste waters. The WWTP effectively removed cytotoxic compounds, xenoestrogens and xenoandrogens. There was significant variability in treatment efficiency of dioxin-like potency. The study indicates that the WWTP, despite its up-to-date technology, can contribute endocrine disrupting compounds to the river. Riverine samples exhibited dioxin-like, antiestrogenic and antiandrogenic potencies. The study design enabled characterization of effects of the urban complex and the WWTP on the river. Concentrations of PAHs and contaminants and specific biological potencies sampled by POCIS decreased as a function of distance from the city. © 2013.

  5. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.

    PubMed

    Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review

    PubMed Central

    Stoot, Lauren J.; Cairns, Nicholas A.; Cull, Felicia; Taylor, Jessica J.; Jeffrey, Jennifer D.; Morin, Félix; Mandelman, John W.; Clark, Timothy D.; Cooke, Steven J.

    2014-01-01

    Non-human vertebrate blood is commonly collected and assayed for a variety of applications, including veterinary diagnostics and physiological research. Small, often non-lethal samples enable the assessment and monitoring of the physiological state and health of the individual. Traditionally, studies that rely on blood physiology have focused on captive animals or, in studies conducted in remote settings, have required the preservation and transport of samples for later analysis. In either situation, large, laboratory-bound equipment and traditional assays and analytical protocols are required. The use of point-of-care (POC) devices to measure various secondary blood physiological parameters, such as metabolites, blood gases and ions, has become increasingly popular recently, due to immediate results and their portability, which allows the freedom to study organisms in the wild. Here, we review the current uses of POC devices and their applicability to basic and applied studies on a variety of non-domesticated species. We located 79 individual studies that focused on non-domesticated vertebrates, including validation and application of POC tools. Studies focused on a wide spectrum of taxa, including mammals, birds and herptiles, although the majority of studies focused on fish, and typical variables measured included blood glucose, lactate and pH. We found that calibrations for species-specific blood physiology values are necessary, because ranges can vary within and among taxa and are sometimes outside the measurable range of the devices. In addition, although POC devices are portable and robust, most require durable cases, they are seldom waterproof/water-resistant, and factors such as humidity and temperature can affect the performance of the device. Overall, most studies concluded that POC devices are suitable alternatives to traditional laboratory devices and eliminate the need for transport of samples; however, there is a need for greater emphasis on rigorous calibration and validation of these units and appreciation of their limitations. PMID:27293632

  7. Statistical modeling of dental unit water bacterial test kit performance.

    PubMed

    Cohen, Mark E; Harte, Jennifer A; Stone, Mark E; O'Connor, Karen H; Coen, Michael L; Cullum, Malford E

    2007-01-01

    While it is important to monitor dental water quality, it is unclear whether in-office test kits provide bacterial counts comparable to the gold standard method (R2A). Studies were conducted on specimens with known bacterial concentrations, and from dental units, to evaluate test kit accuracy across a range of bacterial types and loads. Colony forming units (CFU) were counted for samples from each source, using R2A and two types of test kits, and conformity to Poisson distribution expectations was evaluated. Poisson regression was used to test for effects of source and device, and to estimate rate ratios for kits relative to R2A. For all devices, distributions were Poisson for low CFU/mL when only beige-pigmented bacteria were considered. For higher counts, R2A remained Poisson, but kits exhibited over-dispersion. Both kits undercounted relative to R2A, but the degree of undercounting was reasonably stable. Kits did not grow pink-pigmented bacteria from dental-unit water identified as Methylobacterium rhodesianum. Only one of the test kits provided results with adequate reliability at higher bacterial concentrations. Undercount bias could be estimated for this device and used to adjust test kit results. Insensitivity to methylobacteria spp. is problematic.

  8. Laser-based sensor for a coolant leak detection in a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  9. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  10. Nosocomial legionellosis and invasive aspergillosis in a child with T-lymphoblastic leukemia.

    PubMed

    Furtwängler, Rhoikos; Schlotthauer, Uwe; Gärtner, Barbara; Graf, Norbert; Simon, Arne

    2017-07-01

    Invasive aspergillosis of the lungs and the central nervous system and Legionella pneumophilia serotype 1 infection of the lungs were diagnosed in a 22-month old child during inpatient induction treatment for T-lymphoblastic leukemia. Environmental investigations i.e. samples from the hospital water system did not reveal any Legionella. The patient may have been exposed to waterborne pathogens despite terminal water filtration due to a technical device to release residual tap water from the hose after showering. A sodium chloride nose spray was found to be contaminated with the A. fumigatus isolate of the patient. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Multifunctional Water Sensors for pH, ORP, and Conductivity Using Only Microfabricated Platinum Electrodes

    PubMed Central

    Lin, Wen-Chi; Brondum, Klaus; Monroe, Charles W.; Burns, Mark A.

    2017-01-01

    Monitoring of the pH, oxidation-reduction-potential (ORP), and conductivity of aqueous samples is typically performed using multiple sensors. To minimize the size and cost of these sensors for practical applications, we have investigated the use of a single sensor constructed with only bare platinum electrodes deposited on a glass substrate. The sensor can measure pH from 4 to 10 while simultaneously measuring ORP from 150 to 800 mV. The device can also measure conductivity up to 8000 μS/cm in the range of 10 °C to 50 °C, and all these measurements can be made even if the water samples contain common ions found in residential water. The sensor is inexpensive (i.e., ~$0.10/unit) and has a sensing area below 1 mm2, suggesting that the unit is cost-efficient, robust, and widely applicable, including in microfluidic systems. PMID:28753913

  12. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer, were contaminated with elevated Pb concentations. Pb-isotopic ratios of water from the Floridan aquifer system plot between trend lines connecting the isotopic composition of Pb counterweights and the composition of acid leachates of material from the Floridan aquifer system, indicating that Pb in these waters most likely is a mixture of Pb derived from aquifer material and corrosion of Pb counterweights.

  13. A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper.

    PubMed

    Lenk, Gabriel; Sandkvist, Sören; Pohanka, Anton; Stemme, Göran; Beck, Olof; Roxhed, Niclas

    2015-01-01

    DBS samples collected from a fingerprick typically vary in volume and homogeneity and hence make an accurate quantitative analysis of DBS samples difficult. We report a prototype which first defines a precise liquid volume and subsequently stores it to a conventional DBS matrix. Liquid volumes of 2.2 µl ± 7.1% (n = 21) for deionized water and 6.1 µl ± 8.8% (n = 15) for whole blood have been successfully metered and stored in DBS paper. The new method of collecting a defined volume of blood by DBS sampling has the potential to reduce assay bias for the quantitative evaluation of DBS samples while maintaining the simplicity of conventional DBS sampling.

  14. Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa

    PubMed Central

    Adeniji, Abiodun O.; Okoh, Omobola O.

    2017-01-01

    Petroleum hydrocarbon profiles of water and sediment samples of Algoa Bay in the Eastern Cape Province of South Africa were assessed using standard analytical procedures. Water (from surface and bottom levels) and sediment samples were collected from five locations in the bay from February to June 2016. Extraction of the petroleum hydrocarbons from the water and sediment samples collected was achieved using liquid-liquid and Soxhlet extraction techniques, respectively, followed by column clean up. Target compounds were analytically determined with gas chromatography–flame ionization detector (GC-FID) and quantified by integrating the areas of both the resolved and unresolved components. Physicochemical properties of the water samples were also determined on site using a SeaBird 19plusV2 CTD SBE 55 device. Estimated limit of detection, limit of quantitation and relative standard deviation for the 35 n-alkane standards ranged from 0.06 to 0.13 μg/L, 0.30 to 0.69 μg/L and 3.61 to 8.32%, respectively. Results showed that total petroleum hydrocarbon (TPH) varied from 45.07 to 307 μg/L in the water and 0.72 to 27.03 mg/kg in the sediments. The mean concentrations of TPH in both the water and sediment samples from Algoa Bay revealed a slight level of pollution. The diagnostic indices used showed that the hydrocarbons in the area were from both biogenic and anthropogenic sources. Hence, there is need for adequate regulation and control of all activities contributing to the levels of petroleum hydrocarbon in the marine environment for the safety of human, aquatic and wild lives in the area. PMID:29053634

  15. Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa.

    PubMed

    Adeniji, Abiodun O; Okoh, Omobola O; Okoh, Anthony I

    2017-10-20

    Petroleum hydrocarbon profiles of water and sediment samples of Algoa Bay in the Eastern Cape Province of South Africa were assessed using standard analytical procedures. Water (from surface and bottom levels) and sediment samples were collected from five locations in the bay from February to June 2016. Extraction of the petroleum hydrocarbons from the water and sediment samples collected was achieved using liquid-liquid and Soxhlet extraction techniques, respectively, followed by column clean up. Target compounds were analytically determined with gas chromatography-flame ionization detector (GC-FID) and quantified by integrating the areas of both the resolved and unresolved components. Physicochemical properties of the water samples were also determined on site using a SeaBird 19plusV2 CTD SBE 55 device. Estimated limit of detection, limit of quantitation and relative standard deviation for the 35 n -alkane standards ranged from 0.06 to 0.13 μg/L, 0.30 to 0.69 μg/L and 3.61 to 8.32%, respectively. Results showed that total petroleum hydrocarbon (TPH) varied from 45.07 to 307 μg/L in the water and 0.72 to 27.03 mg/kg in the sediments. The mean concentrations of TPH in both the water and sediment samples from Algoa Bay revealed a slight level of pollution. The diagnostic indices used showed that the hydrocarbons in the area were from both biogenic and anthropogenic sources. Hence, there is need for adequate regulation and control of all activities contributing to the levels of petroleum hydrocarbon in the marine environment for the safety of human, aquatic and wild lives in the area.

  16. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Echols, K.R.; Cranor, W.L.

    2000-01-01

    Semipermeable membrane devices (SPMDs) are used with increasing frequency, and throughout the world as samplers of organic contaminants. The devices can be used to detect a variety of lipophilic chemicals in water, sediment/soil, and air. SPMDs are designed to sample nonpolar, hydrophobic chemicals. The maximum concentration factor achievable for a particular chemical is proportional to its octanol–water partition coefficient. Techniques used for cleanup of SPMD extracts for targeted analytes and for general screening by full-scan mass spectrometry do not differ greatly from techniques used for extracts of other matrices. However, SPMD extracts contain potential interferences that are specific to the membrane–lipid matrix. Procedures have been developed or modified to alleviate these potential interferences. The SPMD approach has been demonstrated to be applicable to sequestering and analyzing a wide array of environmental contaminants including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans, selected organophosphate pesticides and pyrethroid insecticides, and other nonpolar organic chemicals. We present herein an overview of effective procedural steps for analyzing exposed SPMDs for trace to ultra-trace levels of contaminants sequestered from environmental matrices.

  17. [Comparison of various topical sun protection formulations, based on cosmetic vs medical device status, using in vitro methods to assess their efficacy, photo-stability and water resistance].

    PubMed

    Couteau, C; Paparis, E; Coiffard, L-J-M

    2016-02-01

    Within the European Union, sun protection products have long been considered cosmetics whereas in other parts of the world, such as the United States, they are considered as medicinal products. In France, sun protection products with medical device status have recently appeared. Our aim was to compare medical and cosmetic sun protection products. We subjected 4 sun protection products to in vitro testing in order to determine their efficacy in the UVB and UVA ranges, as well as their photo-stability and water resistance. We tested two cosmetic products (Dépiwhite S Soin photoprotecteur(®) SPF 50+ and Urgo cicatrices(®) SPF 30) and two class I medical devices (MD) (Actinica lotion(®) and Kelocote UV(®) Gel for scars). The main in vitro method used involved measuring the transmittance of a sample of each product applied to a dish containing poly(methyl methacrylate) using a spectrophotometer with integrating spheres. This method enabled us to determine the SPF of the various products as well as their photo-stability and degree of water resistance. Regarding efficacy, three of the four test products met the European recommendations governing sun protection products, i.e. a ratio between UVB and UVA protection of 3 or less, and a critical wavelength (λc) of 370 nm or higher. Actinica lotion(®) was the more effective of the two medical devices tested, and was also the most photo-stable, at least within the UVB range. All four products tested were water-resistant. The products tested, while having different status and different claims, exhibited equivalent filtration properties under the study conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  19. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  20. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  1. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  2. Assessment of the Extraction Methods for Monitoring Phthalate Emerging Contaminants in Groundwater and Tap Water

    NASA Astrophysics Data System (ADS)

    Cotto, I.; Padilla, I. Y.; De Jesús, N. H.; Torres, P. M.

    2015-12-01

    Trace organic contaminants such as phthalates, among other chemicals of emerging concerns, have not historically been considered as pollutants but are being detected in water, posing a potential risk to public health and the environment. One of the most common phthalates of particular concern is di-(2-ethylhexyl) phthalate (DEHP), a plasticizer normally found in plastics and consumer products, including: cosmetics, pharmaceuticals, medical devices, food packages, water bottles, and wiring cables. DEHP has been associated with preterm birth, a major cause of neonatal mortality and health complications. This study aims at monitoring the presence and concentration of DEHP and other phthalates in groundwater and tap water systems in Puerto Rico, which has one of the highest rates of preterm birth in the U.S. The Environmental Protection Agency (EPA) suggests a liquid-liquid extraction method that uses methylene chloride as the preferred organic solvent for the extractions. This work presents modified EPA methods that reduce the volume of sample and solvent used, lower the time of analysis, increase productivity, and decrease hazards and waste. Distribution coefficient of DEHP between methylene chloride and water are estimated and related to sample extraction efficiency. Research results indicate that DEHP is in fact distributed between water and methylene chloride with a distribution coefficient average value of 1.24. The study concludes that the sample and solvent volumes have influence on the efficiency but have not an effect on the distribution coefficient. The tests show higher extraction efficiencies for lower DEHP concentrations and higher extraction volumes. Results from the water analysis show presence of DEHP in 55% of groundwater and 44% of tap water samples, indicating a potential exposure through water.

  3. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    PubMed

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  4. Microfluidic mixing triggered by an external LED illumination.

    PubMed

    Venancio-Marques, Anna; Barbaud, Fanny; Baigl, Damien

    2013-02-27

    The mixing of confined liquids is a central yet challenging operation in miniaturized devices. Microfluidic mixing is usually achieved with passive mixers that are robust but poorly flexible, or active mixers that offer dynamic control but mainly rely on electrical or mechanical transducers, which increase the fragility, cost, and complexity of the device. Here, we describe the first remote and reversible control of microfluidic mixing triggered by a light illumination simply provided by an external LED illumination device. The approach is based on the light-induced generation of water microdroplets acting as reversible stirrers of two continuous oil phase flows containing samples to be mixed. We demonstrate many cycles of reversible photoinduced transitions between a nonmixing behavior and full homogenization of the two oil phases. The method is cheap, portable, and adaptable to many device configurations, thus constituting an essential brick for the generation of future all-optofluidic chip.

  5. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples

    USGS Publications Warehouse

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David A.; Lee, In-Seok; Oh, Jeong-Eun

    2014-01-01

    We aimed to verify the effectiveness of semi-permeablemembrane devices (SPMDs) formonitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water.We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2–3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r2 = 0.7451 for PCBs 28 + 52 + 153, r2 = 0.9987 for PBDEs 28 + 47 + 99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  6. Measurements of effective non-rainfall in soil with the use of time-domain reflectometry technique

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Skierucha, Wojciech

    2014-05-01

    The non-rainfall vectors are fog, dew, hoarfrost and vapour adsorption directly from the atmosphere. The measurements of the amount of water supplied to the soil due to their temporary existence are essential, because in dry areas such water uptake can exceed that of rainfall. Although several devices and methods were proposed for estimating the effective non-rainfall input into the soil, the measurement standard has not yet been established. This is mainly due to obstacles in measuring small water additions to the medium, problems with taking readings in actual soil samples and atmospheric disturbances during their course in natural environment. There still exists the need for automated devices capable of measuring water deposition on real-world soil surfaces, whose resolution is high enough to measure the non-rainfall intensity and increase rate, which are usually very low. In order to achieve the desirable resolution and accuracy of the effective non-rainfall measurements the time-domain reflectometry (TDR) technique was employed. The TDR sensor designed and made especially for the purpose was an untypical waveguide. It consisted of a base made of laminate covered with copper, which served as a bottom of a cuboidal open container in which the examined materials were placed, and a copper signal wire placed on the top of the container. The wire adhered along its entire length to the tested material in order to eliminate the formation of air gaps between the two, what enhanced the accuracy of the measurements. The tested porous materials were glass beads, rinsed sand and three soil samples, which were collected in south-eastern Poland. The diameter ranges of their constituent particles were measured with the use of the laser diffraction technique. The sensor filled with the wetted material was placed on a scale and connected to the TDR meter. The automated readings of mass and TDR time were collected simultaneously every minute. The TDR time was correlated with the mass loss, which was a measure of the amount of water that evaporated from the porous medium. Preliminary measurements demonstrated that the temperature control is dispensable for the conducted laboratory studies, because small temperature variations do not influence the results noticeably. However, field measurements would definitely require advanced temperature calibration. The aim of the research was to test the designed sensor for the effective non-rainfall intensity measurements in actual soil samples. It turned out that the device is highly sensitive to the amount of water present in the investigated medium. The geometry of the sensor allowed obtaining satisfactory resolution, which in the case of soil samples did not exceed 0.015 mm of water. Moreover, the direct translation of the TDR time into the water amount present in the examined media is straightforward and workable among the tested materials, which is the main advantage of the presented measurement method. Hence, both the applied TDR technique and the construction of the sensor proved to be adequate for the planned measurements of the effective non-rainfall intensity.

  7. Chemical-to-Electricity Carbon: Water Device.

    PubMed

    He, Sisi; Zhang, Yueyu; Qiu, Longbin; Zhang, Longsheng; Xie, Yun; Pan, Jian; Chen, Peining; Wang, Bingjie; Xu, Xiaojie; Hu, Yajie; Dinh, Cao Thang; De Luna, Phil; Banis, Mohammad Norouzi; Wang, Zhiqiang; Sham, Tsun-Kong; Gong, Xingao; Zhang, Bo; Peng, Huisheng; Sargent, Edward H

    2018-05-01

    The ability to release, as electrical energy, potential energy stored at the water:carbon interface is attractive, since water is abundant and available. However, many previous reports of such energy converters rely on either flowing water or specially designed ionic aqueous solutions. These requirements restrict practical application, particularly in environments with quiescent water. Here, a carbon-based chemical-to-electricity device that transfers the chemical energy to electrical form when coming into contact with quiescent deionized water is reported. The device is built using carbon nanotube yarns, oxygen content of which is modulated using oxygen plasma-treatment. When immersed in water, the device discharges electricity with a power density that exceeds 700 mW m -2 , one order of magnitude higher than the best previously published result. X-ray absorption and density functional theory studies support a mechanism of operation that relies on the polarization of sp 2 hybridized carbon atoms. The devices are incorporated into a flexible fabric for powering personal electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  9. Spatial and temporal trends in occurrence of emerging and legacy contaminants in the Lower Columbia River 2008-2010

    USGS Publications Warehouse

    Alvarez, David A.; Perkins, Stephanie D.; Nilsen, Elena B.; Morace, Jennifer L.

    2014-01-01

    The Lower Columbia River in Oregon and Washington, USA, is an important resource for aquatic and terrestrial organisms, agriculture, and commerce. An 86-mile stretch of the river was sampled over a 3 year period in order to determine the spatial and temporal trends in the occurrence and concentration of water-borne organic contaminants. Sampling occurred at 10 sites along this stretch and at 1 site on the Willamette River using the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) passive samplers. Contaminant profiles followed the predicted trends of lower numbers of detections and associated concentrations in the rural areas to higher numbers and concentrations at the more urbanized sites. Industrial chemicals, plasticizers, and PAHs were present at the highest concentrations. Differences in concentrations between sampling periods were related to the amount of rainfall during the sampling period. In general, water concentrations of wastewater-related contaminants decreased and concentrations of legacy contaminants slightly increased with increasing rainfall amounts.

  10. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument

    USGS Publications Warehouse

    Bargar, Timothy A.; Garrison, Virginia H.; Alvarez, David A.; Echols, Kathy

    2013-01-01

    Coral, fish, plankton, and detritus samples were collected from coral reefs in Virgin Islands National Park (VIIS) and Virgin Islands Coral Reef National Monument (VICR) to assess existing contamination levels. Passive water sampling using polar organic chemical integrative samplers (POCIS) and semi-permeable membrane devices found a few emerging pollutants of concern (DEET and galaxolide) and polynuclear aromatic hydrocarbons. Very little persistent organic chemical contamination was detected in the tissue or detritus samples. Detected contaminants were at concentrations below those reported to be harmful to aquatic organisms. Extracts from the POCIS were subjected to the yeast estrogen screen (YES) to assess potential estrogenicity of the contaminant mixture. Results of the YES (estrogen equivalency of 0.17–0.31 ng/L 17-β-estradiol) indicated a low estrogenicity likelihood for contaminants extracted from water. Findings point to low levels of polar and non-polar organic contaminants in the bays sampled within VICR and VIIS.

  11. 30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...

  12. 30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...

  13. 30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...

  14. 30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...

  15. 30 CFR 75.1101-10 - Water sprinkler systems; fire warning devices at belt drives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water sprinkler systems; fire warning devices..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1101-10 Water sprinkler systems; fire warning devices at belt drives. Each water sprinkler...

  16. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, I.M.

    A lightweight, portable suction dredge has been used for five bottom types which usually present problems to benthic investigators. Water depth ranged from 0.25 m to 5 m. By use of a 0.25 m/sup 2/ quadrat or using the suction end as a probe with the depth of penetration limited by a collar, quantitative samples were taken in coarse sand, fine flocculent mud, dense turtle grass (Thalassia testudinum), sparse turtle grass over coralline rubble (Porites sp.) and carbonate rock with an overlay of shell rubble. The samples consisted of the material retained by a collecting bag attached to the suctionmore » dredge. None of the commonly used benthic sampling devices could obtain samples at all stations.« less

  18. Filtration in the Use of Individual Water Purification Devices

    DTIC Science & Technology

    2006-03-01

    natural water pH will increase virus retention (references 14-17). One study investigating coliphage reduction by a 0.2 µm microporous filter...Filtration in the Use of Individual Water Purification Devices Technical Information Paper #31-004-0306 PURPOSE This information paper...natural waters . This paper is intended to assist the reader in evaluating the capabilities of Individual Water Purification Devices (IWPDs) using

  19. [Monitoring Water in Lubricating Oil with Min-Infrared LED].

    PubMed

    Yu, Liang-wu; Tian, Hong-xiang; Ming, Ting-feng; Yang, Kun

    2015-06-01

    A method that could be used to quantify the water concentration in ship machinery lubricating oil based on Mid-infrared LED is discussed. A Mid-infrared LED with peak emission wavelength of 2 840 nm and FWHM of 400 nm is used as the light source, the emitting light is partly absorbed by the oil sample, the remaining is received by the infrared detector. The percentage of water is determined according to the absorbance. In the experiment, a optical configuration including the transmission, absorbing and receiving of infrared light is designed, calcium fluoride wafer is used as the window, a hard metal coil with circular section is selected as the washer to get the fixed thickness of oil film accurately, a photoelectric diode with detection wavelength of 2 500-4 800 nm and response time of 10-20 ns is used as the detector of light intensity. Matching with this, a system of signal preamplifier, microcontroller-based data acquisition, storage and communication is developed. Absorbance data of six oil samples with different water mass concentration: 0, 0.062 5%, 0.125%, 0.25%, 0.375% and 0.5% is acquired through experiment. Fitting the data by the method of least squares, a linear equation in terms of absorbance and water concentration is obtained, and the determination coefficient is 0.996. Finally, in order to test the accuracy of this measurement method, using oil sample with water concentration of 0.317 5% to validate the equation, measuring the absorbance by the experimental device, the water content is calculated through the linear equation, the results show that the relative error is 2.7% between the percentage calculated and the real sample, indicating that this method can accurately measure the water concentration in the oil.

  20. Power spectrum analysis for defect screening in integrated circuit devices

    DOEpatents

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  1. Field assessment of a novel household-based water filtration device: a randomised, placebo-controlled trial in the Democratic Republic of Congo.

    PubMed

    Boisson, Sophie; Kiyombo, Mbela; Sthreshley, Larry; Tumba, Saturnin; Makambo, Jacques; Clasen, Thomas

    2010-09-10

    Household water treatment can improve the microbiological quality of drinking water and may prevent diarrheal diseases. However, current methods of treating water at home have certain shortcomings, and there is evidence of bias in the reported health impact of the intervention in open trial designs. We undertook a randomised, double-blinded, placebo-controlled trial among 240 households (1,144 persons) in rural Democratic Republic of Congo to assess the field performance, use and effectiveness of a novel filtration device in preventing diarrhea. Households were followed up monthly for 12 months. Filters and placebos were monitored for longevity and for microbiological performance by comparing thermotolerant coliform (TTC) levels in influent and effluent water samples. Mean longitudinal prevalence of diarrhea was estimated among participants of all ages. Compliance was assessed through self-reported use and presence of water in the top vessel of the device at the time of visit. Over the 12-month follow-up period, data were collected for 11,236 person-weeks of observation (81.8% total possible). After adjusting for clustering within the household, the longitudinal prevalence ratio of diarrhoea was 0.85 (95% confidence interval: 0.61-1.20). The filters achieved a 2.98 log reduction in TTC levels while, for reasons that are unclear, the placebos achieved a 1.05 log reduction (p<0.0001). After 8 months, 68% of intervention households met the study's definition of current users, though most (73% of adults and 95% of children) also reported drinking untreated water the previous day. The filter maintained a constant flow rate over time, though 12.4% of filters were damaged during the course of the study. While the filter was effective in improving water quality, our results provide little evidence that it was protective against diarrhea. The moderate reduction observed nevertheless supports the need for larger studies that measure impact against a neutral placebo. Current Controlled Trials ISRCTN03844341.

  2. Main devices design of submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-11-01

    In the process of offshore oil production, in order to thoroughly separate oil from produced fluid, solve the environment problem caused by oily sewage, and improve the economic benefit of offshore drilling, from the perspective of new oil-water separation, a set of submarine oil-water separation devices were designed through adsorption and desorption mechanism of the polymer materials for crude oil in this paper. The paper introduces the basic structure of gas-solid separation device, periodic separation device and adsorption device, and proves the rationality and feasibility of this device.

  3. Development of the laboratory prototype "CavyPool" for assessing treatments and materials for swimming pools.

    PubMed

    Valeriani, F; Gianfranceschi, G; Vitali, M; Protano, C; Romano Spica, V

    2017-01-01

    Hygiene and surveillance in swimming pools are established by WHO Guidelines and national laws. Progress in water management and pool construction is revolutionizing the field, introducing new materials, systems, disinfection procedures or monitoring markers. Innovation advances challenge the upgrading of safety and quality in pools and the appropriate implementation of guidelines. In order to provide a device for laboratory test, a prototype was realized and applied to study and compare swimming pool materials and treatments. A pool scale-model was engineered and evaluated by computational fluid dynamics algorithms. An automated real time monitoring assured steady state. Critical control points along the water circuit were made accessible to allow the placing of different biocides or water sampling. Simulations were safely performed in a standard hood. Materials for pool surfaces and pipelines were evaluated for biofilm formation under different disinfection conditions. Adherent microorganisms were assayed by mfDNA analysis using real time PCR. The prototype reached the steady state within 5-25 hours under different conditions, showing chemical, physical and fluid-dynamic stability. A method was optimized for testing materials showing their different response to biofilm induction. Several innovative PVC samples displayed highest resistance to bacterial adhesion. A device and method was developed for testing swimming pool hygienic parameters in laboratory. It allowed to test materials for pools hygiene and maintenance, including biofilm formation. It can be applied to simulate contaminations under different water treatments or disinfection strategies. It may support technical decisions and help policymakers in acquiring evidences for comparing or validating innovative solutions.

  4. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  5. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  6. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  7. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  8. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  9. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Water spray devices; capacity; water supply; minimum requirements. 75.1107-7 Section 75.1107-7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and...

  10. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Criteria and procedures for public water systems using point-of-entry devices. 141.100 Section 141.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Use of Non-Centralized Treatment Devices §...

  11. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yijia; Zeinhom, Mohamed M. A.; Yang, Mingming

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B,more » for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.« less

  12. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device.

    PubMed

    Oakley, Jennifer A; Shaw, Kirsty J; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-06-07

    A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/elution system were illustrated by combining DNA extraction and gene amplification using the polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported within pre-loaded gels that allow the reagents to be stored at 4 degrees C for up to four weeks in the microfluidic device. When carrying out an analysis the crude sample only needed to be hydrodynamically introduced into the device which was connected to an external computer controlled power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash unwanted debris away from the sample by EOP (100 V cm(-1) for 5 min). The retained DNA was subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using an electric field of 100 V cm(-1) for 5 min, and transferred into the PCR reagent containing gel. The eluted DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-contained microfluidic device could be realised for DNA sample clean up and amplification, using a simple pumping and on-chip reagent storage methodology.

  13. A sampler for capturing larval and juvenile Atlantic menhaden

    USGS Publications Warehouse

    Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.

    2005-01-01

    Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.

  14. Can soda fountains be recommended in hospitals?

    PubMed

    Chaberny, Iris F; Kaiser, Peter; Sonntag, Hans-Günther

    2006-09-01

    Mineral water (soda water) is very popular in Germany. Therefore, soda fountains were developed as alternatives to the traditional deposit bottle system. Nowadays, different systems of these devices are commercially available. For several years, soda fountains produced by different companies have been examined at the University Hospital of Heidelberg. In 1998, it was possible for the first time to observe and evaluate one of these systems over a period of 320 days in a series of microbiological examinations. The evaluation was implemented on the basis of the German drinking water regulation (Anonymous, 1990. Gesetz über Trinkwasser und Wasser für Lebensmittelbetriebe (Trinkwasserverordnung - TrinkwV) vom 12. Dezember 1990. Bundesgesetzblatt 66, 2613ff). Initially, the bacteria counts exceeded the reference values imposed by the German drinking water regulation in almost 50% of the analyses. Pseudomonas aeruginosa was also detected in almost 38% of the samples. After a re-arrangement of the disinfection procedure and the removal of the charcoal filter, Pseudomonas aeruginosa was not detectable any more. However, the bacteria counts still frequently exceeded the reference values of the German drinking water regulation. Following our long-term analysis, we would not recommend soda fountains in high-risk areas of hospitals. If these devices are to be used in hospitals, the disinfection procedures should be executed in weekly or fortnightly intervals and the water quality should be examined periodically.

  15. A 40-foot static cone penetrometer

    USGS Publications Warehouse

    Beard, R.M.; Lee, H.J.

    1982-01-01

    The Navy needs a lightweight device for testing seafloor soils to sub bottom depths of 12 meters in water depths to 60 meters. To meet this need a quasistatic cone penetration device that uses water jetting to reduce friction on the cone rod has been developed. This device is called the XSP-40. The 5-ton XSP-40 stands 15 meters tall and pushes a standard 5-ton cone into the seafloor. It is remotely controlled with an electronic unit on the deck of the support vessel. All cone outputs are recorded directly as a function of penetration depth with a strip chart recorder. A full suite of gauges is provided. on the electronic unit for monitoring the XSP-40's performance during a test .. About 40 penetration tests have been performed with very good success. The XSP-40 was field tested in Norton Sound, off the west coast of Alaska. The general objective, in addition to evaluation of the device, was to gather geotechnical information on sediments that may be involved in processes potentially hazardous to offshore development. Four example penetration records are presented from gas charged sediment zones and areas near the Yukon River delta. In general it was determined that soil classification from cone data agreed well with classifications from core samples. Relative densities of the silt-sand to sandy-silt soils were usually very high. The significance of these results are discussed with respect to storm wave, liquefaction. It is concluded that the XSP-40 is a durable and reliable piece of equipment capable of achieving penetration beyond that possible when not using the water jet system.

  16. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  17. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  18. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  19. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  20. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  1. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  2. Efficiencies of Tritium (3H) bubbling systems.

    PubMed

    Duda, Jean-Marie; Le Goff, Pierre; Leblois, Yoan; Ponsard, Samuel

    2018-09-01

    Bubbling systems are among the devices most used by nuclear operators to measure atmospheric tritium activity in their facilities or the neighbouring environment. However, information about trapping efficiency and bubbling system oxidation is not accessible and/or, at best, only minimally supported by demonstrations in actual operating conditions. In order to evaluate easily these parameters and thereby meet actual normative and regulatory requirements, a statistical study was carried out over 2000 monitoring records from the CEA Valduc site. From this data collection obtained over recent years of monitoring the CEA Valduc facilities and environment, a direct relation was highlighted between the 3H-samplers trapping efficiency of tritium as tritiated water and the sampling time and conditions of use: temperature and atmospheric moisture. It was thus demonstrated that this efficiency originated from two sources. The first one is intrinsic to the bubbling system operating parameters and the sampling time. That part applies equally to all four bubblers. The second part, however, is specific to the first bubbler. In essence, it depends on the sampling time and the sampled air characteristics. It was also highlighted that the water volume variation in the first bubbler, between the beginning and the end of the sampling process, is directly related to the average water concentration of the sampled air. In this way, it was possible to model the variations in trapping efficiency of the 3H-samplers relative to the sampling time and the water volume variation in the first bubbler. This model makes it possible to obtain the quantities required to comply with the current standards governing the monitoring of radionuclides in the environment and to associate an uncertainty concerning the measurements as well as the sampling parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. 10 CFR 32.101 - Schedule B-prototype tests for luminous safety devices for use in aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... within the device, or water entering the device, shall be considered leakage. (f) Observations. After... inches of water for 24 hours and shall show no visible evidence of water entry. Absolute pressure of the air above the water shall then be reduced to 1 inch of mercury. Lowered pressure shall be maintained...

  4. Treatability of organic matter derived from surface and subsurface waters of drinking water catchments.

    PubMed

    Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary

    2016-02-01

    The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cavitation Inception in Separated Flows.

    DTIC Science & Technology

    1981-12-01

    measured data. Keller (1972, 1973) determined the nuclei population by using a single particle light scattering device (the sample volume was... computations of the average pressure coefficient. The amount of air dissolved in the water varied from 10 to 11 ppm ( molar ) and was measured with a Van Slyke...fluctuating pressures were also measured. .-The conditions for cavitation inception and desinence were determined and several holograms were recorded

  6. Instrumentation and vehicle platform of a miniaturized submersible for exploration of terrestrial and extraterrestrial aqueous environments

    NASA Astrophysics Data System (ADS)

    Jonsson, Jonas; Sundqvist, Johan; Nguyen, Hugo; Berglund, Martin; Ogden, Sam; Palmer, Kristoffer; Smedfors, Katarina; Johansson, Linda; Hjort, Klas; Thornell, Greger

    2012-10-01

    An example of an extraterrestrial environment likely to support life is the vast liquid body believed to hide underneath the frozen crust of Jupiter's moon Europa. The hypothetical exploration of this, as well as the more accessible subglacial lakes on Earth, has been used as model applications for the development of a heavily miniaturized, yet qualified, submersible with the potential to be deployable either in itself through a long and narrow borehole or as the daughter craft of an ice-penetrating cryobot. Onboard the submersible, which is only 20 cm in length and 5 cm in diameter, accommodation of a versatile set of sensors and instruments capable of characterizing and imaging the surroundings, and even collecting water samples with microorganisms for return, is facilitated through the use of miniaturization technologies. For instance, together with a small camera, a laser-based, microoptic device enables the 3-D reconstruction of imaged objects for topographical measurements. As a complement, when the water is turbid or a longer range is wanted, the world's smallest side-scanning sonar, exhibiting centimeter resolution and a range of over 30 m, has been developed. The work on miniaturizing a CTD, which is a widely employed oceanographic instrument used to measure and correlate conductivity, temperature, and depth, has commenced. Furthermore, a device employing acoustics to trap microscopic particles and organisms, and, by this, enrich water samples, is under development. To ensure that the gathered samples are pristine until analyzed at the end of a mission, the device is equipped with high-pressure, latchable valves. Remote operation and transfer of measurement data and images, or even live streaming of video, is made possible through a kilometer-long fiber optic cable being reeled out from the vehicle underway and tethering it to a terminal. To extend the missions, the same fiber shall also be capable of charging the onboard batteries. In this paper, the vehicle and its subsystems are summarized. Subsystems essential for the vehicle's operation, e.g., hull structure, communication and power management, are treated separately from those of more mission-specific nature, like the instruments mentioned above.

  7. Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns.

    PubMed

    Kiplagat, Isaac K; Kubán, Petr; Pelcová, Pavlína; Kubán, Vlastimil

    2010-07-30

    Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5kg and it can be continuously operated for more than 8h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na(+), NH(4)(+), K(+), Cs(+), Ca(2+), Mg(2+), transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na(+) and NH(4)(+) cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30min using a 1.75mM pyridine-2,6-dicarboxylic acid and 3mM 18-crown-6 eluent with excellent repeatability (below 2%) and detection limits in the low micromolar range. The analysis of field samples is demonstrated; the concentrations of common inorganic cations in river water, mineral water and snow samples were determined.

  8. In-Syringe Micro Solid-Phase Extraction Method for the Separation and Preconcentration of Parabens in Environmental Water Samples.

    PubMed

    Mashile, Geaneth Pertunia; Mpupa, Anele; Nomngongo, Philiswa Nosizo

    2018-06-14

    In this study, a simple, rapid and effective in-syringe micro-solid phase extraction (MSPE) method was developed for the separation and preconcetration of parabens (methyl, ethyl, propyl and butyl paraben) in environmental water samples. The parabens were determined and quantified using high performance liquid chromatography and a photo diode array detector (HPLC-PDA). Chitosan-coated activated carbon (CAC) was used as the sorbent in the in-syringe MSPE device. A response surface methodology based on central composite design was used for the optimization of factors (eluent solvent type, eluent volume, number of elution cycles, sample volume, sample pH) affecting the extraction efficiency of the preconcentration procedure. The adsorbent used displayed excellent absorption performance and the adsorption capacity ranged from 227⁻256 mg g −1 . Under the optimal conditions the dynamic linear ranges for the parabens were between 0.04 and 380 µg L −1 . The limits of detection and quantification ranged from 6⁻15 ng L −1 and 20⁻50 ng L −1 , respectively. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were below 5%. Furthermore, the in-syringe MSPE/HPLC procedure was validated using spiked wastewater and tap water samples and the recoveries ranged between from 96.7 to 107%. In conclusion, CAC based in-syringe MSPE method demonstrated great potential for preconcentration of parabens in complex environmental water.

  9. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine

    PubMed Central

    2012-01-01

    Background Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. Methods This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. Results The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Conclusions Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended. PMID:22243625

  10. Exposure assessment of radon in the drinking water supplies: a descriptive study in Palestine.

    PubMed

    Al Zabadi, Hamzeh; Musmar, Samar; Issa, Shaza; Dwaikat, Nidal; Saffarini, Ghassan

    2012-01-13

    Radon gas is considered as a main risk factor for lung cancer and found naturally in rock, soil, and water. The objective of this study was to determine the radon level in the drinking water sources in Nablus city in order to set up a sound policy on water management in Palestine. This was a descriptive study carried out in two phases with a random sampling technique in the second phase. Primarily, samples were taken from 4 wells and 5 springs that supplied Nablus city residents. For each source, 3 samples were taken and each was analyzed in 4 cycles by RAD 7 device manufactured by Durridge Company. Secondly, from the seven regions of the Nablus city, three samples were taken from the residential tap water of each region. Regarding the old city, ten samples were taken. Finally, the mean radon concentration value for each source was calculated. The mean (range) concentration of radon in the main sources were 6.9 (1.5-23.4) Becquerel/liter (Bq/L). Separately, springs and wells' means were 4.6 Bq/L and 9.5 Bq/L; respectively. For the residential tap water in the 7 regions, the results of the mean (range) concentration values were found to be 1.0 (0.9-1.3) Bq/L. For the old city, the mean (range) concentration values were 2.3 (0.9-3.9) Bq/L. Except for Al-Badan well, radon concentrations in the wells and springs were below the United State Environmental Protection Agency maximum contaminated level (U.S EPA MCL). The level was much lower for tap water. Although the concentration of radon in the tap water of old city were below the MCL, it was higher than other regions in the city. Preventive measures and population awareness on radon's exposure are recommended.

  11. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  12. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants.

    PubMed

    Perron, Monique M; Burgess, Robert M; Suuberg, Eric M; Cantwell, Mark G; Pennell, Kelly G

    2013-10-01

    Measuring dissolved concentrations of emerging contaminants, such as polybrominated diphenyl ethers (PBDEs) and triclosan, can be challenging due to their physicochemical properties resulting in low aqueous solubilities and association with particles. Passive sampling methods have been applied to assess dissolved concentrations in water and sediments primarily for legacy contaminants. Although the technology is applicable to some emerging contaminants, the use of passive samplers with emerging contaminants is limited. In the present study, the performance of 3 common passive samplers was evaluated for sampling PBDEs and triclosan. Passive sampling polymers included low-density polyethylene (PE) and polyoxymethylene (POM) sheets, and polydimethylsiloxane (PDMS)-coated solid-phase microextraction (SPME) fibers. Dissolved concentrations were calculated using measured sampler concentrations and laboratory-derived partition coefficients. Dissolved tri-, tetra-, and pentabrominated PBDE congeners were detected at several of the study sites at very low pg/L concentrations using PE and POM. Calculated dissolved water concentrations of triclosan ranged from 1.7 ng/L to 18 ng/L for POM and 8.8 ng/L to 13 ng/L for PE using performance reference compound equilibrium adjustments. Concentrations in SPME were not reported due to lack of detectable chemical in the PDMS polymer deployed. Although both PE and POM were found to effectively accumulate emerging contaminants from the water column, further research is needed to determine their utility as passive sampling devices for emerging contaminants. © 2013 SETAC.

  13. A wireline piston core barrel for sampling cohesionless sand and gravel below the water table

    USGS Publications Warehouse

    Zapico, Michael M.; Vales, Samuel; Cherry, John A.

    1987-01-01

    A coring device has been developed to obtain long and minimally disturbed samples of saturated cohesionless sand and gravel. The coring device, which includes a wireline and piston, was developed specifically for use during hollow-stem auger drilling but it also offers possibilities for cable tool and rotary drilling. The core barrel consists of an inner liner made of inexpensive aluminum or plastic tubing, a piston for core recovery, and an exterior steel housing that protects the liner when the core barrel is driven into the aquifer. The core barrel, which is approximately 1.6m (5.6 feet) long, is advanced ahead of the lead auger by hammering at the surface on drill rods that are attached to the core barrel. After the sampler has been driven 1.5m (5 feet), the drill rods are detached and a wireline is used to hoist the core barrel, with the sample contained in the aluminum or plastic liner, to the surface. A vacuum developed by the piston during the coring operation provides good recovery of both the sediment and aquifer fluids contained in the sediment. In the field the sample tubes can be easily split along their length for on-site inspection or they can be capped with the pore water fluids inside and transported to the laboratory. The cores are 5cm (2 inches) in diameter by 1.5m (5 feet) long. Core acquisition to depths of 35m (115 feet), with a recovery greater than 90 percent, has become routine in University of Waterloo aquifer studies. A large diameter (12.7cm [5 inch]) version has also been used successfully. Nearly continuous sample sequences from sand and gravel aquifers have been obtained for studies of sedimentology, hydraulic conductivity, hydrogeochemistry and microbiology.

  14. Removal of Escherichia coli and Faecal Coliforms from Surface Water and Groundwater by Household Water Treatment Devices/Systems: A Sustainable Solution for Improving Water Quality in Rural Communities of the Southern African Development Community Region

    PubMed Central

    Mwabi, Jocelyne K.; Mamba, Bhekie B.; Momba, Maggy N. B.

    2012-01-01

    There is significant evidence that household water treatment devices/systems (HWTS) are capable of dramatically improving microbially contaminated water quality. The purpose of this study was to examine five filters [(biosand filter-standard (BSF-S); biosand filter-zeolite (BSF-Z); bucket filter (BF); ceramic candle filter (CCF); and silver-impregnated porous pot (SIPP)] and evaluate their ability to improve the quality of drinking water at the household level. These HWTS were manufactured in the workshop of the Tshwane University of Technology and evaluated for efficiency to remove turbidity, faecal coliforms and Escherichia coli from multiple water source samples, using standard methods. The flow rates ranged from 0.05 L/h to 2.49 L/h for SIPP, 1 L/h to 4 L/h for CCF, 0.81 L/h to 6.84 L/h for BSF-S, 1.74 L/h to 19.2 L/h and 106.5 L/h to 160.5 L/h for BF The turbidity of the raw water samples ranged between 2.17 and 40.4 NTU. The average turbidity obtained after filtration ranged from 0.6 to 8 NTU (BSF-S), 1 to 4 NTU (BSF-Z), 2 to 11 NTU (BF), and from 0.6 to 7 NTU (CCF) and 0.7 to 1 NTU for SIPP. The BSF-S, BSF-Z and CCF removed 2 to 4 log10 (99% to 100%) of coliform bacteria, while the BF removed 1 to 3 log (90% to 99.9%) of these bacteria. The performance of the SIPP in removing turbidity and indicator bacteria (>5 log10, 100%) was significantly higher compared to that of the other HWTS (p < 0.05). The findings of this study indicate that the SIPP can be an effective and sustainable HWTS for the Southern African Development Community (SADC) rural communities, as it removed the total concentration of bacteria from test water, can be manufactured using locally available materials, and is easy to operate and to maintain. PMID:22470284

  15. The emission potential of different land use patterns for the occurrence of coliphages in surface water.

    PubMed

    Franke, Christiane; Rechenburg, Andrea; Baumanns, Susanne; Willkomm, Marlene; Christoffels, Ekkehard; Exner, Martin; Kistemann, Thomas

    2009-05-01

    Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.

  16. A sampling device for the fauna of storm water catch basins

    USGS Publications Warehouse

    Butler, M.; Casagrande, R.; LeBrun, R.; Ginsberg, H.; Gettman, A.

    2007-01-01

    Storm water drainage catch basins provide habitat to a variety of different aquatic organisms including arthropods, molluscs and annelid worms. Arthropods such as mosquitoes are known to use these environments as larval habitat. Because of health concerns, catch basins are often targeted for mosquito control exposing all inhabitants to pesticides such as methoprene or BTI. In this paper we describe a sampler that we used to evaluate catch basin communities in southern Rhode Island over a six month period. We also examine its efficacy and consistency. We found that the sampler effectively estimated organism abundances.

  17. The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II).

    PubMed

    Jayawardane, B Manori; Coo, Lilibeth dlC; Cattrall, Robert W; Kolev, Spas D

    2013-11-25

    A disposable paper-based sensor (PBS) is described for the determination of Cu(II) in natural and waste waters at approximately 2 cents per measurement. The device makes use of a polymer inclusion membrane (PIM) to provide the selectivity for Cu(II). The PIM consists of 40 wt% di(2-ethlyhexyl) phosphoric acid (D2EHPA) as the carrier, 10 wt% dioctyl phthalate (DOP) as a plasticizer, 49.5 wt% poly(vinyl chloride) (PVC) as the base polymer and 0.5 wt% (mm(-1)) 1-(2'-pyridylazo)-2-naphthol (PAN) as the colourimetric reagent. High selectivity under mildly acidic conditions (HCl, pH 2.0) is achieved for Cu(II) in the presence of frequently encountered metal ions in natural and waste waters such as Fe(III), Al(III), Zn(II), Cd(II), Pb(II), Ca(II), Mg(II), and Ni(II). The laminated PBS consists of a PIM sensing disc (2mm in diameter) attached to the centre of a circular hydrophilic zone (7 mm in diameter) pretreated with 0.01 M HCl. This hydrophilic zone separates the sample port (a circular hole in the plastic cover) from the PIM sensing disc. After introducing 19.2 μL of a sample/standard solution to the sample port, Cu(II) diffuses across the hydrophilic zone and is extracted into the PIM disc as the Cu(II)-D2EHPA complex which subsequently reacts with PAN to produce the red-purple coloured Cu(II)-PAN complex. The colour intensity of the PIM disc is measured 15 min after sample/standard introduction by scanning using a flatbed scanner. Under optimal conditions the device is characterized by a limit of detection (LOD) and limit of quantitation (LOQ) of 0.06 and 0.21 mg L(-1) Cu(II), respectively, with two linear ranges together covering the Cu(II) concentration range from 0.1 to 30.0 mg L(-1). The PBS was successfully applied to the determination of Cu(II) in hot tap water and mine tailings water. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. 7 CFR 58.227 - Sampling device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sampling device. 58.227 Section 58.227 Agriculture....227 Sampling device. If automatic sampling devices are used, they shall be constructed in such a.... The type of sampler and the sampling procedure shall be as approved by the Administrator. ...

  19. 7 CFR 58.227 - Sampling device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Sampling device. 58.227 Section 58.227 Agriculture....227 Sampling device. If automatic sampling devices are used, they shall be constructed in such a.... The type of sampler and the sampling procedure shall be as approved by the Administrator. ...

  20. Water monitoring by optofluidic Raman spectroscopy for in situ applications.

    PubMed

    Persichetti, Gianluca; Bernini, Romeo

    2016-08-01

    The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Determination of bioavailable contaminants in the lower Missouri River following the flood of 1993

    USGS Publications Warehouse

    Petty, J.D.; Poulton, B.C.; Charbonneau, C.S.; Huckins, J.N.; Jones, S.B.; Cameron, J.T.; Prest, H.F.

    1998-01-01

    The semipermeable membrane device (SPMD) technology was employed to determine the presence of bioavailable organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polyaromatic hydrocarbons (PAHs)in the water of the main stem of the lower Missouri River and three of its tributaries. The SPMDs were deployed in 1994 following the extensive flood of 1993. Specifically, the SPMDs were deployed for 28 days at Wilson State Park, IA; Nebraska City, NE; Parkville, MO; the Kansas River in Kansas City, KS; Napoleon, MO; the Grand River; Glasgow, MO; the Missouri River upstream from the confluence of the Gasconade River; the Gasconade River, and Hermann, MO. Contaminant residues were found at all sites and at higher concentrations than found in the earlier pre-flood sampling. For example, in the present study, dieldrin was found to range from a low of 110 ng/sample in the Gasconade River to a high of 2000 ng/sample at Glasgow, while in the pre- flood sampling, dieldrin ranged from a low of 64 ng/sample at Sioux City to a high of 800 ng/sample at Glasgow. In contrast to the 1992 sampling, residues of PCBs were found at all 1994 sampling sites except the Gasconade River. Samples from Wilson State Park and the Grand River had 3100 and 2700 ng of PCBs/sample, respectively. These two concentrations are about an order of magnitude higher than the older sites and are likely indicative of point source inputs. PAHs were present in SPMD samples from three sites near Kansas City. The contaminant residues sequestered by the SPMDs represent an estimation of the bioavailable (via respiration) contaminants present in the main stem of the lower Missouri River and three of its major tributaries following an extensive flood event.The semipermeable membrane device (SPMD) technology was employed to determine the presence of bioavailable organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons in the water of the main stem of the lower Missouri River and three of its tributaries. The SPMD were deployed in 1994 following an extensive flood in 1993. Contaminants residues were found at all sites and at higher concentrations than found in the earlier pre-flood sampling.

  2. Microfluidic Extraction of Biomarkers using Water as Solvent

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Manohara, Harish; Chattopadhyay, Goutam; Mehdi, Imran

    2009-01-01

    A proposed device, denoted a miniature microfluidic biomarker extractor (mu-EX), would extract trace amounts of chemicals of interest from samples, such as soils and rocks. Traditionally, such extractions are performed on a large scale with hazardous organic solvents; each solvent capable of dissolving only those molecules lying within narrow ranges of specific chemical and physical characteristics that notably include volatility, electric charge, and polarity. In contrast, in the mu-EX, extractions could be performed by use of small amounts (typically between 0.1 and 100 L) of water as a universal solvent. As a rule of thumb, in order to enable solvation and extraction of molecules, it is necessary to use solvents that have polarity sufficiently close to the polarity of the target molecules. The mu-EX would make selection of specific organic solvents unnecessary, because mu-EX would exploit a unique property of liquid water: the possibility of tuning its polarity to match the polarity of organic solvents appropriate for extraction of molecules of interest. The change of the permittivity of water would be achieved by exploiting interactions between the translational states of water molecules and an imposed electromagnetic field in the frequency range of 300 to 600 GHz. On a molecular level, these interactions would result in disruption of the three-dimensional hydrogen-bonding network among liquid-water molecules and subsequent solvation and hydrolysis of target molecules. The mu-EX is expected to be an efficient means of hydrolyzing chemical bonds in complex macromolecules as well and, thus, enabling analysis of the building blocks of these complex chemical systems. The mu-EX device would include a microfluidic channel, part of which would lie within a waveguide coupled to an electronically tuned source of broad-band electromagnetic radiation in the frequency range from 300 to 600 GHz (see figure). The part of the microfluidic channel lying in the waveguide would constitute an interaction volume. The dimensions of the interaction volume would be chosen in accordance with the anticipated amount of solid sample material needed to ensure extraction of sufficient amount of target molecules for detection and analysis. By means that were not specified at the time of reporting the information for this article, the solid sample material would be placed in the interaction volume. Then the electromagnetic field would be imposed within the waveguide and water would be pumped through the interaction volume to effect the extraction.

  3. Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.

    2017-08-01

    In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.

  4. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water.

    PubMed

    Caetano, F R; Carneiro, E A; Agustini, D; Figueiredo-Filho, L C S; Banks, C E; Bergamini, M F; Marcolino-Junior, L H

    2018-01-15

    Microfluidic devices constructed using low cost materials presents as alternative for conventional flow analysis systems because they provide advantages as low consumption of reagents and samples, high speed of analysis, possibility of portability and the easiness of construction and maintenance. Herein, is described for the first time the use of an electrochemical biosensor for phenol detection combined with a very simple and efficient microfluidic device based on commercial textile threads. Taking advantages of capillary phenomena and gravity forces, the solution transportation is promoted without any external forces or injection pump. Screen printed electrodes were modified with carbon nanotubes/gold nanoparticles followed by covalent binding of tyrosinase. After the biosensor electrochemical characterization by cyclic voltammetry technique, the optimization of relevant parameters such as pH, potential of detection and linear range for the biosensor performance was carried out; the system was evaluated for analytical phenol detection presenting limit of detection and limit of quantification 2.94nmolL -1 and 8.92nmolL -1 respectively. The proposed system was applied on phenol addition and recovery studies in drinking water, obtaining recoveries rates between 90% and 110%. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mycobacterium chimaera Outbreak Associated With Heater-Cooler Devices: Piecing the Puzzle Together.

    PubMed

    Sommerstein, Rami; Schreiber, Peter W; Diekema, Daniel J; Edmond, Michael B; Hasse, Barbara; Marschall, Jonas; Sax, Hugo

    2017-01-01

    An outbreak of invasive Mycobacterium chimaera infections associated with heater-cooler devices (HCDs) has now affected patients in several countries on different continents. Clinical infections are characterized by delayed diagnosis, inadequate treatment response to antimicrobial agents, and poor prognosis. Outbreak investigators found M. chimaera in HCD water circuits and air samples while HCDs were running, suggesting that transmission from the HCD to the surgical site occurs via the airborne route. New HCDs at the manufacturing site were also contaminated with M. chimaera, and recent whole-genome sequencing data suggest a point source. Some guidance on screening for M. chimaera colonization in HCD water and exhaust air is available. In contrast, reliable disinfection procedures are not well described, and it is not yet known whether eradication of M. chimaera from a contaminated HCD can be achieved. Meanwhile, strict separation of the HCD from operating room air is necessary to ensure patient safety, and these efforts may require engineering solutions. While our understanding of the causes and the extent of the M. chimaera outbreak is growing, several aspects of patient management, device handling, and risk mitigation still require clarification. Infect Control Hosp Epidemiol 2016;1-6.

  6. A Multifunctional Bimetallic Molecular Device for Ultrasensitive Detection, Naked-Eye Recognition, and Elimination of Cyanide Ions.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Wong, Wing-Leung; Gong, Cheng-Bin

    2015-09-07

    A new bimetallic Fe(II) -Cu(II) complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked-eye recognition at the parts-per-million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high-selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN(-) , SO4 (2-) , HCO3 (-) , HPO4 (2-) , N3 (-) , CH3 COO(-) , NCS(-) , NO3 (-) , and Cl(-) ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A prototype for communitising technology: Development of a smart salt water desalination device

    NASA Astrophysics Data System (ADS)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  8. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    PubMed

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.

  9. External reflection FTIR of peptide monolayer films in situ at the air/water interface: experimental design, spectra-structure correlations, and effects of hydrogen-deuterium exchange.

    PubMed Central

    Flach, C R; Brauner, J W; Taylor, J W; Baldwin, R C; Mendelsohn, R

    1994-01-01

    A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution. PMID:7919013

  10. Discreet passive explosive detection through 2-sided waveguided fluorescence

    DOEpatents

    Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK

    2011-10-18

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  11. Advanced microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.

    1980-01-01

    A flight certified assembly identified as a Microbial Check Valve (MCV) was developed and tested. The MCV is a canister packed with an iodinated anionic exchange resin. The device is used to destroy organisms in a water stream as the water passes through the device. The device is equally effective for fluid flow in either direction and its primary method of organism removal is killing rather than filtering. The MCV was successfully developed for the space shuttle to: disinfect fuel cell water; and prevent back contamination of the stored potable water supply. One version of the device consists of a high residual iodinated resin bed that imparts approximately 2 ppm of iodine to the fuel cell water as it flows to the potable water tanks. A second version of the device consists of a low residual iodinated resin bed. One of these low residual beds is located at each use port in the potable water system for the dual purpose of removing some iodine from the potable water as it is dispensed and also to prevent back contamination of the potable supply.

  12. 40 CFR 60.256 - Continuous monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device is to be certified by the manufacturer to be accurate within ±1 inch water gauge. (B) A monitoring device for the continuous measurement of the water supply pressure to the control equipment. The monitoring device is to be certified by the manufacturer to be accurate within ±5 percent of design water...

  13. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720 Water...

  14. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720 Water...

  15. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720 Water...

  16. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720 Water...

  17. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720 Water...

  18. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water purification system for hemodialysis. 876.5665 Section 876.5665 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a)...

  19. 21 CFR 868.1100 - Arterial blood sampling kit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arterial blood sampling kit. 868.1100 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1100 Arterial blood sampling kit. (a) Identification. An arterial blood sampling kit is a device, in kit form, used to obtain arterial blood samples...

  20. 21 CFR 868.1100 - Arterial blood sampling kit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Arterial blood sampling kit. 868.1100 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1100 Arterial blood sampling kit. (a) Identification. An arterial blood sampling kit is a device, in kit form, used to obtain arterial blood samples...

  1. 21 CFR 868.1100 - Arterial blood sampling kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Arterial blood sampling kit. 868.1100 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1100 Arterial blood sampling kit. (a) Identification. An arterial blood sampling kit is a device, in kit form, used to obtain arterial blood samples...

  2. 21 CFR 868.1100 - Arterial blood sampling kit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Arterial blood sampling kit. 868.1100 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1100 Arterial blood sampling kit. (a) Identification. An arterial blood sampling kit is a device, in kit form, used to obtain arterial blood samples...

  3. 21 CFR 868.1100 - Arterial blood sampling kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Arterial blood sampling kit. 868.1100 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1100 Arterial blood sampling kit. (a) Identification. An arterial blood sampling kit is a device, in kit form, used to obtain arterial blood samples...

  4. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    USGS Publications Warehouse

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.

    1997-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  5. Artificial leaf device for solar fuel production.

    PubMed

    Amao, Yutaka; Shuto, Naho; Furuno, Kana; Obata, Asami; Fuchino, Yoshiko; Uemura, Keiko; Kajino, Tsutomu; Sekito, Takeshi; Iwai, Satoshi; Miyamoto, Yasushi; Matsuda, Masatoshi

    2012-01-01

    Solar fuels, such as hydrogen gas produced from water and methanol produced from carbon dioxide reduction by artificial photosynthesis, have received considerable attention. In natural leaves the photosynthetic proteins are well-organized in the thylakoid membrane. To develop an artificial leaf device for solar low-carbon fuel production from CO2, a chlorophyll derivative chlorin-e6 (Chl-e6; photosensitizer), 1-carboxylundecanoyl-1'-methyl-4,4'-bipyrizinium bromide, iodide (CH3V(CH2)9COOH; the electron carrier) and formate dehydrogenase (FDH) (the catalyst) immobilised onto a silica-gel-based thin layer chromatography plate (the Chl-V-FDH device) was investigated. From luminescence spectroscopy measurements, the photoexcited triplet state of Chl-e6 was quenched by the CH3V(CH2)9COOH moiety on the device, indicating the photoinduced electron transfer from the photoexcited triplet state of Chl-e6 to the CH3V(CH2)9COOH moiety. When the CO2-saturated sample solution containing NADPH (the electron donor) was flowed onto the Chl-V-FDH device under visible light irradiation, the formic acid concentration increased with increasing irradiation time.

  6. Soft Lithographic Procedure for Producing Plastic Microfluidic Devices with View-ports Transparent to Visible and Infrared Light.

    PubMed

    Suryana, Mona; Shanmugarajah, Jegan V; Maniam, Sivakumar M; Grenci, Gianluca

    2017-08-17

    Infrared (IR) spectro-microscopy of living biological samples is hampered by the absorption of water in the mid-IR range and by the lack of suitable microfluidic devices. Here, a protocol for the fabrication of plastic microfluidic devices is demonstrated, where soft lithographic techniques are used to embed transparent Calcium Fluoride (CaF2) view-ports in connection with observation chamber(s). The method is based on a replica casting approach, where a polydimethylsiloxane (PDMS) mold is produced through standard lithographic procedures and then used as the template to produce a plastic device. The plastic device features ultraviolet/visible/infrared (UV/Vis/IR) -transparent windows made of CaF2 to allow for direct observation with visible and IR light. The advantages of the proposed method include: a reduced need for accessing a clean room micro-fabrication facility, multiple view-ports, an easy and versatile connection to an external pumping system through the plastic body, flexibility of the design, e.g., open/closed channels configuration, and the possibility to add sophisticated features such as nanoporous membranes.

  7. Characterization and detection of acceleration-induced cavitation in soft materials using a drop-tower-based integrated system

    NASA Astrophysics Data System (ADS)

    Kang, Wonmo; Chen, YungChia; Bagchi, Amit; O'Shaughnessy, Thomas J.

    2017-12-01

    The material response of biologically relevant soft materials, e.g., extracellular matrix or cell cytoplasm, at high rate loading conditions is becoming increasingly important for emerging medical implications including the potential of cavitation-induced brain injury or cavitation created by medical devices, whether intentional or not. However, accurately probing soft samples remains challenging due to their delicate nature, which often excludes the use of conventional techniques requiring direct contact with a sample-loading frame. We present a drop-tower-based method, integrated with a unique sample holder and a series of effective springs and dampers, for testing soft samples with an emphasis on high-rate loading conditions. Our theoretical studies on the transient dynamics of the system show that well-controlled impacts between a movable mass and sample holder can be used as a means to rapidly load soft samples. For demonstrating the integrated system, we experimentally quantify the critical acceleration that corresponds to the onset of cavitation nucleation for pure water and 7.5% gelatin samples. This study reveals that 7.5% gelatin has a significantly higher, approximately double, critical acceleration as compared to pure water. Finally, we have also demonstrated a non-optical method of detecting cavitation in soft materials by correlating cavitation collapse with structural resonance of the sample container.

  8. Audio-based detection and evaluation of eating behavior using the smartwatch platform.

    PubMed

    Kalantarian, Haik; Sarrafzadeh, Majid

    2015-10-01

    In recent years, smartwatches have emerged as a viable platform for a variety of medical and health-related applications. In addition to the benefits of a stable hardware platform, these devices have a significant advantage over other wrist-worn devices, in that user acceptance of watches is higher than other custom hardware solutions. In this paper, we describe signal-processing techniques for identification of chews and swallows using a smartwatch device׳s built-in microphone. Moreover, we conduct a survey to evaluate the potential of the smartwatch as a platform for monitoring nutrition. The focus of this paper is to analyze the overall applicability of a smartwatch-based system for food-intake monitoring. Evaluation results confirm the efficacy of our technique; classification was performed between apple and potato chip bites, water swallows, talking, and ambient noise, with an F-measure of 94.5% based on 250 collected samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Extensional rheometry with a handheld mobile device

    NASA Astrophysics Data System (ADS)

    Marshall, Kristin A.; Liedtke, Aleesha M.; Todt, Anika H.; Walker, Travis W.

    2017-06-01

    The on-site characterization of complex fluids is important for a number of academic and industrial applications. Consequently, a need exists to develop portable rheometers that can provide in the field diagnostics and serve as tools for rapid quality assurance. With the advancement of smartphone technology and the widespread global ownership of smart devices, mobile applications are attractive as platforms for rheological characterization. The present work investigates the use of a smartphone device for the extensional characterization of a series of Boger fluids composed of glycerol/water and poly(ethylene oxide), taking advantage of the increasing high-speed video capabilities (currently up to 240 Hz capture rate at 720p) of smartphone cameras. We report a noticeable difference in the characterization of samples with slight variations in polymer concentration and discuss current device limitations. Potential benefits of a handheld extensional rheometer include its use as a point-of-care diagnostic tool, especially in developing communities, as well as a simple and inexpensive tool for assessing product quality in industry.

  10. Discreet passive explosive detection through 2-sided wave guided fluorescence

    DOEpatents

    Harper, Ross James; la Grone, Marcus; Fisher, Mark

    2012-10-16

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  11. Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Benien, Parul; Ozcan, Aydogan

    2017-06-01

    Giardia lamblia is a waterborne parasite that affects millions of people every year worldwide, causing a diarrheal illness known as giardiasis. Timely detection of the presence of the cysts of this parasite in drinking water is important to prevent the spread of the disease, especially in resource-limited settings. Here we provide extended experimental testing and evaluation of the performance and repeatability of a field-portable and cost-effective microscopy platform for automated detection and counting of Giardia cysts in water samples, including tap water, non-potable water, and pond water. This compact platform is based on our previous work, and is composed of a smartphone-based fluorescence microscope, a disposable sample processing cassette, and a custom-developed smartphone application. Our mobile phone microscope has a large field of view of 0.8 cm2 and weighs only 180 g, excluding the phone. A custom-developed smartphone application provides a user-friendly graphical interface, guiding the users to capture a fluorescence image of the sample filter membrane and analyze it automatically at our servers using an image processing algorithm and training data, consisting of >30,000 images of cysts and >100,000 images of other fluorescent particles that are captured, including, e.g. dust. The total time that it takes from sample preparation to automated cyst counting is less than an hour for each 10 ml of water sample that is tested. We compared the sensitivity and the specificity of our platform using multiple supervised classification models, including support vector machines and nearest neighbors, and demonstrated that a bootstrap aggregating (i.e. bagging) approach using raw image file format provides the best performance for automated detection of Giardia cysts. We evaluated the performance of this machine learning enabled pathogen detection device with water samples taken from different sources (e.g. tap water, non-potable water, pond water) and achieved a limit of detection of 12 cysts per 10 ml, an average cyst capture efficiency of 79%, and an accuracy of 95%. Providing rapid detection and quantification of waterborne pathogens without the need for a microbiology expert, this field-portable imaging and sensing platform running on a smartphone could be very useful for water quality monitoring in resource-limited settings.

  12. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  13. Water Uptake Performance of Hygroscopic Heat and Moisture Exchangers after 24-Hour Tracheostoma Application.

    PubMed

    van den Boer, Cindy; Vas Nunes, Jonathan H; Muller, Sara H; van der Noort, Vincent; van den Brekel, Michiel W M; Hilgers, Frans J M

    2014-06-01

    After total laryngectomy, patients suffer from pulmonary complaints due to the shortcut of the upper airways that results in decreased warming and humidification of inspired air. Laryngectomized patients are advised to use a heat and moisture exchanger (HME) to optimize the inspired air. According to manufacturers' guidelines, these medical devices should be replaced every 24 hours. The aim of this study is to determine whether HMEs still function after 24-hour tracheostoma application. Assessment of residual water uptake capacity of used HMEs by measuring the difference between wet and dry core weight. Tertiary comprehensive cancer center. Three hygroscopic HME types were tested after use by laryngectomized patients in long-term follow-up. Water uptake of 41 used devices (including 10 prematurely replaced devices) was compared with that of control (unused) devices of the same type and with a control device with a relatively low performance. After 24 hours, the mean water uptake of the 3 device types had decreased compared with that of the control devices. For only one type was this difference significant. None of the used HMEs had a water uptake lower than that of the low-performing control device. The water uptake capacity of hygroscopic HEMs is clinically acceptable although no longer optimal after 24-hour tracheostoma application. From a functional point of view, the guideline for daily device replacement is therefore justified. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. Stormwater quality performance of a macro-pervious pavement car park installation equipped with channel drain based oil and silt retention devices.

    PubMed

    Newman, Alan Paul; Aitken, Douglas; Antizar-Ladislao, Blanca

    2013-12-15

    This paper reports the results of a two year field monitoring exercise intended to investigate the pollution abatement capabilities of a novel system which offers an alternative to the, now well established, pervious pavement system as a source control device for stormwater management. The aim of this study was to determine the effectiveness of a live installation of a macro-pervious pavement system (MPPS) (operated as a visitors' car park at a prison in Central Scotland) in retaining and treating a range of pollutants which originate from automobile use or become concentrated on the parking surface from the wider environment. The MPPS is a sub-class of pervious pavement system where the vast majority of the surface is impermeable. It directs stormwater into a pervious sub surface storage/attenuation zone through a series of distinct infiltration points fast enough to prevent flooding during the design storm. In the particular system studied here the infiltration points consist of a network of oil/silt separation devices with extensive further pollutant retention/degradation provided during the passage of stormwater through the sub surface zone. Approximately 12 months after the car park was completed a sampling regime was instigated in which grab samples were collected at intervals from each of the three sub catchments whilst, simultaneously, samples were collected directly from the, pollutant retaining, infiltration devices. Through investigation of samples collected at the upstream end of the system, the retention of significant amounts of hydrocarbons and heavy metals in the initial collection devices has been illustrated and the analysis of effluent samples collected at the outlet points indicate that the system is capable of producing effluent which is of a standard comparable to that expected from a traditional pervious pavement system and is acceptable for direct release into a surface water receptor. The system offers the opportunity to accrue the benefits of a pervious pavement when the use of traditional paving surfaces is the preferred option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An unmanned mission to Mars with sample collection and in-situ resource utilization

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The design for the Mars Analysis and Return Vehicle with In-Situ Resource Utilization (MARVIN) project is outlined. The MARVIN mission is designed to collect samples of the Martian environment; to produce fuel from local Martian resources; and to use the fuel produced to return the samples to earth. It uses only existing technologies. Exploratory Technologies' mission-design efforts have focused on methods of orbit determination, sample collection, fuel production, power, communications, control, and structural design. Lambert Targeting provided Delta-V's, launch dates, and travel times. The landing site is the Tharsis Plateau, to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed line to the compressor in the fuel-production facility; a dust sample, from the dust-collection container in the fuel-production facility; and a redundant dust sample, with a with a passive filter system, which relies upon neither a power source nor other collection methods. The sample-return capsule (SRC) houses these samples, which are triply contained to prevent contamination. Proven technology can be used to produce methane and oxygen for fuel with relative ease at the landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen (brought from earth); the Reverse Water-Gas Shift unit combines carbon dioxide and hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into hydrogen and oxygen. The Mars-lander vehicle (MLV) transports the equipment from earth to Mars. The Mars-ascent vehicle (MAV) contains the SRC and the engine, which is the same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory remains on Mars. This report presents detailed sizing information, for which a spreadsheet has been developed. The trends suggest possibilities for expansion, and suggestions for future work in these areas are offered.

  16. An unmanned mission to Mars with sample collection and in-situ resource utilization

    NASA Astrophysics Data System (ADS)

    1994-05-01

    The design for the Mars Analysis and Return Vehicle with In-Situ Resource Utilization (MARVIN) project is outlined. The MARVIN mission is designed to collect samples of the Martian environment; to produce fuel from local Martian resources; and to use the fuel produced to return the samples to earth. It uses only existing technologies. Exploratory Technologies' mission-design efforts have focused on methods of orbit determination, sample collection, fuel production, power, communications, control, and structural design. Lambert Targeting provided Delta-V's, launch dates, and travel times. The landing site is the Tharsis Plateau, to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed line to the compressor in the fuel-production facility; a dust sample, from the dust-collection container in the fuel-production facility; and a redundant dust sample, with a with a passive filter system, which relies upon neither a power source nor other collection methods. The sample-return capsule (SRC) houses these samples, which are triply contained to prevent contamination. Proven technology can be used to produce methane and oxygen for fuel with relative ease at the landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen (brought from earth); the Reverse Water-Gas Shift unit combines carbon dioxide and hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into hydrogen and oxygen. The Mars-lander vehicle (MLV) transports the equipment from earth to Mars. The Mars-ascent vehicle (MAV) contains the SRC and the engine, which is the same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory remains on Mars. This report presents detailed sizing information, for which a spreadsheet has been developed. The trends suggest possibilities for expansion, and suggestions for future work in these areas are offered.

  17. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  18. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  19. In-House fabrication and Electrical characterization of planner si-nanogap

    NASA Astrophysics Data System (ADS)

    Dhahi, Th. S.; Adam, Tijjani; Hashim, U.

    2017-10-01

    Nanogap is increasingly known to be beneficial, dependable and higher sensing technology. Another possible purpose is to examine a bioactivity and study the reaction of single molecule. It is important to carefully recognize the differences between the sensor surface and electrode in order to incorporate the biological system with nanogap. Also, it crucial to examine the dielectric properties between the planar nanogap with and without a sample. Electrical concentration between the electrodes could be increased due to integrating of microfluidic channel when the sample is being used. This paper is a report on an electrical point of view of planar nanogap capacitor device with comparison of different excitation frequency with and without microfluidic channel. By using 40 nm Si nanogap devices, the sensitivity of nanogap was compared by dropping deionized water and pH 7 onto the target. Experiments were carried out in wide range of frequencies from 1 Hz to 1 MHz at room temperature with 30 mV input signal (0 V, DC, Offset). Both effects of excitation frequency on capacitance sampling with 10 µm microfluidic integration were analyzed.

  20. Centrifugation-Assisted Fog-Collecting Abilities of Metal-Foam Structures with Different Surface Wettabilities.

    PubMed

    Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong

    2016-04-20

    The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.

  1. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers.

    PubMed

    Lampert, David J; Lu, Xiaoxia; Reible, Danny D

    2013-03-01

    In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.

  2. Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2016-01-01

    Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.

  3. An electric beam trawl for the capture of larval lampreys

    USGS Publications Warehouse

    McLain, Alberton; Dahl, Frederick H.

    1968-01-01

    The chemicals used to control the sea lamprey, Petromyzon marinus, in the Great Lakes have drastically reduced populations of larval lampreys in tributary streams. These larvicides are too costly and difficult to apply, however, in inland lakes, estuaries, and bays. Populations of sea lampreys in these areas constitute a threat to the refinement of the control. The gear available to locate, ample, and evaluate larval populations in deep water are inefficient. Electric shockers, satisfactory for collecting ammocoetes in streams, are limited to shallow water. The use of mechanical devices such as the Petersen dredge, anchor dredge, and the orange-peel dredge is time consuming, inefficient, and relatively ineffective in providing reliable quantitative evaluation of population size and composition over large areas of bottom. A device was required to sample adequately many areas in a short period of time, regardless of the depth of water. Mobility also was essential to permit operation of the unit in the various Great Lakes and in inland waters. An electrified beam trawl has been developed that most nearly meets these requirements. It has been used successfully to collect larvae of the sea lamprey, American brook lamprey (Lampetra lamottei), northern brook lamprey (Ichthyomyzon fossor), and silver lamprey (I. unicuspis). Effectiveness of the trawl did not appear to differ with species.

  4. A Trade Study and Metric for Penetration and Sampling Devices for Possible Use on the NASA 2003 and 2005 Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    McConnell, Joshua B.

    2000-01-01

    The scientific exploration of Mars will require the collection and return of subterranean samples to Earth for examination. This necessitates the use of some type of device or devices that possesses the ability to effectively penetrate the Martian surface, collect suitable samples and return them to the surface in a manner consistent with imposed scientific constraints. The first opportunity for such a device will occur on the 2003 and 2005 Mars Sample Return missions, being performed by NASA. This paper reviews the work completed on the compilation of a database containing viable penetrating and sampling devices, the performance of a system level trade study comparing selected devices to a set of prescribed parameters and the employment of a metric for the evaluation and ranking of the traded penetration and sampling devices, with respect to possible usage on the 03 and 05 sample return missions. The trade study performed is based on a select set of scientific, engineering, programmatic and socio-political criterion. The use of a metric for the various penetration and sampling devices will act to expedite current and future device selection.

  5. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  6. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    PubMed

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  7. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  8. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  9. 21 CFR 876.4650 - Water jet renal stone dislodger system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water jet renal stone dislodger system. 876.4650 Section 876.4650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4650 Water jet renal stone dislodger system. (a) Identification....

  10. Radon in harvested rainwater at the household level, Palestine.

    PubMed

    Al-Khatib, Issam A; Al Zabadi, Hamzeh; Saffarini, Ghassan

    2017-04-01

    The main objective of this study was to assess Radon concentration in the harvested rainwater (HRW) at the household level in Yatta area, Palestine. HRW is mainly used for drinking as it is the major source of water for domestic uses due to water scarcity. Ninety HRW samples from the household cisterns were collected from six localities (a town and five villages) and Radon concentrations were measured. The samples were randomly collected from different households to represent the Yatta area. Fifteen samples were collected from each locality at the same day. RAD7 device was used for analysis and each sample was measured in duplicate. Radon concentrations ranged from 0.037 to 0.26 Bq/L with a mean ± standard deviation of 0.14 ± 0.06 Bq/L. The estimated annual effective radiation doses for babies, children and adults were all far below the maximum limit of 5 mSvy -1 set by the National Council on Radiation Protection and Measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Performance Evaluation of Pressure Transducers for Water Impacts

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  12. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral-precipitation temperature of 100 C but below the upper working temperature (230 C) of switching valves and tubes in the apparatus. The sample water then passes into a manifold tube, from whence the switching valves can direct the water through either a bypass tube or any one of the filter arrays, without contamination from a previous sample. Each filter array consists of series of filters having pore sizes decreasing in the direction of flow: 90-, 60-, 15-, and 7-micron prefilters and a large-surface-area 0.2-micron collection filter. All the filter taps are located between the intake and the bypass tube so that each time the bypass tube is used, the entire manifold tube is flushed as well.

  13. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry.

    PubMed

    Li, Hongli; Hitchins, Victoria M; Wickramasekara, Samanthi

    2016-11-02

    Bacterial endotoxins are lipopolysaccharides bound to the bacterial cell wall and released when bacteria rupture or disintegrate. Possible contamination of endotoxin in ophthalmic devices can cause a painful eye inflammation or result in toxic anterior segment syndrome after cataract surgery. Measurement of bacterial endotoxin in medical device materials is difficult since endotoxin binds with polymer matrix and some of the materials are very viscous and non-water soluble, where traditional enzyme-based Limulus amebocyte lysate (LAL) assay cannot be applied. Here we propose a rapid and high throughput ambient ionization mass spectrometric (MS) method using direct analysis in real time (DART) for the evaluation of endotoxin contamination in medical device materials. Large and structurally complex endotoxin instantaneously breaks down into low-mass characteristic fragment ions using DART and is detected by MS in both positive and negative ion modes. This method enables the identification and separation of endotoxin from medical materials with a detection limit of 0.03 ng mL -1 endotoxins in aqueous solution. Ophthalmic viscosurgical device materials including sodium hyaluronate (NaHA), non-water soluble perfluoro-n-octane (PFO) and silicone oil (SO) were spiked with different known concentrations of endotoxin and analyzed by DART MS, where the presence of endotoxin was successfully detected and featured small mass fragment ions were generated for NaHA, PFO and SO as well. Current findings showed the feasibility of measuring endotoxin contamination in medical device materials using DART-MS, which can lead to a one-step analysis of endotoxins in different matrices, avoiding any potential contamination during sample pre-treatment steps. Published by Elsevier B.V.

  14. Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis

    NASA Astrophysics Data System (ADS)

    Rabner, Arthur; Belkin, Shimshon; Rozen, Rachel; Shacham, Yosi

    2006-01-01

    A novel water chemical toxin sensor has been successfully developed and evaluated as a working portable laboratory prototype. This sensor relies on a disposable plastic biochip prepared with a 4x4 micro-laboratory (μLab) chambers array of Escherichia coli reporter cells and micro-fluidic channels for liquids translocation. Each bacterial strain has been genetically modified into a bioluminescent reporter that responds to a pre-determined class of chemical agents. When challenged with a water sample containing a toxic chemical, the sensor responds with an increased bioluminescent signal from the biochip that is monitored over time. The signal is received by a motorized photomultiplier-based analyzer and interpreted by signal processing software. We have performed several levels of analysis: (i) the change in the bioluminescent signal from the sensor bacteria serves as a rapid indication for the presence of toxic chemicals in the water sample; (ii) the intensity of the change indicates the toxin concentration level; and (iii) the pattern of the responses for the different members of the bacterial panel on the biochip characterizes the biological origin of the toxin. The analyzer contains housing mechanics, electro-optics for signal acquisition, motorized readout calibration accessories, hydro-pneumatics modules for water sample translocation into biochip micro laboratories, electronics for overall control and communication with the host computer. This prototype has a demonstrated sensitivity for broad classes of water-borne toxic chemicals including naladixic acid (a model genotoxic agent), botulinum and acetylcholine esterase inhibitors. This work has initiated an investigation of a novel handheld field-deployable Water Toxicity Analysis (WTA) device.

  15. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  16. Stir bar sorptive extraction approaches with a home-made portable electric stirrer for the analysis of polycyclic aromatic hydrocarbon compounds in environmental water.

    PubMed

    Mao, Xiangju; Hu, Bin; He, Man; Fan, Wenying

    2012-10-19

    In this study, novel off/on-site stir bar sorptive extraction (SBSE) approaches with a home-made portable electric stirrer have been developed for the analysis of polycyclic aromatic hydrocarbon compounds (PAHs). In these approaches, a miniature battery-operated electric stirrer was employed to provide agitation of sample solutions instead of the commonly used large size magnetic stirrer powered by alternating current in conventional SBSE process, which could extend the SBSE technique from the conventional off-site analysis to the on-site sampling. The applicability of the designed off/on-site SBSE sampling approaches was evaluated by polydimethylsiloxane (PDMS) coating SBSE-high performance liquid chromatography-fluorescence detection (HPLC-FLD) analysis of six target PAHs in environmental water. The home-made portable electric stirrer is simple, easy-to-operate, user friendly, low cost, easy-to-be-commercialized, and can be processed in direct immersion SBSE, headspace sorptive extraction (HSSE) and continuous flow (CF)-SBSE modes. Since the stir bar was fixed onto the portable device by magnetic force, it is very convenient to install, remove and replace the stir bar, and the coating friction loss which occurred frequently in conventional SBSE process could be avoided. The parameters affecting the extraction of six target PAHs by the home-made portable SBSE sampling device with different sampling modes were studied. Under the optimum extraction conditions, good linearity was obtained by all of three SBSE extraction modes with correlation coefficient (R) higher than 0.9971. The limits of detection (LODs, S/N=3) were 0.05-3.41 ng L(-1) for direct immersion SBSE, 0.03-2.23 ng L(-1) for HSSE and 0.09-3.75 ng L(-1) for CF-SBSE, respectively. The proposed portable PDMS-SBSE-HPLC-FLD method was applied for the analysis of six target PAHs in East Lake water, and the analytical results obtained by on-site SBSE sampling were in good agreement with that obtained by off-site SBSE sampling. The accuracy of the developed method was evaluated by recovery test and the recoveries for the spiked sample were found to be in the range of 87.1-122.8% for off-site CF-SBSE, 88.8-114.3% for on-site sampling, and 87.7-123.6% for off-site SBSE, respectively. The developed method is one of the most sensitive methods for PAHs determination and the home-designed SBSE system is feasible for the field sampling. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Vapor-fed microfluidic hydrogen generator.

    PubMed

    Modestino, M A; Dumortier, M; Hosseini Hashemi, S M; Haussener, S; Moser, C; Psaltis, D

    2015-05-21

    Water-splitting devices that operate with humid air feeds are an attractive alternative for hydrogen production as the required water input can be obtained directly from ambient air. This article presents a novel proof-of-concept microfluidic platform that makes use of polymeric ion conductor (Nafion®) thin films to absorb water from air and performs the electrochemical water-splitting process. Modelling and experimental tools are used to demonstrate that these microstructured devices can achieve the delicate balance between water, gas, and ionic transport processes required for vapor-fed devices to operate continuously and at steady state, at current densities above 3 mA cm(-2). The results presented here show that factors such as the thickness of the Nafion films covering the electrodes, convection of air streams, and water content of the ionomer can significantly affect the device performance. The insights presented in this work provide important guidelines for the material requirements and device designs that can be used to create practical electrochemical hydrogen generators that work directly under ambient air.

  18. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  19. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  20. 40 CFR 141.100 - Criteria and procedures for public water systems using point-of-entry devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water systems using point-of-entry devices. 141.100 Section 141.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER... meet all national primary drinking water regulations and would be of acceptable quality similar to...

  1. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  2. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  3. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  4. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor.

    PubMed

    Hsieh, Min-Chi; Cheng, Chiu-Yu; Liu, Man-Hai; Chung, Ying-Chien

    2015-12-28

    The conventional Biochemical Oxygen Demand (BOD) method takes five days to analyze samples. A microbial fuel cell (MFC) may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN(-) in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  5. DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE ...

    EPA Pesticide Factsheets

    Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants as well. This group of compounds includes a wide variety of chemicals, including potentially endocrine disrupting and estrogenic contaminants which have been shown to contribute to numerous abnormalities such as impaired reproduction in aquatic organisms exposed in environmental waters. To address this issue, we developed a passive, in situ, sampling device (the Polar Organic Chemical Integrative Sampler or POCIS) which integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations and provides a screening assessment of the toxicological significance of the complex mixture of waterborne contaminants. Using a prototype sampler (effective membrane sampling surface area = 18.2 cm 2) linear uptake of selected herbicides and pharmaceuticals was observed for up to 56 days. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS chemical sampling rates. The research focused on in the subtasks is the development and application of state-of

  6. A superhydrophobic copper mesh as an advanced platform for oil-water separation

    NASA Astrophysics Data System (ADS)

    Ren, Guina; Song, Yuanming; Li, Xiangming; Zhou, Yanli; Zhang, Zhaozhu; Zhu, Xiaotao

    2018-01-01

    Improving the separation efficiency and simplifying the separation process would be highly desired for oil-water separation yet still challenging. Herein, to address this challenge, we fabricated a superhydrophobic copper mesh by an immersion process and exploited it as an advanced platform for oil-water separation. To realize oil-water separation efficiently, the obtained mesh was enfolded directly to form a boat-like device, and it could also be mounted on an open end of a glass barrel to form the oil skimmer device. For these devices, they can collect the floating oils through the pores of the copper mesh while repelling water completely, and the oil collection efficiency is up to 99.5%. Oils collected in the devices can be easily sucked out into a container for storing, without requiring mechanical handing for recycling. Importantly, the miniature boat and the oil skimmer devices can retain their enhanced oil collection efficiency even after 10 cycles of oil-water separation. Moreover, exploiting its superhydrophobicity under oil, the obtained copper mesh was demonstrated as a novel platform to remove tiny water droplets from oil.

  7. Effects of inequality of supply hours on consumers' coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal.

    PubMed

    Guragai, B; Takizawa, S; Hashimoto, T; Oguma, K

    2017-12-01

    To investigate the effects of unequal supply hours on consumers' coping strategies and perceptions of the intermittent water supply (IWS) in the Kathmandu Valley (KV), Nepal we conducted a randomized household survey (n=369) and on-site water quality tests. Half of the households received piped water for 6 or fewer hours per week. To augment or cope with the inadequate supply, 28% of the households used highly contaminated and expensive tanker-delivered water. Half of the piped water samples (n=13) were contaminated with Escherichia coli. Free chlorine concentration in all piped water samples was below the national standards (0.1-0.2mg/L), but combined chlorine was detected at an average of 0.24mg/L, indicating ingression of contaminants in the network. Point-of-use devices could increase access to safe water in the KV from 42% to 80%. The use of Lorenz curves and Gini coefficients revealed inequality of piped water supply hours per week both between and within service areas in the KV, due mainly to a small percentage of households who receive longer supply hours. To cope with reduced supply hours, home owners pay more to get water from alternative sources, while tenants compromise their water consumption. Under IWS, expectations for improvements in piped water quality and supply regularity are higher than those for supply volume. Consumers' perceptions of the piped water services worsen with the reduction in supply hours, but perceptions of piped water tariff are independent of supply hours. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of cyanoacrylate fuming, time after recovery, and location of biological material on the recovery and analysis of DNA from post-blast pipe bomb fragments*.

    PubMed

    Bille, Todd W; Cromartie, Carter; Farr, Matthew

    2009-09-01

    This study investigated the effects of time, cyanoacrylate fuming, and location of the biological material on DNA analysis of post-blast pipe bomb fragments. Multiple aliquots of a cell suspension (prepared by soaking buccal swabs in water) were deposited on components of the devices prior to assembly. The pipe bombs were then deflagrated and the fragments recovered. Fragments from half of the devices were cyanoacrylate fumed. The cell spots on the fragments were swabbed and polymerase chain reaction/short tandem repeat analysis was performed 1 week and 3 months after deflagration. A significant decrease in the amount of DNA recovered was observed between samples collected and analyzed within 1 week compared with the samples collected and analyzed 3 months after deflagration. Cyanoacrylate fuming did not have a measurable effect on the success of the DNA analysis at either time point. Greater quantities of DNA were recovered from the pipe nipples than the end caps. Undeflagrated controls showed that the majority (>95%) of the DNA deposited on the devices was not recovered at a week or 3 months.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  10. [Outbreak of Legionnaires' disease in a restaurant in the Community of Madrid, Spain].

    PubMed

    Abad Sanz, Isabel; Velasco Rodríguez, Manuel José; Marín Riaño, María Eugenia; Pérez Alonso, Jesús; Muñoz Guadalajara, María Del Carmen; Jodra Trillo, Enrique

    2014-10-01

    on June 27, 2012, 46 cases of community- acquired Legionnaires'disease were detected in the Public Health Service area 8 of the Community of Madrid. All of them had been in the same restaurant of the city of Móstoles within the incubation period of the disease. this is a descriptive study. Variables studied in the patients were: demographic data, medical history, symptoms, clinical course and diagnostic tests. For qualitative variables, frequencies and percentages were calculated. For quantitative variables, mínimum, máximum and average of values were calculated. In water samples taken on risk devices, we studied chlorine concentration, pH, temperatura and presence of Legionella. Legionella pneumophila Serogrupo 1, Subgrupo Pontiac Allentown/France was isolated from the water culture from the sand filter of the outside fountain's treatment plant; this result coincided with the strain isolated from respiratory samples of 4 patients. On the other hand, in biofilm samples obtained from the champagne bucket it was detected by PCR the presence of Legionella pneumophila whose gene sequencing was identical to that found in a respiratory sample of one patient. Legionella pneumophila serogroup 1 subgroup Pontiac Allentown/France serotype 448 was isolated in water samples, and this Legionella coincided with the one isolated from respiratory samples of some patients. So, we could show the link between environmental risk factor and the disease. This link was also confirmed by genetic sequencing with PCR.

  11. Small Scale Characterization of the Presence of the Explosive Octahydro-1,3,5,7-tetranitro- 1,3,5,7 tetrazocine (HMX) Near Former Naval Sites on Vieques Island, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Simmons, C. C.; Carvalho-Knighton, K. M.; Pyrtle, A. J.

    2007-12-01

    Octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX) is a synthetic energetic compounds that has been commonly used in military munitions. The presence and movement of HMX through the environment is of growing concern because of potential civilian exposure and impacts on human health. HMX remains in the environment unreactive with little degradation. It can be transported great distances in water thus having the possibility for migrating into groundwater. The former naval sites in Vieques were used for weapons training and housed several disposal sites. Previous studies around these sites indicate the presence of radioactive materials produced through thermal fission, such as Cs-137. Since HMX was primarily used to implode fissionable materials in nuclear devices, evaluating the release of HMX and consequent movement through the environment at these sites is essential. Surface water and soil samples as well as core and pore water samples were collected from two sites in Vieques; Kiani Lagoon and Mosquito Bay. All samples were extracted using EPA method 8330 and analyzed using RP-HPLC analysis with a C-18 column. HMX was undetected in samples collected from both Kiani Lagoon and Mosquito Bay. The development of a model that studies the flow rates and fate of water runoff in these areas of interest, coupled with data on groundwater testing inside the actual former naval facilities, is being explored for further sample collection and analysis.

  12. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device.

    PubMed

    Thakur, Bhawana; Zhou, Guihua; Chang, Jingbo; Pu, Haihui; Jin, Bing; Sui, Xiaoyu; Yuan, Xiaochen; Yang, Ching-Hong; Magruder, Matthew; Chen, Junhong

    2018-07-01

    Contamination of surface and drinking water due to the presence of Escherichia coli bacteria is a major cause of water-borne disease outbreak. To address unmet challenges for practical pathogen detection in contaminated samples, we report fabrication of thermally reduced graphene oxide-based field-effect transistor (rGO FET) passivated with an ultrathin layer of Al 2 O 3 for real-time detection of E. coli bacteria. The sensor could detect a single E. coli cell within 50 s in a 1 µL sample volume. The ultrathin layer of Al 2 O 3 acted as a barrier between rGO and potential interferents present in the sample. E. coli specific antibodies anchored on gold nanoparticles acted as probes for selective capture of E. coli. The high density of negative charge on the surface of E. coli cells strongly modulates the concentration of majority charge carriers in the rGO monolayer, thereby allowing real-time monitoring of E. coli concentration in a given sample. With a low detection limit of single cell, the FET sensor had a linear range of 1-100 CFU in 1 µL volume of sample (i.e., 10 3 to 10 5 CFU/ mL). The biosensor with good selectivity and rapid detection was further successfully demonstrated for E. coli sensing in river water. The rGO-based FET sensor provides a low cost and label-free approach, and can be mass produced for detection of a broad spectrum of pathogens in water or other liquid media. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Air removal device. [life support systems

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A.

    1981-01-01

    The disclosure concerns a device suitable for removing air from water under both zero and one 'g' gravity conditions. The device is comprised of a pair of spaced membranes on being hydrophobic and the other being hydrophilic. The air-water mixture is introduced into the space therebetween, and the selective action of the membranes yields removal of the air from the water.

  14. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or wate...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potiron, A.; Gerometta, C.; Plun, J.M.

    Simulation of casting processes is now industrially available with different softwares proposed to foundrymen. Yet, it is always difficult to provide the boundary conditions as correct as possible to represent accurately the environment of the mould. The knowledge of heat transfer coefficient used to modelize the cooling devices in permanent moulds is very important, as well as the acquisition of accurate data regarding die coatings or physical properties. After having conducted a sample survey with French foundries, the experiment conditions have been defined. Two main types of cooling device have been studied: water running in a pipe and air flowingmore » in a special shape to provide localized cooling. Some of the heat transfer coefficients have been simply calculated using Colburn`s law, others have been determined using a 1D or 2D inverse method. Auto-validation results obtained on the experimental device simulated with SIMULOR, a 3D finite volume software, are encouraging.« less

  16. Development of flow systems by direct-milling on poly(methyl methacrylate) substrates using UV-photopolymerization as sealing process.

    PubMed

    Rodrigues, Eunice R G O; Lapa, Rui A S

    2009-03-01

    An alternative process for the design and construction of fluidic devices is presented. Several sealing processes were studied, as well as the hydrodynamic characteristics of the proposed fluidic devices. Manifolds were imprinted on polymeric substrates by direct-write milling, according to Computer Assisted Design (CAD) data. Poly(methyl methacrylate) (PMMA) was used as substrate due to its physical and chemical properties. Different bonding approaches for the imprinted channels were evaluated and UV-photopolymerization of acrylic acid (AA) was selected. The hydrodynamic characteristics of the proposed flow devices were assessed and compared to those obtained in similar flow systems using PTFE reactors and micro-pumps as propulsion units (multi-pumping approach). The applicability of the imprinted reactors was evaluated in the sequential determination of calcium and magnesium in water samples. Results obtained were in good agreement with those obtained by the reference procedure.

  17. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A Simple, Inexpensive Water-Leveling Device for Ultramicrotomy.

    ERIC Educational Resources Information Center

    Brooks, Austin E.

    1978-01-01

    Describes a device for maintaining the proper water level in knife boats during ultramicrotomy. Water levels in troughs are adjusted rapidly and precisely during the cutting process. Illustrations are included. (Author/MA)

  19. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites.

    PubMed

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G

    2015-08-01

    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. Published 2015 SETAC. This article is a US Government work and is in the public domain in the USA.

  20. A Multi-Gradient Generator in a Single Microfluidic Device for Optical Microscopy and Interferometry

    NASA Astrophysics Data System (ADS)

    Bedrossian, Manuel; Nadeau, Jay; Lindensmith, Chris

    2016-11-01

    The goal of this work was to create a single microfluidic device capable of establishing multiple types of gradients in a quantifiable manner. Many microbial species are known to exhibit directed motility in the presence of stimuli. This phenomenon, known as taxis, can be used as a bio-signature and a means of identifying microorganisms. Directed microbial motility has been seen as a response to the presence of certain chemicals, light, heat, magnetic fields, and other stimuli. Microbial movement along the gradient vector, that cannot be explained by passive hydrodynamics or Brownian motion, can shed light on whether the sample contains living microbes or not. The ability to create multiple types of gradients in a single microfluidic device allows for high throughput testing of heterogeneous samples to detect taxis. There has been increased interest in the search for life within our solar system where liquid water is known to exist. Induced directional motility can serve as a viable method for detecting living organisms that actively respond to their environment. The device developed here includes a chemical, photonic, thermal, and magnetic gradient generator, while maintaining high optical quality in order to be used for microscopy as well as quantitative phase imaging This work was funded by the Gordon and Betty Moore Foundation, who the authors wish to thank for their generosity.

  1. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoying; Ning, Zhiyuan; Liu, Yang; Xu, Tingting; Guo, Yao; Zak, Alla; Zhang, Zhiyong; Wang, Sheng; Tenne, Reshef; Chen, Qing

    2012-09-01

    The electrical properties of WS2 nanotubes (NTs) were studied through measuring 59 devices. Important electrical parameters, such as the carrier concentration, mobility, and effective barrier height at the contacts, were obtained through fitting experimental non-linear I-V curves using a metal-semiconductor-metal model. The carrier mobility was found to be several orders of magnitude higher than that have been reported previously for WS2 NTs. Water absorption was found to decrease the conductivity and carrier mobility of the NTs, and could be removed when the sample was dried. Oxygen absorption also slightly decreased the conductivity of WS2 NTs.

  2. Field Assessment of a Novel Household-Based Water Filtration Device: A Randomised, Placebo-Controlled Trial in the Democratic Republic of Congo

    PubMed Central

    Boisson, Sophie; Kiyombo, Mbela; Sthreshley, Larry; Tumba, Saturnin; Makambo, Jacques; Clasen, Thomas

    2010-01-01

    Background Household water treatment can improve the microbiological quality of drinking water and may prevent diarrheal diseases. However, current methods of treating water at home have certain shortcomings, and there is evidence of bias in the reported health impact of the intervention in open trial designs. Methods and Findings We undertook a randomised, double-blinded, placebo-controlled trial among 240 households (1,144 persons) in rural Democratic Republic of Congo to assess the field performance, use and effectiveness of a novel filtration device in preventing diarrhea. Households were followed up monthly for 12 months. Filters and placebos were monitored for longevity and for microbiological performance by comparing thermotolerant coliform (TTC) levels in influent and effluent water samples. Mean longitudinal prevalence of diarrhea was estimated among participants of all ages. Compliance was assessed through self-reported use and presence of water in the top vessel of the device at the time of visit. Over the 12-month follow-up period, data were collected for 11,236 person-weeks of observation (81.8% total possible). After adjusting for clustering within the household, the longitudinal prevalence ratio of diarrhoea was 0.85 (95% confidence interval: 0.61–1.20). The filters achieved a 2.98 log reduction in TTC levels while, for reasons that are unclear, the placebos achieved a 1.05 log reduction (p<0.0001). After 8 months, 68% of intervention households met the study's definition of current users, though most (73% of adults and 95% of children) also reported drinking untreated water the previous day. The filter maintained a constant flow rate over time, though 12.4% of filters were damaged during the course of the study. Conclusions While the filter was effective in improving water quality, our results provide little evidence that it was protective against diarrhea. The moderate reduction observed nevertheless supports the need for larger studies that measure impact against a neutral placebo. Trial Registration Current Controlled Trials ISRCTN03844341 PMID:20856584

  3. Suspect screening and non-targeted analysis of drinking water using point-of-use filters.

    PubMed

    Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J

    2018-03-01

    Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.

  4. Analysis of δ18O and δD values of environmental waters at high temporal and spatial resolution by continuous diffusion sampling cavity ring-down spectrometry

    NASA Astrophysics Data System (ADS)

    Munksgaard, Niels; Bass, Adrian; Wurster, Chris; Bird, Michael

    2013-04-01

    A novel sampling device utilises diffusion through porous PTFE tubing to deliver water vapour continuously from a liquid water source for analysis of δ18O and δD values by Cavity Ring-Down Spectrometry (CRDS). Comparison of isotopic data for a range of water samples analysed by Diffusion Sampling-CRDS (DS-CRDS) and Isotope Ratio Mass Spectrometry (IRMS) shows significant linear correlations between the two methods allowing for accurate standardisation of DS-CRDS data. The internal precision for an integration period of 3 min (standard deviation = 0.1 ‰ and 0.3 ‰ for δ18O and δD values, respectively) is similar to analysis of water by injection/evaporation CRDS of discrete water samples. The isotopic effects of variable air and water temperature, water vapour concentration and water pumping rate were found to be either negligible or correctable by analysis of water standards. Separation of the analysed water vapour from non-volatile dissolved and particulate contaminants in the liquid sample minimises interferences associated with CRDS analyses of many aqueous samples. Coupling of the DS-CRDS instrument to an auto sampler enables rapid analysis (10 min) of discrete water samples. The DS-CRDS system was used in the first continuous shipboard measurement of δ18O and δD of water. Combined with continuous salinity recordings, a data set of nearly 6,000 isotope measurements was made at 30-s intervals during a 3-day voyage through the Great Barrier Reef Lagoon. Precise identification of river plumes within the Great Barrier Reef Lagoon was possible because unique δ18O/δD-salinity relationships of individual plumes were measured at high spatial and temporal resolution. Continuous shipboard measurement of δ18O/δD values by DS-CRDS provides additional discriminatory power for assessing water mass formation processes and histories at a small fraction of the cost of traditional isotope analysis of discrete samples. In a second application of DS-CRDS, continuous real-time analysis, at 30-s intervals, of precipitation at an Australian tropical location revealed extreme and rapidly changing δ18O and δD values related to variations in moisture source areas, transport paths and precipitation histories. The range of δ18O (-19.6 ‰ to +2.6 ‰) and δD (-140 ‰ to +13 ‰) values from almost 6,000 measurements of nine rain events over 15 days during an 8-month period at a single location was comparable with the range measured in 1532 monthly samples from all seven Australian Global Network of Isotopes in Precipitation stations from 1962 to 2002. Extreme variations in δ18O (-8.7 ‰ to -19.6 ‰) and δD (-54 ‰ to -140 ‰) were recorded within a single 4-h period. Real-time stable isotope monitoring of environmental waters at high temporal and spatial resolution enables new and powerful tracer applications in climatology, hydrology, eco-physiology and palaeo-climatology.

  5. Remote possibly hazardous content container sampling device

    DOEpatents

    Volz, David L.

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  6. Predicting Boat-Generated Wave Heights: A Quantitative Analysis through Video Observations of Vessel Wakes

    DTIC Science & Technology

    2012-05-18

    by the AWAC. It is a surface- penetrating device that measures continuous changes in the water elevations over time at much higher sampling rates of...background subtraction, a technique based on detecting change from a background scene. Their study highlights the difficulty in object detection and tracking...movements (Zhang et al. 2009) Alternatively, another common object detection method , known as Optical Flow Analysis , may be utilized for vessel

  7. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  8. Effects of sampling techniques on physical parameters and concentrations of selected persistent organic pollutants in suspended matter.

    PubMed

    Pohlert, Thorsten; Hillebrand, Gudrun; Breitung, Vera

    2011-06-01

    This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.

  9. Science project

    NASA Image and Video Library

    2012-08-23

    Once tethered in place in Gulf Coast waters, a DRIFTER sensor device is able to transmit valuable information about water temperature and conductivity. The Applied Science and Technology Project Office at Stennis Space Center designed the DRIFTER as an inexpensive device that can be used for science projects in local schools. Two of the devices, deployed in coastal waters, survived Hurricane Isaac, continuing to transmit valuable data regarding the storm.

  10. Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples.

    PubMed

    Fercher, Georg; Haller, Anna; Smetana, Walter; Vellekoop, Michael J

    2010-05-01

    We present a microchip capillary electrophoresis (CE) device build-up in low temperature co-fired ceramics (LTCC) multilayer technology for the analysis of major inorganic ions in water samples in less than 80 s. Contactless conductivity measurement is employed as a robust alternative to direct-contact conductivity detection schemes. The measurement electrodes are placed in a planar way at the top side of the CE chip and are realized by screen printing. Laser-cutting of channel and double-T injector structures is used to minimize irregularities and wall defects, elevating plate numbers per meter up to values of 110,000. Lowest limit of detection is 6 microM. The cost efficient LTCC module is attractive particularly for portable instruments in environmental applications because of its chemical inertness, hermeticity and easy three-dimensional integration capabilities of fluidic, electrical and mechanical components.

  11. Laser-induced photo emission detection: data acquisition based on light intensity counting

    NASA Astrophysics Data System (ADS)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  12. Analysis and interpretation of electrical resistivity tomography data of alluvial aquifer of Tamanrasset Southern Algeria

    NASA Astrophysics Data System (ADS)

    Zeddouri, Aziez; Elkheir, Abderrahmane Ben; Hadj-Said, Samia; Taupin, Jean-Denis; Leduc, Christian; Patris, Nicholas

    2018-05-01

    A groundwater exploration work in the Tamanrasset region in southern Algeria was started in August 2016 to assess the water reserves in the hydrogeological system related to the Oued Tamanrasset underflow water table which overcomes a volcanic basement. Five (05) electrical resistivity tomography (ERT) surveys were conducted in Tamanrasset area by using ABEM Terrameter LS system. the low electrical contrast between wet alluvium and water saturated alterites makes difficult the electrical response interpretation. to overcome the difficulties of interpretation of ERT profiles, field investigations, laboratory tests and software simulations, were carried out in order to clearly identify the structure of the hydrogeological system. The experimental investigation of the electrical characteristics of the alluvium as a function of water saturation was carried by the use of two devices (Wenner α and Schlumberger). Samples true resistivity values varies between 50 Ω.m for a 100% saturated sample and 1250 Ω.m for a 25% saturation sample. The interpretation of the measurements by the RES2DINV software made it possible to give 2D images of the subsoil up to a depth of 50 m. the electrical contrast between the bedrock and the overlying formations made it possible to identify it, however, it was difficult to distinguish alterites from alluvium. A methodology combining piezometric survey, geo-electrical measurements and field observations improves the interpretation of electrical tomography profiles and the application of the ERT method for accurate characterization of water resources in the Tamanrasset region.

  13. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  14. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  15. 33 CFR 159.131 - Safety: Incinerating device.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety: Incinerating device. 159.131 Section 159.131 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety...

  16. 21 CFR 880.5560 - Temperature regulated water mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  17. 21 CFR 880.5560 - Temperature regulated water mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  18. 21 CFR 880.5560 - Temperature regulated water mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  19. 21 CFR 880.5560 - Temperature regulated water mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature regulated water mattress is a device intended for medical purposes that consists of a mattress of suitable...

  20. Design, development, and testing of a hybrid in situ testing device for building joint sealant

    Treesearch

    C. White; N. Embree; C. Buch; R.S. Williams

    2005-01-01

    The testing of sealant samples has been restricted to devices that either focus on fatiguing multiple samples or quantifying the mechanical properties of a single sample. This manuscript describes a device that combines these two instrumental designs: the ability to both fatigue and characterize multiple sealant samples at the same time. This device employs precise...

  1. Development of a solid surface fluorescence-based sensing system for aluminium monitoring in drinking water.

    PubMed

    Reyes, J F García; Barrales, P Ortega; Díaz, A Molina

    2005-03-15

    A novel, single and robust solid surface fluorescence-based sensing device assembled in a continuous flow system has been developed for the determination of trace amounts of aluminium in water samples. The proposed method is based on the transient immobilization of the target species on an appropriate active solid sensing zone (C(18) silica gel). The target species was the fluorogenic chelate, formed as a result of the on-line complexation of Al(III) with chromotropic acid (CA) at pH 4.1. The fluorescence of the complex is continuously monitored at an emission wavelength of 390nm upon excitation at 361nm. The instrumental, chemical and flow-injection variables affecting the fluorescence signal were carefully investigated and optimized. After selecting the most suitable conditions, the sensing system was calibrated in the range 10-500mugl(-1), obtaining a detection limit of 2.6mugl(-1), and a R.S.D. of 2.2%, with a sampling frequency of 24h(-1). In addition, the selectivity of the proposed methodology was evaluated by performing interference studies with different cations and anions which could affect the analytical response. Finally, the proposed method, which meets the EU regulations regarding the aluminium content in drinking waters, was satisfactorily applied to different water samples, with recoveries between 97 and 105%. The simplicity, low cost and easy operation are the main advantages of the present procedure.

  2. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  3. Risk in the mist? Deriving data to quantify microbial health risks associated with aerosol generation by water-efficient devices during typical domestic water-using activities.

    PubMed

    O'Toole, J; Keywood, M; Sinclair, M; Leder, K

    2009-01-01

    The aim of this study was to address existing data gaps and to determine the size distribution of aerosols associated with water-efficient devices during typical domestic activities. This information is important to assist in understanding infection spread during water-using activities and in designing water regulations. Three water-using scenarios were evaluated: i) showering using a water-efficient showerhead; ii) use of a high pressure spray unit for cleaning cars and iii) toilet flushing using a dual flush low volume flush device. For each scenario a control condition (conventional lower efficiency device) was selected for benchmarking purposes. Shower module results highlighted the complexity of particle generation and removal processes and showed that more than 90% of total particle mass in the breathing zone was attributed to particle diameters greater than 6 mum. Conversely, results for car washing experiments showed that particle diameters up to 6 mum constituted the major part of the total mass generated by both water-efficient and conventional devices. Even under worse case scenario conditions for toilet flushing, particle measurements were at or below the level of detection of the measuring instrumentation. The data provide information that assists in health risk assessment and in determining future research directions, including methodological aspects.

  4. Microfluidic desalination techniques and their potential applications.

    PubMed

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  5. Water analysis in a lab-on-a-chip system

    NASA Astrophysics Data System (ADS)

    Freimuth, Herbert; von Germar, Frithjof; Frese, Ines; Nahrstedt, Elzbieta; Küpper, Michael; Schenk, Rainer; Baser, Björn; Ott, Johannes; Drese, Klaus; Detemple, Peter; Doll, Theodor

    2006-01-01

    The development of a lab-on-chip system which allows the parallel detection of a variety of different parameters of a water sample is presented. Water analysis typically comprises the determination of around 30 physical and chemical parameters. An even larger number can arise when special contaminations of organic molecules are of interest. A demonstration system has been realised to show the feasibility and performance of an integrated device for the determination of physical quantities like electrical conductivity, light absorption and turbidity. Additionally, chemical quantities like the pH-value and the content of inorganic and organic contaminations are also determined. Two chips of credit card size contain the analytical functions and will be fabricated by injection moulding. First prototypes have been manufactured by milling or precision milling for the optical components.

  6. Wet atmospheric generation apparatus

    NASA Technical Reports Server (NTRS)

    Hamner, Richard M. (Inventor); Allen, Janice K. (Inventor)

    1990-01-01

    The invention described relates to an apparatus for providing a selectively humidified gas to a camera canister containing cameras and film used in space. A source of pressurized gas (leak test gas or motive gas) is selected by a valve, regulated to a desired pressure by a regulator, and routed through an ejector (venturi device). A regulated source of water vapor in the form of steam from a heated reservoir is coupled to a low pressure region of the ejector which mixes with high velocity gas flow through the ejector. This mixture is sampled by a dew point sensor to obtain dew point thereof (ratio of water vapor to gas) and the apparatus adjusted by varying gas pressure or water vapor to provide a mixture at a connector having selected humidity content.

  7. Design and development of an automated flow injection instrument for the determination of arsenic species in natural waters.

    PubMed

    Hanrahan, Grady; Fan, Tina K; Kantor, Melanie; Clark, Keith; Cardenas, Steven; Guillaume, Darrell W; Khachikian, Crist S

    2009-10-01

    The design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.79 and 0.98 microM for As(III) and As(V), respectively, with linear range of 1-50 microM. Spiked ultrapure water samples were analyzed and recoveries were found to be 97%-101% for As(III) and 95%-99% for As(V), respectively. Future directions in terms of automation, optimization, and field deployment are discussed.

  8. On-line HPLC-UV/Nano-TiO2-ICPMS system for the determination of inorganic selenium species.

    PubMed

    Sun, Y C; Chang, Y C; Su, C K

    2006-04-15

    We have developed an UV/nano-TiO2 vapor generation (VG) device that when coupled between a chromatographic column and an ICP mass spectrometer provides a simple and sensitive hyphenated method for the determination of Se(IV) and Se(VI) without the need to use conventional chemical VG techniques. Because our proposed VG device allows both Se(IV) and Se(VI) species in the column effluent to be converted on-line into volatile Se products, which are then measured directly by the ICPMS, the safety risks and the probability of contamination arising from the use of additional chemicals are both low. To achieve the maximum signal intensity, we optimized a number of the operating parameters of the UV/nano-TiO2 VG device, including the acidity, the amounts of TiO2 and formic acid, and the length of the reaction coil, with respect to their effects on the reduction efficiency of the analyte species. This hyphenated method achieves excellent detection limits-0.06 and 0.03 ng mL(-1) for Se(IV) and Se(VI), respectively-because of the high efficiencies of the conversions of Se(IV) and Se(VI) to their respective volatile products and the lower blank level achieved, relative to those of other traditional systems. In addition, because the conversion efficiency of the analyte selenium species reached its maximum level within 36 s of irradiation, the working time (approximately 12 min) was limited primarily by time required for the chromatographic separation. A series of validation experiments-analysis of the 1643e Standard Reference Material and natural water samples-indicated that our proposed methods can be applied satisfactorily to the determination of inorganic selenium species in water samples.

  9. 33 CFR 159.127 - Safety coliform count: Recirculating devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety coliform count: Recirculating devices. 159.127 Section 159.127 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159...

  10. 33 CFR 159.16 - Authorization to label devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Authorization to label devices. 159.16 Section 159.16 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.16 Authorization to label...

  11. 33 CFR 159.17 - Changes to certified devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Changes to certified devices. 159.17 Section 159.17 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Certification Procedures § 159.17 Changes to certified...

  12. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  13. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  14. Innovative technology for colostomy irrigation: assessing the impact on patients.

    PubMed

    Pace, S; Manuini, F; Maculotti, D

    2015-10-01

    The main purpose of the trial was to evaluate the opinions expressed by a sample of subjects with permanent colostomy, as a result of the use of a new device designed for the execution of transtomal intestinal irrigation; their feedback was analyzed in relation to the concept of Quality of Life. The device was tested on a sample of 14 colostomized patients (10 men and 4 women, aged between 42 and 77 years) who were used to perform intestinal irrigation procedures independently and routinely, with standard technique. After testing the new device, the patients included in the study were asked to fill out a questionnaire built ad hoc for their situation. The analysis of the data collected led to the following conclusions: 93% of the patients described the new irrigation method as simpler than the standard procedure; the majority of the patients assessed bowel emptying as good; 64% of patients reported excellent comfort experienced during the procedure; the presence of a regulator to adjust the instillation speed of water into the intestinal lumen was considered useful to control the flow of the incoming fluid The use of the device guaranteed: psychological tranquility, minimum manual intervention, full achievement of the expected results and decrease in the issues normally encountered with the standard irrigation method. The practical features of the new device ensure easy and straightforward carrying out of the procedure; this ease of use affects the stomized patient's everyday life by reducing the time of procedure completion, thus positively influencing the perception of the patients' Quality of Life.

  15. Significant mobility improvement of amorphous In-Ga-Zn-O thin-film transistors annealed in a low temperature wet ambient environment

    NASA Astrophysics Data System (ADS)

    Jallorina, Michael Paul A.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-05-01

    Transparent amorphous oxide semiconducting materials such as amorphous InGaZnO used in thin film transistors (TFTs) are typically annealed at temperatures higher than 250 °C to remove any defects present and improve the electrical characteristics of the device. Previous research has shown that low cost and low temperature methods improve the electrical characteristics of the TFT. With the aid of surface and bulk characterization techniques in comparison to the device characteristics, this work aims to elucidate further on the improvement mechanisms of wet and dry annealing ambients that affect the electrical characteristics of the device. Secondary Ion Mass Spectrometry results show that despite outward diffusion of -H and -OH species, humid annealing ambients counteract outward diffusion of these species, leading to defect sites which can be passivated by the wet ambient. X-ray Photoelectron Spectroscopy results show that for devices annealed for only 30 min in a wet annealing environment, the concentration of metal-oxide bonds increased by as much as 21.8% and defects such as oxygen vacancies were reduced by as much as 18.2% compared to an unannealed device. Our work shows that due to the oxidizing power of water vapor, defects are reduced, and overall electrical characteristics are improved as evidenced with the 150 °C wet O2, 30 min annealed sample which exhibited the highest mobility of 5.00 cm2/V s, compared to 2.36 cm2/V s for a sample that was annealed at 150 °C in a dry ambient atmospheric environment for 2 h.

  16. Polycyclic Aromatic Hydrocarbon (PAH) and Oxygenated PAH (OPAH) Air–Water Exchange during the Deepwater Horizon Oil Spill

    PubMed Central

    2015-01-01

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water–air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m3 and 0.3 and 27 ng/m3, respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air–water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10 000 ng/m2/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m2/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air–water chemical flux determinations with passive sampling technology. PMID:25412353

  17. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  18. Gains in efficiency and scientific potential of continental climate reconstruction provided by the LRC LacCore Facility, University of Minnesota

    NASA Astrophysics Data System (ADS)

    Noren, A.; Brady, K.; Myrbo, A.; Ito, E.

    2007-12-01

    Lacustrine sediment cores comprise an integral archive for the determination of continental paleoclimate, for their potentially high temporal resolution and for their ability to resolve spatial variability in climate across vast sections of the globe. Researchers studying these archives now have a large, nationally-funded, public facility dedicated to the support of their efforts. The LRC LacCore Facility, funded by NSF and the University of Minnesota, provides free or low-cost assistance to any portion of research projects, depending on the specific needs of the project. A large collection of field equipment (site survey equipment, coring devices, boats/platforms, water sampling devices) for nearly any lacustrine setting is available for rental, and Livingstone-type corers and drive rods may be purchased. LacCore staff can accompany field expeditions to operate these devices and curate samples, or provide training prior to device rental. The Facility maintains strong connections to experienced shipping agents and customs brokers, which vastly improves transport and importation of samples. In the lab, high-end instrumentation (e.g., multisensor loggers, high-resolution digital linescan cameras) provides a baseline of fundamental analyses before any sample material is consumed. LacCore staff provide support and training in lithological description, including smear-slide, XRD, and SEM analyses. The LRC botanical macrofossil reference collection is a valuable resource for both core description and detailed macrofossil analysis. Dedicated equipment and space for various subsample analyses streamlines these endeavors; subsamples for several analyses may be submitted for preparation or analysis by Facility technicians for a fee (e.g., carbon and sulfur coulometry, grain size, pollen sample preparation and analysis, charcoal, biogenic silica, LOI, freeze drying). The National Lacustrine Core Repository now curates ~9km of sediment cores from expeditions around the world, and stores metadata and analytical data for all cores processed at the facility. Any researcher may submit sample requests for material in archived cores. Supplies for field (e.g., polycarbonate pipe, endcaps), lab (e.g., sample containers, pollen sample spike), and curation (e.g., D-tubes) are sold at cost. In collaboration with facility users, staff continually develop new equipment, supplies, and procedures as needed in order to provide the best and most comprehensive set of services to the research community.

  19. Measurement of Moisture Sorption Isotherm by DVS Hydrosorb

    NASA Astrophysics Data System (ADS)

    Kurniawan, Y. R.; Purwanto, Y. A.; Purwanti, N.; Budijanto, S.

    2018-05-01

    Artificial rice made from corn flour, sago, glycerol monostearate, vegetable oil, water and jelly powder was developed by extrusion method through the process stages of material mixing, extrusion, drying, packaging and storage. Sorption isotherm pattern information on food ingredients used to design and optimize the drying process, packaging, storage. Sorption isotherm of water of artificial rice was measured using humidity generating method with Dynamic Vapor Sorption device that has an advantage of equilibration time is about 10 to 100 times faster than saturated salt slurry method. Relative humidity modification technique are controlled automatically by adjusting the proportion of mixture of dry air and water saturated air. This paper aims to develop moisture sorption isotherm using the Hydrosorb 1000 Water Vapor Sorption Analyzer. Sample preparation was conducted by degassing sample in a heating mantle of 65°C. Analysis parameters need to be fulfilled were determination of Po, sample data, selection of water activity points, and equilibrium conditions. The selected analytical temperatures were 30°C and 45°C. Analysis lasted for 45 hours and curves of adsorption and desorption were obtained. Selected bottom point of water activity 0.05 at 30°C and 45°C yielded adsorbed mass of 0.1466 mg/g and 0.3455 mg/g, respectively, whereas selected top water activity point 0.95 at 30°C and 45°C yielded adsorbed mass of 190.8734 mg/g and 242.4161mg/g, respectively. Moisture sorption isotherm measurements of articial rice made from corn flour at temperature of 30°C and 45°C using Hydrosorb showed that the moisture sorption curve approximates sigmoid-shaped type II curve commonly found in corn-based foodstuffs (high- carbohydrate).

  20. Optimization of a mist chamber (Cofer scrubber) for sampling water-soluble organics in air.

    PubMed

    Spaulding, Reggie S; Talbot, Robert W; Charles, M Judith

    2002-04-15

    While the atmospheric fate and transport of biogenic and anthropogenic hydrocarbons has been extensively studied, little is known about the behavior of first-, second-, and third generation photo-oxidation products that arise from OH radical oxidation of the parent species. The results of chamber experiments establish that *OH oxidation of biogenic and anthropogenic hydrocarbons yields carbonyls, dicarbonyls, hydroxycarbonyls, and keto-acids. However, little is known about the generation and fate of these products in the ambient atmospheric environment. This is changing because of the advent of methods that rely on 0-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) derivatization of carbonyls in concert with gas chromatography/ion trap mass spectrometry. Such methods provide the means to identify and quantify water-soluble organics, which historically have been difficult to measure. A limitation of existing sampling methods, however, is the use of devices that require low flow rates (0.5-1 L min(-1)). Accordingly, long sampling times (3-4 h) are needed to obtain pptv-ppbv detection limits. The mist chamber is an attractive device because of the high flow rates (25-70 L min(-1)) compatible with its use. Herein, we evaluate a mist chamber using a flow rate of 25-30 L min(-1) to provide short (10 min) sampling times and pptv limits of detection. The results establish a relationship between the Henry's law constant (KH) and the collection efficiency and demonstrate the suitability of the method to measure analytes with KH > or = 10(3) M atm(-1). Adjusting the pH, adding quaternary ammonium salts, or decreasing the temperature of the collecting solution in the mist chamber did not significantly affect the collection efficiency. We tested the method by sampling photooxidation products of isoprene (glyoxal, methylglyoxal, hydroxyacetone, and glycolaldehyde) in the Blodgett Forest, CA. This is the first report of a study the employs the mist chamberto sample hydroxycarbonyls. The accuracy and the reproducibility of the method were evaluated by the analysis of duplicate samples and field spikes. The mean recovery of field spikes was > or =80%, and the relative standard deviation was < or =22% between duplicate measurements. The detection limits were 48, 15, 7.7, and 2.7 pptv for glycolaldehyde, hydroxyacetone, methylglyoxal, and glyoxal, respectively. This work demonstrates the power of the mist chamber in concert with PFBHA derivatization and mass spectrometry to measure pptv concentrations of water-soluble organics with a sampling time of 10 min.

  1. Quantification of Protozoa and Viruses from Small Water Volumes

    PubMed Central

    Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.

    2015-01-01

    Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244

  2. Quantification of Protozoa and Viruses from Small Water Volumes.

    PubMed

    Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J

    2015-06-24

    Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.

  3. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  4. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  5. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  6. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  7. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  8. Detailed study of selenium and selected constituents in water, bottom sediment, soil, and biota associated with irrigation drainage in the San Juan River area, New Mexico, 1991-95

    USGS Publications Warehouse

    Thomas, Carole L.; Wilson, R.M.; Lusk, J.D.; Bristol, R.S.; Shineman, A.R.

    1998-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior began the National Irrigation Water Quality Program (NIWQP) to investigate these concerns at irrigation projects sponsored by the Department. The San Juan River in northwestern New Mexico was one of the areas designated for study. Study teams composed of scientists from the U.S. Geological Survey, the U.S. Fish and Wildlife Service, the Bureau of Reclamation, and the Bureau of Indian Affairs collected water, bottom-sediment, soil, and biological samples at 61 sites in the San Juan River area during 1993-94. Supplemental data collection conducted during 1991-95 by the Bureau of Indian Affairs and its contractor extended the time period and sampling sites available for analysis. Analytical chemistry performed on samples indicated that most potentially toxic elements other than selenium generally were not high enough to be of concern to fish, wildlife, and human health. Element concentrations in some water, bottom-sediment, soil, and biological samples exceeded applicable standards and criteria suggested by researchers in current literature. Selenium concentrations in water samples from 28 sites in the study area exceeded the 2-microgram-per-liter wildlife-habitat standard. Vanadium concentrations in water exceeded the 100-microgram-per-liter standard for livestock-drinking water at one site. In biota, selenium and aluminum concentrations regularly equaled or exceeded avian dietary threshold concentrations. In bottom sediment and soil, element concentrations above the upper limit of the baseline range for western soils were: selenium, 24 exceedances; lead, 2 exceedances; molybdenum, 2 exceedances; strontium, 4 exceedances; and zinc, 4 exceedances. Concentrations of total selenium in bottom-sediment and soil samples were significantly greater for Cretaceous than for non-Cretaceous soil types in the study area and were generally similar for habitats within and outside irrigation-affected areas. Mean and median total-selenium concentrations in samples from areas with Cretaceous soil types were 4.6 and 2.2 micrograms per gram, respectively. Mean and median total-selenium concentrations in samples from areas with non-Cretaceous soil types were 0.6 and 0.15 microgram per gram, respectively. Samples from the study area had low concentrations of organic constituents. Organochlorine pesticides and polychlorinated biphenyls were detected in a few biological samples at low concentrations. Polycyclic aromatic hydrocarbon (PAH) compounds were not detected in whole-water samples collected using conventional water-sampling techniques. In tests involving the use of semipermeable-membrane devices to supplement conventional water assays for PAH's, low concentrations of PAH's were found at several locations in the Hammond Irrigation Supply Canal, but were not detected in the Hammond ponds at the downstream reach of the Hammond irrigation service area. PAH compounds do not appear to reach the San Juan River through the Hammond Canal. Data indicate that water samples from irrigation-drainage-affected habitats had increased mean selenium concentrations compared with samples from irrigation-delivery habitat. The mean selenium concentration in water was greatest at seeps and tributaries draining irrigated land (17 micrograms per liter); less in irrigation drains and in ponds on irrigated land (6 micrograms per liter); and least in backwater, the San Juan River, and irrigation-supply water (0.5 - 0.6 microgram per liter). Statistical tests imply that irrigation significantly increases selenium concentrations in water samples when a Department of the Interior irrigation project is developed on selenium-rich sediments. Water samples from sites with Cretaceous soils had signi

  9. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    NASA Astrophysics Data System (ADS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  10. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  11. "Periodic-table-style" paper device for monitoring heavy metals in water.

    PubMed

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  12. Design and experimental verification of a water-like pentamode material

    NASA Astrophysics Data System (ADS)

    Zhao, Aiguo; Zhao, Zhigao; Zhang, Xiangdong; Cai, Xuan; Wang, Lei; Wu, Tao; Chen, Hong

    2017-01-01

    Pentamode materials approximate tailorable artificial liquids. Recently, microscopic versions of these intricate structures have been fabricated, and the static mechanical experiments reveal that the ratio of bulk modulus to shear modulus as large as 1000 can be obtained. However, no direct acoustic experimental characterizations have been reported yet. In this paper, a water-like two-dimensional pentamode material sample is designed and fabricated with a single metallic material, which is a hollow metallic foam-like structure at centimeter scale. Acoustic simulation and experimental testing results indicate that the designed pentamode material mimics water in acoustic properties over a wide frequency range, i.e., it exhibits transparency when surrounded by water. This work contributes to the development of microstructural design of materials with specific modulus and density distribution, thus paving the way for the physical realization of special acoustic devices such as metamaterial lenses and vibration isolation.

  13. Ion chromatographic determination of lithium at trace level concentrations. Application to a tracer experiment in a high-mountain lake.

    PubMed

    Nickus, U; Thies, H

    2001-06-22

    The water residence time of a high-mountain seepage lake in the Austrian Alps was derived from the flushing rate of a tracer substance. A diluted lithium chloride solution was injected into the lake during holomictic conditions in order to favour the homogeneous distribution of the tracer. The exponential decline of the mass of lithium in the lake revealed a water residence time of 1.5 to 3 months for summer and almost no lake water exchange during winter. Lithium concentrations ranged from background values of 0.06 microg l(-1) to about 3 microg l(-1) immediately after the tracer injection. Lake water samples were analyzed with ion-exchange chromatography using a Dionex device with a CS 12A separation column. The method detection limit determined according to the definition of the US Envirinmental Protection Agency amounted to 0.009 microg l(-1).

  14. A Capacitive Touch Screen Sensor for Detection of Urinary Tract Infections in Portable Biomedical Devices

    PubMed Central

    Honrado, Carlos; Dong, Tao

    2014-01-01

    Incidence of urinary tract infections (UTIs) is the second highest among all infections; thus, there is a high demand for bacteriuria detection. Escherichia coli are the main cause of UTIs, with microscopy methods and urine culture being the detection standard of these bacteria. However, the urine sampling and analysis required for these methods can be both time-consuming and complex. This work proposes a capacitive touch screen sensor (CTSS) concept as feasible alternative for a portable UTI detection device. Finite element method (FEM) simulations were conducted with a CTSS model. An exponential response of the model to increasing amounts of E. coli and liquid samples was observed. A measurable capacitance change due to E. coli presence and a tangible difference in the response given to urine and water samples were also detected. Preliminary experimental studies were also conducted on a commercial CTSS using liquid solutions with increasing amounts of dissolved ions. The CTSS was capable of distinguishing different volumes of liquids, also giving an exponential response. Furthermore, the CTSS gave higher responses to solutions with a superior amount of ions. Urine samples gave the top response among tested liquids. Thus, the CTSS showed the capability to differentiate solutions by their ionic content. PMID:25196109

  15. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry.

    PubMed

    Won, So-Young; Chandra, Pranjal; Hee, Tak Seong; Shim, Yoon-Bo

    2013-01-15

    A highly sensitive and robust method for simultaneous detection of five sulfonamide drugs is developed by integrating the preconcentration and separation steps in a microfluidic device. An ampetrometry is performed for the selective detection of sulfonamides using an aluminum oxide-gold nanoparticle (Al(2)O(3)-AuNPs) modified carbon paste (CP) electrode at the end of separation channel. The preconcentration capacity of the channel is enhanced by using the field amplified sample stacking and the field amplified sample injection techniques. The experimental parameters affecting the analytical performances, such as pH, % of Al(2)O(3), volume of AuNPs, buffer concentration, and water plug length are optimized. A reproducible response is observed during the multiple injections of samples with RSDs<4%. The calibration plots are linear with the correlation coefficient between 0.991 and 0.997 over the range between 0.01 and 2025pM. The detection limits of five drugs are determined to be between 0.91 (±0.03) and 2.21 (±0.09)fM. The interference effects of common biological compounds are also investigated and the applicability of the method to the direct analysis of sulfonamides in real meat samples is successfully demonstrated. Long term stability of the modified electrode was also investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A portable device for the measurement of evaporative water loss.

    DOT National Transportation Integrated Search

    1967-08-01

    A portable device has been developed for the precise measurement of evaporative water loss. Under appropriate conditions the measurement of evaporative water loss may be used as an index of 'emotional stress' in flying personnel. The apparatus incorp...

  17. Rain sampling device

    DOEpatents

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  18. Rain sampling device

    DOEpatents

    Nelson, Danny A.; Tomich, Stanley D.; Glover, Donald W.; Allen, Errol V.; Hales, Jeremy M.; Dana, Marshall T.

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  19. Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams.

    PubMed

    Fox, J Tyler; Adams, Ginny; Sharum, Martin; Steelman, Karen L

    2010-12-01

    Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.

  20. Comparison of the uptake of dioxin-like compounds by caged channel catfish and semipermeable membrane devices in the Saginaw River, Michigan

    USGS Publications Warehouse

    Gale, Robert W.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.; Williams, Lisa L.; Morse, Douglas; Schwartz, Ted R.; Tillitt, Donald E.

    1996-01-01

    Elevated concentrations of planar, halogenated hydrocarbons have been linked to reproductive problems in a variety of fish-eating birds and mammals in the Great Lakes and in particular Saginaw Bay. Currently, there are no accurate procedures to assess bioavailability of these contaminants. Polychlorinated dibenzo-p-dioxins and dibenzofurans and mono- and non-ortho-chloro-substituted biphenyls in water at the femtogram to picogram per liter range were passively concentrated in semipermeable membrane devices (SPMDs), and these data were compared to the bioconcentration in co-exposed (caged) channel catfish. Sediment-derived water concentration estimates, calculated from a steady-state partitioning model, did not correlate well to those derived from either fish or SPMDs. The use of SPMDs demonstrated the utility of in-situ passive sampling over inference of water concentrations from accumulation in biota or partitioning with sediment. Residues ac cumulated by SPMDs have been shown to be proportional to analyte water concentration, whereas this does not appear to be the case for fish tissues. The greater amounts of 3,3‘,4,4‘-tetrachlorobiphenyl and 2,3,7,8-tetrachlorodibenzofuran accumulated in SPMDs than in exposed channel catfish indicated those non-passive aspects of bioconcentration in organisms, such as biotransformation and elimination, introduced 50−500% error in the assumed degree of exposure.

Top