NASA Astrophysics Data System (ADS)
Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow
2017-04-01
Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This was confirm by further statistical analysis (cluster analysis and correlation matrix) of the water quality parameters. Spatial distribution of water quality parameters, trace elements and the results obtained from the statistical analysis was determined by geographical information system (GIS). In addition, the isotopic analysis of the sampled surface water and groundwater revealed that most of the surface water and groundwater were of meteoric origin with little or no isotopic variations. It is expected that outcomes of this research will form a baseline for making appropriate decision on water quality management by decision makers in the Lower Tano river Basin. Keywords: Water stable isotopes, Trace elements, Multivariate statistics, Evaluation indices, Lower Tano river basin.
SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series
Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory
2018-03-07
This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.
NASA Astrophysics Data System (ADS)
Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.
2014-12-01
River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.
NASA Astrophysics Data System (ADS)
O'Shea, Bethany; Jankowski, Jerzy
2006-12-01
The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright
History of water quality parameters - a study on the Sinos River/Brazil.
Konzen, G B; Figueiredo, J A S; Quevedo, D M
2015-05-01
Water is increasingly becoming a valuable resource, constituting one of the central themes of environmental, economic and social discussions. The Sinos River, located in southern Brazil, is the main river from the Sinos River Basin, representing a source of drinking water supply for a highly populated region. Considering its size and importance, it becomes necessary to conduct a study to follow up the water quality of this river, which is considered by some experts as one of the most polluted rivers in Brazil. As for this study, its great importance lies in the historical analysis of indicators. In this sense, we sought to develop aspects related to the management of water resources by performing a historical analysis of the Water Quality Index (WQI) of the Sinos River, using statistical methods. With regard to the methodological procedures, it should be pointed out that this study performs a time analysis of monitoring data on parameters related to a punctual measurement that is variable in time, using statistical tools. The data used refer to analyses of the water quality of the Sinos River (WQI) from the State Environmental Protection Agency Henrique Luiz Roessler (Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler, FEPAM) covering the period between 2000 and 2008, as well as to a theoretical analysis focusing on the management of water resources. The study of WQI and its parameters by statistical analysis has shown to be effective, ensuring its effectiveness as a tool for the management of water resources. The descriptive analysis of the WQI and its parameters showed that the water quality of the Sinos River is concerning low, which reaffirms that it is one of the most polluted rivers in Brazil. It should be highlighted that there was an overall difficulty in obtaining data with the appropriate periodicity, as well as a long complete series, which limited the conduction of statistical studies such as the present one.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko
2018-06-08
Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.
Factorial analysis of trihalomethanes formation in drinking water.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2010-06-01
Disinfection of drinking water reduces pathogenic infection, but may pose risks to human health through the formation of disinfection byproducts. The effects of different factors on the formation of trihalomethanes were investigated using a statistically designed experimental program, and a predictive model for trihalomethanes formation was developed. Synthetic water samples with different factor levels were produced, and trihalomethanes concentrations were measured. A replicated fractional factorial design with center points was performed, and significant factors were identified through statistical analysis. A second-order trihalomethanes formation model was developed from 92 experiments, and the statistical adequacy was assessed through appropriate diagnostics. This model was validated using additional data from the Drinking Water Surveillance Program database and was applied to the Smiths Falls water supply system in Ontario, Canada. The model predictions were correlated strongly to the measured trihalomethanes, with correlations of 0.95 and 0.91, respectively. The resulting model can assist in analyzing risk-cost tradeoffs in the design and operation of water supply systems.
Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality...
Davis, J.C.
2000-01-01
Geologists may feel that geological data are not amenable to statistical analysis, or at best require specialized approaches such as nonparametric statistics and geostatistics. However, there are many circumstances, particularly in systematic studies conducted for environmental or regulatory purposes, where traditional parametric statistical procedures can be beneficial. An example is the application of analysis of variance to data collected in an annual program of measuring groundwater levels in Kansas. Influences such as well conditions, operator effects, and use of the water can be assessed and wells that yield less reliable measurements can be identified. Such statistical studies have resulted in yearly improvements in the quality and reliability of the collected hydrologic data. Similar benefits may be achieved in other geological studies by the appropriate use of classical statistical tools.
NASA Astrophysics Data System (ADS)
Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.
2014-12-01
The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.
Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida
NASA Astrophysics Data System (ADS)
Sayemuzzaman, M.; Ye, M.
2015-12-01
The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface waters can be undertaken.
Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.
2009-09-01
SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.
Statistical population based estimates of water ingestion play a vital role in many types of exposure and risk analysis. A significant large scale analysis of water ingestion by the population of the United States was recently completed and is documented in the report titled ...
Australia 31-GHz brightness temperature exceedance statistics
NASA Technical Reports Server (NTRS)
Gary, B. L.
1988-01-01
Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.
Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep
2015-05-01
The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.
Sadeghi, Fatemeh; Nasseri, Simin; Mosaferi, Mohammad; Nabizadeh, Ramin; Yunesian, Masud; Mesdaghinia, Alireza
2017-05-01
In this research, probable arsenic contamination in drinking water in the city of Ardabil was studied in 163 samples during four seasons. In each season, sampling was carried out randomly in the study area. Results were analyzed statistically applying SPSS 19 software, and the data was also modeled by Arc GIS 10.1 software. The maximum permissible arsenic concentration in drinking water defined by the World Health Organization and Iranian national standard is 10 μg/L. Statistical analysis showed 75, 88, 47, and 69% of samples in autumn, winter, spring, and summer, respectively, had concentrations higher than the national standard. The mean concentrations of arsenic in autumn, winter, spring, and summer were 19.89, 15.9, 10.87, and 14.6 μg/L, respectively, and the overall average in all samples through the year was 15.32 μg/L. Although GIS outputs indicated that the concentration distribution profiles changed in four consecutive seasons, variance analysis of the results showed that statistically there is no significant difference in arsenic levels in four seasons.
Tasker, Gary D.; Granato, Gregory E.
2000-01-01
Decision makers need viable methods for the interpretation of local, regional, and national-highway runoff and urban-stormwater data including flows, concentrations and loads of chemical constituents and sediment, potential effects on receiving waters, and the potential effectiveness of various best management practices (BMPs). Valid (useful for intended purposes), current, and technically defensible stormwater-runoff models are needed to interpret data collected in field studies, to support existing highway and urban-runoffplanning processes, to meet National Pollutant Discharge Elimination System (NPDES) requirements, and to provide methods for computation of Total Maximum Daily Loads (TMDLs) systematically and economically. Historically, conceptual, simulation, empirical, and statistical models of varying levels of detail, complexity, and uncertainty have been used to meet various data-quality objectives in the decision-making processes necessary for the planning, design, construction, and maintenance of highways and for other land-use applications. Water-quality simulation models attempt a detailed representation of the physical processes and mechanisms at a given site. Empirical and statistical regional water-quality assessment models provide a more general picture of water quality or changes in water quality over a region. All these modeling techniques share one common aspect-their predictive ability is poor without suitable site-specific data for calibration. To properly apply the correct model, one must understand the classification of variables, the unique characteristics of water-resources data, and the concept of population structure and analysis. Classifying variables being used to analyze data may determine which statistical methods are appropriate for data analysis. An understanding of the characteristics of water-resources data is necessary to evaluate the applicability of different statistical methods, to interpret the results of these techniques, and to use tools and techniques that account for the unique nature of water-resources data sets. Populations of data on stormwater-runoff quantity and quality are often best modeled as logarithmic transformations. Therefore, these factors need to be considered to form valid, current, and technically defensible stormwater-runoff models. Regression analysis is an accepted method for interpretation of water-resources data and for prediction of current or future conditions at sites that fit the input data model. Regression analysis is designed to provide an estimate of the average response of a system as it relates to variation in one or more known variables. To produce valid models, however, regression analysis should include visual analysis of scatterplots, an examination of the regression equation, evaluation of the method design assumptions, and regression diagnostics. A number of statistical techniques are described in the text and in the appendixes to provide information necessary to interpret data by use of appropriate methods. Uncertainty is an important part of any decisionmaking process. In order to deal with uncertainty problems, the analyst needs to know the severity of the statistical uncertainty of the methods used to predict water quality. Statistical models need to be based on information that is meaningful, representative, complete, precise, accurate, and comparable to be deemed valid, up to date, and technically supportable. To assess uncertainty in the analytical tools, the modeling methods, and the underlying data set, all of these components need be documented and communicated in an accessible format within project publications.
1975-07-01
Statistical Energy Analysis MAJOR ASSUMPTIONS AND LIMITATIONS . Simply supported panel it contidarad to ba vibrating freely in a mode consisting of e...Shells: Statistical Energy Analysis . Modal Coupling and Nonresonant Transmission. Univ Houston, Dept Mech Eng Tech Report 21 (Aug 1970); also J...Oscillators. J. Acoust. Soc. Am., Vol. 34, No. 5 (May 1962). 14. Ungar, E.E., Fundamentals of Statistical Energy Analysis of Vibrating Systems, Tech
Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.
Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M
2015-01-01
This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95
Huff, G.F.
1996-01-01
Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and ground-water withdrawal from the Frenchy wells regularly exceeded total estimated ground-water recharge from Dog and Deadman Canyons. Water-quality samples were collected from selected Douglas, San Andres, and Boles public-supply wells from December 1994 to February 1995. Concentrations of dissolved nitrate show the most consistent increases between current and historical data. Current concentrations of dissolved nitrate are greater than historical concentrations in 7 of 10 wells.
Suárez, Susanna; Rubio, Arantxa; Sueiro, Rosa Ana; Garrido, Joaquín
2003-06-06
In some cities of the autonomous community of Extremadura (south-west of Spain), levels of simazine from 10 to 30 ppm were detected in tap water. To analyse the possible effect of this herbicide, two biomarkers, sister chromatid exchanges (SCE) and micronuclei (MN), were used in peripheral blood lymphocytes from males exposed to simazine through drinking water. SCE and MN analysis failed to detect any statistically significant increase in the people exposed to simazine when compared with the controls. With respect to high frequency cells (HFC), a statistically significant difference was detected between exposed and control groups.
Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya
2011-01-01
Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155
Carvalho, Pedro; Marques, Rui Cunha
2016-02-15
This study aims to search for economies of size and scope in the Portuguese water sector applying Bayesian and classical statistics to make inference in stochastic frontier analysis (SFA). This study proves the usefulness and advantages of the application of Bayesian statistics for making inference in SFA over traditional SFA which just uses classical statistics. The resulting Bayesian methods allow overcoming some problems that arise in the application of the traditional SFA, such as the bias in small samples and skewness of residuals. In the present case study of the water sector in Portugal, these Bayesian methods provide more plausible and acceptable results. Based on the results obtained we found that there are important economies of output density, economies of size, economies of vertical integration and economies of scope in the Portuguese water sector, pointing out to the huge advantages in undertaking mergers by joining the retail and wholesale components and by joining the drinking water and wastewater services. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.
1982-01-01
The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM
NASA Astrophysics Data System (ADS)
Köylü, Ü.; Geymen, A.
2016-10-01
Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
Lu, Yan; He, Tian
2014-09-15
Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. Copyright © 2014 Elsevier B.V. All rights reserved.
TEETH, FLUORIDES ), DISEASES, RESISTANCE(BIOLOGY), WATER , NAVAL PERSONNEL, STATISTICAL ANALYSIS, EXPOSURE(PHYSIOLOGY), DENTISTRY, MEDICAL RESEARCH, IMMUNITY, TABLES(DATA), PROTECTION, NAVAL RESEARCH.
Statistical Analysis of 30 Years Rainfall Data: A Case Study
NASA Astrophysics Data System (ADS)
Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.
2017-07-01
Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.
NASA Astrophysics Data System (ADS)
Wang, Hao; Wang, Qunwei; He, Ming
2018-05-01
In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.
Distribution of water quality parameters in Dhemaji district, Assam (India).
Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P
2010-07-01
The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.
Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia
2012-01-01
An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.
Statistical Method for Identification of Potential Groundwater Recharge Zone
NASA Astrophysics Data System (ADS)
Banerjee, Pallavi; Singh, V. S.
2010-05-01
The effective development of groundwater resource is essential for a country like India. Artificial recharge is the planned, human activity of augmenting the amount of groundwater available through works designed to increase the natural replenishment or percolation of surface waters into the groundwater aquifers, resulting in a corresponding increase in the amount of groundwater available for abstraction. India receives good amount of average annual rainfall about 114 cm but most of it's part waste through runoff. The imbalance between rainfall and recharge has caused serious shortage of water for drinking, agriculture and industrial purposes. The over exploitation of groundwater due to increasing population is an additional cause of water crisis that resulting in reduction in per capita availability of water in the country. Thus the planning for effective development of groundwater is essential through artificial recharge. Objective of the paper is to identification of artificial recharge zones by arresting runoff through suitable sites to restore groundwater conditions using statistical technique. The water table variation follows a pattern similar to rainfall variation with time delay. The rainfall and its relationship with recharge is a very important process in a shallow aquifer system. Understanding of this process is of critical importance to management of groundwater resource in any terrain. Groundwater system in a top weathered regolith in a balastic terrain forms shallow aquifer is often classified into shallow water table category. In the present study an effort has been made to understand the suitable recharge zone with relation to rainfall and water level by using statistical analysis. Daily time series data of rainfall and borehole water level data are cross correlated to investigate variations in groundwater level response time during the months of monsoon. This measurement facilitate to demarcate favorable areas for Artificial Recharge. KEYWORDS: Water level; Rainfall; Recharge; Statistical analysis; Cross correlation.
Oregon ground-water quality and its relation to hydrogeological factors; a statistical approach
Miller, T.L.; Gonthier, J.B.
1984-01-01
An appraisal of Oregon ground-water quality was made using existing data accessible through the U.S. Geological Survey computer system. The data available for about 1,000 sites were separated by aquifer units and hydrologic units. Selected statistical moments were described for 19 constituents including major ions. About 96 percent of all sites in the data base were sampled only once. The sample data were classified by aquifer unit and hydrologic unit and analysis of variance was run to determine if significant differences exist between the units within each of these two classifications for the same 19 constituents on which statistical moments were determined. Results of the analysis of variance indicated both classification variables performed about the same, but aquifer unit did provide more separation for some constituents. Samples from the Rogue River basin were classified by location within the flow system and type of flow system. The samples were then analyzed using analysis of variance on 14 constituents to determine if there were significant differences between subsets classified by flow path. Results of this analysis were not definitive, but classification as to the type of flow system did indicate potential for segregating water-quality data into distinct subsets. (USGS)
Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques
NASA Astrophysics Data System (ADS)
Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein
2017-10-01
The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.
Detection of semi-volatile organic compounds in permeable ...
Abstract The Edison Environmental Center (EEC) has a research and demonstration permeable parking lot comprised of three different permeable systems: permeable asphalt, porous concrete and interlocking concrete permeable pavers. Water quality and quantity analysis has been ongoing since January, 2010. This paper describes a subset of the water quality analysis, analysis of semivolatile organic compounds (SVOCs) to determine if hydrocarbons were in water infiltrated through the permeable surfaces. SVOCs were analyzed in samples collected from 11 dates over a 3 year period, from 2/8/2010 to 4/1/2013.Results are broadly divided into three categories: 42 chemicals were never detected; 12 chemicals (11 chemical test) were detected at a rate of less than 10% or less; and 22 chemicals were detected at a frequency of 10% or greater (ranging from 10% to 66.5% detections). Fundamental and exploratory statistical analyses were performed on these latter analyses results by grouping results by surface type. The statistical analyses were limited due to low frequency of detections and dilutions of samples which impacted detection limits. The infiltrate data through three permeable surfaces were analyzed as non-parametric data by the Kaplan-Meier estimation method for fundamental statistics; there were some statistically observable difference in concentration between pavement types when using Tarone-Ware Comparison Hypothesis Test. Additionally Spearman Rank order non-parame
Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.
Kirillova, Svetlana; Carugo, Oliviero
2011-10-19
Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs.
Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures
2011-01-01
Background Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. Results A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. Conclusions The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs. PMID:22011380
NASA Astrophysics Data System (ADS)
Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam
2018-02-01
This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient deep-water channel-levee settings.
NASA Astrophysics Data System (ADS)
Panagopoulos, George P.
2014-10-01
The multivariate statistical techniques conducted on quarterly water consumption data in Mytilene reveal valuable tools that could help the local authorities in assigning strategies aimed at the sustainable development of urban water resources. The proposed methodology is an innovative approach, applied for the first time in the international literature, to handling urban water consumption data in order to analyze statistically the interrelationships among the determinants of urban water use. Factor analysis of demographic, socio-economic and hydrological variables shows that total water consumption in Mytilene is the combined result of increases in (a) income, (b) population, (c) connections and (d) climate parameters. On the other hand, the per connection water demand is influenced by variations in water prices but with different consequences in each consumption class. Increases in water prices are faced by large consumers; they then reduce their consumption rates and transfer to lower consumption blocks. These shifts are responsible for the increase in the average consumption values in the lower blocks despite the increase in the marginal prices.
Drinking water quality assessment.
Aryal, J; Gautam, B; Sapkota, N
2012-09-01
Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.
Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida
Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.
1987-01-01
Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)
Rupert, Michael G.
1994-01-01
Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land and agricultural land. There was no statistical difference in total phosphorus concentrations among any of the land-use classifications. Nitrate and total phosphorus concentrations also were correlated with land-use classifications developed by the Idaho Department of Water Resources for the Idaho part of the upper Snake River Basin. Nitrate concentrations were statistically higher in areas of irrigated agriculture than in areas of dryland agriculture and rangeland. There was no statistical difference in total phosphorus concentrations among any of the Idaho Department of Water Resources land-use classifications. Data were sufficient to assess long-term trends of nitrate concentrations in water from only eight wells: four wells north of Burley and four wells northwest of Pocatello. The trend in nitrate concentrations in water from all wells in upward. The following organic compounds were detected in ground water in the upper Snake River Basin: cyanazine, 2,4-D DDT, dacthal, diazinon, dichloropropane, dieldrin, malathion, and metribuzin. Of 211 wells sampled for organic compounds, water from 17 contained detectable concentrations.
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Daughney, C.
2016-12-01
The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.
Granato, Gregory E.
2009-01-01
Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National Research Council, 2004). The USGS maintains the National Water Information System (NWIS), a distributed network of computers and file servers used to store and retrieve hydrologic data (Mathey, 1998; U.S. Geological Survey, 2008). NWISWeb is an online version of this database that includes water data from more than 24,000 streamflow-gaging stations throughout the United States (U.S. Geological Survey, 2002, 2008). Information from NWISWeb is commonly used to characterize streamflows at gaged sites and to help predict streamflows at ungaged sites. Five computer programs were developed for obtaining and analyzing streamflow from the National Water Information System (NWISWeb). The programs were developed as part of a study by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, to develop a stochastic empirical loading and dilution model. The programs were developed because reliable, efficient, and repeatable methods are needed to access and process streamflow information and data. The first program is designed to facilitate the downloading and reformatting of NWISWeb streamflow data. The second program is designed to facilitate graphical analysis of streamflow data. The third program is designed to facilitate streamflow-record extension and augmentation to help develop long-term statistical estimates for sites with limited data. The fourth program is designed to facilitate statistical analysis of streamflow data. The fifth program is a preprocessor to create batch input files for the U.S. Environmental Protection Agency DFLOW3 program for calculating low-flow statistics. These computer programs were developed to facilitate the analysis of daily mean streamflow data for planning-level water-quality analyses but also are useful for many other applications pertaining to streamflow data and statistics. These programs and the associated documentation are included on the CD-ROM accompanying this report. This report and the appendixes on the
Parametric distribution approach for flow availability in small hydro potential analysis
NASA Astrophysics Data System (ADS)
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
NASA Astrophysics Data System (ADS)
Grafton, R. Quentin; Ward, Michael B.; To, Hang; Kompas, Tom
2011-08-01
Household survey data for 10 countries are used to quantify and test the importance of price and nonprice factors on residential water demand and investigate complementarities between household water-saving behaviors and the average volumetric price of water. Results show (1) the average volumetric price of water is an important predictor of differences in residential consumption in models that include household characteristics, water-saving devices, attitudinal characteristics and environmental concerns as explanatory variables; (2) of all water-saving devices, only a low volume/dual-flush toilet has a statistically significant and negative effect on water consumption; and (3) environmental concerns have a statistically significant effect on some self-reported water-saving behaviors. While price-based approaches are espoused to promote economic efficiency, our findings stress that volumetric water pricing is also one of the most effective policy levers available to regulate household water consumption.
Giménez-Forcada, Elena; Vega-Alegre, Marisol; Timón-Sánchez, Susana
2017-09-01
Naturally occurring arsenic in groundwater exceeding the limit for potability has been reported along the southern edge of the Cenozoic Duero Basin (CDB) near its contact with the Spanish Central System (SCS). In this area, spatial variability of arsenic is high, peaking at 241μg/L. Forty-seven percent of samples collected contained arsenic above the maximum allowable concentration for drinking water (10μg/L). Correlations of As with other hydrochemical variables were investigated using multivariate statistical analysis (Hierarchical Cluster Analysis, HCA and Principal Component Analysis, PCA). It was found that As, V, Cr and pH are closely related and that there were also close correlations with temperature and Na + . The highest concentrations of arsenic and other associated Potentially Toxic Geogenic Trace Elements (PTGTE) are linked to alkaline NaHCO 3 waters (pH≈9), moderate oxic conditions and temperatures of around 18°C-19°C. The most plausible hypothesis to explain the high arsenic concentrations is the contribution of deeper regional flows with a significant hydrothermal component (cold-hydrothermal waters), flowing through faults in the basement rock. Water mixing and water-rock interactions occur both in the fissured aquifer media (igneous and metasedimentary bedrock) and in the sedimentary environment of the CDB, where agricultural pollution phenomena are also active. A combination of multivariate statistical tools and hydrochemical analysis enabled the distribution pattern of dissolved As and other PTGTE in groundwaters in the study area to be interpreted, and their most likely origin to be established. This methodology could be applied to other sedimentary areas with similar characteristics and problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Muhammad, Said; Tahir Shah, M; Khan, Sardar
2010-10-01
The present study was conducted in Kohistan region, where mafic and ultramafic rocks (Kohistan island arc and Indus suture zone) and metasedimentary rocks (Indian plate) are exposed. Water samples were collected from the springs, streams and Indus river and analyzed for physical parameters, anions, cations and arsenic (As(3+), As(5+) and arsenic total). The water quality in Kohistan region was evaluated by comparing the physio-chemical parameters with permissible limits set by Pakistan environmental protection agency and world health organization. Most of the studied parameters were found within their respective permissible limits. However in some samples, the iron and arsenic concentrations exceeded their permissible limits. For health risk assessment of arsenic, the average daily dose, hazards quotient (HQ) and cancer risk were calculated by using statistical formulas. The values of HQ were found >1 in the samples collected from Jabba, Dubair, while HQ values were <1 in rest of the samples. This level of contamination should have low chronic risk and medium cancer risk when compared with US EPA guidelines. Furthermore, the inter-dependence of physio-chemical parameters and pollution load was also calculated by using multivariate statistical techniques like one-way ANOVA, correlation analysis, regression analysis, cluster analysis and principle component analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Exploring the link between meteorological drought and streamflow to inform water resource management
NASA Astrophysics Data System (ADS)
Lennard, Amy; Macdonald, Neil; Hooke, Janet
2015-04-01
Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.
Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil
2015-12-07
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.
Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil
2015-01-01
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190
Selected papers in the hydrologic sciences, 1986
Subitzky, Seymour
1987-01-01
Water-quality data from long-term (24 years), fixed- station monitoring at the Cape Fear River at Lock 1 near Kelly, N.C., and various measures of basin development are correlated. Subbasin population, number of acres of cropland in the subbasin, number of people employed in manufacturing, and tons of fertilizer applied in the basin are considered as measures of basinwide development activity. Linear correlations show statistically significant posi- tive relations between both population and manufacturing activity and most of the dissolved constituents considered. Negative correlations were found between the acres of harvested cropland and most of the water-quality measures. The amount of fertilizer sold in the subbasin was not statistically related to the water-quality measures considered in this report. The statistical analysis was limited to several commonly used measures of water quality including specific conductance, pH, dissolved solids, several major dissolved ions, and a few nutrients. The major dissolved ions included in the analysis were calcium, sodium, potassium, magnesium, chloride, sulfate, silica, bicarbonate, and fluoride. The nutrients included were dissolved nitrite plus nitrate nitrogen, dissolved ammonia nitrogen, total nitrogen, dissolved phosphates, and total phosphorus. For the chemicals evaluated, manufacturing and population sources are more closely associated with water quality in the Cape Fear River at Lock 1 than are agricultural variables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the Administrator. (1) Statistical analysis of initial water penetration data performed to support ASTM Designation D2099-00 indicates that poor quantitative precision is associated with this testing...
Frans, Lonna M.; Helsel, Dennis R.
2005-01-01
Trends in nitrate concentrations in water from 474 wells in 17 subregions in the Columbia Basin Ground Water Management Area (GWMA) in three counties in eastern Washington were evaluated using a variety of statistical techniques, including the Friedman test and the Kendall test. The Kendall test was modified from its typical 'seasonal' version into a 'regional' version by using well locations in place of seasons. No statistically significant trends in nitrate concentrations were identified in samples from wells in the GWMA, the three counties, or the 17 subregions from 1998 to 2002 when all data were included in the analysis. For wells in which nitrate concentrations were greater than 10 milligrams per liter (mg/L), however, a significant downward trend of -0.4 mg/L per year was observed between 1998 and 2002 for the GWMA as a whole, as well as for Adams County (-0.35 mg/L per year) and for Franklin County (-0.46 mg/L per year). Trend analysis for a smaller but longer-term 51-well dataset in Franklin County found a statistically significant upward trend in nitrate concentrations of 0.1 mg/L per year between 1986 and 2003. The largest increase of nitrate concentrations occurred between 1986 and 1991. No statistically significant differences were observed in this dataset between 1998 and 2003 indicating that the increase in nitrate concentrations has leveled off.
Standridge, J H; Lesar, D J
1977-01-01
The problem of extending the storage time of water samples for fecal coliform analysis was addressed. Included in this report is a literature review of the storage problem. Twenty-eight samples were analyzed in replicate to determine the effect of 24-h storage of water samples at 4 degrees C. A new statistical approach to data analysis, coupled with the concept of practical acceptability, is presented. According to our results, many samples can successfully be stored at 4 degrees C for 24 h. PMID:335972
Statistical Analysis of Regional Surface Water Quality in Southeastern Ontario.
ERIC Educational Resources Information Center
Bodo, Byron A.
1992-01-01
Historical records from Ontario's Provincial Water Quality Monitoring Network for rivers and streams were analyzed to assess the feasibility of mapping regional water quality patterns in southeastern Ontario, spanning the Precambrian Shield and the St. Lawrence Lowlands. The study served as a model for much of Ontario. (54 references) (Author/MDH)
Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China
NASA Astrophysics Data System (ADS)
Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin
2018-05-01
Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.
Feder, Paul I; Ma, Zhenxu J; Bull, Richard J; Teuschler, Linda K; Rice, Glenn
2009-01-01
In chemical mixtures risk assessment, the use of dose-response data developed for one mixture to estimate risk posed by a second mixture depends on whether the two mixtures are sufficiently similar. While evaluations of similarity may be made using qualitative judgments, this article uses nonparametric statistical methods based on the "bootstrap" resampling technique to address the question of similarity among mixtures of chemical disinfectant by-products (DBP) in drinking water. The bootstrap resampling technique is a general-purpose, computer-intensive approach to statistical inference that substitutes empirical sampling for theoretically based parametric mathematical modeling. Nonparametric, bootstrap-based inference involves fewer assumptions than parametric normal theory based inference. The bootstrap procedure is appropriate, at least in an asymptotic sense, whether or not the parametric, distributional assumptions hold, even approximately. The statistical analysis procedures in this article are initially illustrated with data from 5 water treatment plants (Schenck et al., 2009), and then extended using data developed from a study of 35 drinking-water utilities (U.S. EPA/AMWA, 1989), which permits inclusion of a greater number of water constituents and increased structure in the statistical models.
NASA Astrophysics Data System (ADS)
Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro
2014-05-01
This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh<1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.
Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.
2016-10-19
OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling. Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake. Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.
Testing alternative ground water models using cross-validation and other methods
Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.
2007-01-01
Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.
Statistical summaries of selected Iowa streamflow data through September 2013
Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.
2016-01-04
Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.
Vine Water Deficit Impacts Aging Bouquet in Fine Red Bordeaux Wine.
Picard, Magali; van Leeuwen, Cornelis; Guyon, François; Gaillard, Laetitia; de Revel, Gilles; Marchand, Stéphanie
2017-01-01
The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ 13 C), this ratio was quantified for each wine studied. Statistical analyses combining δ 13 C and sensory data highlighted that δ 13 C-values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis (PCA) revealed correlations between δ 13 C-values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.
Vine water deficit impacts aging bouquet in fine red Bordeaux wine
NASA Astrophysics Data System (ADS)
Picard, Magali; van Leeuwen, Cornelis; Guyon, François; Gaillard, Laetitia; de Revel, Gilles; Marchand, Stéphanie
2017-08-01
The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C), this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis revealed correlations between δ13C values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances.
Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo
2014-04-01
The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.
Hassen, Imen; Hamzaoui-Azaza, Fadoua; Bouhlila, Rachida
2016-03-01
Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January-February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca-HCO3 to Mg-SO4 type and are controlled by water-rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards's diagrams. This aquifer has been classified as "excellent water" serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects.
Escalante, Yolanda; Saavedra, Jose M.; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Dominguez, Ana M.
2012-01-01
The aims of this study were (i) to compare women’s water polo game-related statistics by match outcome (winning and losing teams) and phase (preliminary, classificatory, and semi-final/bronze medal/gold medal), and (ii) identify characteristics that discriminate performances for each phase. The game-related statistics of the 124 women’s matches played in five International Championships (World and European Championships) were analyzed. Differences between winning and losing teams in each phase were determined using the chi-squared. A discriminant analysis was then performed according to context in each of the three phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables were both offensive (centre goals, power-play goals, counterattack goal, assists, offensive fouls, steals, blocked shots, and won sprints) and defensive (goalkeeper-blocked shots, goalkeeper-blocked inferiority shots, and goalkeeper-blocked 5-m shots). The discriminant analysis showed the game-related statistics to discriminate performance in all phases: preliminary, classificatory, and final phases (92%, 90%, and 83%, respectively). Two variables were discriminatory by match outcome (winning or losing teams) in all three phases: goals and goalkeeper-blocked shots. Key pointsThe preliminary phase that more than one variable was involved in this differentiation, including both offensive and defensive aspects of the game.The game-related statistics were found to have a high discriminatory power in predicting the result of matches with shots and goalkeeper-blocked shots being discriminatory variables in all three phases.Knowledge of the characteristics of women’s water polo game-related statistics of the winning teams and their power to predict match outcomes will allow coaches to take these characteristics into account when planning training and match preparation. PMID:24149356
Local sensitivity analysis for inverse problems solved by singular value decomposition
Hill, M.C.; Nolan, B.T.
2010-01-01
Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.
The discrimination of sea ice types using SAR backscatter statistics
NASA Technical Reports Server (NTRS)
Shuchman, Robert A.; Wackerman, Christopher C.; Maffett, Andrew L.; Onstott, Robert G.; Sutherland, Laura L.
1989-01-01
X-band (HH) synthetic aperture radar (SAR) data of sea ice collected during the Marginal Ice Zone Experiment in March and April of 1987 was statistically analyzed with respect to discriminating open water, first-year ice, multiyear ice, and Odden. Odden are large expanses of nilas ice that rapidly form in the Greenland Sea and transform into pancake ice. A first-order statistical analysis indicated that mean versus variance can segment out open water and first-year ice, and skewness versus modified skewness can segment the Odden and multilayer categories. In additions to first-order statistics, a model has been generated for the distribution function of the SAR ice data. Segmentation of ice types was also attempted using textural measurements. In this case, the general co-occurency matrix was evaluated. The textural method did not generate better results than the first-order statistical approach.
NASA Astrophysics Data System (ADS)
Emiyati; Manoppo, Anneke K. S.; Budhiman, Syarif
2017-01-01
Total Suspended Matter (TSM) are fine materials which suspended and floated in water column. Water column could be turbid due to TSM that reduces the depth of light penetration and causes low productivity in coastal waters. The objective of this study was to estimate TSM concentration using Landsat 8 OLI data in Lombok coastal waters Indonesia by using empirical and analytic approach between three visible bands of Landsat 8 OLI subsurface reflectance (OLI 2, OLI 3 and OLI 4) and field data. The accuracy of model was tested using error estimation and statistical analysis. Colour of waters, transparency and reflectance values showed, the clear water has high transparency and low reflectance while the turbid waters have low transparency and high reflectance. The estimation of TSM concentrations in Lombok coastal waters are 0.39 to 20.7 mg/l. TSM concentrations becoming high when it is on coast and low when it is far from the coast. The statistical analysis showed that TSM model from Landsat 8 OLI data could describe TSM from field measurement with correlation 91.8% and RMSE value 0.52. The t-test and f-test showed that the TSM derived from Landsat 8 OLI and TSM measured in field were not significantly different.
NASA Astrophysics Data System (ADS)
Karuppiah, R.; Faldi, A.; Laurenzi, I.; Usadi, A.; Venkatesh, A.
2014-12-01
An increasing number of studies are focused on assessing the environmental footprint of different products and processes, especially using life cycle assessment (LCA). This work shows how combining statistical methods and Geographic Information Systems (GIS) with environmental analyses can help improve the quality of results and their interpretation. Most environmental assessments in literature yield single numbers that characterize the environmental impact of a process/product - typically global or country averages, often unchanging in time. In this work, we show how statistical analysis and GIS can help address these limitations. For example, we demonstrate a method to separately quantify uncertainty and variability in the result of LCA models using a power generation case study. This is important for rigorous comparisons between the impacts of different processes. Another challenge is lack of data that can affect the rigor of LCAs. We have developed an approach to estimate environmental impacts of incompletely characterized processes using predictive statistical models. This method is applied to estimate unreported coal power plant emissions in several world regions. There is also a general lack of spatio-temporal characterization of the results in environmental analyses. For instance, studies that focus on water usage do not put in context where and when water is withdrawn. Through the use of hydrological modeling combined with GIS, we quantify water stress on a regional and seasonal basis to understand water supply and demand risks for multiple users. Another example where it is important to consider regional dependency of impacts is when characterizing how agricultural land occupation affects biodiversity in a region. We developed a data-driven methodology used in conjuction with GIS to determine if there is a statistically significant difference between the impacts of growing different crops on different species in various biomes of the world.
Kamtchueng, Brice T; Fantong, Wilson Y; Wirmvem, Mengnjo J; Tiodjio, Rosine E; Takounjou, Alain F; Ndam Ngoupayou, Jules R; Kusakabe, Minoru; Zhang, Jing; Ohba, Takeshi; Tanyileke, Gregory; Hell, Joseph V; Ueda, Akira
2016-09-01
With the use of conventional hydrogeochemical techniques, multivariate statistical analysis, and stable isotope approaches, this paper investigates for the first time surface water and groundwater from the surrounding areas of Lake Monoun (LM), West Cameroon. The results reveal that waters are generally slightly acidic to neutral. The relative abundance of major dissolved species are Ca(2+) > Mg(2+) > Na(+) > K(+) for cations and HCO3 (-) ≫ NO3 (-) > Cl(-) > SO4 (2-) for anions. The main water type is Ca-Mg-HCO3. Observed salinity is related to water-rock interaction, ion exchange process, and anthropogenic activities. Nitrate and chloride have been identified as the most common pollutants. These pollutants are attributed to the chlorination of wells and leaching from pit latrines and refuse dumps. The stable isotopic compositions in the investigated water sources suggest evidence of evaporation before recharge. Four major groups of waters were identified by salinity and NO3 concentrations using the Q-mode hierarchical cluster analysis (HCA). Consistent with the isotopic results, group 1 represents fresh unpolluted water occurring near the recharge zone in the general flow regime; groups 2 and 3 are mixed water whose composition is controlled by both weathering of rock-forming minerals and anthropogenic activities; group 4 represents water under high vulnerability of anthropogenic pollution. Moreover, the isotopic results and the HCA showed that the CO2-rich bottom water of LM belongs to an isolated hydrological system within the Foumbot plain. Except for some springs, groundwater water in the area is inappropriate for drinking and domestic purposes but good to excellent for irrigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, A.L.
1990-11-01
The market survey covers the water and wastewater pollution control systems market in the Philippines. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.
NASA Astrophysics Data System (ADS)
Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris
2017-04-01
Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the apparent benefit from using ensembles for cloudy radiance assimilation in an EnVar context.
Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu
2014-05-19
County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.
Water quality and non-point sources of risk: the Jiulong River Watershed, P. R. of China.
Zhang, Jingjing; Zhang, Luoping; Ricci, Paolo F
2012-01-01
Retrospective water quality assessment plays an essential role in identifying trends and causal associations between exposures and risks, thus it can be a guide for water resources management. We have developed empirical relationships between several time-varying social and economic factors of economic development, water quality variables such as nitrate-nitrogen, COD(Mn), BOD(5), and DO, in the Jiulong River Watershed and its main tributary, the West River. Our analyses used alternative statistical methods to reduce the dimensionality of the analysis first and then strengthen the study's causal associations. The statistical methods included: factor analysis (FA), trend analysis, Monte Carlo/bootstrap simulations, robust regressions and a coupled equations model, integrated into a framework that allows an investigation and resolution of the issues that may affect the estimated results. After resolving these, we found that the concentrations of nitrogen compounds increased over time in the West River region, and that fertilizer used in agricultural fruit crops was the main risk with regard to nitrogen pollution. The relationships we developed can identify hazards and explain the impact of sources of different types of pollution, such as urbanization, and agriculture.
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
NASA Astrophysics Data System (ADS)
Campbell, B. D.; Higgins, S. R.
2008-12-01
Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.
NASA Astrophysics Data System (ADS)
Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.
2017-10-01
In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.
Das, Suchismita; Choudhury, Shamim Sultana
2016-01-01
The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.
Investigation of priorities in water quality management based on correlations and variations.
Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal
2013-04-15
The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
NASA Astrophysics Data System (ADS)
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
A Comparison of Atmospheric Quantities Determined from Advanced WVR and Weather Analysis Data
NASA Astrophysics Data System (ADS)
Morabito, D.; Wu, L.; Slobin, S.
2017-05-01
Lower frequency bands used for deep space communications (e.g., 2.3 GHz and 8.4 GHz) are oversubscribed. Thus, NASA has become interested in using higher frequency bands (e.g., 26 GHz and 32 GHz) for telemetry, making use of the available wider bandwidth. However, these bands are more susceptible to atmospheric degradation. Currently, flight projects tend to be conservative in preparing their communications links by using worst-case or conservative assumptions, which result in nonoptimum data return. We previously explored the use of weather forecasting over different weather condition scenarios to determine more optimal values of atmospheric attenuation and atmospheric noise temperature for use in telecommunications link design. In this article, we present the results of a comparison of meteorological parameters (columnar water vapor and liquid water content) estimated from multifrequency Advanced Water Vapor Radiometer (AWVR) data with those estimated from weather analysis tools (FNL). We find that for the Deep Space Network's Goldstone and Madrid tracking sites, the statistics are in reasonable agreement between the two methods. We can then use the statistics of these quantities based on FNL runs to estimate statistics of atmospheric signal degradation for tracking sites that do not have the benefit of possessing multiyear WVR data sets, such as those of the NASA Near-Earth Network (NEN). The resulting statistics of atmospheric attenuation and atmospheric noise temperature increase can then be used in link budget calculations.
Laganà, Pasqualina; Moscato, Umberto; Poscia, Andrea; La Milia, Daniele Ignazio; Boccia, Stefania; Avventuroso, Emanuela; Delia, Santi
2015-01-01
Legionnaires' disease is normally acquired by inhalation of legionellae from a contaminated environmental source. Water systems of large buildings, such as hospitals, are often contaminated with legionellae and therefore represent a potential risk for the hospital population. The aim of this study was to evaluate the potential contamination of Legionella pneumophila (LP) in a large hospital in Italy through georeferential statistical analysis to assess the possible sources of dispersion and, consequently, the risk of exposure for both health care staff and patients. LP serogroups 1 and 2-14 distribution was considered in the wards housed on two consecutive floors of the hospital building. On the basis of information provided by 53 bacteriological analysis, a 'random' grid of points was chosen and spatial geostatistics or FAIk Kriging was applied and compared with the results of classical statistical analysis. Over 50% of the examined samples were positive for Legionella pneumophila. LP 1 was isolated in 69% of samples from the ground floor and in 60% of sample from the first floor; LP 2-14 in 36% of sample from the ground floor and 24% from the first. The iso-estimation maps show clearly the most contaminated pipe and the difference in the diffusion of the different L. pneumophila serogroups. Experimental work has demonstrated that geostatistical methods applied to the microbiological analysis of water matrices allows a better modeling of the phenomenon under study, a greater potential for risk management and a greater choice of methods of prevention and environmental recovery to be put in place with respect to the classical statistical analysis.
Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra
2015-09-01
One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2015-01-01
River water is a major resource of drinking water on earth. Management of river water is highly needed for surviving. Yamuna is the main river of India, and monthly variation of water quality of river Yamuna, using statistical methods have been compared at different sites for each water parameters. Regression, correlation coefficient, autoregressive integrated moving average (ARIMA), box-Jenkins, residual autocorrelation function (ACF), residual partial autocorrelation function (PACF), lag, fractal, Hurst exponent, and predictability index have been estimated to analyze trend and prediction of water quality. Predictive model is useful at 95% confidence limits and all water parameters reveal platykurtic curve. Brownian motion (true random walk) behavior exists at different sites for BOD, AMM, and total Kjeldahl nitrogen (TKN). Quality of Yamuna River water at Hathnikund is good, declines at Nizamuddin, Mazawali, Agra D/S, and regains good quality again at Juhikha. For all sites, almost all parameters except potential of hydrogen (pH), water temperature (WT) crosses the prescribed limits of World Health Organization (WHO)/United States Environmental Protection Agency (EPA).
Water Masses in the Eastern Mediterranean Sea: An Analysis of Measured Isotopic Oxygen
NASA Astrophysics Data System (ADS)
de Ruggiero, Paola; Zanchettin, Davide; Bensi, Manuel; Hainbucher, Dagmar; Stenni, Barbara; Pierini, Stefano; Rubino, Angelo
2018-04-01
We investigate aspects of the water mass structure of the Adriatic and Ionian basins (Eastern Mediterranean Sea) and their interdecadal variability through statistical analyses focused on δ18Ο measurements carried out in 1985, 1990, and 2011. In particular, the more recent δ18Ο measurements extend throughout the entire water column and constitute, to the best of our knowledge, the largest synoptic dataset encompassing different sub-basins of the Mediterranean Sea. We study the statistical linkages between temperature, salinity, dissolved oxygen and δ18Ο. We find that δ18Ο is largely independent from the other parameters, and it can be used to trace major water masses that are typically found in the basins, including the Adriatic Dense Water, the Levantine Intermediate Water, and the Cretan Intermediate and Dense Waters. Finally, we explore the possibility of using δ18Ο concentration as a proxy for dominant modes of large-scale oceanic variability in the Mediterranean Sea.
Sequential analysis of hydrochemical data for watershed characterization.
Thyne, Geoffrey; Güler, Cüneyt; Poeter, Eileen
2004-01-01
A methodology for characterizing the hydrogeology of watersheds using hydrochemical data that combine statistical, geochemical, and spatial techniques is presented. Surface water and ground water base flow and spring runoff samples (180 total) from a single watershed are first classified using hierarchical cluster analysis. The statistical clusters are analyzed for spatial coherence confirming that the clusters have a geological basis corresponding to topographic flowpaths and showing that the fractured rock aquifer behaves as an equivalent porous medium on the watershed scale. Then principal component analysis (PCA) is used to determine the sources of variation between parameters. PCA analysis shows that the variations within the dataset are related to variations in calcium, magnesium, SO4, and HCO3, which are derived from natural weathering reactions, and pH, NO3, and chlorine, which indicate anthropogenic impact. PHREEQC modeling is used to quantitatively describe the natural hydrochemical evolution for the watershed and aid in discrimination of samples that have an anthropogenic component. Finally, the seasonal changes in the water chemistry of individual sites were analyzed to better characterize the spatial variability of vertical hydraulic conductivity. The integrated result provides a method to characterize the hydrogeology of the watershed that fully utilizes traditional data.
A statistical model for water quality predictions from a river discharge using coastal observations
NASA Astrophysics Data System (ADS)
Kim, S.; Terrill, E. J.
2007-12-01
Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.
NASA Astrophysics Data System (ADS)
Khatri, Ayisha Al; Jens, Grundmann; der Weth Rüdiger, van; Niels, Schütze
2015-04-01
Al Batinah coastal area is the main agricultural region in Oman. Agriculture is concentrated in Al Batinah, because of more fertile soils and easier access to water in the form of groundwater compared to other administrative areas in the country. The region now is facing a problem as a result of over abstraction of fresh groundwater for irrigation from the main aquifer along the coast. This enforces the inflow of sea water into the coastal aquifer and causes salinization of the groundwater. As a consequence the groundwater becomes no longer suitable for irrigation which impacts the social and economical situation of farmers as well as the environment. Therefore, the existing situation generates conflicts between different stakeholders regarding water availability, sustainable aquifer management, and profitable agricultural production in Al Batinah region. Several management measures to maintain the groundwater aquifer in the region, were implemented by the government. However, these solutions showed only limited successes for the existing problem. The aim of this study now is to evaluate the implementation potential of several management interventions and their combinations by analysing opinions and responses of all relevant stakeholders in the region. This is done in order to identify potential conflicts among stakeholders to a participatory process within the frame of an integrated water resources management and to support decision makers in taking more informed decisions. Questionnaires were designed for collecting data from different groups of stakeholders e.g. water professionals, farmers from the study area and decision makers of different organizations and ministries. These data were analysed statistically for each group separately as well as regarding relations amongst groups by using the SPSS (Statistical Package for Social Science) software package. Results show, that the need to improve the situation is supported by all groups. However, significant differences exist between groups on how to achieve this improvement, since farmers prefer management interventions operating more on the water resources side while decision makers support measures for a better management on the water demand side. Furthermore, the opinions within single groups are sometimes contradicting for several management interventions. The use of more advanced statistical methods like discriminant analysis or Bayesian network allow for identifying factors and drivers to explain these differences. Both approaches, will help to understand stakeholder's behaviours and to evaluate the implementation potential of several management interventions. Keywords IWRM, Stakeholder participation, field survey, statistical analysis, Oman
Crawford, Charles G.; Wangsness, David J.
1993-01-01
The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the number of river-quality samples that failed to meet the water-quality standards for ammonia and dissolved oxygen that apply to the White River decreased substantially.
Ryberg, Karen R.
2006-01-01
As a result of the Dakota Water Resources Act of 2000, the Bureau of Reclamation, U.S. Department of the Interior, identified eight water-supply alternatives (including a no-action alternative) to meet future water needs in portions of the Red River of the North (Red River) Basin. Of those alternatives, four include the interbasin transfer of water from the Missouri River Basin to the Red River Basin. Three of the interbasin transfer alternatives would use the McClusky Canal, located in central North Dakota, to transport the water. Therefore, the water quality of the McClusky Canal and the sources of its water, Lake Sakakawea and Audubon Lake, is of interest to water-quality stakeholders. The Bureau of Reclamation collected water-quality samples at 23 sites on Lake Sakakawea, Audubon Lake, and the McClusky Canal system from 1990 through 2003. Physical properties and water-quality constituents from these samples were summarized and analyzed by the U.S. Geological Survey using hierarchical agglomerative cluster analysis (HACA). HACA separated the samples into related clusters, or groups. These groups were examined for statistical significance and relation to structure of the McClusky Canal system. Statistically, the sample groupings found using HACA were significantly different from each other and appear to result from spatial and temporal water-quality differences corresponding with different sections of the canal and different operational conditions. Future operational changes of the canal system may justify additional water-quality sampling to characterize possible water-quality changes.
Spatial statistical analysis of tree deaths using airborne digital imagery
NASA Astrophysics Data System (ADS)
Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael
2013-04-01
High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).
NASA Astrophysics Data System (ADS)
Lindsey, B.; McMahon, P.; Rupert, M.; Tesoriero, J.; Starn, J.; Anning, D.; Green, C.
2012-04-01
The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program was implemented in 1991 to provide long-term, consistent, and comparable information on the quality of surface and groundwater resources of the United States. Findings are used to support national, regional, state, and local information needs with respect to water quality. The three main goals of the program are to 1) assess the condition of the nation's streams, rivers, groundwater, and aquatic systems; 2) assess how conditions are changing over time; and 3) determine how natural features and human activities affect these conditions, and where those effects are most pronounced. As data collection progressed into the second decade, the emphasis of the interpretation of the data has shifted from primarily understanding status, to evaluation of trends. The program has conducted national and regional evaluations of change in the quality of water in streams, rivers, groundwater, and health of aquatic systems. Evaluating trends in environmental systems requires complex analytical and statistical methods, and a periodic re-evaluation of the monitoring methods used to collect these data. Examples given herein summarize the lessons learned from the evaluation of changes in water quality during the past two decades with an emphasis on the finding with respect to groundwater. The analysis of trends in groundwater is based on 56 well networks located in 22 principal aquifers of the United States. Analysis has focused on 3 approaches: 1) a statistical analysis of results of sampling over various time scales, 2) studies of factors affecting trends in groundwater quality, and 3) use of models to simulate groundwater trends and forecast future trends. Data collection for analysis of changes in groundwater-quality has focused on decadal resampling of wells. Understanding the trends in groundwater quality and the factors affecting those trends has been conducted using quarterly sampling, biennial sampling, and more recently continuous monitoring of selected parameters in a small number of wells. Models such as MODFLOW have been used for simulation and forecasting of future trends. Important outcomes from the groundwater-trends studies include issues involving statistics, sampling frequency, changes in laboratory analytical methods over time, the need for groundwater age-dating information, the value of understanding geochemical conditions and contaminant degradation, the need to understand groundwater-surface water interaction, and the value of modeling in understanding trends and forecasting potential future conditions. Statistically significant increases in chloride, dissolved solids, and nitrate concentrations were found in a large number of well networks over the first decadal sampling period. Statistically significant decreases of chloride, dissolved solids, and nitrate concentrations were found in a very small number of networks. Trends in surface-water are analyzed within 8 large major river basins within the United States with a focus on issues of regional importance. Examples of regional surface-water issues include an analysis of trends in dissolved solids in the Southeastern United States, trends in pesticides in the north-central United States, and trends in nitrate in the Mississippi River Basin. Evaluations of ecological indicators of water quality include temporal changes in stream habitat, and aquatic-invertebrate and fish assemblages.
NASA Astrophysics Data System (ADS)
Martinez, B. S.; Ye, H.; Levy, R. C.; Fetzer, E. J.; Remer, L.
2017-12-01
Atmospheric aerosols expose high levels of uncertainty in regard to Earth's changing atmospheric energy budget. Continued exploration and analysis is necessary to obtain more complete understanding in which, and to what degree, aerosols contribute within climate feedbacks and global climate change. With the advent of global satellite retrievals, along with specific aerosol optical depth (AOD) Dark Target and Deep Blue algorithms, aerosols can now be better measured and analyzed. Aerosol effect on climate depends primarily on altitude, the reflectance albedo of the underlying surface, along with the presence of clouds and the dynamics thereof. As currently known, the majority of aerosol distribution and mixing occur in the lower troposphere from the surface upwards to around 2km. Additionally, being a primary greenhouse gas contributor, water vapor is significant to climate feedbacks and Earth's radiation budget. Feedbacks are generally reported from the top of atmosphere (TOA). Therefore, little is known of the relationship between water vapor and aerosols; specifically, in regional areas of the globe known for aerosol loading such as anthropogenic biomass burning in South America and naturally occurring dust blowing off the deserts in the African and Arabian peninsulas. Statistical regression and timeseries analysis are used in determining significant probabilities suggesting trends of both regional precipitable water (PW) and AOD increase and decrease over a 13-year time period from 2003-2015. Regions with statistically significant positive or negative trends of AOD and PW are analyzed in determining correlations, or lack thereof. This initial examination helps to deduce and better understand how aerosols contribute to the radiation budget and assessing climate change.
Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22.
ERIC Educational Resources Information Center
National Sanitation Foundation, Ann Arbor, MI.
Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…
1987-03-01
statistics for storm water quality variables and fractions of phosphorus, solids, and carbon are presented in Tables 7 and 8, respectively. The correlation...matrix and factor analysis (same method as used for baseflow) of storm water quality variables suggested three groups: Group I - TMG, TCA, TNA, TSI...models to predict storm water quality . The 11 static and 3 dynamic storm variables were used as potential dependent variables. All independent and
Vine Water Deficit Impacts Aging Bouquet in Fine Red Bordeaux Wine
Picard, Magali; van Leeuwen, Cornelis; Guyon, François; Gaillard, Laetitia; de Revel, Gilles; Marchand, Stéphanie
2017-01-01
The aim of this study was to investigate the influence of vine water status on bouquet typicality, revealed after aging, and the perception of three aromatic notes (mint, truffle, and undergrowth) in bottled fine red Bordeaux wines. To address the issue of the role of vine water deficit in the overall quality of fine aged wines, a large set of wines from four Bordeaux appellations were subjected to sensory analysis. As vine water status can be characterized by carbon isotope discrimination (δ13C), this ratio was quantified for each wine studied. Statistical analyses combining δ13C and sensory data highlighted that δ13C-values discriminated effectively between the most- and least-typical wines. In addition, Principal Component Analysis (PCA) revealed correlations between δ13C-values and truffle, undergrowth, and mint aromatic notes, three characteristics of the red Bordeaux wine aging bouquet. These correlations were confirmed to be significant using a Spearman statistical test. This study highlighted for the first time that vine water deficit positively relates to the perception of aging bouquet typicality, as well as the expression of its key aromatic nuances. PMID:28824904
NASA Astrophysics Data System (ADS)
Kathiravan, K.; Natesan, Usha; Vishnunath, R.
2017-03-01
The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.
Shi, Xiaocai; Passe, Dennis H
2010-10-01
The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.
Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu
2014-01-01
County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390
Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.
Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien
2016-08-24
Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.
McSwain, Kristen Bukowski; Strickland, A.G.
2010-01-01
Groundwater conditions in Brunswick County, North Carolina, have been monitored continuously since 2000 through the operation and maintenance of groundwater-level observation wells in the surficial, Castle Hayne, and Peedee aquifers of the North Atlantic Coastal Plain aquifer system. Groundwater-resource conditions for the Brunswick County area were evaluated by relating the normal range (25th to 75th percentile) monthly mean groundwater-level and precipitation data for water years 2001 to 2008 to median monthly mean groundwater levels and monthly sum of daily precipitation for water year 2008. Summaries of precipitation and groundwater conditions for the Brunswick County area and hydrographs and statistics of continuous groundwater levels collected during the 2008 water year are presented in this report. Groundwater levels varied by aquifer and geographic location within Brunswick County, but were influenced by drought conditions and groundwater withdrawals. Water levels were normal in two of the eight observation wells and below normal in the remaining six wells. Seasonal Kendall trend analysis performed on more than 9 years of monthly mean groundwater-level data collected in an observation well located within the Brunswick County well field indicated there is a strong downward trend, with water levels declining at a rate of about 2.2 feet per year.
Kakakhel, Zainab Masroor; Ibrar, Somabia; Khan, Wasim Alam; Bibi, Hajera; Zamir, Syed Ahmed; Khan, Shafin Sohail; Khan, Shabaz; Khan, Sohrab; Tariq, Wasif; Tahir, M Hassan; Iqbal, Saima
2011-09-01
To determine the source of drinking water and to assess its relationship with the frequency of diarrhoea among households of Nurpur Shahan. A cross-sectional descriptive study was carried out in January 2010 with a preformed questionnaire. Systematic random sampling was used to collect data. Participants' consent was obtained and confidentiality was maintained during the survey and during analysis. Households were evaluated for the frequency of diarrhoea in relation to their water source, its purification, and availability of sanitation facilities. All collected data was analyzed using SPSS 10.0. Of the 107 households surveyed, 2.8% used wells, 63% used tap water and 32.7% used hand pumps, whereas only 0.9% consumed store-bought water as their major source of drinking water. The difference in the frequency of diarrhoea between those households who purified their water and those that did not was just 1%. The relationship between the source of drinking water and the frequency of diarrhoea was not statistically significant (p = 0.319). Surprisingly households with no disposal facilities only had a 20% frequency of diarrhoea; this was found to be statistically significant (p = 0.023). This study contradicts the general conception that water supply is responsible for diarrhoea in the locality of Nurpur Shahan; it was found that the statistical difference between diarrhoea resulting from purified and non purified water was very small (p-value=0.587). Rather, improper sanitation and poor personal hygiene seem largely responsible for diarrhoea in this rural Islamabad community.
Sioux City Riverbank Filtration Study
NASA Astrophysics Data System (ADS)
Mach, R.; Condon, J.; Johnson, J.
2003-04-01
The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight-month period. Final statistical analyses of the nine months of data indicate up to a four-log particle reduction occurs through river bank filtration. Consequently, Missouri River sediments within the City's well field are very effective in water filtration. This information was submitted to the IDNR for review and approval. Subsequently, the IDNR approved 4.0 log removal for Giardia and 3.5 log removal for Cryptosporidium through the riverbank and treatment plant. The City and IDNR have agreed on subrogate parameters for monitoring purposes.
Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar
2016-02-01
The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.
NASA Astrophysics Data System (ADS)
Ndehedehe, Christopher E.; Agutu, Nathan O.; Okwuashi, Onuwa; Ferreira, Vagner G.
2016-09-01
Lake Chad has recently been perceived to be completely desiccated and almost extinct due to insufficient published ground observations. Given the high spatial variability of rainfall in the region, and the fact that extreme climatic conditions (for example, droughts) could be intensifying in the Lake Chad basin (LCB) due to human activities, a spatio-temporal approach to drought analysis becomes essential. This study employed independent component analysis (ICA), a fourth-order cumulant statistics, to decompose standardised precipitation index (SPI), standardised soil moisture index (SSI), and terrestrial water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) into spatial and temporal patterns over the LCB. In addition, this study uses satellite altimetry data to estimate variations in the Lake Chad water levels, and further employs relevant climate teleconnection indices (El-Niño Southern Oscillation-ENSO, Atlantic Multi-decadal Oscillation-AMO, and Atlantic Meridional Mode-AMM) to examine their links to the observed drought temporal patterns over the basin. From the spatio-temporal drought analysis, temporal evolutions of SPI at 12 month aggregation show relatively wet conditions in the last two decades (although with marked alterations) with the 2012-2014 period being the wettest. In addition to the improved rainfall conditions during this period, there was a statistically significant increase of 0.04 m/yr in altimetry water levels observed over Lake Chad between 2008 and 2014, which confirms a shift in the hydrological conditions of the basin. Observed trend in TWS changes during the 2002-2014 period shows a statistically insignificant increase of 3.0 mm/yr at the centre of the basin, coinciding with soil moisture deficit indicated by the temporal evolutions of SSI at all monthly accumulations during the 2002-2003 and 2009-2012 periods. Further, SPI at 3 and 6 month scales indicated fluctuating drought conditions at the extreme south of the basin, coinciding with a statistically insignificant decline in TWS of about 4.5 mm/yr at the southern catchment of the basin. Finally, correlation analyses indicate that ENSO, AMO, and AMM are associated with extreme rainfall conditions in the basin, with AMO showing the strongest association (statistically significant correlation of 0.55) with SPI 12 month aggregation. Therefore, this study provides a framework that will support drought monitoring in the LCB.
NASA Astrophysics Data System (ADS)
Kusche, J.; Forootan, E.; Eicker, A.; Hoffmann-Dobrev, H.
2012-04-01
West-African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources, for instance reduced freshwater availability, and changes in the frequency, duration and magnitude of droughts and floods. Extracting the main patterns of water storage change in West Africa from remote sensing and linking them to climate variability, is therefore an essential step to understand the hydrological aspects of the region. In this study, the higher order statistical method of Independent Component Analysis (ICA) is employed to extract statistically independent water storage patterns from monthly Gravity Recovery And Climate Experiment (GRACE), from the WaterGAP Global Hydrology Model (WGHM) and from Tropical Rainfall Measuring Mission (TRMM) products over West Africa, for the period 2002-2012. Then, to reveal the influences of climatic teleconnections on the individual patterns, these results were correlated to the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) indices. To study the predictability of water storage changes, advanced statistical methods were applied on the main independent Sea Surface Temperature (SST) patterns over the Atlantic and Indian Oceans for the period 2002-2012 and the ICA results. Our results show a water storage decrease over the coastal regions of West Africa (including Sierra Leone, Liberia, Togo and Nigeria), associated with rainfall decrease. The comparison between GRACE estimations and WGHM results indicates some inconsistencies that underline the importance of forcing data for hydrological modeling of West Africa. Keywords: West Africa; GRACE-derived water storage; ICA; ENSO; IOD
Environmental assessment of Al-Hammar Marsh, Southern Iraq.
Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim
2017-02-01
(a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results compatible with multivariate statistical techniques findings. Analysis of heavy metals in plant samples revealed that there is no pollution in plants in Al-Hammar Marsh. However, the concentrations of heavy metals in fish samples showed that all samples were contaminated by Pb, Mn, and Ni, while some samples were contaminated by Pb, Mn, and Ni. Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.
Summary of Hydrologic Conditions in Georgia, 2008
Knaak, Andrew E.; Joiner, John K.; Peck, Michael F.
2009-01-01
The United States Geological Survey (USGS) Georgia Water Science Center (WSC) maintains a long-term hydrologic monitoring network of more than 290 real-time streamgages, more than 170 groundwater wells, and 10 lake and reservoir monitoring stations. One of the many benefits of data collected from this monitoring network is that analysis of the data provides an overview of the hydrologic conditions of rivers, creeks, reservoirs, and aquifers in Georgia. Hydrologic conditions are determined by statistical analysis of data collected during the current water year (WY) and comparison of the results to historical data collected at long-term stations. During the drought that persisted through 2008, the USGS succeeded in verifying and documenting numerous historic low-flow statistics at many streamgages and current water levels in aquifers, lakes, and reservoirs in Georgia. Streamflow data from the 2008 WY indicate that this drought is one of the most severe on record when compared to drought periods of 1950-1957, 1985-1989, and 1999-2002.
Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water.
Fan, Shu-Kai S; Kuan, Wen-Hui; Fan, Chihhao; Chen, Chiu-Yang
2016-12-01
This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated.
Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.
Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon
2017-07-28
Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.
A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images
NASA Astrophysics Data System (ADS)
Bavera, D.; Bocchiola, D.; de Michele, C.
2007-12-01
The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.
Chen, Jiabo; Li, Fayun; Fan, Zhiping; Wang, Yanjie
2016-01-01
Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical oxygen demand (BOD5), NH4+–N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics. PMID:27775679
NASA Astrophysics Data System (ADS)
Wu, Guocan; Zheng, Xiaogu; Dan, Bo
2016-04-01
The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.
Dependency of high coastal water level and river discharge at the global scale
NASA Astrophysics Data System (ADS)
Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.
2017-12-01
It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.
Sando, Steven K.; Clark, Melanie L.; Cleasby, Thomas E.; Barnhart, Elliott P.
2015-01-01
Trend results for sites in the Tenmile Creek watershed generally are more variable and difficult to interpret than for sites in the Boulder River watershed. Trend results for Tenmile Creek above City Diversion (site 11) and Minnehaha Creek near Rimini (site 12) for water years 2000–13 indicate decreasing trends in FACs of cadmium, copper, and zinc. The magnitudes of the decreasing trends in FACs of copper generally are moderate and statistically significant for sites 11 and 12. The magnitudes of the decreasing trends in FACs of cadmium and zinc for site 11 are minor to small and not statistically significant; however, the magnitudes for site 12 are moderate and statistically significant. In general, patterns in FACs for Tenmile Creek near Rimini (site 13) are not well represented by fitted trends within the short data collection period, which might indicate that the trend-analysis structure of the study is not appropriate for describing trends in FACs for site 13. The large decreasing trend in FACs of suspended sediment is the strongest indication of change in water quality during the short period of record for site 13; however, this trend is not statistically significant.
Effects of remedial grouting on the ground-water flow system at Red Rock Dam near Pella, Iowa
Linhart, S. Mike; Schaap, Bryan D.
2001-01-01
Hydrographs, statistical analysis of waterlevel data, and water-chemistry data suggest that underseepage on the northeast side of the dam has been reduced but not completely eliminated. Some areas appear to have been affected to a greater degree and for a longer period of time than other areas. Future monitoring of water levels, water chemistry, and stable isotopes can aid in the evaluation of the long-term effectiveness of remedial grouting.
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
SYNOPTIC RAINFALL DATA ANALYSIS PROGRAM (SYNOP). RELEASE NO. 1
An integral part of the assessment of storm loads on water quality is the statistical evaluation of rainfall records. Hourly rainfall records of many years duration are cumbersome and difficult to analyze. The purpose of this rainfall data analysis program is to provide the user ...
Asquith, William H.; Barbie, Dana L.
2014-01-01
Selected summary statistics (L-moments) and estimates of respective sampling variances were computed for the 35 streamgages lacking statistically significant trends. From the L-moments and estimated sampling variances, weighted means or regional values were computed for each L-moment. An example application is included demonstrating how the L-moments could be used to evaluate the magnitude and frequency of annual mean streamflow.
Tsega, N; Sahile, S; Kibret, M; Abera, B
2013-12-01
Accesses to safe water is a universal need however, many of the world's population lack access to adequate and safe water. Consumption of water contaminated causes health risk to the public and the situation is serous in rural areas. To assess the bacteriological and physico-chemical quality of drinking water sources in a rural community of Ethiopia. Water samples were collected from tap, open springs, open dug wells and protected springs for bacteriological analysis of total coliforms and thermotolerant coliforms. The turbidity, pH and temperature were measured immediately after collection. Most drinking water sources were found to have coliform counts above the recommended national and international guidelines and had high sanitary risk scores. There was a statistically significant difference among water sources with respect to TC and TTC (p < 0.05) and there was a statistically significant positive correlation between coliform counts and sanitary risk scores (p < 0.01). Most water sources didn't satisfy the turbidity values recommended by WHO. The water sources were heavily contaminated which suggested poor protection and sanitation practice in the water sources. Source protection strategies as well as monitoring are recommend for this community.
Quantification of proportions of different water sources in a mining operation.
Scheiber, Laura; Ayora, Carlos; Vázquez-Suñé, Enric
2018-04-01
The water drained in mining operations (galleries, shafts, open pits) usually comes from different sources. Evaluating the contribution of these sources is very often necessary for water management. To determine mixing ratios, a conventional mass balance is often used. However, the presence of more than two sources creates uncertainties in mass balance applications. Moreover, the composition of the end-members is not commonly known with certainty and/or can vary in space and time. In this paper, we propose a powerful tool for solving such problems and managing groundwater in mining sites based on multivariate statistical analysis. This approach was applied to the Cobre Las Cruces mining complex, the largest copper mine in Europe. There, the open pit water is a mixture of three end-members: runoff (RO), basal Miocene (Mb) and Paleozoic (PZ) groundwater. The volume of water drained from the Miocene base aquifer must be determined and compensated via artificial recharging to comply with current regulations. Through multivariate statistical analysis of samples from a regional field campaign, the compositions of PZ and Mb end-members were firstly estimated, and then used for mixing calculations at the open pit scale. The runoff end-member was directly determined from samples collected in interception trenches inside the open pit. The application of multivariate statistical methods allowed the estimation of mixing ratios for the hydrological years 2014-2015 and 2015-2016. Open pit water proportions have changed from 15% to 7%, 41% to 36%, and 44% to 57% for runoff, Mb and PZ end-members, respectively. An independent estimation of runoff based on the curve method yielded comparable results. Copyright © 2017 Elsevier B.V. All rights reserved.
Utilization of Skylab (EREP) system for appraising changes in continental migratory bird habitat
Work, E.A.; Gilmer, D.S.
1975-01-01
The author has identified the following significant results. Surface water statistics using data obtained by supporting aircraft were generated. Signature extraction and refinement preliminary to wetland and associated upland vegetation recognition were accomplished, using a selected portion of the aircraft data. Final classification mapping and analysis of surface water trends will be accomplished.
Kumar, Keshav; Mishra, Ashok Kumar
2015-07-01
Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R(2)), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.
Matiatos, Ioannis
2016-01-15
Nitrate (NO3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ(15)N-NO3 and δ(18)O-NO3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC).
Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?
NASA Astrophysics Data System (ADS)
Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.
2013-09-01
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
Statistical analysis of short-term water stress conditions at Riggs Creek OzFlux tower site
NASA Astrophysics Data System (ADS)
Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.
2017-10-01
A large range of indices and proxies are available to describe the water stress conditions of an area subject to different applications, which have varying capabilities and limitations depending on the prevailing local climatic conditions and land cover. The present study uses a range of spatio-temporally high-resolution (daily and within daily) data sources to evaluate a number of drought indices (DIs) for the Riggs Creek OzFlux tower site in southeastern Australia. Therefore, the main aim of this study is to evaluate the statistical characteristics of individual DIs subject to short-term water stress conditions. In order to derive a more general and therefore representative DI, a new criterion is required to specify the statistical similarity between each pair of indices to allow determining the dominant drought types along with their representative DIs. The results show that the monitoring of water stress at this case study area can be achieved by evaluating the individual behaviour of three clusters of (i) vegetation conditions, (ii) water availability and (iii) water consumptions. This indicates that it is not necessary to assess all individual DIs one by one to derive a comprehensive and informative data set about the water stress of an area; instead, this can be achieved by analysing one of the DIs from each cluster or deriving a new combinatory index for each cluster, based on established combination methods.
Hydrostatic paradox: experimental verification of pressure equilibrium
NASA Astrophysics Data System (ADS)
Kodejška, Č.; Ganci, S.; Říha, J.; Sedláčková, H.
2017-11-01
This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical analysis of the problem, which is based, firstly, on the equation for isothermal process and, secondly, on the equality of pressures inside and outside the cylinder. From the measured values the confirmation of the theoretical quadratic dependence of the air pressure inside the cylinder on the level of the liquid in the cylinder is obtained, the maximum change in the volume of air within the cylinder occurs for the height of the water column L of one half of the total height of the vessel H. The measurements were made for different diameters of the cylinder and with plates made of different materials located at the bottom of the cylinder to prevent liquid from flowing out of the cylinder. The measured values were subjected to statistical analysis, which demonstrated the validity of the zero hypothesis, i.e. that the measured values are not statistically significantly different from the theoretically calculated ones at the statistical significance level α = 0.05.
Grande, J A; Borrego, J; Morales, J A; de la Torre, M L
2003-04-01
In the last few decades, the study of space-time distribution and variations of heavy metals in estuaries has been extensively studied as an environmental indicator. In the case described here, the combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel Rivers, located in the southwest of the Iberian Peninsula. Based on the statistical treatment of the data from the analysis of the water samples from this system, which has been affected by processes of industrial and mining pollution, the 16 variables analyzed can be grouped into two large families. Each family presents high, positive Pearson r values that suggest common origins (fluvial or sea) for the pollutants present in the water analyzed and allow their subsequent contrast through cluster analysis.
da Costa Lobato, Tarcísio; Hauser-Davis, Rachel Ann; de Oliveira, Terezinha Ferreira; Maciel, Marinalva Cardoso; Tavares, Maria Regina Madruga; da Silveira, Antônio Morais; Saraiva, Augusto Cesar Fonseca
2015-02-15
The Amazon area has been increasingly suffering from anthropogenic impacts, especially due to the construction of hydroelectric power plant reservoirs. The analysis and categorization of the trophic status of these reservoirs are of interest to indicate man-made changes in the environment. In this context, the present study aimed to categorize the trophic status of a hydroelectric power plant reservoir located in the Brazilian Amazon by constructing a novel Water Quality Index (WQI) and Trophic State Index (TSI) for the reservoir using major ion concentrations and physico-chemical water parameters determined in the area and taking into account the sampling locations and the local hydrological regimes. After applying statistical analyses (factor analysis and cluster analysis) and establishing a rule base of a fuzzy system to these indicators, the results obtained by the proposed method were then compared to the generally applied Carlson and a modified Lamparelli trophic state index (TSI), specific for trophic regions. The categorization of the trophic status by the proposed fuzzy method was shown to be more reliable, since it takes into account the specificities of the study area, while the Carlson and Lamparelli TSI do not, and, thus, tend to over or underestimate the trophic status of these ecosystems. The statistical techniques proposed and applied in the present study, are, therefore, relevant in cases of environmental management and policy decision-making processes, aiding in the identification of the ecological status of water bodies. With this, it is possible to identify which factors should be further investigated and/or adjusted in order to attempt the recovery of degraded water bodies. Copyright © 2014 Elsevier B.V. All rights reserved.
Anazaw, K; Ohmori, L H
2001-11-01
Many hydrochemical studies on chemical formation of shallow ground water have been reported as results of water-rock interaction, and contamination of paleo-brine or human activities, whereas the preliminary formation of precipitation source in the recharged region has not been established yet. The purpose of this research work is to clarify the geochemical process of water formation from a water source unpolluted by seawater or human activity. Norikura volcano, located in western part of central Japan provided a suitable source for this research purpose, and hence chemical compositions of water samples from the summit and the mountainside area of Norikura volcano were determined. Most samples in the summit area showed very low electrical conductivity, and lower than 12 microS/cm. On the basis of the chemical compositions, principal component analysis (PCA) and factor analysis (FA), such as kinds of multivariate statistical techniques were used to extract geochemical factors affecting hydrochemical process. As a result, three factors were extracted. The first factor showed high loading on K+, Ca2+, SO2 and SiO2, and this factor was interpreted due to influence of the chemical interaction between acidic precipitated water and rocks. The second factor showed high loading on Na+ and Cl-, and it was assumed to be an influence of seawater salt. The third factor showed loading on NO3-, and it was interpreted to be caused by biochemical effect of vegetation. The proportionate contributions of these factors to the evolution of water chemical composition were found to be 45%, 20%, and 10% for factors 1, 2 and 3, respectively. The same exploration at the mountainside of Norikura volcano revealed that the chemical variances of the non-geothermal water samples were highly influenced by water-rock interactions. The silicate dissolution showed 45% contribution for all chemical variances, while the adsorption of Ca2+ and Mg2+ by precipitation or ion exchange showed 20% contribution. The seawater salt influence or biochemical effect was statistically negligible in this area. The clear differentiation of geochemical process on water formation was found between the summit area and the mountainside area.
Indicator-based approach to assess sustainability of current and projected water use in Korea
NASA Astrophysics Data System (ADS)
Kong, I.; Kim, I., Sr.
2016-12-01
Recently occurred failures in water supply system derived from lacking rainfall in Korea has raised severe concerns about limited water resources exacerbated by anthropogenic drivers as well as climatic changes. Since Korea is under unprecedented changes in both social and environmental aspects, it is required to integrate social and environmental changes as well as climate factors in order to consider underlying problems and their upcoming impacts on sustainable water use. In this study, we proposed a framework to assess multilateral aspects in sustainable water use in support of performance-based monitoring. The framework is consisted of four thematic indices (climate, infrastructure, pollution, and management capacity) and subordinate indicators. Second, in order to project future circumstances, climate variability, demographic, and land cover scenarios to 2050 were applied after conducting statistical analysis identifying correlations between indicators within the framework since water crisis are caused by numerous interrelated factors. Assessment was conducted throughout 161 administrative boundaries in Korea at the time of 2010, 2030, and 2050. Third, current and future status in water use were illustrated using GIS-based methodology and statistical clustering (K-means and HCA) to elucidate spatially explicit maps and to categorize administrative regions showing similar phenomenon in the future. Based on conspicuous results shown in spatial analysis and clustering method, we suggested policy implementations to navigate local communities to decide which countermeasures should be supplemented or adopted to increase resiliency to upcoming changes in water use environments.
Melching, C.S.; Coupe, R.H.
1995-01-01
During water years 1985-91, the U.S. Geological Survey (USGS) and the Illinois Environmental Protection Agency (IEPA) cooperated in the collection and analysis of concurrent and split stream-water samples from selected sites in Illinois. Concurrent samples were collected independently by field personnel from each agency at the same time and sent to the IEPA laboratory, whereas the split samples were collected by USGS field personnel and divided into aliquots that were sent to each agency's laboratory for analysis. The water-quality data from these programs were examined by means of the Wilcoxon signed ranks test to identify statistically significant differences between results of the USGS and IEPA analyses. The data sets for constituents and properties identified by the Wilcoxon test as having significant differences were further examined by use of the paired t-test, mean relative percentage difference, and scattergrams to determine if the differences were important. Of the 63 constituents and properties in the concurrent-sample analysis, differences in only 2 (pH and ammonia) were statistically significant and large enough to concern water-quality engineers and planners. Of the 27 constituents and properties in the split-sample analysis, differences in 9 (turbidity, dissolved potassium, ammonia, total phosphorus, dissolved aluminum, dissolved barium, dissolved iron, dissolved manganese, and dissolved nickel) were statistically significant and large enough to con- cern water-quality engineers and planners. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between pairs of the concurrent samples were compared to the precision of the laboratory or field method used. The differences in concentration between paris of split samples were compared to the precision of the laboratory method used and the interlaboratory precision of measuring a given concentration or property. Consideration of method precision indicated that differences between concurrent samples were insignificant for all concentrations and properties except pH, and that differences between split samples were significant for all concentrations and properties. Consideration of interlaboratory precision indicated that the differences between the split samples were not unusually large. The results for the split samples illustrate the difficulty in obtaining comparable and accurate water-quality data.
Escalante, Yolanda; Saavedra, Jose M; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Domínguez, Ana M
2013-04-01
The aims of this study were (a) to compare water polo game-related statistics by context (winning and losing teams) and phase (preliminary, classification, and semifinal/bronze medal/gold medal), and (b) identify characteristics that discriminate performances for each phase. The game-related statistics of the 230 men's matches played in World Championships (2007, 2009, and 2011) and European Championships (2008 and 2010) were analyzed. Differences between contexts (winning or losing teams) in each phase (preliminary, classification, and semifinal/bronze medal/gold medal) were determined using the chi-squared statistic, also calculating the effect sizes of the differences. A discriminant analysis was then performed after the sample-splitting method according to context (winning and losing teams) in each of the 3 phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables are both offensive and defensive, including action shots, sprints, goalkeeper-blocked shots, and goalkeeper-blocked action shots. However, the number of discriminatory variables decreases as the phase becomes more demanding and the teams become more equally matched. The discriminant analysis showed the game-related statistics to discriminate performance in all phases (preliminary, classificatory, and semifinal/bronze medal/gold medal phase) with high percentages (91, 90, and 73%, respectively). Again, the model selected both defensive and offensive variables.
NASA Astrophysics Data System (ADS)
Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine
2009-03-01
Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.
NASA Technical Reports Server (NTRS)
Gilmer, D. S. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Surface water statistics using data obtained by supporting aircraft were generated. Signature extraction and refinement preliminary to wetland and associated upland vegetation recognition were accomplished, using a selected portion of the aircraft data. Final classification mapping and analysis of surface water trends will be accomplished.
Brenda Rosser; Matt O' Connor
2007-01-01
Fish habitat in cold water streams in many northwestern California watersheds has been declared degraded under provisions of the Federal Clean Water Act, contributing to listings of anadromous fish species under the Endangered Species Act. It is believed that past and present land management activities induce erosion that contributes excess sand-size and finer sediment...
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-01-01
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-10-20
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.
NASA Astrophysics Data System (ADS)
Debnath, Ashim Kumar; Chin, Hoong Chor
Navigational safety analysis relying on collision statistics is often hampered because of the low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Lindsey, Bruce D.; Rupert, Michael G.
2012-01-01
Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or nitrate - had a statistically significant increase in concentration in 66 percent of the networks. Statistically significant decreases in concentrations were identified in 4 percent of the networks for chloride, 2 percent of the networks for dissolved solids, and 9 percent of the networks for nitrate. A larger percentage of urban land-use networks had statistically significant increases in chloride, dissolved solids, and nitrate concentrations than agricultural land-use networks. In order to assess the magnitude of statistically significant changes, the median of the differences between constituent concentrations from the first full-network sampling event and those from the second full-network sampling event was calculated using the Turnbull method. The largest median decadal increases in chloride concentrations were in networks in the Upper Illinois River Basin (67 mg/L) and in the New England Coastal Basins (34 mg/L), whereas the largest median decadal decrease in chloride concentrations was in the Upper Snake River Basin (1 mg/L). The largest median decadal increases in dissolved solids concentrations were in networks in the Rio Grande Valley (260 mg/L) and the Upper Illinois River Basin (160 mg/L). The largest median decadal decrease in dissolved solids concentrations was in the Apalachicola-Chattahoochee-Flint River Basin (6.0 mg/L). The largest median decadal increases in nitrate as nitrogen (N) concentrations were in networks in the South Platte River Basin (2.0 mg/L as N) and the San Joaquin-Tulare Basins (1.0 mg/L as N). The largest median decadal decrease in nitrate concentrations was in the Santee River Basin and Coastal Drainages (0.63 mg/L). The magnitude of change in networks with statistically significant increases typically was much larger than the magnitude of change in networks with statistically significant decreases. The magnitude of change was greatest for chloride in the urban land-use networks and greatest for dissolved solids and nitrate in the agricultural land-use networks. Analysis of data from all networks combined indicated statistically significant increases for chloride, dissolved solids, and nitrate. Although chloride, dissolved solids, and nitrate concentrations were typically less than the drinking-water standards and guidelines, a statistical test was used to determine whether or not the proportion of samples exceeding the drinking-water standard or guideline changed significantly between the first and second full-network sampling events. The proportion of samples exceeding the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level for dissolved solids (500 milligrams per liter) increased significantly between the first and second full-network sampling events when evaluating all networks combined at the national level. Also, for all networks combined, the proportion of samples exceeding the USEPA Maximum Contaminant Level (MCL) of 10 mg/L as N for nitrate increased significantly. One network in the Delmarva Peninsula had a significant increase in the proportion of samples exceeding the MCL for nitrate. A subset of 261 wells was sampled every other year (biennially) to evaluate decadal-scale changes using a time-series analysis. The analysis of the biennial data set showed that changes were generally similar to the findings from the analysis of decadal-scale change that was based on a step-trend analysis. Because of the small number of wells in a network with biennial data (typically 4-5 wells), the time-series analysis is more useful for understanding water-quality responses to changes in site-specific conditions rather than as an indicator of the change for the entire network.
Vanham, D
2012-01-01
Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.
Garbarino, John R.; Struzeski, Tedmund M.
1998-01-01
Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.
Pinheiro, Sergio Luiz; da Silva, Caio Cesar; da Silva, Lucas Augusto; Cicotti, Marina P.; Bueno, Carlos Eduardo da Silveira; Fontana, Carlos Eduardo; Pagrion, Letícia R.; Dalmora, Natália P.; Daque, Thaís T.; de Campos, Francisco UF
2018-01-01
Objective: The aim of this study is to evaluate the antimicrobial efficacy of 2.5% sodium hypochlorite, 2% chlorhexidine, and ozonated water on biofilms of Enterococcus faecalis, Streptococcus mutans, and Candida albicans in mesiobuccal root canals with severe curvature of mandibular molars. Materials and Methods: This was an experimental ex vivo study in microbiologic laboratory. Sixty mesiobuccal root canals with severe curvature of mandibular molars were contaminated with standard strains of E. faecalis, S. mutans, and C. albicans. The specimens were randomly divided into four groups (n = 15) according to irrigating solution: SH: 2.5% sodium hypochlorite; CH: 2% chlorhexidine; O3: ozonated water; and control: double-distilled water. The mesiobuccal root canals of all groups were instrumented with the WaveOne Gold Primary reciprocating system. Three cycles of instrumentation with three short in-and-out brushing motions were performed: (1) in the coronal third, (2) in the middle third, and (3) in the apical third of the canal. A ProGlider file was used before the first cycle. Statistical Analysis: Statistical analysis was performed using one-way analysis of variance followed by Tukey's multiple comparison test. Samples were collected for viable bacterial counts before and after instrumentation. Results: All groups showed significant biofilm reduction after irrigation (P < 0.01). After instrumentation, sodium hypochlorite (98.07%), chlorhexidine (98.31%), and ozonated water (98.02%) produced a significantly reduction in bacterial counts compared with double-distilled water (control, 72.98%) (P < 0.01). Conclusion: All irrigants tested in this study showed similar antimicrobial activity. Thus, ozonated water may be an option for microbial reduction in the root canal system. PMID:29657531
Lognormal Assimilation of Water Vapor in a WRF-GSI Cycled System
NASA Astrophysics Data System (ADS)
Fletcher, S. J.; Kliewer, A.; Jones, A. S.; Forsythe, J. M.
2015-12-01
Recent publications have shown the viability of both detecting a lognormally-distributed signal for water vapor mixing ratio and the improved quality of satellite retrievals in a 1DVAR mixed lognormal-Gaussian assimilation scheme over a Gaussian-only system. This mixed scheme is incorporated into the Gridpoint Statistical Interpolation (GSI) assimilation scheme with the goal of improving forecasts from the Weather Research and Forecasting (WRF) Model in a cycled system. Results are presented of the impact of treating water vapor as a lognormal random variable. Included in the analysis are: 1) the evolution of Tropical Storm Chris from 2006, and 2) an analysis of a "Pineapple Express" water vapor event from 2005 where a lognormal signal has been previously detected.
Outlier detection for groundwater data in France
NASA Astrophysics Data System (ADS)
Valmy, Larissa; de Fouquet, Chantal; Bourgine, Bernard
2014-05-01
Quality and quantity water in France are increasingly observed since the 70s. Moreover, in 2000, the EU Water Framework Directive established a framework for community action in the water policy field for the protection of inland surface waters (rivers and lakes), transitional waters (estuaries), coastal waters and groundwater. It will ensure that all aquatic ecosystems and, with regard to their water needs, terrestrial ecosystems and wetlands meet 'good status' by 2015. The Directive requires Member States to establish river basin districts and for each of these a river basin management plan. In France, monitoring programs for the water status were implemented in each basin since 2007. The data collected through these programs feed into an information system which contributes to check the compliance of water environmental legislation implementation, assess the status of water guide management actions (programs of measures) and evaluate their effectiveness, and inform the public. Our work consists in study quality and quantity groundwater data for some basins in France. We propose a specific mathematical approach in order to detect outliers and study trends in time series. In statistic, an outlier is an observation that lies outside the overall pattern of a distribution. Usually, the presence of an outlier indicates some sort of problem, thus, it is important to detect it in order to know the cause. In fact, techniques for temporal data analysis have been developed for several decades in parallel with geostatistical methods. However compared to standard statistical methods, geostatistical analysis allows incomplete or irregular time series analysis. Otherwise, tests carried out by the BRGM showed the potential contribution of geostatistical methods for characterization of environmental data time series. Our approach is to exploit this potential through the development of specific algorithms, tests and validation of methods. We will introduce and explain our method and approach by considering the Loire Bretagne basin case.
Real-time, continuous water-quality monitoring in Indiana and Kentucky
Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.
2015-01-01
Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.
Water-resources investigations in Wisconsin, 1993
Maertz, D.E.
1993-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."
Coliphages as indicators of enteroviruses.
Stetler, R E
1984-01-01
Coliphages were monitored in conjunction with indicator bacteria and enteroviruses in a drinking-water plant modified to reduce trihalomethane production. Coliphages could be detected in the source water by direct inoculation, and sufficient coliphages were detected in enterovirus concentrates to permit following the coliphage levels through different water treatment processes. The recovery efficiency by different filter types ranged from 1 to 53%. Statistical analysis of the data indicated that enterovirus isolates were better correlated with coliphages than with total coliforms, fecal coliforms, fecal streptococci, or standard plate count organisms. Coliphages were not detected in finished water. PMID:6093694
Analysis of Superintendent Longevity in Large School Districts: A Qualitative Study
ERIC Educational Resources Information Center
Mouton, Nikki Golar
2013-01-01
School district leadership matters, as evidenced by a meta-analysis of 27 reports and 1,210 districts conducted by Waters and Marzano (2006) which highlights a statistically significant correlation between district leadership and student achievement. Because this relationship is significant, it is important for school districts to have effective…
Matsuyama, Junko; Ikeda, Hidetoshi; Sato, Shunsuke; Yamamoto, Koh; Ohashi, Genichiro; Watanabe, Kazuo
2014-12-01
The goals of this study were to assess the incidence of and risk factors for the syndrome of inappropriate antidiuretic hormone secretion (SIADH) in patients following transsphenoidal surgery (TSS), and to validate the effectiveness of early prophylactic restriction of water intake. Retrospective analysis was performed for 207 patients who had undergone TSS, including 156 patients not placed on early prophylactic water restriction. Sixty-four patients received treatment for SIADH. We compared the incidence of SIADH between patients with and without early water intake restriction, and analyzed various risk factors for SIADH using statistical analyses. BMI was significantly lower for patients with SIADH than for those patients without SIADH. Statistical analysis revealed that the threshold BMI predicting SIADH was 26. Serum sodium levels on postoperative days 5-10 and daily urine volumes on postoperative days 5-10 were significantly lower in patients with SIADH than in those without SIADH. Postoperative body weight loss on days 6, 8, 10, and 11 was significantly higher in patients with SIADH. The incidence of SIADH after starting prophylactic water intake restriction (14%) was significantly lower than the rate before early water restriction (38%; P<0.05). SIADH is relatively common after TSS, and serum sodium concentrations and daily urine volumes should be carefully monitored. Patients with low preoperative BMI should be closely observed, as this represented a significant preoperative risk factor for SIADH. Early prophylactic water intake restriction appears effective at preventing postoperative SIADH. © 2014 European Society of Endocrinology.
A critical analysis of the cumulative rainfall departure concept.
Weber, Kenneth; Stewart, Mark
2004-01-01
Evaluation of trends in time-series, such as precipitation or ground water levels, is an essential element in many hydrologic evaluations, including water resource studies and planning efforts. The cumulative rainfall departure (CRD) from normal rainfall is a concept sometimes utilized to evaluate the temporal correlation of rainfall with surface water or ground water levels. Permutations of the concept have been used to estimate recharge or aquifer storativity, and in attempts to explain declining ground water levels. The cumulative departure concept has hydrologic meaning in the short term, as a generalized evaluation of either meager or abundant rainfall, and when utilized in connection with a detailed water budget analysis can be used in a predictive fashion. However, the concept can be misapplied if extended over lengthy periods. Misapplication occurs because of several factors including the separation of the mean and median in nonnormal distributions, how the choice of beginning and end points of the data can affect the results, the lack of consideration that above-average rainfall can reset the hydrologic system without mathematically eliminating the accumulated deficit, and the lack of support for the necessary inference that rainfall events and hydrologic levels widely separated in time are linked. Standard statistical techniques are available to reliably determine trends and can provide rigorous statistical measures of the significance of conclusions. Misuse of the CRD concept can lead to erroneous and unsupported conclusions regarding hydrologic relationships and can potentially result in misguided water resource decision-making.
Effects of the water level on the flow topology over the Bolund island
NASA Astrophysics Data System (ADS)
Cuerva-Tejero, A.; Yeow, T. S.; Gallego-Castillo, C.; Lopez-Garcia, O.
2014-06-01
We have analyzed the influence of the actual height of Bolund island above water level on different full-scale statistics of the velocity field over the peninsula. Our analysis is focused on the database of 10-minute statistics provided by Risø-DTU for the Bolund Blind Experiment. We have considered 10-minut.e periods with near-neutral atmospheric conditions, mean wind speed values in the interval [5,20] m/s, and westerly wind directions. As expected, statistics such as speed-up, normalized increase of turbulent kinetic energy and probability of recirculating flow show a large dependence on the emerged height of the island for the locations close to the escarpment. For the published ensemble mean values of speed-up and normalized increase of turbulent kinetic energy in these locations, we propose that some ammount of uncertainty could be explained as a deterministic dependence of the flow field statistics upon the actual height of the Bolund island above the sea level.
LANDSAT digital data for water pollution and water quality studies in Southern Scandinavia
NASA Technical Reports Server (NTRS)
Hellden, U.; Akersten, I.
1977-01-01
Spectral diagrams, illustrating the spectral characteristics of different water types, were constructed by means of simple statistical analysis of the various reflectance properties of water areas in Southern Scandinavia as registered by LANDSAT-1. There were indications that water whose spectral reproduction is dominated by chlorophyllous matter (phytoplankton) can be distinguished from water dominated by nonchlorophyllous matter. Differences between lakes, as well as the patchiness of individual lakes, concerning secchi disc transparency could be visualized after classification and reproduction in black and white and in color by means of line printer, calcomp plotter (CRT), and ink jet plotter respectively.
Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.
2013-01-01
Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-12-01
Using data from the Gravity Recovery and Climate Experiment (GRACE) mission, we derive statistically robust 'hotspot' regions of high probability of peak anomalous - i.e. with respect to the seasonal cycle - water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/mon). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hotspot regions to GRACE results, and that most exceptions are located in the Tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020 it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e. combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE-FO. J. Kusche et al. (2016): Mapping probabilities of extreme continental water storage changes from space gravimetry, Geophysical Research Letters, accepted online, doi:10.1002/2016GL069538
APL-UW Deep Water Propagation 2015-2017: Philippine Sea Data Analysis
2015-09-30
DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited APL-UW Deep Water Propagation 2015-2017: Philippine Sea Data...the fundamental statistics of broadband low-frequency acoustical signals evolve during propagation through a dynamically-varying deep ocean. OBJECTIVES...Current models of signal randomization over long ranges in the deep ocean were developed for and tested in the North Pacific Ocean gyre. The
Prediction of River Flooding using Geospatial and Statistical Analysis in New York, USA and Kent, UK
NASA Astrophysics Data System (ADS)
Marsellos, A.; Tsakiri, K.; Smith, M.
2014-12-01
Flooding in the rivers normally occurs during periods of excessive precipitation (i.e. New York, USA; Kent, UK) or ice jams during the winter period (New York, USA). For the prediction and mapping of the river flooding, it is necessary to evaluate the spatial distribution of the water (volume) in the river as well as study the interaction between the climatic and hydrological variables. Two study areas have been analyzed; one in Mohawk River, New York and one in Kent, United Kingdom (UK). A high resolution Digital Elevation Model (DEM) of the Mohawk River, New York has been used for a GIS flooding simulation to determine the maximum elevation value of the water that cannot continue to be restricted in the trunk stream and as a result flooding in the river may be triggered. The Flooding Trigger Level (FTL) is determined by incremental volumetric and surface calculations from Triangulated Irregular Network (TIN) with the use of GIS software and LiDAR data. The prediction of flooding in the river can also be improved by the statistical analysis of the hydrological and climatic variables in Mohawk River and Kent, UK. A methodology of time series analysis has been applied for the decomposition of the hydrological (water flow and ground water data) and climatic data in both locations. The KZ (Kolmogorov-Zurbenko) filter is used for the decomposition of the time series into the long, seasonal, and short term components. The explanation of the long term component of the water flow using the climatic variables has been improved up to 90% for both locations. Similar analysis has been performed for the prediction of the seasonal and short term component. This methodology can be applied for flooding of the rivers in multiple sites.
Standard reference water samples for rare earth element determinations
Verplanck, P.L.; Antweiler, Ronald C.; Nordstrom, D. Kirk; Taylor, Howard E.
2001-01-01
Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.
Supply-demand 3D dynamic model in water resources evaluation: taking Lebanon as an example
NASA Astrophysics Data System (ADS)
Fang, Hong; Hou, Zhimin
2017-05-01
In this paper, supply-demand 3D dynamic model is adopted to create a measurement of a region’s capacity to provide available water to meet the needs of its population. First of all, we draw a diagram between supply and demand. Then taking the main dynamic factors into account, we establish an index to evaluate the balance of supply and demand. The three dimension vector reflects the scarcity of industrial, agricultural and residential water. Lebanon is chosen as the object of case study, and we do quantitative analysis of its current situation. After data collecting and processing, we calculate the 3D vector in 2012, which reveals that agriculture is susceptible to water scarcity. Water resources of Lebanon are “physical rich” but “economic scarcity” according to the correlation chart and other statistical analysis.
Espigares, Miguel; Lardelli, Pablo; Ortega, Pedro
2003-10-01
The presence of trihalomethanes (THMs) in potable-water sources is an issue of great interest because of the negative impact THMs have on human health. The objective of this study was to correlate the presence of trihalomethanes with more routinely monitored parameters of water quality, in order to facilitate THM control. Water samples taken at various stages of treatment from a water treatment plant were analyzed for the presence of trihalomethanes with the Fujiwara method. The data collected from these determinations were compared with the values obtained for free-residual-chlorine and combined-residual-chlorine levels as well as standard physico-chemical and microbiological indicators such as chemical oxygen demand (by the KMnO4 method), total chlorophyll, conductivity, pH, alkalinity, turbidity, chlorides, sulfates, nitrates, nitrites, phosphates, ammonia, calcium, magnesium, heterotrophic bacteria count, Pseudomonas spp., total and fecal coliforms, and fecal streptococci. The data from these determinations were compiled, and statistical analysis was performed to determine which variables correlate best with the presence and quantity of trihalomethanes in the samples. Levels of THMs in water seem to correlate directly with levels of combined residual chlorine and nitrates, and inversely with the level of free residual chlorine. Statistical analysis with multiple linear regression was conducted to determine the best-fitting models. The models chosen incorporate between two and four independent variables and include chemical oxygen demand, nitrites, and ammonia. These indicators, which are commonly determined during the water treatment process, demonstrate the strongest correlation with the levels of trihalomethanes in water and offer great utility as an accessible method for THM detection and control.
How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies
Kummu, Matti; de Moel, Hans; Ward, Philip J.; Varis, Olli
2011-01-01
Traditionally, people have inhabited places with ready access to fresh water. Today, over 50% of the global population lives in urban areas, and water can be directed via tens of kilometres of pipelines. Still, however, a large part of the world's population is directly dependent on access to natural freshwater sources. So how are inhabited places related to the location of freshwater bodies today? We present a high-resolution global analysis of how close present-day populations live to surface freshwater. We aim to increase the understanding of the relationship between inhabited places, distance to surface freshwater bodies, and climatic characteristics in different climate zones and administrative regions. Our results show that over 50% of the world's population lives closer than 3 km to a surface freshwater body, and only 10% of the population lives further than 10 km away. There are, however, remarkable differences between administrative regions and climatic zones. Populations in Australia, Asia, and Europe live closest to water. Although populations in arid zones live furthest away from freshwater bodies in absolute terms, relatively speaking they live closest to water considering the limited number of freshwater bodies in those areas. Population distributions in arid zones show statistically significant relationships with a combination of climatic factors and distance to water, whilst in other zones there is no statistically significant relationship with distance to water. Global studies on development and climate adaptation can benefit from an improved understanding of these relationships between human populations and the distance to fresh water. PMID:21687675
Assessment of semi-volatile organic compounds in drinking water sources in Jiangsu, China.
Wu, Yifeng; Jia, Yongzhi; Lu, Xiwu
2013-08-01
Many xenobiotic compounds, especially organic pollutants in drinking water, can cause threats to human health and natural ecosystems. The ability to predict the level of pollutants and identify their source is crucial for the design of pollutant risk reduction plans. In this study, 25 semi-volatile organic compounds (SVOCs) were assessed at 16 monitoring sites of drinking water sources in Jiangsu, east China, to evaluate water quality conditions and source of pollutants. Four multivariate statistical techniques were used for this analysis. The correlation test indicated that 25 SVOCs parameters variables had a significant spatial variability (P<0.05). The results of correlation analysis, principal component analysis (PCA) and cluster analysis (CA) suggested that at least four sources, i.e., agricultural residual pesticides, industrial sewage, water transportation vehicles and miscellaneous sources, were responsible for the presence of SVOCs in the drinking water sites examined, accounting for 89.6% of the total variance in the dataset. The analysis of site similarity showed that 16 sites could be divided into high, moderate, and low pollutant level groups at (D(link)/D(max))×25<10, and each group had primary typical SVOCs. These results provide useful information for developing appropriate strategies for contaminants control in drinking water sources. Copyright © 2013 Elsevier Inc. All rights reserved.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.
Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan
2018-05-01
The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.
Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying
2012-05-15
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trends in groundwater quality in principal aquifers of the United States, 1988-2012
Lindsey, Bruce D.; Rupert, Michael G.
2014-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program analyzed trends in groundwater quality throughout the nation for the sampling period of 1988-2012. Trends were determined for networks (sets of wells routinely monitored by the USGS) for a subset of constituents by statistical analysis of paired water-quality measurements collected on a near-decadal time scale. The data set for chloride, dissolved solids, and nitrate consisted of 1,511 wells in 67 networks, whereas the data set for methyl tert-butyl ether (MTBE) consisted of 1, 013 wells in 46 networks. The 25 principal aquifers represented by these networks account for about 75 percent of withdrawals of groundwater used for drinking-water supply for the nation. Statistically significant changes in chloride, dissolved-solids, or nitrate concentrations were found in many well networks over a decadal period. Concentrations increased significantly in 48 percent of networks for chloride, 42 percent of networks for dissolved solids, and 21 percent of networks for nitrate. Chloride, dissolved solids, and nitrate concentrations decreased significantly in 3, 3, and 10 percent of the networks, respectively. The magnitude of change in concentrations was typically small in most networks; however, the magnitude of change in networks with statistically significant increases was typically much larger than the magnitude of change in networks with statistically significant decreases. The largest increases of chloride concentrations were in urban areas in the northeastern and north central United States. The largest increases of nitrate concentrations were in networks in agricultural areas. Statistical analysis showed 42 or the 46 networks had no statistically significant changes in MTBE concentrations. The four networks with statistically significant changes in MTBE concentrations were in the northeastern United States, where MTBE was widely used. Two networks had increasing concentrations, and two networks had decreasing concentrations. Production and use of MTBE peaked in about 2000 and has been effectively banned in many areas since about 2006. The two networks that had increasing concentrations were sampled for the second time close to the peak of MTBE production, whereas the two networks that had decreasing concentrations were sampled for the second time 10 years after the peak of MTBE production.
Ninety six gasoline samples were collected from around the U.S. in Autumn 2004. A detailed hydrocarbon analysis was performed on each sample resulting in a data set of approximately 300 chemicals per sample. Statistical analyses were performed on the entire suite of reported chem...
Reply to discussion: ground water response to forest harvest: implications or hillslope stability
Amod Dhakal; Roy C. Sidle; A.C. Johnson; R.T. Edwards
2008-01-01
Dhakal and Sidle (this volume) have requested clarification of some of the rationales and approaches used in analyses described by Johnson et al. (2007). Here we further describe hydrologic conditions typical of southeast Alaska and elaborate on an accepted methodology used for conducting analysis of covariance statistical analysis (ANCOVA). We discuss Dhakal and Sidle...
Patton, Charles J.; Gilroy, Edward J.
1999-01-01
Data on which this report is based, including nutrient concentrations in synthetic reference samples determined concurrently with those in real samples, are extensive (greater than 20,000 determinations) and have been published separately. In addition to confirming the well-documented instability of nitrite in acidified samples, this study also demonstrates that when biota are removed from samples at collection sites by 0.45-micrometer membrane filtration, subsequent preservation with sulfuric acid or mercury (II) provides no statistically significant improvement in nutrient concentration stability during storage at 4 degrees Celsius for 30 days. Biocide preservation had no statistically significant effect on the 30-day stability of phosphorus concentrations in whole-water splits from any of the 15 stations, but did stabilize Kjeldahl nitrogen concentrations in whole-water splits from three data-collection stations where ammonium accounted for at least half of the measured Kjeldahl nitrogen.
Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.
2018-03-30
Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2015 through September 2016. Bed-sediment and biota samples were collected once at 13 sites during August 2016.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2015 through September 2016. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. Samples for analysis of turbidity were collected at 13 sites, whereas samples for analysis of dissolved organic carbon were collected at 10 sites. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for five sites. Bed-sediment data include trace-element concentrations in the fine-grained (less than 0.063 millimeter) fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.
Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.
2009-01-01
Flow-model particle-tracking results and geochemical data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical reactions are kinetically limited, and geochemical zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree model accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.
Prinos, Scott T.; Dixon, Joann F.
2016-02-25
Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990–1999 and 2000–2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990–1999 and 2000–2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000–2009 than during 1990–1999; and that inland water levels were generally lower during 2000–2009 than during 1990–1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990–1999. Mean October water levels during 2000–2009 were generally higher than during 1990–1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
ERIC Educational Resources Information Center
Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain
2004-01-01
Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…
NASA Astrophysics Data System (ADS)
Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.
2017-12-01
The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.
Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.
Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin
2017-08-01
The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Maertz, D.E.
1992-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."
NASA Technical Reports Server (NTRS)
Johnson, R. W.; Bahn, G. S.
1977-01-01
Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.
Frequency-duration analysis of dissolved-oxygen concentrations in two southwestern Wisconsin streams
Greb, Steven R.; Graczyk, David J.
2007-01-01
Historically, dissolved-oxygen (DO) data have been collected in the same manner as other water-quality constituents, typically at infrequent intervals as a grab sample or an instantaneous meter reading. Recent years have seen an increase in continuous water-quality monitoring with electronic dataloggers. This new technique requires new approaches in the statistical analysis of the continuous record. This paper presents an application of frequency-duration analysis to the continuous DO records of a cold and a warm water stream in rural southwestern Wisconsin. This method offers a quick, concise way to summarize large time-series data bases in an easily interpretable manner. Even though the two streams had similar mean DO concentrations, frequency-duration analyses showed distinct differences in their DO-concentration regime. This type of analysis also may be useful in relating DO concentrations to biological effects and in predicting low DO occurrences.
NASA Astrophysics Data System (ADS)
Malik, Riffat Naseem; Hashmi, Muhammad Zaffar
2017-10-01
Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.
... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Get Email Updates To receive ... Medical Professionals Aquatics, Water Utilities, & Other Water-related Sectors Publications, Data, & Statistics Magnitude & Burden of Waterborne Disease ...
Łukomska, A; Jakubczyk, K; Maciejewska, D; Baranowska-Bosiacka, I; Janda, K; Goschorska, M; Chlubek, D; Bosiacka, B; Gutowska, I
2015-10-01
There are many reports of the positive effect of yerba mate on the human body. Elemental composition analysis of yerba mate revealed the presence of many microelements and macroelements, but there is no literature data referencing the content and the effect of the method of preparing the yerba mate infusion on the amount of released fluoride and thus the amount of this element supplied to the human body. Therefore, in the traditional way (cold and hot), we prepared infusions of yerba mate from different countries and determined in samples content of fluoride using potentiometric method. Hot infusions resulted in statistically significant (p = 0.03) increases in the amount of fluoride released from the dried material to the water, compared to brewing with water at room temperature. The successive refills of hot water also resulted in a release of the same amount of fluoride, although smaller than the infusion with water at room temperature (at the third refill, it was statistically significantly smaller at p = 0.003). With an increase in the number of hot water refills, the amount of fluoride released from the sample portion significantly decreased. Similar results were recorded when analyzing samples depending on the country of origin. The amount of fluoride released into the water differed statistically significantly depending on the country of origin. The most fluoride was determined in the infusions of yerba mate from Argentina and the least in infusions from Paraguay.
Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D
2014-02-01
Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. © 2013 Elsevier B.V. All rights reserved.
Jackson, Tracie R.; Fenelon, Joseph M.
2018-05-31
This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.
NASA Astrophysics Data System (ADS)
Das, Shreya; Nag, S. K.
2017-05-01
Multivariate statistical techniques, cluster and principal component analysis were applied to the data on groundwater quality of Suri I and II Blocks of Birbhum District, West Bengal, India, to extract principal factors corresponding to the different sources of variation in the hydrochemistry as well as the main controls on the hydrochemistry. For this, bore well water samples have been collected in two phases, during Post-monsoon (November 2012) and Pre-monsoon (April 2013) from 26 sampling locations spread homogeneously over the two blocks. Excess fluoride in groundwater has been reported at two locations both in post- and in pre-monsoon sessions, with a rise observed in pre-monsoon. Localized presence of excess iron has also been observed during both sessions. The water is found to be mildly alkaline in post-monsoon but slightly acidic at some locations during pre-monsoon. Correlation and cluster analysis studies demonstrate that fluoride shares a moderately positive correlation with pH in post-monsoon and a very strong one with carbonate in pre-monsoon indicating dominance of rock water interaction and ion exchange activity in the study area. Certain locations in the study area have been reported with less than 0.6 mg/l fluoride in groundwater, leading to possibility of occurrence of severe dental caries especially in children. Low values of sulfate and phosphate in water indicate a meager chance of contamination of groundwater due to anthropogenic factors.
Extended statistical entropy analysis as a quantitative management tool for water resource systems
NASA Astrophysics Data System (ADS)
Sobantka, Alicja; Rechberger, Helmut
2010-05-01
The use of entropy in hydrology and water resources has been applied to various applications. As water resource systems are inherently spatial and complex, a stochastic description of these systems is needed, and entropy theory enables development of such a description by providing determination of the least-biased probability distributions with limited knowledge and data. Entropy can also serve as a basis for risk and reliability analysis. The relative entropy has been variously interpreted as a measure freedom of choice, uncertainty and disorder, information content, missing information or information gain or loss. In the analysis of empirical data, entropy is another measure of dispersion, an alternative to the variance. Also, as an evaluation tool, the statistical entropy analysis (SEA) has been developed by previous workers to quantify the power of a process to concentrate chemical elements. Within this research programme the SEA is aimed to be extended for application to chemical compounds and tested for its deficits and potentials in systems where water resources play an important role. The extended SEA (eSEA) will be developed first for the nitrogen balance in waste water treatment plants (WWTP). Later applications on the emission of substances to water bodies such as groundwater (e.g. leachate from landfills) will also be possible. By applying eSEA to the nitrogen balance in a WWTP, all possible nitrogen compounds, which may occur during the water treatment process, are taken into account and are quantified in their impact towards the environment and human health. It has been shown that entropy reducing processes are part of modern waste management. Generally, materials management should be performed in a way that significant entropy rise is avoided. The entropy metric might also be used to perform benchmarking on WWTPs. The result out of this management tool would be the determination of the efficiency of WWTPs. By improving and optimizing the efficiency of WWTPs with respect to the state-of-the-art of technology, waste water treatment could become more resources preserving.
NASA Astrophysics Data System (ADS)
Bedoya, Andres; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas
2017-04-01
Profiles of meteorological variables such as temperature, relative humidity and integrated water vapor derived from a ground-based microwave radiometer (MWR, RPG-HATPRO) are continuously monitored since 2012 at Granada station (Southeastern Spain). During this period up to 210 collocated meteorological balloons, equipped with a radiosonde DFM-09 (GRAWMET), were launched. This study is carried out with a twofold goal. On one hand, a validation of the MWR products such as temperature and water vapor mixing ratio profiles and the IWV from MWR is carried out comparing with radiosonde measurements. The behavior of MWR retrievals under clear and cloudy conditions and for special situations such as inversions has been analyzed. On the other hand, the whole period with continuous measurements is used for a statistical evaluation of the meteorological variables derived from MWR in order to thermodynamically characterize the atmosphere over Granada.
Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi
2015-11-01
Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.
Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel
2018-02-09
New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.
Defect Analysis Of Quality Palm Kernel Meal Using Statistical Quality Control In Kernels Factory
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Marbun, N. J.
2018-04-01
The production quality has an important impact retain the totality of characteristics of a product or service to pay attention to its capabilities to meet the needs that have been established. Quality criteria Palm Kernel Meal (PKM) set Factory kernel is as follows: oil content: max 8.50%, water content: max 12,00% and impurity content: max 4.00% While the average quality of the oil content of 8.94%, the water content of 5.51%, and 8.45% impurity content. To identify the defective product quality PKM produced, then used a method of analysis using Statistical Quality Control (SQC). PKM Plant Quality Kernel shows the oil content was 0.44% excess of a predetermined maximum value, and 4.50% impurity content. With excessive PKM content of oil and dirt cause disability content of production for oil, amounted to 854.6078 kg PKM and 8643.193 kg impurity content of PKM. Analysis of the results of cause and effect diagram and SQC, the factors that lead to poor quality of PKM is Ampere second press oil expeller and hours second press oil expeller.
Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja
In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
Analysis of water levels in the Frenchman Flat area, Nevada Test Site
Bright, D.J.; Watkins, S.A.; Lisle, B.A.
2001-01-01
Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s appear to cause water-level fluctuations in nearby observation wells. The remaining known sources of water-level fluctuations do not appear to substantially affect water-level changes (seismic activity and underground nuclear testing) or do not affect changes over a period of more than 1 year (barometric pressure and Earth tides) in wells in the Frenchman Flat area.
[Gas chromatographic isolation of chloropicrin in drinking water].
Malysheva, A G; Sotnikov, E E; Moskovkin, A S; Kamenetskaia, D B
2004-01-01
Gas chromatographic method has been developed to identify chloropicrin in the drinking water, which is based on its separation from water by statistic gas extraction and on the analysis of equilibrium vapor phase on a capillary column with electron-capture and nitrogen-phosphorus detectors connected in series. The method allows chloropicrin to be detected at the level of 5 mg/dm3 with a total measurement error of +/- 10% at a confidence probability of 0.95. The paper shows that the sensitivity of identification can be significantly increased.
Methods for collection and analysis of aquatic biological and microbiological samples
Greeson, Phillip E.; Ehlke, T.A.; Irwin, G.A.; Lium, B.W.; Slack, K.V.
1977-01-01
Chapter A4 contains methods used by the U.S. Geological Survey to collect, preserve, and analyze waters to determine their biological and microbiological properties. Part 1 discusses biological sampling and sampling statistics. The statistical procedures are accompanied by examples. Part 2 consists of detailed descriptions of more than 45 individual methods, including those for bacteria, phytoplankton, zooplankton, seston, periphyton, macrophytes, benthic invertebrates, fish and other vertebrates, cellular contents, productivity, and bioassays. Each method is summarized, and the application, interferences, apparatus, reagents, collection, analysis, calculations, reporting of results, precision and references are given. Part 3 consists of a glossary. Part 4 is a list of taxonomic references.
Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.
Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili
2016-02-01
The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Daily variations in effluent water turbidity and diarrhoeal illness in a Russian city.
Egorov, Andrey I; Naumova, Elena N; Tereschenko, Andrey A; Kislitsin, Victor A; Ford, Timothy E
2003-03-01
To assess an association between temporal variations in drinking water quality and gastrointestinal (GI) illness, a cohort study involving 100 randomly selected families (367 individuals) was conducted in the city of Cherepovets, Russia from June through November 1999. Participants maintained daily diaries of gastrointestinal symptoms, water consumption and other behavioural exposure variables, while daily effluent water quality data were provided by the water utility. The cumulative incidence rate of self-reported gastrointestinal diseases, 1.7 cases per person-year, was almost two orders of magnitude higher than that of officially reported GI infections in the city. An interquartile range increase in effluent water turbidity of 0.8 Nephelometric Turbidity Units was associated with a relative risk of self-reported GI illness of 1.47 (95% Confidence Interval 1.16, 1.86) at a lag of 2 days after control for daily rate of consumption of non-boiled tap water, behavioural covariates, day of the week and a seasonally-related linear trend. In the analysis by subsets of study participants stratified by non-boiled tap water consumption, no statistically significant associations between turbidity and GI illness were found for the study participants who always boiled their drinking water. For individuals who drank non-boiled tap water, statistically significant associations between turbidity and GI illness were detected at lags 1, 2 and 7 days.
Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J
2015-01-01
Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.
2017-01-01
We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.
Alonso, Jose L.; Soriano, Adela; Carbajo, Oscar; Amoros, Inmaculada; Garelick, Hemda
1999-01-01
This study compared the performance of a commercial chromogenic medium, CHROMagarECC (CECC), and CECC supplemented with sodium pyruvate (CECCP) with the membrane filtration lauryl sulfate-based medium (mLSA) for enumeration of Escherichia coli and non-E. coli thermotolerant coliforms (KEC). To establish that we could recover the maximum KEC and E. coli population, we compared two incubation temperature regimens, 41 and 44.5°C. Statistical analysis by the Fisher test of data did not demonstrate any statistically significant differences (P = 0.05) in the enumeration of E. coli for the different media (CECC and CECCP) and incubation temperatures. Variance analysis of data performed on KEC counts showed significant differences (P = 0.01) between KEC counts at 41 and 44.5°C on both CECC and CECCP. Analysis of variance demonstrated statistically significant differences (P = 0.05) in the enumeration of total thermotolerant coliforms (TTCs) on CECC and CECCP compared with mLSA. Target colonies were confirmed to be E. coli at a rate of 91.5% and KEC of likely fecal origin at a rate of 77.4% when using CECCP incubated at 41°C. The results of this study showed that CECCP agar incubated at 41°C is efficient for the simultaneous enumeration of E. coli and KEC from river and marine waters. PMID:10427079
Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid
2008-01-01
A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.
NATIONAL WATER INFORMATION SYSTEM OF THE U. S. GEOLOGICAL SURVEY.
Edwards, Melvin D.
1985-01-01
National Water Information System (NWIS) has been designed as an interactive, distributed data system. It will integrate the existing, diverse data-processing systems into a common system. It will also provide easier, more flexible use as well as more convenient access and expanded computing, dissemination, and data-analysis capabilities. The NWIS is being implemented as part of a Distributed Information System (DIS) being developed by the Survey's Water Resources Division. The NWIS will be implemented on each node of the distributed network for the local processing, storage, and dissemination of hydrologic data collected within the node's area of responsibility. The processor at each node will also be used to perform hydrologic modeling, statistical data analysis, text editing, and some administrative work.
NASA Astrophysics Data System (ADS)
Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen
2018-03-01
Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India
Mitra, Pubali; Pal, Dilip Kumar
2018-01-01
Purpose The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Materials and Methods Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. Results We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. Conclusions It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD. PMID:29744472
NASA Astrophysics Data System (ADS)
Valder, J.; Kenner, S.; Long, A.
2008-12-01
Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.
Antunes, Amanda H; Alberton, Cristine L; Finatto, Paula; Pinto, Stephanie S; Cadore, Eduardo L; Zaffari, Paula; Kruel, Luiz F M
2015-01-01
Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the exercises in the sagittal plane and 3 in the frontal plane. Twelve active female volunteers (aged 24 ± 2 years) performed 6 maximal progressive test sessions. Throughout the exercise tests, we measured heart rate (HR) and oxygen consumption (VO2). We randomized all sessions with a minimum interval of 48 hr between each session. For statistical analysis, we used repeated-measures 1-way analysis of variance. Regarding the maximal responses, for the peak VO2, abductor hop and jumping jacks (JJ) showed significantly lower values than frontal kick and cross-country skiing (CCS; p < .001; partial η(2) = .509), while for the peak HR, JJ showed statistically significantly lower responses compared with stationary running and CCS (p < .001; partial η(2) = .401). At anaerobic threshold intensity expressed as the percentage of the maximum values, no statistically significant differences were found among exercises. Cardiorespiratory responses are directly associated with the muscle mass involved in the exercise. Thus, it is worth emphasizing the importance of performing a maximal test that is specific to the analyzed exercise so the prescription of the intensity can be safer and valid.
NASA Astrophysics Data System (ADS)
He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang
2018-02-01
The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.
Methods of Statistical Control for Groundwater Quality Indicators
NASA Astrophysics Data System (ADS)
Yankovich, E.; Nevidimova, O.; Yankovich, K.
2016-06-01
The article describes the results of conducted groundwater quality control. Controlled quality indicators included the following microelements - barium, manganese, iron, mercury, iodine, chromium, strontium, etc. Quality control charts - X-bar chart and R chart - were built. For the upper and the lower threshold limits, maximum permissible concentration of components in water and the lower limit of their biologically significant concentration, respectively, were selected. The charts analysis has shown that the levels of microelements content in water at the area of study are stable. Most elements in the underground water are contained in concentrations, significant for human organisms consuming the water. For example, such elements as Ba, Mn, Fe have concentrations that exceed maximum permissible levels for drinking water.
NASA Astrophysics Data System (ADS)
Paiva, E. M. C. D.; Heatwole, C. H.; Paiva, J. B. D.; Paiva, R. C. D.
2012-04-01
Problems of water shortages and floods are often attributed to the damming of rivers, agriculture, mining, deforestation, forestry, urbanization, and other practices. In the south of Brazil, most river basins experience water deficit problems related to the indiscriminate use of water to irrigate rice. We present a statistical analysis of streamflow data of the Ibicuí Basin, to verify if there are significant trends in water availability related to the withdrawal of water for rice crop irrigation. The Ibicuí basin, located in the southwest of the state of Rio Grande do Sul, Brazil, has ~50,000 km2 drainage area. It is part of the Uruguai basin, and is characteristic of the Pampa biome. This analysis is based on twelve stream gauge stations with data covering the period of rice cultivation between 1970 and 2011. Records of daily flow data were standardized by subtracting the long-term monthly mean and then dividing by the long-term monthly standard deviation. Then for each month we calculated the flow for 50%, 60%, 70%, 80%, 90%, 95% and 99% duration. Trends in these series were assessed using Mann Kendall test. The results showed that there are trends of increasing discharge for nine of the twelve analyzed stations, and in six of those nine stations, the increasing trend was statistically significant. Just three stations presented negative trends. The result for six stations that streamflow is increasing is surprising, because historically it has been assumed that there are deficits of water due to major withdrawals for rice irrigation during the growing season of the crop. River discharges are typically low in this withdrawal period of November to February, although precipitation is similar for all months of the year. Also, some studies using physical models have confirmed the impact of irrigation withdrawals on flow. But the decrease in flow due to irrigation withdrawals was not supported with this statistical analysis. However, analyzing the trend values for several time flow durations, it was observed that there was a reduction of the trends with the duration. Only two stations presented increasing trends with duration. Also, it could be verified that in a river with sequential stations, the trends showed that the Mann Kendall Zs decreased with irrigated area. For verifying if it is possible to see the difference with water withdrawals for irrigation of rice, the station that showed the highest increasing trend was chosen for simulating an increasing water withdrawal on up to 5% of the area in 2011. In this analysis, despite the simulated water withdrawals in this basin, the trend of the water flow was still increasing. However, comparing the current situation to one without water withdrawal for irrigation of rice, the increasing trend was lower with the corresponding Mann-Kendall Z value reduced by half. We conclude that for the Ibicuí Basin comparison of trends in the flow data does not clearly reflect the effect of water withdrawals for irrigation of rice.
78 FR 8682 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... the Protocol of 1978 (MARPOL 73/78); Casualty statistics and investigations; Harmonization of port State control activities; Port State Control (PSC) Guidelines on seafarers' hours of rest and PSC... control under the 2004 Ballast Water Management (BWM) Convention; Comprehensive analysis of difficulties...
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-08-01
Using data from the Gravity Recovery And Climate Experiment (GRACE) mission, we derive statistically robust "hot spot" regions of high probability of peak anomalous—i.e., with respect to the seasonal cycle—water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/month). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hot spot regions to GRACE results and that most exceptions are located in the tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020, it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e., combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE Follow-On (GRACE-FO) mission.
Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu
2017-02-01
Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.
Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MATTHEW,; KOZAK, W.
1994-02-09
Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less
Ducat, Giseli; Felsner, Maria L; da Costa Neto, Pedro R; Quináia, Sueli P
2015-06-15
Recently the use of brown sugar has increased due to its nutritional characteristics, thus requiring a more rigid quality control. The development of a method for water content analysis in soft brown sugar is carried out for the first time by TG/DTA with application of different statistical tests. The results of the optimization study suggest that heating rates of 5°C min(-1) and an alumina sample holder improve the efficiency of the drying process. The validation study showed that thermo gravimetry presents good accuracy and precision for water content analysis in soft brown sugar samples. This technique offers advantages over other analytical methods as it does not use toxic and costly reagents or solvents, it does not need any sample preparation, and it allows the identification of the temperature at which water is completely eliminated in relation to other volatile degradation products. This is an important advantage over the official method (loss on drying). Copyright © 2015 Elsevier Ltd. All rights reserved.
Water flow in high-speed handpieces.
Cavalcanti, Bruno Neves; Serairdarian, Paulo Isaías; Rode, Sigmar Mello
2005-05-01
This study measured the water flow commonly used in high-speed handpieces to evaluate the water flow's influence on temperature generation. Different flow speeds were evaluated between turbines that had different numbers of cooling apertures. Two water samples were collected from each high-speed handpiece at private practices and at the School of Dentistry at São José dos Campos. The first sample was collected at the customary flow and the second was collected with the terminal opened for maximum flow. The two samples were collected into weighed glass receptacles after 15 seconds of turbine operation. The glass receptacles were reweighed and the difference between weights was recorded to calculate the water flow in mL/min and for further statistical analysis. The average water flow for 137 samples was 29.48 mL/min. The flow speeds obtained were 42.38 mL/min for turbines with one coolant aperture; 34.31 mL/min for turbines with two coolant apertures; and 30.44 mL/min for turbines with three coolant apertures. There were statistical differences between turbines with one and three coolant apertures (Tukey-Kramer multiple comparisons test with P < .05). Turbine handpieces with one cooling aperture distributed more water for the burs than high-speed handpieces with more than one aperture.
Koltun, G.F.
2013-01-01
This report presents the results of a study to assess potential water availability from the Atwood, Leesville, and Tappan Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for the Atwood Lake to 73 calendar years for the Leesville and Tappan Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data were tabulated for each of the lakes. Monthly order statistics of computed withdrawals indicated that, for the three pumping capacities considered, increasing the target minimum flow-by amount tended to reduce the amount of water that can be withdrawn. The reduction was greatest in the lower percentiles of withdrawal; however, increasing the flow-by amount had no impact on potential withdrawals during high flow. In addition, for a given target minimum flow-by amount, increasing the pumping rate increased the total amount of water that could be withdrawn; however, that increase was less than a direct multiple of the increase in pumping rate for most flow statistics. Potential monthly withdrawals were observed to be more variable and more limited in some calendar months than others. Monthly order statistics and means of computed daily mean flow-by amounts indicated that flow-by amounts generally tended to be lowest during June–October and February. Increasing the target minimum flow-by amount for a given pumping rate resulted in some small increases in the magnitudes of the mean and 50th percentile and lower order statistics of computed mean flow-by, but had no effect on the magnitudes of the higher percentile statistics. Increasing the pumping rate for a given target minimum flow-by amount resulted in decreases in magnitudes of higher-percentile flow-by statistics by an amount equal to the flow equivalent of the increase in pumping rate; however, some lower percentile statistics remained unchanged.
Carsella, James S; Sánchez-Lombardo, Irma; Bonetti, Sandra J; Crans, Debbie C
2017-04-30
The environmental levels of selenium (Se) are regulated and strictly enforced by the Environmental Protection Agency (EPA) because of the toxicity that Se can exert at high levels. However, speciation plays an important role in the overall toxicity of Se, and only when speciation analysis has been conducted will a detailed understanding of the system be possible. In the following, we carried out the speciation analysis of the creek waters in three of the main tributaries-Upper Fountain Creek, Monument Creek and Lower Fountain Creek-located in the Fountain Creek Watershed (Colorado, USA). There are statistically significant differences between the Se, Ca and Mg, levels in each of the tributaries and seasonal swings in Se, Ca and Mg levels have been observed. There are also statistically significant differences between the Se levels when grouped by Pierre Shale type. These factors are considered when determining the forms of Se present and analyzing their chemistry using the reported thermodynamic relationships considering Ca 2+ , Mg 2+ , SeO₄ 2- , SeO₃ 2- and carbonates. This analysis demonstrated that the correlation between Se and water hardness can be explained in terms of formation of soluble CaSeO₄. The speciation analysis demonstrated that for the Fountain Creek waters, the Ca 2+ ion may be mainly responsible for the observed correlation with the Se level. Considering that the Mg 2+ level is also correlating linearly with the Se levels it is important to recognize that without Mg 2+ the Ca 2+ would be significantly reduced. The major role of Mg 2+ is thus to raise the Ca 2+ levels despite the equilibria with carbonate and other anions that would otherwise decrease Ca 2+ levels.
Singh, Kunwar P; Rai, Premanjali; Pandey, Priyanka; Sinha, Sarita
2012-01-01
The present research aims to investigate the individual and interactive effects of chlorine dose/dissolved organic carbon ratio, pH, temperature, bromide concentration, and reaction time on trihalomethanes (THMs) formation in surface water (a drinking water source) during disinfection by chlorination in a prototype laboratory-scale simulation and to develop a model for the prediction and optimization of THMs levels in chlorinated water for their effective control. A five-factor Box-Behnken experimental design combined with response surface and optimization modeling was used for predicting the THMs levels in chlorinated water. The adequacy of the selected model and statistical significance of the regression coefficients, independent variables, and their interactions were tested by the analysis of variance and t test statistics. The THMs levels predicted by the model were very close to the experimental values (R(2) = 0.95). Optimization modeling predicted maximum (192 μg/l) TMHs formation (highest risk) level in water during chlorination was very close to the experimental value (186.8 ± 1.72 μg/l) determined in laboratory experiments. The pH of water followed by reaction time and temperature were the most significant factors that affect the THMs formation during chlorination. The developed model can be used to determine the optimum characteristics of raw water and chlorination conditions for maintaining the THMs levels within the safe limit.
Cappel, Daniel; Sherman, Woody; Beuming, Thijs
2017-01-01
The ability to accurately characterize the solvation properties (water locations and thermodynamics) of biomolecules is of great importance to drug discovery. While crystallography, NMR, and other experimental techniques can assist in determining the structure of water networks in proteins and protein-ligand complexes, most water molecules are not fully resolved and accurately placed. Furthermore, understanding the energetic effects of solvation and desolvation on binding requires an analysis of the thermodynamic properties of solvent involved in the interaction between ligands and proteins. WaterMap is a molecular dynamics-based computational method that uses statistical mechanics to describe the thermodynamic properties (entropy, enthalpy, and free energy) of water molecules at the surface of proteins. This method can be used to assess the solvent contributions to ligand binding affinity and to guide lead optimization. In this review, we provide a comprehensive summary of published uses of WaterMap, including applications to lead optimization, virtual screening, selectivity analysis, ligand pose prediction, and druggability assessment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Puente, Celso
1976-01-01
Water-level, springflow, and streamflow data were used to develop simple and multiple linear-regression equations for use in estimating water levels in wells and the flow of three major springs in the Edwards aquifer in the eastern San Antonio area. The equations provide daily, monthly, and annual estimates that compare very favorably with observed data. Analyses of geologic and hydrologic data indicate that the water discharged by the major springs is supplied primarily by regional underflow from the west and southwest and by local recharge in the infiltration area in northern Bexar, Comal, and Hays Counties.
Nelms, David L.; Harlow, George E.; Hayes, Donald C.
1997-01-01
Growth within the Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces of Virginia has focused concern about allocation of surface-water flow and increased demands on the ground-water resources. Potential surface-water yield was determined from statistical analysis of base-flow characteristics of streams. Base-flow characteristics also may provide a relative indication of the potential ground-water yield for areas that lack sufficient specific capacity or will-yield data; however, other factors need to be considered, such as geologic structure, lithology, precipitation, relief, and the degree of hydraulic interconnection between the regolith and bedrock.
Fatty acid methyl ester analysis to identify sources of soil in surface water.
Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J
2006-01-01
Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar
2017-12-01
A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.
Physicochemical fingerprinting of thermal waters of Beira Interior region of Portugal.
Araujo, A R T S; Sarraguça, M C; Ribeiro, M P; Coutinho, P
2017-06-01
Mineral natural waters and spas have been used for therapeutic purposes for centuries, with Portugal being a very rich country in thermal waters and spas that are mainly distributed by northern and central regions where Beira Interior region is located. The use of thermal waters for therapeutic purposes has always been aroused a continuous interest, being dependent on physicochemical fingerprinting of this type of waters the indication for a treatment in a specific pathological condition. In the present work, besides a literature review about the physicochemical composition of the thermal waters of the Beira Interior region and its therapeutic indications, it was carried out an exhaustive multivariate analysis-principal component analysis and cluster analysis-to assess the correlation between different physicochemical parameters and the therapeutic indications claims described for these spas and thermal waters. These statistical methods used for data analysis enables classification of thermal waters compositions into different groups, regarding to the different variable selected, making possible an interpretation of variables affecting water compositions. Actually, Monfortinho and Longroiva are clearly quite different of the others, and Cró and Fonte Santa de Almeida appear together in all analysis, suggesting a strong resemblance between these waters. Thereafter, the results obtained allow us to demonstrate the role of major components of the studied thermal waters on a particular therapeutic purpose/indication and hence based on compositional and physicochemical properties partially explain their therapeutic qualities and beneficial effects on human health. This classification agreed with the results obtained for the therapeutic indications approved by the Portuguese National Health Authority and proved to be a valuable tool for the regional typology of mineral medicinal waters, constituting an important guide of the therapeutic armamentarium for well and specific-oriented pathological disturbs.
Stuckey, Marla H.; Kiesler, James L.
2008-01-01
A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.
How Historical Information Can Improve Extreme Value Analysis of Coastal Water Levels
NASA Astrophysics Data System (ADS)
Le Cozannet, G.; Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.
2016-12-01
The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces outliers, those particularly extreme values distant from the others. In a recent work (Bulteau et al., 2015), we investigated how historical information of past events reported in archives can reduce statistical uncertainties and relativize such outlying observations. We adapted a Bayesian Markov Chain Monte Carlo method, initially developed in the hydrology field (Reis and Stedinger, 2005), to the specific case of coastal water levels. We applied this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide gauge measurements and 8 historical events since 1890, the results showed a significant decrease in statistical uncertainties on return levels when historical information is used. Also, Xynthia's water level no longer appeared as an outlier and we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.
Connell, J.F.; Bailey, Z.C.
1989-01-01
A total of 338 single-well aquifer tests from Bear Creek and Melton Valley, Tennessee were statistically grouped to estimate hydraulic conductivities for the geologic formations in the valleys. A cross-sectional simulation model linked to a regression model was used to further refine the statistical estimates for each of the formations and to improve understanding of ground-water flow in Bear Creek Valley. Median hydraulic-conductivity values were used as initial values in the model. Model-calculated estimates of hydraulic conductivity were generally lower than the statistical estimates. Simulations indicate that (1) the Pumpkin Valley Shale controls groundwater flow between Pine Ridge and Bear Creek; (2) all the recharge on Chestnut Ridge discharges to the Maynardville Limestone; (3) the formations having smaller hydraulic gradients may have a greater tendency for flow along strike; (4) local hydraulic conditions in the Maynardville Limestone cause inaccurate model-calculated estimates of hydraulic conductivity; and (5) the conductivity of deep bedrock neither affects the results of the model nor does it add information on the flow system. Improved model performance would require: (1) more water level data for the Copper Ridge Dolomite; (2) improved estimates of hydraulic conductivity in the Copper Ridge Dolomite and Maynardville Limestone; and (3) more water level data and aquifer tests in deep bedrock. (USGS)
Linear retrieval and global measurements of wind speed from the Seasat SMMR
NASA Technical Reports Server (NTRS)
Pandey, P. C.
1983-01-01
Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods.
Two statistical approaches, weighted regression on time, discharge, and season and generalized additive models, have recently been used to evaluate water quality trends in estuaries. Both models have been used in similar contexts despite differences in statistical foundations and...
Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides
2010-08-01
The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.
Rupert, Michael G.; Plummer, Niel
2009-01-01
This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.
Rupert, Michael G.; Plummer, Niel
2009-01-01
This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.
NASA Astrophysics Data System (ADS)
Fussi, Fabio; Di Leo, Margherita; Bonomi, Tullia; Di Mauro, Biagio; Fava, Francesco; Fumagalli, Letizia; Hamidou Kane, Cheikh; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto
2015-04-01
Water represents a vital resource for everyone on this Planet, but, for some populations, the access to potable water is not given for granted. Recently, the interest in low cost technical solutions to improve access to ground water in developing countries, especially for people located in remote areas, has increased. Manual drilling (techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries and represents a valid alternative to increase water access. Lately, this practice has raised the attention of national governments and international organizations. This technique is applicable only where hydrogeological conditions are suitable, namely in presence of thick layers of unconsolidated sediments and a shallow water table Aim of this study is exploring the potential of morphometric analysis to improve the methodology to identify areas with suitable hydrogeological conditions for manual drilling, supporting the implementation of water supply programs that can have great impact on living condition of the population. The characteristics of shallow geological layers are strongly dependent from geomorphological processes and are usually reflected in the morphological characteristics of landforms. Under these hypotheses, we have been investigating the geo-statistical correlation between several morphometric variables and a set of hydrogeological variables used in the estimation of suitability for manual drilling: thickness of unconsolidated sediments, texture, hydraulic conductivity of shallow aquifer, depth of water table. The morphology of two study areas with different landscape characteristics in Guinea and Senegal has been investigated coupling the Free and Open Source Software GRASS GIS and R. Several morphometric parameters have been extracted from ASTER GDEM digital elevation model, and have been compared with a set of hydrogeological characteristics obtained from semi-automatic analysis of stratigraphic logs from water boreholes. We observed the relationships between the spatial distribution of hydrogeological features and the morphology, applying multivariate statistical analysis. The ultimate goal of this study is to infer hydrogeological information of shallow aquifers, exploiting morphometric parameters (together with other layers of information from existing thematic maps and remote sensing) and to reconstruct the geometry and the characteristic of shallow porous aquifer. This research is part of a larger project financed by NERC (National Environment Research Council, UK) in the framework of the program UPGRO (Unlocking the Potential of Groundwater for the Poors), with the collaboration of different partners from Italy, Senegal and Guinea
NASA Astrophysics Data System (ADS)
Alp, E.; Yücel, Ö.; Özcan, Z.
2014-12-01
Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.
Zhang, Yi-Zhe; Wang, Bin; Wang, Wei; Li, Wen-Chao; Huang, Jun; Deng, Shu-Bo; Wang, Yu-Jue; Yu, Gang
2016-01-01
Various per- and poly-fluorinated compounds (PFCs) were first systematically investigated in North Canal Basin, Beijing, China. A total of 68 surface water samples were collected from North Canal Basin, Beijing, at high spatial resolution. The seasonal disparity was compared and associated with source variation. PFCs concentrations in low-water period ranged from 26 to 207 ng/L, and significantly declined levels were found in high-water period. The individual component proportions among different sites varied less in high-water period, when runoff played a role in mixing and diluting PFCs. A methodology combined with principal component analysis (PCA), heat map-hierarchical cluster analysis (HM-HCA), and correlation analysis were introduced to discriminate sources of PFCs in surface water. The statistical results agreed with each other, and daily domestic consumption, fire-fighting products and related industries were identified as sources of PFCs in this region. In addition, two composition ratios were proposed through the methodology to distinguish the impact of nonpoint source, and the outcome demonstrates that great disparities exist in compositional profiles between nonpoint source and others. Overall, the results showed that this comprehensive analysis method has great potential for source apportionment in surface water and other environmental compartments. PMID:27845351
Health belief model and reasoned action theory in predicting water saving behaviors in yazd, iran.
Morowatisharifabad, Mohammad Ali; Momayyezi, Mahdieh; Ghaneian, Mohammad Taghi
2012-01-01
People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter¬mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha¬viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta¬tistically positive correlation between water saving behaviors and intention. In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.
Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran
Morowatisharifabad, Mohammad Ali; Momayyezi, Mahdieh; Ghaneian, Mohammad Taghi
2012-01-01
Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter¬mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha¬viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Results: Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta¬tistically positive correlation between water saving behaviors and intention. Conclusion: In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors. PMID:24688927
A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit
Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...
2015-05-17
In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less
Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat
2004-11-01
Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.
Kansas environmental and resource study: A Great Plains model, tasks 1-6
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.
1972-01-01
There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.
Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain
2002-01-01
The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.
Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center
NASA Astrophysics Data System (ADS)
Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.
2013-12-01
In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to increasing mean sea level. We examine the implications in the face of the CMIP5 projections. Storm intensification may result in increased flooding hazards at Ames. We analyze how the changes in precipitation intensity will impact the storm drainage system at Ames through continuous stormwater modeling of runoff with the EPA model SWMM 5 and projected downscaled daily precipitation data. Although extreme events will not adversely affect wetland habitats, adaptation projects--especially levee construction and improvement--will require filling of wetlands. Federal law mandates mitigation for fill placed in wetlands. We are currently calculating the potential mitigation burden by habitat type.
Wang, Jie; Liu, Guijian; Liu, Houqi; Lam, Paul K S
2017-04-01
A total of 211 water samples were collected from 53 key sampling points from 5-10th July 2013 at four different depths (0m, 2m, 4m, 8m) and at different sites in the Huaihe River, Anhui, China. These points monitored for 18 parameters (water temperature, pH, TN, TP, TOC, Cu, Pb, Zn, Ni, Co, Cr, Cd, Mn, B, Fe, Al, Mg, and Ba). The spatial variability, contamination sources and health risk of trace elements as well as the river water quality were investigated. Our results were compared with national (CSEPA) and international (WHO, USEPA) drinking water guidelines, revealing that Zn, Cd and Pb were the dominant pollutants in the water body. Application of different multivariate statistical approaches, including correlation matrix and factor/principal component analysis (FA/PCA), to assess the origins of the elements in the Huaihe River, identified three source types that accounted for 79.31% of the total variance. Anthropogenic activities were considered to contribute much of the Zn, Cd, Pb, Ni, Co, and Mn via industrial waste, coal combustion, and vehicle exhaust; Ba, B, Cr and Cu were controlled by mixed anthropogenic and natural sources, and Mg, Fe and Al had natural origins from weathered rocks and crustal materials. Cluster analysis (CA) was used to classify the 53 sample points into three groups of water pollution, high pollution, moderate pollution, and low pollution, reflecting influences from tributaries, power plants and vehicle exhaust, and agricultural activities, respectively. The results of the water quality index (WQI) indicate that water in the Huaihe River is heavily polluted by trace elements, so approximately 96% of the water in the Huaihe River is unsuitable for drinking. A health risk assessment using the hazard quotient and index (HQ/HI) recommended by the USEPA suggests that Co, Cd and Pb in the river could cause non-carcinogenic harm to human health. Copyright © 2017 Elsevier B.V. All rights reserved.
Water sorption and solubility of polyamide denture base materials
Nguyen, Long G.; Kopperud, Hilde M.; Øilo, Marit
2017-01-01
Abstract Purpose: Some patients experience adverse reactions to poly(methyl methacrylate)-based (PMMA) dentures. Polyamide (PA) as an alternative to PMMA has, however, not been well documented with regard to water sorption and water solubility. The aim of this in vitro study was to measure water sorption and water solubility of two PA materials compared with PMMA, and to evaluate the major components released from the PA materials and the effect on hardness of the materials. Methods: Ten discs (40.0 mm diameter, 2.0 mm thick) of each material (PA: Valplast and Breflex; PMMA: SR Ivocap HIP) were prepared according to manufacturers’ recommendations. The specimens were tested for water sorption and water solubility, according to a modification of ISO 20795-1:2008. Released substances were analysed by gas chromatography/mass spectrometry (GC/MS). Results: There were statistically significant differences among the materials regarding water sorption, water solubility and time to water saturation. Breflex had the highest water sorption (30.4 μg/mm3), followed by PMMA-material (25.8 μg/mm3) and Valplast (13.6 μg/mm3). Both PA materials had statistically significant lower water solubility than the PMMA. Both PA had a net increase in weight. Analysis by GC/MS identified release of the compound 12-aminododecanolactam from the material Valplast. No release was found from the Breflex material. Conclusions: The PA denture materials show differences in water sorption and solubility, but within the limits of the standard requirements. The PA showed a net increase in weight after long-term water sorption. The clinical implications of the findings are not elucidated. PMID:28642931
Water sorption and solubility of polyamide denture base materials.
Nguyen, Long G; Kopperud, Hilde M; Øilo, Marit
2017-01-01
Purpose: Some patients experience adverse reactions to poly(methyl methacrylate)-based (PMMA) dentures. Polyamide (PA) as an alternative to PMMA has, however, not been well documented with regard to water sorption and water solubility. The aim of this in vitro study was to measure water sorption and water solubility of two PA materials compared with PMMA, and to evaluate the major components released from the PA materials and the effect on hardness of the materials. Methods: Ten discs (40.0 mm diameter, 2.0 mm thick) of each material (PA: Valplast and Breflex; PMMA: SR Ivocap HIP) were prepared according to manufacturers' recommendations. The specimens were tested for water sorption and water solubility, according to a modification of ISO 20795-1:2008. Released substances were analysed by gas chromatography/mass spectrometry (GC/MS). Results: There were statistically significant differences among the materials regarding water sorption, water solubility and time to water saturation. Breflex had the highest water sorption (30.4 μg/mm 3 ), followed by PMMA-material (25.8 μg/mm 3 ) and Valplast (13.6 μg/mm 3 ). Both PA materials had statistically significant lower water solubility than the PMMA. Both PA had a net increase in weight. Analysis by GC/MS identified release of the compound 12-aminododecanolactam from the material Valplast. No release was found from the Breflex material. Conclusions: The PA denture materials show differences in water sorption and solubility, but within the limits of the standard requirements. The PA showed a net increase in weight after long-term water sorption. The clinical implications of the findings are not elucidated.
Garbarino, John R.
1999-01-01
The inductively coupled plasma?mass spectrometric (ICP?MS) methods have been expanded to include the determination of dissolved arsenic, boron, lithium, selenium, strontium, thallium, and vanadium in filtered, acidified natural water. Method detection limits for these elements are now 10 to 200 times lower than by former U.S. Geological Survey (USGS) methods, thus providing lower variability at ambient concentrations. The bias and variability of the method was determined by using results from spike recoveries, standard reference materials, and validation samples. Spike recoveries at 5 to 10 times the method detection limit and 75 micrograms per liter in reagent-water, surface-water, and groundwater matrices averaged 93 percent for seven replicates, although selected elemental recoveries in a ground-water matrix with an extremely high iron sulfate concentration were negatively biased by 30 percent. Results for standard reference materials were within 1 standard deviation of the most probable value. Statistical analysis of the results from about 60 filtered, acidified natural-water samples indicated that there was no significant difference between ICP?MS and former USGS official methods of analysis.
Pinedo, Susana; García, María; Satta, Maria Paola; de Torres, Mariona; Ballesteros, Enric
2007-01-01
The collection of 152 samples from the upper sublittoral zone along the rocky coasts of Catalonia (Northwestern Mediterranean) was carried out in 1999 in order to test the suitability of littoral communities to be used as indicators of water quality in the frame of the European Water Framework Directive. Detrended correspondence analysis were performed to distinguish between different communities and to relate communities composition to water quality. Samples collected in reference sites were included in the analysis. Mediterranean rocky shore communities situated in the upper sublittoral zone can be used as indicators of the water quality: there is a gradient from high to bad status that comprises from dense Cystoseira mediterranea forests to green algae dominated communities. The geographical patterns in the distribution of these communities show that the best areas are situated in the Northern coast, where tourism is the main economic resource of the area, and the worst area is situated close to the metropolitan zone of Barcelona with high population and industrial development. Thus, Mediterranean sublittoral rocky shore communities are useful indicators of water quality and multivariate analysis are a suitable statistical tool for the assessment of the ecological status.
Li, Siyue; Zhang, Quanfa
2010-04-15
A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.
Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric
NASA Astrophysics Data System (ADS)
Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.
2013-11-01
In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.
Impact of detergent systems on bacterial survival on laundered fabrics.
Jaska, J M; Fredell, D L
1980-01-01
The survival of Staphylococcus aureus was determined from inoculated swatches laundered in either a phosphate or a phosphate-substitute detergent. In a Plackett-Burman design study, the independent variables of detergent type, concentration, and variation, wash water temperature, soil load, cycle time, and water hardness were assigned high and low values. Wash water temperatures of 27, 38, 49, and 60 degrees C were employed. Viable bacteria were recovered from macerated swatches. Statistical analysis disclosed that there was no practical difference in the ability of phosphate or phosphate-substitute detergents to reduce the level of S. aureus on the laundered swatches in this controlled design. Analysis did reveal that water temperature was the most significant independent variables. The remaining variables did not appear to have any practical significance upon bacterial reduction. This bacteriological study did not evaluate other essential detergent properties. PMID:7377775
Taneja, Pinky; Labhasetwar, Pawan; Nagarnaik, Pranav; Ensink, Jeroen H J
2017-08-01
The objective of the present study was to determine the effect of nitrates on the incidence of gastrointestinal (GI) cancer development. Nitrate converted to nitrite under reducing conditions of gut results in the formation of N-nitrosamines which are linked to an increased gastric cancer risk. A population of 234 individuals with 78 cases of GI cancer and 156 controls residing at urban and rural settings in Nagpur and Bhandara districts of India were studied for 2 years using a case-control study. A detailed survey of 16 predictor variables using Formhub software was carried out. Nitrate concentrations in vegetables and primary drinking water supplies were measured. The logistic regression model showed that nitrate was statistically significant in predicting increasing risk of cancer when potential confounders were kept at base level (P value of 0.001 nitrate in drinking water; 0.003 for nitrate in vegetable) at P < 0.01. Exposure to nitrate in drinking water at >45 mg/L level of nitrate was associated with a higher risk of GI cancers. Analysis suggests that nitrate concentration in drinking water was found statistically significant in predicting cancer risk with an odds ratio of 1.20.
Okino, L A; Siqueira, E L; Santos, M; Bombana, A C; Figueiredo, J A P
2004-01-01
To evaluate the activity of various root canal irrigants on bovine pulp tissue. The irrigants tested were: 0.5, 1.0 and 2.5% sodium hypochlorite; 2% aqueous solution of chlorhexidine digluconate; 2% chlorhexidine digluconate gel (Natrosol); and distilled water as control. Bovine pulp fragments were weighed and placed in contact with 20 mL of each tested substance in a centrifuge at 150 r.p.m. until total dissolution. Dissolution speed was calculated by dividing pulp weight by dissolution time. Statistical analysis was performed using the Kruskal-Wallis test. Distilled water and both solutions of chlorhexidine did not dissolve the pulp tissue within 6 h. Mean dissolution speeds for 0.5, 1.0 and 2.5% sodium hypochlorite solutions were 0.31, 0.43 and 0.55 mg min(-1), respectively. The solvent ability of chlorhexidine solutions was similar to that of distilled water. The results for sodium hypochlorite solutions, chlorhexidine solutions and distilled water were statistically different (P>0.01). Both chlorhexidine preparations and distilled water were not able to dissolve pulp tissue. All sodium hypochlorite solutions were efficient in dissolving pulp tissue; the dissolution speed varied with the concentration of the solution.
Snow parameters from Nimbus-6 electrically scanned microwave radiometer. [(ESMR-6)
NASA Technical Reports Server (NTRS)
Abrams, G.; Edgerton, A. T.
1977-01-01
Two sites in Canada were selected for detailed analysis of the ESMR-6/ snow relationships. Data were analyzed for February 1976 for site 1 and January, February and March 1976 for site 2. Snowpack water equivalents were less than 4.5 inches for site 1 and, depending on the month, were between 2.9 and 14.5 inches for site 2. A statistically significant relationship was found between ESMR-6 measurements and snowpack water equivalents for the Site 2 February and March data. Associated analysis findings presented are the effects of random measurement errors, snow site physiolography, and weather conditions on the ESMR-6/snow relationship.
Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino
2012-03-16
Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baró, Jordi; Planes, Antoni; Salje, Ekhard K. H.; Vives, Eduard
2016-12-01
Local fracture events (or labquakes) during compression of shale rocks have been studied by acoustic emission. They are assumed to simulate quakes induced by hydraulic fracturing (fracking) or other water injection activities. Results are compared with those obtained during compression of porous Vycor glass, which are known to display statistical features very similar to those characterising natural earthquakes. Our acoustic emission results show that labquake energies are power law distributed, which is consistent with recent statistical analysis of fracking-/water injection-induced quakes. The data confirm a Gutenberg-Richter behaviour with exponents larger than the exponents characterising the energy distribution of natural earthquakes. In contrast to natural earthquakes, labquakes in shales do not show time correlations, which indicates that the probability of aftershocks is smaller than in the natural scenario (e.g. during Californian earthquakes).
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Vanclooster, Marnik
2013-04-01
Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.
Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys.
Rankin, M K; Alphin, R L; Benson, E R; Johnson, A L; Hougentogler, D P; Mohankumar, P
2013-12-01
Recommended response strategies for outbreaks of avian influenza and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. The best methods of emergency mass depopulation should maximize human health and safety while minimizing disease spread and animal welfare concerns. The goal of this project was to evaluate the effectiveness of 2 mass depopulation methods on adult tom turkeys. The methods tested were carbon dioxide gassing and water-based foam. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity were recorded for each bird through the use of an electroencephalogram, accelerometer, and electrocardiogram. Critical times for physiological events were extracted from sensor data and compiled in a spreadsheet for statistical analysis. A statistically significant difference was observed in time to brain death, with water-based foam resulting in faster brain death (µ = 190 s) than CO2 gas (µ = 242 s). Though not statistically significant, differences were found comparing the time to unconsciousness (foam: µ = 64 s; CO2 gas: µ = 90 s), motion cessation (foam: µ = 182 s; CO2 gas: µ = 153 s), and altered terminal cardiac activity (foam: µ = 208 s; CO2 gas µ = 242 s) between foam and CO2 depopulation treatments. The results of this study demonstrate that water-based foam can be used to effectively depopulate market size male turkeys.
NASA Astrophysics Data System (ADS)
Lutz, Norbert W.; Bernard, Monique
2018-02-01
We recently suggested a new paradigm for statistical analysis of thermal heterogeneity in (semi-)aqueous materials by 1H NMR spectroscopy, using water as a temperature probe. Here, we present a comprehensive in silico and in vitro validation that demonstrates the ability of this new technique to provide accurate quantitative parameters characterizing the statistical distribution of temperature values in a volume of (semi-)aqueous matter. First, line shape parameters of numerically simulated water 1H NMR spectra are systematically varied to study a range of mathematically well-defined temperature distributions. Then, corresponding models based on measured 1H NMR spectra of agarose gel are analyzed. In addition, dedicated samples based on hydrogels or biological tissue are designed to produce temperature gradients changing over time, and dynamic NMR spectroscopy is employed to analyze the resulting temperature profiles at sub-second temporal resolution. Accuracy and consistency of the previously introduced statistical descriptors of temperature heterogeneity are determined: weighted median and mean temperature, standard deviation, temperature range, temperature mode(s), kurtosis, skewness, entropy, and relative areas under temperature curves. Potential and limitations of this method for quantitative analysis of thermal heterogeneity in (semi-)aqueous materials are discussed in view of prospective applications in materials science as well as biology and medicine.
Chlorine dioxide water disinfection: a prospective epidemiology study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, G.E.; Miday, R.K.; Bercz, J.P.
An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.
Water-resources investigations in Wisconsin
Maertz, D.E.
1996-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also LOCATION: Statewide PROJECT CHIEF: Barry K. Holmstrom PERIOD OF PROJECT: July 1913-Continuing designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for waterquality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in the report "Water Resources Data-Wisconsin."
Sando, Steven K.; Vecchia, Aldo V.
2016-07-20
During the extended history of mining in the upper Clark Fork Basin in Montana, large amounts of waste materials enriched with metallic contaminants (cadmium, copper, lead, and zinc) and the metalloid trace element arsenic were generated from mining operations near Butte and milling and smelting operations near Anaconda. Extensive deposition of mining wastes in the Silver Bow Creek and Clark Fork channels and flood plains had substantial effects on water quality. Federal Superfund remediation activities in the upper Clark Fork Basin began in 1983 and have included substantial remediation near Butte and removal of the former Milltown Dam near Missoula. To aid in evaluating the effects of remediation activities on water quality, the U.S. Geological Survey began collecting streamflow and water-quality data in the upper Clark Fork Basin in the 1980s.Trend analysis was done on specific conductance, selected trace elements (arsenic, copper, and zinc), and suspended sediment for seven sampling sites in the Milltown Reservoir/Clark Fork River Superfund Site for water years 1996–2015. The most upstream site included in trend analysis is Silver Bow Creek at Warm Springs, Montana (sampling site 8), and the most downstream site is Clark Fork above Missoula, Montana (sampling site 22), which is just downstream from the former Milltown Dam. Water year is the 12-month period from October 1 through September 30 and is designated by the year in which it ends. Trend analysis was done by using a joint time-series model for concentration and streamflow. To provide temporal resolution of changes in water quality, trend analysis was conducted for four sequential 5-year periods: period 1 (water years 1996–2000), period 2 (water years 2001–5), period 3 (water years 2006–10), and period 4 (water years 2011–15). Because of the substantial effect of the intentional breach of Milltown Dam on March 28, 2008, period 3 was subdivided into period 3A (October 1, 2005–March 27, 2008) and period 3B (March 28, 2008–September 30, 2010) for the Clark Fork above Missoula (sampling site 22). Trend results were considered statistically significant when the statistical probability level was less than 0.01.In conjunction with the trend analysis, estimated normalized constituent loads (hereinafter referred to as “loads”) were calculated and presented within the framework of a constituent-transport analysis to assess the temporal trends in flow-adjusted concentrations (FACs) in the context of sources and transport. The transport analysis allows assessment of temporal changes in relative contributions from upstream source areas to loads transported past each reach outflow.Trend results indicate that FACs of unfiltered-recoverable copper decreased at the sampling sites from the start of period 1 through the end of period 4; the decreases ranged from large for one sampling site (Silver Bow Creek at Warm Springs [sampling site 8]) to moderate for two sampling sites (Clark Fork near Galen, Montana [sampling site 11] and Clark Fork above Missoula [sampling site 22]) to small for four sampling sites (Clark Fork at Deer Lodge, Montana [sampling site 14], Clark Fork at Goldcreek, Montana [sampling site 16], Clark Fork near Drummond, Montana [sampling site 18], and Clark Fork at Turah Bridge near Bonner, Montana [sampling site 20]). For period 4 (water years 2011–15), the most notable changes indicated for the Milltown Reservoir/Clark Fork River Superfund Site were statistically significant decreases in FACs and loads of unfiltered-recoverable copper for sampling sites 8 and 22. The period 4 changes in FACs of unfiltered-recoverable copper for all other sampling sites were not statistically significant.Trend results indicate that FACs of unfiltered-recoverable arsenic decreased at the sampling sites from period 1 through period 4 (water years 1996–2015); the decreases ranged from minor (sampling sites 8–20) to small (sampling site 22). For period 4 (water years 2011–15), the most notable changes indicated for the Milltown Reservoir/Clark Fork River Superfund Site were statistically significant decreases in FACs and loads of unfiltered-recoverable arsenic for sampling site 8 and near statistically significant decreases for sampling site 22. The period 4 changes in FACs of unfiltered-recoverable arsenic for all other sampling sites were not statistically significant.Trend results indicate that FACs of suspended sediment decreased at the sampling sites from period 1 through period 4 (water years 1996–2015); the decreases ranged from moderate (sampling site 8) to small (sampling sites 11–22). For period 4 (water years 2011–15), the changes in FACs of suspended sediment were not statistically significant for any sampling sites.The reach of the Clark Fork from Galen to Deer Lodge is a large source of metallic contaminants and suspended sediment, which strongly affects downstream transport of those constituents. Mobilization of copper and suspended sediment from flood-plain tailings and the streambed of the Clark Fork and its tributaries within the reach results in a contribution of those constituents that is proportionally much larger than the contribution of streamflow from within the reach. Within the reach from Galen to Deer Lodge, unfiltered-recoverable copper loads increased by a factor of about 4 and suspended-sediment loads increased by a factor of about 5, whereas streamflow increased by a factor of slightly less than 2. For period 4 (water years 2011–15), unfiltered-recoverable copper and suspended-sediment loads sourced from within the reach accounted for about 41 and 14 percent, respectively, of the loads at Clark Fork above Missoula (sampling site 22), whereas streamflow sourced from within the reach accounted for about 4 percent of the streamflow at sampling site 22. During water years 1996–2015, decreases in FACs and loads of unfiltered-recoverable copper and suspended sediment for the reach generally were proportionally smaller than for most other reaches.Unfiltered-recoverable copper loads sourced within the reaches of the Clark Fork between Deer Lodge and Turah Bridge near Bonner (just upstream from the former Milltown Dam) were proportionally smaller than contributions of streamflow sourced from within the reaches; these reaches contributed proportionally much less to copper loading in the Clark Fork than the reach between Galen and Deer Lodge. Although substantial decreases in FACs and loads of unfiltered-recoverable copper and suspended sediment were indicated for Silver Bow Creek at Warm Springs (sampling site 8), those substantial decreases were not translated to downstream reaches between Deer Lodge and Turah Bridge near Bonner. The effect of the reach of the Clark Fork from Galen to Deer Lodge as a large source of copper and suspended sediment, in combination with little temporal change in those constituents for the reach, contributes to this pattern.With the removal of the former Milltown Dam in 2008, substantial amounts of contaminated sediments that remained in the Clark Fork channel and flood plain in reach 9 (downstream from Turah Bridge near Bonner) became more available for mobilization and transport than before the dam removal. After the removal of the former Milltown Dam, the Clark Fork above Missoula (sampling site 22) had statistically significant decreases in FACs of unfiltered-recoverable copper in period 3B (March 28, 2008, through water year 2010) that continued in period 4 (water years 2011–15). Also, decreases in FACs of unfiltered-recoverable arsenic and suspended sediment were indicated for period 4 at this site. The decrease in FACs of unfiltered-recoverable copper for sampling site 22 during period 4 was proportionally much larger than the decrease for the Clark Fork at Turah Bridge near Bonner (sampling site 20). Net mobilization of unfiltered-recoverable copper and arsenic from sources within reach 9 are smaller for period 4 than for period 1 when the former Milltown Dam was in place, providing evidence that contaminant source materials have been substantially reduced in reach 9.
NASA Astrophysics Data System (ADS)
Möller, Jens; Heinrich, Hartmut
2017-04-01
As a consequence of climate change atmospheric and oceanographic extremes and their potential impacts on coastal regions are of growing concern for governmental authorities responsible for the transportation infrastructure. Highest risks for shipping as well as for rail and road traffic originate from combined effects of extremes of storm surges and heavy rainfall which sometimes lead to insufficient dewatering of inland waterways. The German Ministry of Transport and digital Infrastructure therefore has tasked its Network of Experts to investigate the possible evolutions of extreme threats for low lands and especially for Kiel Canal, which is an important shortcut for shipping between the North and Baltic Seas. In this study we present results of a comparison of an Extreme Value Analysis (EVA) carried out on gauge observations and values derived from a coupled Regional Ocean-Atmosphere Climate Model (MPI-OM). High water levels at the coasts of the North and Baltic Seas are one of the most important hazards which increase the risk of flooding of the low-lying land and prevents such areas from an adequate dewatering. In this study changes in the intensity (magnitude of the extremes) and duration of extreme water levels (above a selected threshold) are investigated for several gauge stations with data partly reaching back to 1843. Different methods are used for the extreme value statistics, (1) a stationary general Pareto distribution (GPD) model as well as (2) an instationary statistical model for better reproduction of the impact of climate change. Most gauge stations show an increase of the mean water level of about 1-2 mm/year, with a stronger increase of the highest water levels and a decrease (or lower increase) of the lowest water levels. Also, the duration of possible dewatering time intervals for the Kiel-Canal was analysed. The results for the historical gauge station observations are compared to the statistics of modelled water levels from the coupled atmosphere-ocean climate model MPI-OM for the time interval from 1951 to 2000. We demonstrate that for high water levels the observations and MPI-OM results are in good agreement, and we provide an estimate on the decreasing dewatering potential for Kiel Canal until the end of the 21st century.
7 CFR 601.1 - Functions assigned.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...
7 CFR 601.1 - Functions assigned.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...
7 CFR 601.1 - Functions assigned.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...
7 CFR 601.1 - Functions assigned.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...
7 CFR 601.1 - Functions assigned.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) National Resources Inventory (NRI) that is a statistically-based survey designed and implemented using... both the provisions of the Food Security Act and Section 404 of the Clean Water Act. (ii) Soil surveys.... Soil surveys are based on scientific analysis and classification of the soils and are used to determine...
Experimental Analysis of Cell Function Using Cytoplasmic Streaming
ERIC Educational Resources Information Center
Janssens, Peter; Waldhuber, Megan
2012-01-01
This laboratory exercise investigates the phenomenon of cytoplasmic streaming in the fresh water alga "Nitella". Students use the fungal toxin cytochalasin D, an inhibitor of actin polymerization, to investigate the mechanism of streaming. Students use simple statistical methods to analyze their data. Typical student data are provided. (Contains 3…
To be presented is an overview of the chemistry, the monitoring methodology, and the statistical evaluation of concentrations obtained from the analysis of a suite of compounds (e.g., Galaxolide®, musk xylene, and amino musk xylene) in an aquatic ecological site.
Embodied water analysis for Hebei Province, China by input-output modelling
NASA Astrophysics Data System (ADS)
Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi
2018-03-01
With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.
Recharge in semiarid mountain environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, G.W.
A systematic investigation of tritium activity in precipitation, surface water, springs, and ground water of the Roswell artesian basin in New Mexico, has been supplemented by hydrogeologic reconnaissance of spring systems; by various statistical correlations and spectral analysis of stream flow and water level records of observation wells; by spring discharge measurements; by stable isotope determinations (oxygen 18 and deuterium); and by numerical modeling of part of the basin. Two recharge contributions to the Principal or Carbonate Aquifer have been distinguished principally on the basis of their tritium label and aquifer response characteristics. Almost all basin waters (including deep groundmore » water) fall close to the meteoric line of hydrogen/oxygen isotope composition, and this rules out a juvenile origin or appreciable bedrock interaction.« less
NASA Technical Reports Server (NTRS)
Ragan, R.
1982-01-01
General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.
Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.
Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu
2017-02-08
Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.
Whitmore, Roy W; Chen, Wenlin
2013-12-04
The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.
Quantitative analysis of microbial contamination in private drinking water supply systems.
Allevi, Richard P; Krometis, Leigh-Anne H; Hagedorn, Charles; Benham, Brian; Lawrence, Annie H; Ling, Erin J; Ziegler, Peter E
2013-06-01
Over one million households rely on private water supplies (e.g. well, spring, cistern) in the Commonwealth of Virginia, USA. The present study tested 538 private wells and springs in 20 Virginia counties for total coliforms (TCs) and Escherichia coli along with a suite of chemical contaminants. A logistic regression analysis was used to investigate potential correlations between TC contamination and chemical parameters (e.g. NO3(-), turbidity), as well as homeowner-provided survey data describing system characteristics and perceived water quality. Of the 538 samples collected, 41% (n = 221) were positive for TCs and 10% (n = 53) for E. coli. Chemical parameters were not statistically predictive of microbial contamination. Well depth, water treatment, and farm location proximate to the water supply were factors in a regression model that predicted presence/absence of TCs with 74% accuracy. Microbial and chemical source tracking techniques (Bacteroides gene Bac32F and HF183 detection via polymerase chain reaction and optical brightener detection via fluorometry) identified four samples as likely contaminated with human wastewater.
NASA Astrophysics Data System (ADS)
Bocquillon, C.; Masson, J. M.
1983-01-01
Lack of water supply during periods of deficient flow affects the economic potentiality of the great river valleys which are the most developed areas in the country. Reservoir dams built in the upper stream catchments store excess flow and provide controlled release in the dry season. Capital costs of construction and the consequences of failures justify a thorough study of operating rules. The low flows and conditional variability of availability of water call for carry-over procedures (reservoir capacity is sometimes greater than the mean available water). It is not possible to predict future sequence of flows, thus the carry-over rule is a statistical decision-making tool. The flow data are only one of the very many possible sources of information. But the analysis of flow data provides us with statistical measures to generate long series of synthetic inflows associated with summer deficits. A simplification has been introduced by choosing only the values which are absolutely necessary for optimal management research: available water volumes and reserve volumes for a flow threshold. Yearly alternate periods of excess and deficiency of water are defined by the values above and below a threshold of flow discharge at a location gage named "objective point", where the reservoir effects are to be estimated. Yearly periods are described by water volumes, either inflows into reservoirs, or deficits below various thresholds of summer flow discharges. Marginal and conditional probability distributions of these volumes and the physical laws which mark their bounds and relationships were estimated on the basis of 31 years of daily flow records. The synthetic simulated series for 1000 years was compared to records of historical levels (since 1863). Extreme events such as sequences of dry years, have return periods of comparable magnitude. This synthetic series has a similar statistical character of short historical series and makes the analysis of operating rules possible.
2014-09-01
14-7 ii Abstract The U.S. North Atlantic coast is subject to coastal flooding as a result of both severe extratropical storms (e.g., Nor’easters...Products and Services, excluding any kind of high-resolution hydrodynamic modeling. Tropical and extratropical storms were treated as a single...joint probability analysis and high-fidelity modeling of tropical and extratropical storms
[Analysis of variance of repeated data measured by water maze with SPSS].
Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang
2007-01-01
To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P
Ielpo, Pierina; Leardi, Riccardo; Pappagallo, Giuseppe; Uricchio, Vito Felice
2017-06-01
In this paper, the results obtained from multivariate statistical techniques such as PCA (Principal component analysis) and LDA (Linear discriminant analysis) applied to a wide soil data set are presented. The results have been compared with those obtained on a groundwater data set, whose samples were collected together with soil ones, within the project "Improvement of the Regional Agro-meteorological Monitoring Network (2004-2007)". LDA, applied to soil data, has allowed to distinguish the geographical origin of the sample from either one of the two macroaeras: Bari and Foggia provinces vs Brindisi, Lecce e Taranto provinces, with a percentage of correct prediction in cross validation of 87%. In the case of the groundwater data set, the best classification was obtained when the samples were grouped into three macroareas: Foggia province, Bari province and Brindisi, Lecce and Taranto provinces, by reaching a percentage of correct predictions in cross validation of 84%. The obtained information can be very useful in supporting soil and water resource management, such as the reduction of water consumption and the reduction of energy and chemical (nutrients and pesticides) inputs in agriculture.
Afshari, Kasra; Samavati, Vahid; Shahidi, Seyed-Ahmad
2015-03-01
The effects of ultrasonic power, extraction time, extraction temperature, and the water-to-raw material ratio on extraction yield of crude polysaccharide from the leaf of Hibiscus rosa-sinensis (HRLP) were optimized by statistical analysis using response surface methodology. The response surface methodology (RSM) was used to optimize HRLP extraction yield by implementing the Box-Behnken design (BBD). The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis and also analyzed by appropriate statistical methods (ANOVA). Analysis of the results showed that the linear and quadratic terms of these four variables had significant effects. The optimal conditions for the highest extraction yield of HRLP were: ultrasonic power, 93.59 W; extraction time, 25.71 min; extraction temperature, 93.18°C; and the water to raw material ratio, 24.3 mL/g. Under these conditions, the experimental yield was 9.66±0.18%, which is well in close agreement with the value predicted by the model 9.526%. The results demonstrated that HRLP had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wainger, Lisa; Yu, Hao; Gazenski, Kim; Boynton, Walter
2016-09-01
A major question in restoring estuarine water quality is whether local actions to manage excess nutrients can be effective, given that estuaries are also responding to tidal inputs from adjacent water bodies. Several types of statistical analysis were used to examine spatially-detailed and long-term water quality monitoring data in eight sub-estuaries of Chesapeake Bay. These sub-estuaries are likely to be similar to other shallow systems with moderate to long water residence times. Statistical cluster analysis of spatial water quality data suggested that estuaries had spatially distinct water quality zones and that the peak algal biomass (as measured by chlorophyll-a) was most often controlled by local watershed inputs in all but one estuary, although mainstem inputs affected most estuaries at some times and places. An elasticity indicator that compared inter-annual changes in sub-estuaries to parallel changes in the mainstem Chesapeake Bay supported the idea that water quality in sub-estuaries was not strongly coupled to the mainstem. A cross-channel zonation of water quality observed near the mouth of estuaries suggested that Bay influences were stronger on the right side of the lower channel (looking up estuary) at times in all estuaries, and was most common in small estuaries closest to the mouth of the primary water source to the estuary. Where Bay influences were strong, estuarine water quality would be expected to be less responsive to nutrient reductions made in the local watershed. Regression analysis was used to evaluate hypothesized relationships between environmental driver variables and average chlorophyll-a (chl-a) concentrations. Chl-a values were calculated from unusually detailed levels of spatial sampling, potentially providing a more comprehensive view of system conditions than that provided by traditional sparse sampling networks. The univariate models with the best data support to explain variability in averaged chl-a concentration were those that reflected water residence time. Of the land cover variables tested, septic density in the riparian zone explained the most variance in chl-a. The multivariate models that most improved upon the residence time effect added TN or TP flows (normalized by volume) and suggested that chl-a will be less responsive to nutrient reductions in estuaries that are poorly flushed.
NASA Astrophysics Data System (ADS)
Boutt, D. F.
2011-12-01
The scientific evidence that humans are directly influencing the Earth's natural climate is increasingly compelling. Numerous studies suggest that climate change will lead to changes in the seasonality of surface water availability thereby increasing the need for groundwater development to offset those shortages. Research suggests that the Northeast region of the U.S. is experiencing significant changes to its' natural climate and hydrologic systems. Previous analysis of a long-term regional compilation of the water table response to the last 60 years of climate variability in New England documented a wide range of variability. The investigation evaluated the physical mechanisms, natural variability and response of aquifers in New England using 100 long term groundwater monitoring stations with 20 or more years of data coupled with 67 stream gages, 75 precipitation stations, and 43 temperature stations. Groundwater trends were calculated as normalized anomalies and analyzed with respect to regional compiled precipitation, temperature, and streamflow anomalies to understand the sensitivity of the aquifer systems to change. Interestingly, a trend and regression analysis demonstrate that water level fluctuations are producing statistically significant results with increasing water levels over at least the past thirty years at most (80 out of 100) well sites. In this contribution we investigate the causal mechanisms behind the observed ground water level trends using site-by-site land-use change assessments, cluster analysis, and spatial analysis of beaver populations (a possible proxy for beaver activity). Regionally, average annual precipitation has been slightly increasing since 1900, with 95% of the stations having statistically significant positive trends. Despite this, no correlation is observed between the magnitude of the annual precipitation trends and the magnitude of the groundwater level changes. Land-use change throughout the region has primarily taken place in and around existing urban centers with an overall increase in the percentage of forested land. Individual analysis of well sites in areas with documented land-use change from agriculture and forested land cover to urban land use suggests a positive correlation with increasing water levels. Recently, beaver populations been begun to rise that has led to local increases in wetland areas. These regions also show a high positive correlation to the magnitude of water table rise. Local factors such as land-use change and beaver activity appear to overprint and mask the impact of consistent increases in annual precipitation. Rising water tables have major implications for not only water management but also the agriculture, forestry, fishing, and tourism industries as they all depend on the quantity and quality of water resources of the region.
A statistical summary of data from the U.S. Geological Survey's national water quality networks
Smith, R.A.; Alexander, R.B.
1983-01-01
The U.S. Geological Survey Operates two nationwide networks to monitor water quality, the National Hydrologic Bench-Mark Network and the National Stream Quality Accounting Network (NASQAN). The Bench-Mark network is composed of 51 stations in small drainage basins which are as close as possible to their natural state, with no human influence and little likelihood of future development. Stations in the NASQAN program are located to monitor flow from accounting units (subregional drainage basins) which collectively encompass the entire land surface of the nation. Data collected at both networks include streamflow, concentrations of major inorganic constituents, nutrients, and trace metals. The goals of the two water quality sampling programs include the determination of mean constituent concentrations and transport rates as well as the analysis of long-term trends in those variables. This report presents a station-by-station statistical summary of data from the two networks for the period 1974 through 1981. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Rushforth, R.; Ruddell, B. L.
2014-12-01
Water footprints have been proposed as potential sustainability indicators, but these analyses have thus far focused at the country-level or regional scale. However, for many countries, especially the United States, the most relevant level of water decision-making is the city. For water footprinting to inform urban sustainability, the boundaries for analysis must match the relevant boundaries for decision-making and economic development. Initial studies into city-level water footprints have provided insight into how large cities across the globe—Delhi, Lagos, Berlin, Beijing, York—create virtual water trade linkages with distant hinterlands. This study hypothesizes that for large cities the most direct and manageable virtual water flows exist at the metropolitan area scale and thus should provide the most policy-relevant information. This study represents an initial attempt at quantifying intra-metropolitan area virtual water flows. A modified commodity-by-industry input-output model was used to determine virtual water flows destined to, occurring within, and emanating from the Phoenix metropolitan area (PMA). Virtual water flows to and from the PMA were calculated for each PMA city using water consumption data as well as economic and industry statistics. Intra-PMA virtual water trade was determined using county-level traffic flow data, water consumption data, and economic and industry statistics. The findings show that there are archetypal cities within metropolitan areas and that each type of city has a distinct water footprint profile that is related to the value added economic processes occuring within their boundaries. These findings can be used to inform local water managers about the resilience of outsourced water supplies.
Jaynes, M.L.
1994-01-01
Hydrologic, water-quality, and meteorologic data were collected from January 1993 through March 1994 as part of a water-quality investigation of the Upper Catawba River Basin, North Carolina. Specific objectives of the investigation were to characterize the water quality of Rhodhiss Lake, Lake Hickory, and three tributary streams, and to calibrate hydrodynamic water-quality models for the two reservoirs. Sampling locations included 11 sites in Rhodhiss Lake, 14 sites in Lake Hickory, and 3 tributary sites. Tributary sites were located at Lower Creek upstream from Rhodhiss Lake and at Upper Little River and Middle Little River upstream from Lake Hickory. During 21 sampling visits, specific conductance, pH, water temperature, dissolved-oxygen concentration, and water transparency were measured at all sampling locations. Water samples were collected for analysis of biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, suspended sediment, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium from three sites in each reservoir and from the three tributary sites. Chemical and particle-size analyses of bottom material from Rhodhiss Lake and Lake Hickory were performed once during the study. At selected locations, automated instruments recorded water level, streamflow, water temperature, solar radiation, and air temperature at 15-minute intervals throughout the study. Hydrologic data presented in the report include monthly water-level statistics and daily mean values of discharge. Diagrams, tables, and statistical summaries of water-quality data are provided. Meteorologic data in the report include monthly precipitation, and daily mean values of solar radiation and air temperature.
NASA Astrophysics Data System (ADS)
Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.
2009-12-01
Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.
Discriminatory power of water polo game-related statistics at the 2008 Olympic Games.
Escalante, Yolanda; Saavedra, Jose M; Mansilla, Mirella; Tella, Victor
2011-02-01
The aims of this study were (1) to compare water polo game-related statistics by context (winning and losing teams) and sex (men and women), and (2) to identify characteristics discriminating the performances for each sex. The game-related statistics of the 64 matches (44 men's and 20 women's) played in the final phase of the Olympic Games held in Beijing in 2008 were analysed. Unpaired t-tests compared winners and losers and men and women, and confidence intervals and effect sizes of the differences were calculated. The results were subjected to a discriminant analysis to identify the differentiating game-related statistics of the winning and losing teams. The results showed the differences between winning and losing men's teams to be in both defence and offence, whereas in women's teams they were only in offence. In men's games, passing (assists), aggressive play (exclusions), centre position effectiveness (centre shots), and goalkeeper defence (goalkeeper-blocked 5-m shots) predominated, whereas in women's games the play was more dynamic (possessions). The variable that most discriminated performance in men was goalkeeper-blocked shots, and in women shooting effectiveness (shots). These results should help coaches when planning training and competition.
Applications of Geographic Information System (GIS) analysis of Lake Uluabat.
Hacısalihoğlu, Saadet; Karaer, Feza; Katip, Aslıhan
2016-06-01
Lake Uluabat is one of the most important wetlands in Turkey because of its rich biodiversity, lying on a migratory bird route with almost all its shores being covered by submerged plants. The lake has been protected by the Ramsar Convention since 1998. However, the Lake is threatened by natural and anthropogenic stressors as a consequence of its location. Geographic Information System (GIS) analysis is a tool that has been widely used, especially for water quality management in recent years. This study aimed to investigate the water quality and determined most polluted points using GIS analysis of the lake. Temperature, pH, dissolved oxygen, chemical oxygen demand, Kjeldahl nitrogen, total phosphorus, chlorophyll-a, arsenic, boron, iron, and manganese were monitored monthly from June 2008 to May 2009, with the samples taken from 8 points in the lake. Effect of pH, relation of temperature, and Chl-a with other water quality parameters and metals are designated as statistically significant. Data were mapped using ArcGIS 9.1 software and were assessed according to the Turkish Water Pollution Control Regulations (TWPCR). The research also focused on classifying and mapping the water quality in the lake by using the spatial analysis functions of GIS. As a result, it was determined that Lake Uluabat belonged to the 4th class, i.e., highly polluted water, including any water of lower quality. A remarkable portion of the pollution in the water basin was attributed to domestic wastewater discharges, industrial and agricultural activities, and mining.
Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Nestler, M. S.
1985-01-01
A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.
Effects of climate change on evapotranspiration over the Okavango Delta water resources
NASA Astrophysics Data System (ADS)
Moses, Oliver; Hambira, Wame L.
2018-06-01
In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.
Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.
2017-01-19
Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreuzer-Martin, Helen W.; Hegg, Eric L.
The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specificmore » samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.« less
Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu
2017-09-01
Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.
Irrigation water use in Kansas, 2013
Lanning-Rush, Jennifer L.
2016-03-22
This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture, Division of Water Resources, presents derivative statistics of 2013 irrigation water use in Kansas. The published regional and county-level statistics from the previous 4 years (2009–12) are shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented. Total reported irrigation water use in 2013 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.
Catling, Louise A; Abubakar, Ibrahim; Lake, Iain R; Swift, Louise; Hunter, Paul R
2008-12-01
The aim of this study is to systematically review and critically assess analytical observational epidemiology studies investigating the association between levels of drinking water hardness and cardiovascular disease. We searched electronic databases and used standardised forms to extract data and assess study quality. Of 2,906 papers identified, 14 met the inclusion criteria (nine case control and five cohort studies). Of the nine case control studies, seven examined both drinking water magnesium and calcium and risk of death from cardiovascular disease. A pooled odds ratio showed a statistically significant inverse association between magnesium and cardiovascular mortality (OR 0.75 (95%CI 0.68, 0.82), p < 0.001). Only two studies reported a statistically significant effect for calcium. Substantial heterogeneity between studies made calculation of a summary estimate for drinking water calcium inappropriate. Of three cohort studies reviewed, two were of good quality. A weak suggestion that soft water was harmful in females and possibly associated with a slightly greater risk of sudden death was reported, but there was no association between water hardness and mortality from stroke or cardiovascular disease. This study found significant evidence of an inverse association between magnesium levels in drinking water and cardiovascular mortality following a meta-analysis of case control studies. Evidence for calcium remains unclear. Copyright IWA Publishing 2008.
Field comparison of analytical results from discrete-depth ground water samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.; Delfino, T.A.; Gallinatti, J.D.
1995-07-01
Discrete-depth ground water samplers are used during environmental screening investigations to collect ground water samples in lieu of installing and sampling monitoring wells. Two of the most commonly used samplers are the BAT Enviroprobe and the QED HydroPunch I, which rely on differing sample collection mechanics. Although these devices have been on the market for several years, it was unknown what, if any, effect the differences would have on analytical results for ground water samples containing low to moderate concentrations of chlorinated volatile organic compounds (VOCs). This study investigated whether the discrete-depth ground water sampler used introduces statistically significant differencesmore » in analytical results. The goal was to provide a technical basis for allowing the two devices to be used interchangeably during screening investigations. Because this study was based on field samples, it included several sources of potential variability. It was necessary to separate differences due to sampler type from variability due to sampling location, sample handling, and laboratory analytical error. To statistically evaluate these sources of variability, the experiment was arranged in a nested design. Sixteen ground water samples were collected from eight random locations within a 15-foot by 15-foot grid. The grid was located in an area where shallow ground water was believed to be uniformly affected by VOCs. The data were evaluated using analysis of variance.« less
Study of groundwater arsenic pollution in Lanyang Plain using multivariate statistical analysis
NASA Astrophysics Data System (ADS)
chan, S.
2013-12-01
The study area, Lanyang Plain in the eastern Taiwan, has highly developed agriculture and aquaculture, which consume over 70% of the water supplies. Groundwater is frequently considered as an alternative water source. However, the serious arsenic pollution of groundwater in Lanyan Plain should be well studied to ensure the safety of groundwater usage. In this study, 39 groundwater samples were collected. The results of hydrochemistry demonstrate two major trends in Piper diagram. The major trend with most of groundwater samples is determined with water type between Ca+Mg-HCO3 and Na+K-HCO3. This can be explained with cation exchange reaction. The minor trend is obviously corresponding to seawater intrusion, which has water type of Na+K-Cl, because the localities of these samples are all in the coastal area. The multivariate statistical analysis on hydrochemical data was conducted for further exploration on the mechanism of arsenic contamination. Two major factors can be extracted with factor analysis. The major factor includes Ca, Mg and Sr while the minor factor includes Na, K and As. This reconfirms that cation exchange reaction mainly control the groundwater hydrochemistry in the study area. It is worth to note that arsenic is positively related to Na and K. The result of cluster analysis shows that groundwater samples with high arsenic concentration can be grouped into that with high Na, K and HCO3. This supports that cation exchange would enhance the release of arsenic and exclude the effect of seawater intrusion. In other words, the water-rock reaction time is key to obtain higher arsenic content. In general, the major source of arsenic in sediments include exchangeable, reducible and oxidizable phases, which are adsorbed ions, Fe-Mn oxides and organic matters/pyrite, respectively. However, the results of factor analysis do not show apparent correlation between arsenic and Fe/Mn. This may exclude Fe-Mn oxides as a major source of arsenic. The other sources will be evaluated by more trace elements, such as rare earth elements.
Berthias, F; Feketeová, L; Abdoul-Carime, H; Calvo, F; Farizon, B; Farizon, M; Märk, T D
2018-06-22
Velocity distributions of neutral water molecules evaporated after collision induced dissociation of protonated water clusters H+(H2O)n≤10 were measured using the combined correlated ion and neutral fragment time-of-flight (COINTOF) and velocity map imaging (VMI) techniques. As observed previously, all measured velocity distributions exhibit two contributions, with a low velocity part identified by statistical molecular dynamics (SMD) simulations as events obeying the Maxwell-Boltzmann statistics and a high velocity contribution corresponding to non-ergodic events in which energy redistribution is incomplete. In contrast to earlier studies, where the evaporation of a single molecule was probed, the present study is concerned with events involving the evaporation of up to five water molecules. In particular, we discuss here in detail the cases of two and three evaporated molecules. Evaporation of several water molecules after CID can be interpreted in general as a sequential evaporation process. In addition to the SMD calculations, a Monte Carlo (MC) based simulation was developed allowing the reconstruction of the velocity distribution produced by the evaporation of m molecules from H+(H2O)n≤10 cluster ions using the measured velocity distributions for singly evaporated molecules as the input. The observed broadening of the low-velocity part of the distributions for the evaporation of two and three molecules as compared to the width for the evaporation of a single molecule results from the cumulative recoil velocity of the successive ion residues as well as the intrinsically broader distributions for decreasingly smaller parent clusters. Further MC simulations were carried out assuming that a certain proportion of non-ergodic events is responsible for the first evaporation in such a sequential evaporation series, thereby allowing to model the entire velocity distribution.
Yager, Douglas B.; Johnson, Raymond H.; Rockwell, Barnaby W.; Caine, Jonathan S.; Smith, Kathleen S.
2013-01-01
Hydrothermally altered bedrock in the Silverton mining area, southwest Colorado, USA, contains sulfide minerals that weather to produce acidic and metal-rich leachate that is toxic to aquatic life. This study utilized a geographic information system (GIS) and statistical approach to identify watershed-scale geologic variables in the Silverton area that influence water quality. GIS analysis of mineral maps produced using remote sensing datasets including Landsat Thematic Mapper, advanced spaceborne thermal emission and reflection radiometer, and a hybrid airborne visible infrared imaging spectrometer and field-based product enabled areas of alteration to be quantified. Correlations between water quality signatures determined at watershed outlets, and alteration types intersecting both total watershed areas and GIS-buffered areas along streams were tested using linear regression analysis. Despite remote sensing datasets having varying watershed area coverage due to vegetation cover and differing mineral mapping capabilities, each dataset was useful for delineating acid-generating bedrock. Areas of quartz–sericite–pyrite mapped by AVIRIS have the highest correlations with acidic surface water and elevated iron and aluminum concentrations. Alkalinity was only correlated with area of acid neutralizing, propylitically altered bedrock containing calcite and chlorite mapped by AVIRIS. Total watershed area of acid-generating bedrock is more significantly correlated with acidic and metal-rich surface water when compared with acid-generating bedrock intersected by GIS-buffered areas along streams. This methodology could be useful in assessing the possible effects that alteration type area has in either generating or neutralizing acidity in unmined watersheds and in areas where new mining is planned.
Bonetti, Jennifer; Quarino, Lawrence
2014-05-01
This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.
Tidal Influence on Water Quality of Kapuas Kecil River Downstream
NASA Astrophysics Data System (ADS)
Purnaini, Rizki; Sudarmadji; Purwono, Suryo
2018-02-01
The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.
Point source pollution and variability of nitrate concentrations in water from shallow aquifers
NASA Astrophysics Data System (ADS)
Nemčić-Jurec, Jasna; Jazbec, Anamarija
2017-06-01
Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m ( F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.
Johnson, K E; Sanders, J J; Gellin, R G; Palesch, Y Y
1998-04-01
The purpose of this study was to evaluate the effects of a magnetized water oral irrigator on plaque, calculus and gingival health. 29 patients completed this double-blind crossover study. Each patient was brought to baseline via an oral prophylaxis with a plaque index < or = 1 and a gingival index < or = 1. Subjects used the irrigator for a period of 3 months with the magnet and 3 months without the magnet. After each 3 month interval, data were collected using the plaque index, gingival index, and accretions index. The repeated measures analysis on plaque, gingival and calculus indices yielded a statistically-significant period effect for PlI (p=0.0343), GI (p=0.0091), and approached significance for calculus (p=0.0593). This meant that the effect of irrigation resulted in a decrease of all indices over time. Therefore, the treatment effect on each index was evaluated using only the measurements obtained at the end of the first period (i.e., assuming a parallel design). Irrigation with magnetized water resulted in 64% less calculus compared to the control group. The reduction was statistically significant (p< or =0.02). The reduction by 27% in gingival index was not statistically significant. The reduction in plaque was minimal (2.2%). A strong positive correlation between the plaque index and the Watt accretion index was observed. The magnetized water oral irrigator could be a useful adjunct in the prevention of calculus accumulation in periodontal patients, but appears to have minimal effect on plaque reduction. The results indicated a clinical improvement in the gingival index, but this was not a statistically significant finding.
Rupert, Michael G.; Plummer, Niel
2009-01-01
This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.
Calibration of equipment for analysis of drinking water fluoride: a comparison study.
Quock, Ryan L; Chan, Jarvis T
2012-03-01
Current American Dental Association evidence-based recommendations for prescription of dietary fluoride supplements are based in part on the fluoride concentration of a pediatric patient's drinking water. With these recommendations in mind, this study compared the relative accuracy of fluoride concentration analysis when a common apparatus is calibrated with different combinations of standard values. Fluoride solutions in increments of 0.1 ppm, from a range of 0.1 to 1.0 ppm fluoride, as well as 2.0 and 4.0 ppm, were gravimetrically prepared and fluoride concentration measured in pentad, using a fluoride ion-specific electrode and millivolt meter. Fluoride concentrations of these solutions were recorded after calibration with the following 3 different combinations of standard fluoride solutions: 0.1 ppm and 0.5 ppm, 0.1 ppm and 1.0 ppm, 0.5 ppm and 1.0 ppm. Statistical analysis showed significant differences in the fluoride content of water samples obtained with different two-standard fluoride solutions. Among the two-standard fluoride solutions tested, using 0.5 ppm and 1.0 ppm as two-standard fluoride solutions provided the most accurate fluoride measurement of water samples containing fluoride in the range of 0.1 ppm to 4.0 ppm. This information should be valuable to dental clinics or laboratories in fluoride analysis of drinking water samples.
Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J
2012-06-20
Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effectiveness of groundwater governance structures and institutions in Tanzania
NASA Astrophysics Data System (ADS)
Gudaga, J. L.; Kabote, S. J.; Tarimo, A. K. P. R.; Mosha, D. B.; Kashaigili, J. J.
2018-05-01
This paper examines effectiveness of groundwater governance structures and institutions in Mbarali District, Mbeya Region. The paper adopts exploratory sequential research design to collect quantitative and qualitative data. A random sample of 90 groundwater users with 50% women was involved in the survey. Descriptive statistics, Kruskal-Wallis H test and Mann-Whitney U test were used to compare the differences in responses between groups, while qualitative data were subjected to content analysis. The results show that the Village Councils and Community Water Supply Organizations (COWSOs) were effective in governing groundwater. The results also show statistical significant difference on the overall extent of effectiveness of the Village Councils in governing groundwater between villages ( P = 0.0001), yet there was no significant difference ( P > 0.05) between male and female responses on the effectiveness of Village Councils, village water committees and COWSOs. The Mann-Whitney U test showed statistical significant difference between male and female responses on effectiveness of formal and informal institutions ( P = 0.0001), such that informal institutions were effective relative to formal institutions. The Kruskal-Wallis H test also showed statistical significant difference ( P ≤ 0.05) on the extent of effectiveness of formal institutions, norms and values between low, medium and high categories. The paper concludes that COWSOs were more effective in governing groundwater than other groundwater governance structures. Similarly, norms and values were more effective than formal institutions. The paper recommends sensitization and awareness creation on formal institutions so that they can influence water users' behaviour to govern groundwater.
Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund
2012-01-01
Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. Conclusions/Significance Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data. PMID:23115629
Spatial variation of statistical properties of extreme water levels along the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Pindsoo, Katri; Soomere, Tarmo; Rocha, Eugénio
2016-04-01
Most of existing projections of future extreme water levels rely on the use of classic generalised extreme value distributions. The choice to use a particular distribution is often made based on the absolute value of the shape parameter of the Generalise Extreme Value distribution. If this parameter is small, the Gumbel distribution is most appropriate while in the opposite case the Weibull or Frechet distribution could be used. We demonstrate that the alongshore variation in the statistical properties of numerically simulated high water levels along the eastern coast of the Baltic Sea is so large that the use of a single distribution for projections of extreme water levels is highly questionable. The analysis is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. The output of the Rossby Centre Ocean model is sampled with a resolution of 6 h and the output of the circulation model NEMO with a resolution of 1 h. As the maxima of water levels of subsequent years may be correlated in the Baltic Sea, we also employ maxima for stormy seasons. We provide a detailed analysis of spatial variation of the parameters of the family of extreme value distributions along an approximately 600 km long coastal section from the north-western shore of Latvia in the Baltic Proper until the eastern Gulf of Finland. The parameters are evaluated using maximum likelihood method and method of moments. The analysis also covers the entire Gulf of Riga. The core parameter of this family of distributions, the shape parameter of the Generalised Extreme Value distribution, exhibits extensive variation in the study area. Its values evaluated using the Hydrognomon software and maximum likelihood method, vary from about -0.1 near the north-western coast of Latvia in the Baltic Proper up to about 0.05 in the eastern Gulf of Finland. This parameter is very close to zero near Tallinn in the western Gulf of Finland. Thus, it is natural that the Gumbel distribution gives adequate projections of extreme water levels for the vicinity of Tallinn. More importantly, this feature indicates that the use of a single distribution for the projections of extreme water levels and their return periods for the entire Baltic Sea coast is inappropriate. The physical reason is the interplay of the complex shape of large subbasins (such as the Gulf of Riga and Gulf of Finland) of the sea and highly anisotropic wind regime. The 'impact' of this anisotropy on the statistics of water level is amplified by the overall anisotropy of the distributions of the frequency of occurrence of high and low water levels. The most important conjecture is that long-term behaviour of water level extremes in different coastal sections of the Baltic Sea may be fundamentally different.
Jalava, Katri; Rintala, Hanna; Ollgren, Jukka; Maunula, Leena; Gomez-Alvarez, Vicente; Revez, Joana; Palander, Marja; Antikainen, Jenni; Kauppinen, Ari; Räsänen, Pia; Siponen, Sallamaari; Nyholm, Outi; Kyyhkynen, Aino; Hakkarainen, Sirpa; Merentie, Juhani; Pärnänen, Martti; Loginov, Raisa; Ryu, Hodon; Kuusi, Markku; Siitonen, Anja; Miettinen, Ilkka; Santo Domingo, Jorge W; Hänninen, Marja-Liisa; Pitkänen, Tarja
2014-01-01
Failures in the drinking water distribution system cause gastrointestinal outbreaks with multiple pathogens. A water distribution pipe breakage caused a community-wide waterborne outbreak in Vuorela, Finland, July 2012. We investigated this outbreak with advanced epidemiological and microbiological methods. A total of 473/2931 inhabitants (16%) responded to a web-based questionnaire. Water and patient samples were subjected to analysis of multiple microbial targets, molecular typing and microbial community analysis. Spatial analysis on the water distribution network was done and we applied a spatial logistic regression model. The course of the illness was mild. Drinking untreated tap water from the defined outbreak area was significantly associated with illness (RR 5.6, 95% CI 1.9-16.4) increasing in a dose response manner. The closer a person lived to the water distribution breakage point, the higher the risk of becoming ill. Sapovirus, enterovirus, single Campylobacter jejuni and EHEC O157:H7 findings as well as virulence genes for EPEC, EAEC and EHEC pathogroups were detected by molecular or culture methods from the faecal samples of the patients. EPEC, EAEC and EHEC virulence genes and faecal indicator bacteria were also detected in water samples. Microbial community sequencing of contaminated tap water revealed abundance of Arcobacter species. The polyphasic approach improved the understanding of the source of the infections, and aided to define the extent and magnitude of this outbreak.
A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil.
Neto, Dagmar C; Chang, Hung K; van Genuchten, Martinus Th
2016-01-01
Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study. © 2015, National Ground Water Association.
Rogala, James T.; Gray, Brian R.
2006-01-01
The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.
HydroClimATe: hydrologic and climatic analysis toolkit
Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.
2014-01-01
The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.
NASA Astrophysics Data System (ADS)
Koshigai, Masaru; Marui, Atsunao
Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.
Sources of drinking water in a pediatric population.
Jadav, Urvi G; Acharya, Bhavini S; Velasquez, Gisela M; Vance, Bradley J; Tate, Robert H; Quock, Ryan L
2014-01-01
The purpose of this study was to determine the primary sources of water used for consumption and cooking by the patients of a university-based pediatric dental practice. A simple, prewritten questionnaire-consisting of seven questions and available in English and Spanish-was conducted verbally with the caregivers of 123 pediatric patients during a designated timeframe. Analysis of responses included descriptive statistics and a chi-square test for a single proportion. Nonfiltered tap water accounted for the primary drinking water source in only 10 percent of the respondents. Firty-two percent of the respondents selected bottled water as the primary source of drinking water, and 24 percent selected vended water stations as a primary drinking water source. Nonfiltered tap water was much more likely to be utilized in cooking (58 percent). The majority of the patients in this study's pediatric dental practice do not consume fluoridated tap water. With the vast majority of the patients primarily consuming bottled or vended water, these patients are likely missing out on the caries-protective effects of water fluoridation.
NASA Astrophysics Data System (ADS)
Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich
2017-06-01
Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
Analysis of metal-laden water via portable X-ray fluorescence spectrometry
NASA Astrophysics Data System (ADS)
Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw
2018-06-01
A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.
Spectral Analysis; Applications in Water Pollution Control.
ERIC Educational Resources Information Center
Wastler, T. A.
The statistical technique of analyzing data collected at regular intervals to reveal periodic components of the data is described by reference to actual records. The data chosen for illustration include tide height in a river; biochemical oxygen demand and dissolved oxygen in the same river; discharged salt into a river system and its relation to…
NASA Astrophysics Data System (ADS)
Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal
Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the model was 0.05. A better understanding of these relationships will help the water utilities or plant operators to minimize the THM formation, providing a healthier and better drinking water quality as well as optimizing the chlorine dosage in the disinfection process.
AG Channel Measurement and Modeling Results for Over-Water and Hilly Terrain Conditions
NASA Technical Reports Server (NTRS)
Matolak, David W.; Sun, Ruoyu
2015-01-01
This report describes work completed over the past year on our project, entitled "Unmanned Aircraft Systems (UAS) Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations." This project is funded under the NASA project "Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)." In this report we provide the following: an update on project progress; a description of the over-freshwater and hilly terrain initial results on path loss, delay spread, small-scale fading, and correlations; complete path loss models for the over-water AG channels; analysis for obtaining parameter statistics required for development of accurate wideband AG channel models; and analysis of an atypical AG channel in which the aircraft flies out of the ground site antenna main beam. We have modeled the small-scale fading of these channels with Ricean statistics, and have quantified the behavior of the Ricean K-factor. We also provide some results for correlations of signal components, both intra-band and inter-band. An updated literature review, and a summary that also describes future work, are also included.
A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples.
Scaturro, Maria; Fontana, Stefano; Dell'eva, Italo; Helfer, Fabrizia; Marchio, Michele; Stefanetti, Maria Vittoria; Cavallaro, Mario; Miglietta, Marilena; Montagna, Maria Teresa; De Giglio, Osvalda; Cuna, Teresa; Chetti, Leonarda; Sabattini, Maria Antonietta Bucci; Carlotti, Michela; Viggiani, Mariagabriella; Stenico, Alberta; Romanin, Elisa; Bonanni, Emma; Ottaviano, Claudio; Franzin, Laura; Avanzini, Claudio; Demarie, Valerio; Corbella, Marta; Cambieri, Patrizia; Marone, Piero; Rota, Maria Cristina; Bella, Antonino; Ricci, Maria Luisa
2016-07-01
Legionella quantification in environmental samples is overestimated by qPCR. Combination with a viable dye, such as Propidium monoazide (PMA), could make qPCR (named then vPCR) very reliable. In this multicentre study 717 artificial water samples, spiked with fixed concentrations of Legionella and interfering bacterial flora, were analysed by qPCR, vPCR and culture and data were compared by statistical analysis. A heat-treatment at 55 °C for 10 minutes was also performed to obtain viable and not-viable bacteria. When data of vPCR were compared with those of culture and qPCR, statistical analysis showed significant differences (P < 0.001). However, although the heat-treatment caused an abatement of CFU/mL ≤1 to 1 log10 unit, the comparison between untreated and heat-treated samples analysed by vPCR highlighted non-significant differences (P > 0.05). Overall this study provided a good experimental reproducibility of vPCR but also highlighted limits of PMA in the discriminating capability of dead and live bacteria, making vPCR not completely reliable. Copyright © 2016 Elsevier Inc. All rights reserved.
Statistical analysis of the MODIS atmosphere products for the Tomsk region
NASA Astrophysics Data System (ADS)
Afonin, Sergey V.; Belov, Vladimir V.; Engel, Marina V.
2005-10-01
The paper presents the results of using the MODIS Atmosphere Products satellite information to study the atmospheric characteristics (the aerosol and water vapor) in the Tomsk Region (56-61°N, 75-90°E) in 2001-2004. The satellite data were received from the NASA Goddard Distributed Active Archive Center (DAAC) through the INTERNET.To use satellite data for a solution of scientific and applied problems, it is very important to know their accuracy. Despite the results of validation of the MODIS data have already been available in the literature, we decided to carry out additional investigations for the Tomsk Region. The paper presents the results of validation of the aerosol optical thickness (AOT) and total column precipitable water (TCPW), which are in good agreement with the test data. The statistical analysis revealed some interesting facts. Thus, for example, analyzing the data on the spatial distribution of the average seasonal values of AOT or TCPW for 2001-2003 in the Tomsk Region, we established that instead of the expected spatial homogeneity of these distributions, they have similar spatial structures.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator); Knowlton, D. J.; Dean, M. E.
1981-01-01
Supervised and cluster block training statistics were used to analyze the thematic mapper simulation MSS data (both 1979 and 1980 data sets). Cover information classes identified on SAR imagery include: hardwood, pine, mixed pine hardwood, clearcut, pasture, crops, emergent crops, bare soil, urban, and water. Preliminary analysis of the HH and HV polarized SAR data indicate a high variance associated with each information class except for water and bare soil. The large variance for most spectral classes suggests that while the means might be statistically separable, an overlap may exist between the classes which could introduce a significant classification error. The quantitative values of many cover types are much larger on the HV polarization than on the HH, thereby indicating the relative nature of the digitized data values. The mean values of the spectral classes in the areas with larger look angles are greater than the means of the same cover type in other areas having steeper look angles. Difficulty in accurately overlaying the dual polarization of the SAR data was resolved.
NASA Astrophysics Data System (ADS)
Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo
2018-02-01
Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.
Taher, Nadia M
2013-04-01
To evaluate the effect of water storage on surface roughness (Ra) of human enamel after treatment with resin infiltrant and fissure sealant, by utilizing atomic force microscopy (AFM) and microtomography. This study was conducted after registration and ethical approval clarification at the College of Dentistry Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia between January 2011 and August 2011. Thirty enamel surface specimens were prepared from caries-free human premolar teeth. Specimens were divided into 3 groups: Group I, was the control; Group II, a resin infiltrant (Icon) was applied on the enamel surfaces; and Group III, the teeth were treated with fissure sealant (SealRite). All specimens were stored in distilled water for 6 months and then, subjected to AFM Veeco CP11 1.2 analysis. A few specimens were scanned by skyscan-1072-x-ray microtomography. The Ra mean readings were recorded and statistical analysis was performed with the Statistical Package for Social Sciences Version 16 at the significance level of p<0.05. No significant differences in the mean Ra were recorded among the 3 groups, (Group I = 0.21+/-0.057), (Group II = 0.23+/-0.075), and (Group III = 0.20+/-0.039) at p=0.747. The AFM images of enamel surface show thin and inhomogeneous Icon resin in Group II, meanwhile, the SealRite in Group III showed a homogeneous layer in all specimens. The microtomography supported the findings of the AFM images. The persistence of the SealRite in all specimens revealed its low solubility in water and its protective effect on enamel surface.
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
Design, analysis, and interpretation of field quality-control data for water-sampling projects
Mueller, David K.; Schertz, Terry L.; Martin, Jeffrey D.; Sandstrom, Mark W.
2015-01-01
The report provides extensive information about statistical methods used to analyze quality-control data in order to estimate potential bias and variability in environmental data. These methods include construction of confidence intervals on various statistical measures, such as the mean, percentiles and percentages, and standard deviation. The methods are used to compare quality-control results with the larger set of environmental data in order to determine whether the effects of bias and variability might interfere with interpretation of these data. Examples from published reports are presented to illustrate how the methods are applied, how bias and variability are reported, and how the interpretation of environmental data can be qualified based on the quality-control analysis.
Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J
2014-08-15
Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
Oelsner, Gretchen P.; Sprague, Lori A.; Murphy, Jennifer C.; Zuellig, Robert E.; Johnson, Henry M.; Ryberg, Karen R.; Falcone, James A.; Stets, Edward G.; Vecchia, Aldo V.; Riskin, Melissa L.; De Cicco, Laura A.; Mills, Taylor J.; Farmer, William H.
2017-04-04
Since passage of the Clean Water Act in 1972, Federal, State, and local governments have invested billions of dollars to reduce pollution entering rivers and streams. To understand the return on these investments and to effectively manage and protect the Nation’s water resources in the future, we need to know how and why water quality has been changing over time. As part of the National Water-Quality Assessment Project, of the U.S. Geological Survey’s National Water-Quality Program, data from the U.S. Geological Survey, along with multiple other Federal, State, Tribal, regional, and local agencies, have been used to support the most comprehensive assessment conducted to date of surface-water-quality trends in the United States. This report documents the methods used to determine trends in water quality and ecology because these methods are vital to ensuring the quality of the results. Specific objectives are to document (1) the data compilation and processing steps used to identify river and stream sites throughout the Nation suitable for water-quality, pesticide, and ecology trend analysis, (2) the statistical methods used to determine trends in target parameters, (3) considerations for water-quality, pesticide, and ecology data and streamflow data when modeling trends, (4) sensitivity analyses for selecting data and interpreting trend results with the Weighted Regressions on Time, Discharge, and Season method, and (5) the final trend results at each site. The scope of this study includes trends in water-quality concentrations and loads (nutrient, sediment, major ion, salinity, and carbon), pesticide concentrations and loads, and metrics for aquatic ecology (fish, invertebrates, and algae) for four time periods: (1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. In total, nearly 12,000 trends in concentration, load, and ecology metrics were evaluated in this study; there were 11,893 combinations of sites, parameters, and trend periods. The final trend results are presented with examples of how to interpret the results from each trend model. Interpretation of the trend results, such as causal analysis, is not included.
Rodent Biocompatibility Test Using the NASA Foodbar and Epoxy EP21LV
NASA Technical Reports Server (NTRS)
Tillman, J.; Steele, M.; Dumars, P.; Vasques, M.; Girten, B.; Sun, S. (Technical Monitor)
2002-01-01
Epoxy has been used successfully to affix NASA foodbars to the inner walls of the Animal Enclosure Module for past space flight experiments utilizing rodents. The epoxy used on past missions was discontinued, making it necessary to identify a new epoxy for use on the STS-108 and STS-107 missions. This experiment was designed to test the basic biocompatibility of epoxy EP21LV with male rats (Sprague Dawley) and mice (Swiss Webster) when applied to NASA foodbars. For each species, the test was conducted with a control group fed untreated foodbars and an experimental group fed foodbars applied with EP21LV. For each species, there were no group differences in animal health and no statistical differences (P<0.05) in body weights throughout the study. In mice, there was a 16% increase in heart weight in the epoxy group; this result was not found in rats. For both species, there were no statistical differences found in other organ weights measured. In rats, blood glucose levels were 15% higher and both total protein and globulin were 10% lower in the epoxy group. Statistical differences in these parameters were not found in mice. For both species, no statistical differences were found in other blood parameters tested. Food consumption was not different in rats but water consumption was significantly decreased 10 to 15% in the epoxy group. The difference in water consumption is likely due to an increased water content of the epoxy-treated foodbars. Finally, both species avoided consumption of the epoxy material. Based on the global analysis of the results, the few parameters found to be statistically different do not appear to be a physiologically relevant effect of the epoxy material, We conclude that the EP21LV epoxy is biocompatible with rodents.
Mueller, Amy V; Hemond, Harold F
2016-05-18
Knowledge of ionic concentrations in natural waters is essential to understand watershed processes. Inorganic nitrogen, in the form of nitrate and ammonium ions, is a key nutrient as well as a participant in redox, acid-base, and photochemical processes of natural waters, leading to spatiotemporal patterns of ion concentrations at scales as small as meters or hours. Current options for measurement in situ are costly, relying primarily on instruments adapted from laboratory methods (e.g., colorimetric, UV absorption); free-standing and inexpensive ISE sensors for NO3(-) and NH4(+) could be attractive alternatives if interferences from other constituents were overcome. Multi-sensor arrays, coupled with appropriate non-linear signal processing, offer promise in this capacity but have not yet successfully achieved signal separation for NO3(-) and NH4(+)in situ at naturally occurring levels in unprocessed water samples. A novel signal processor, underpinned by an appropriate sensor array, is proposed that overcomes previous limitations by explicitly integrating basic chemical constraints (e.g., charge balance). This work further presents a rationalized process for the development of such in situ instrumentation for NO3(-) and NH4(+), including a statistical-modeling strategy for instrument design, training/calibration, and validation. Statistical analysis reveals that historical concentrations of major ionic constituents in natural waters across New England strongly covary and are multi-modal. This informs the design of a statistically appropriate training set, suggesting that the strong covariance of constituents across environmental samples can be exploited through appropriate signal processing mechanisms to further improve estimates of minor constituents. Two artificial neural network architectures, one expanded to incorporate knowledge of basic chemical constraints, were tested to process outputs of a multi-sensor array, trained using datasets of varying degrees of statistical representativeness to natural water samples. The accuracy of ANN results improves monotonically with the statistical representativeness of the training set (error decreases by ∼5×), while the expanded neural network architecture contributes a further factor of 2-3.5 decrease in error when trained with the most representative sample set. Results using the most statistically accurate set of training samples (which retain environmentally relevant ion concentrations but avoid the potential interference of humic acids) demonstrated accurate, unbiased quantification of nitrate and ammonium at natural environmental levels (±20% down to <10 μM), as well as the major ions Na(+), K(+), Ca(2+), Mg(2+), Cl(-), and SO4(2-), in unprocessed samples. These results show promise for the development of new in situ instrumentation for the support of scientific field work.
Collins, J.J.; Freeman, L.D.
1996-01-01
Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated using the USGS computer pro gram ADAPS (Automatic Data Processing System) to characterize normal ground-water levels and depar tures from normal. The report has been organized so that the statisti cal analyses of water levels in the wells are presentedfollowing this introductory material, a description ofthe hydrogeology in the study area, and a description of the statistics used to present the water-level data. Specifically, the report presents statistical analyses for each well, as appropriate, in the following manner: Description of the well.Hydrographs of ground-water levels for the period of record, for the last 10 years of record, and for the last 5 years of record. Graphs of maximum, minimum, and mean of monthly mean ground-water levels for wells with 5 or more years of record.Frequency hydrographs (25, 50, and 75 percent) of monthly mean ground-water levels for wells with 5 or more years of record. Water-level data and statistical plots are grouped by county and sorted within the county by ascendingsite identification number. Well locations are plottedon county maps preceding the well descriptions andhydrographs.
Estimating flow-duration and low-flow frequency statistics for unregulated streams in Oregon.
DOT National Transportation Integrated Search
2008-08-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological ...
Climate Change Assessment of Precipitation in Tandula Reservoir System
NASA Astrophysics Data System (ADS)
Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.
2018-02-01
The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.
Hadjisolomou, Ekaterini; Stefanidis, Konstantinos; Papatheodorou, George; Papastergiadou, Evanthia
2018-03-19
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters' relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl - a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication.
Stoler, Justin; Weeks, John R; Appiah Otoo, Richard
2013-01-01
Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.
Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
NASA Astrophysics Data System (ADS)
Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja
2016-05-01
Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.
Quality assessment of butter cookies applying multispectral imaging
Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne
2013-01-01
A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036
NASA Astrophysics Data System (ADS)
Whan, K. R.; Lindesay, J. A.; Timbal, B.; Raupach, M. R.; Williams, E.
2010-12-01
Australia’s natural environment is adapted to low rainfall availability and high variability but human systems are less able to adapt to variability in the hydrological cycle. Understanding the mechanisms underlying drought persistence and severity is vital to contextualising future climate change. Multiple external forcings mean the mechanisms of drought occurrence in south-eastern Australian are complex. The key influences on SEA climate are El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the sub-tropical ridge (STR); each of these large-scale climate modes (LSCM) has been studied widely. The need for research into the interactions among the modes has been noted [1], although to date this has received limited attention. Relationships between LSCM and hydrometeorological variability are nonlinear, making linearity assumptions underlying usual statistical techniques (e.g. correlation, principle components analysis) questionable. In the current research a statistical technique that can deal with nonlinear interactions is applied to a new dataset enabling a full examination of the Australian water balance. The Australian Water Availability Project (AWAP) dataset models the Australian water balance on a fine grid [2]. Hydrological parameters (e.g. soil moisture, evaporation, runoff) are modelled from meteorological data, allowing the complete Australian water balance (climate and hydrology) to be examined and the mechanisms of drought to be studied holistically. Classification and regression trees (CART) are a powerful regression-based technique that is capable of accounting for nonlinear effects. Although it has limited previous application in climate research [3] this methodology is particularly informative in cases with multiple predictors and nonlinear relationships such as climate variability. Statistical relationships between variables are the basis for the decision rules in CART that are used to split the data into increasingly homogeneous groups. CART is applied to the AWAP dataset to identify the hydroclimatic regimes associated with various combinations of LSCM and the importance of each mode in producing the regime. Analysis of the LSCM is conducted on a range of hydroclimatic variables to assess the relative and combined influences of these LSCM on the Australian water balance. This gives information about interactions between LSCM that are vital for specific hydroclimatic states (e.g. drought) and about which combinations of LSCM result in specific regimes. The dominant LSCM in different seasons and the relationships among the climate drivers have been identified. 1. Ummenhofer, C., et al., What causes southeast Australia's worst droughts? Geophysical Research Letters, 2009. 36: p. L04706. 2. Raupach, M., et al., Australian Water Availability Project (AWAP). CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3. 2008. 3. Burrows, W., et al., CART Decision-Tree Statistical Analysis and Prediction of Summer Season Maximum Surface Ozone for the Vancouver, Montreal and Atlantic Regions of Canada. Journal of Applied Meteorology, 1995. 34: p. 1848-1862.
USE OF NATURAL WATERS AS U. S. GEOLOGICAL SURVEY REFERENCE SAMPLES.
Janzer, Victor J.
1985-01-01
The U. S. Geological Survey conducts research and collects hydrologic data relating to the Nation's water resources. Seven types of natural matrix reference water samples are prepared for use in the Survey's quality assurance program. These include samples containing major constituents, trace metals, nutrients, herbicides, insecticides, trace metals in a water and suspended-sediment mixture, and precipitation (snowmelt). To prepare these reference samples, natural water is collected in plastic drums and the sediment is allowed to settle. The water is then filtered, selected constituents are added, and if necessary the water is acidified and sterilized by ultraviolet irradiation before bottling in plastic or glass. These reference samples are distributed twice yearly to more than 100 laboratories for chemical analysis. The most probable values for each constituent are determined by evaluating the data submitted by the laboratories using statistical techniques recommended by ASTM.
Data-base development for water-quality modeling of the Patuxent River basin, Maryland
Fisher, G.T.; Summers, R.M.
1987-01-01
Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)
An overview of groundwater chemistry studies in Malaysia.
Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nor Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin
2018-03-01
In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.
Microbial contamination and disinfection methods of pacifiers.
Nelson-Filho, Paulo; Louvain, Márcia Costa; Macari, Soraia; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Queiroz, Alexandra Mussolino de; Gaton-Hernández, Patrícia; Silva, Léa Assed Bezerra da
2015-10-01
To evaluate the microbial contamination of pacifiers by Mutans Streptococci(MS) and the efficacy of different methods for their disinfection. Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman's non-parametric test (a=0.05). The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox).
Tiano, Ana Valéria Pagliari; Moimaz, Suzely Adas Saliba; Saliba, Orlando; Saliba, Nemre Adas
2009-01-01
This study determined the prevalence of cavitated caries lesions (CCL) and early childhood caries (ECC), and the contribution of some variables in children up to 36 months of age attending daycare centers in municipalities with different fluoride levels in the water supply: AFC (adequate fluoride content) and LFC (low fluoride content). After approval of the Ethics Committee, the parents were interviewed. The children were clinically examined using the same codes and criteria established by the WHO (World Health Organization) and the ADA (American Dental Association). Fisher's exact test (p<0.05) was applied for statistical analysis of data. The dmft indices calculated in the LFC and AFC municipalities were 0.57 and 0.68, respectively. Considering all children examined, 17.6% presented CCL and 33.8% ECC. The economic classification, mother's education level and duration of breastfeeding were considered statistically significant with regards to CCL prevalence. The age group, duration of the habit of drinking milk before bedtime and age at which oral hygiene started were considered statistically significant with regards to ECC prevalence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland
New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) frommore » raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.« less
Sequencing Insights into Microbial Communities in the Water and Sediments of Fenghe River, China.
Lu, Sidan; Sun, Yujiao; Zhao, Xuan; Wang, Lei; Ding, Aizhong; Zhao, Xiaohui
2016-07-01
The connection between microbial community structure and spatial variation and pollution in river waters has been widely investigated. However, water and sediments together have rarely been explored. In this study, Illumina high-throughput sequencing was performed to analyze microbes in 24 water and sediment samples from natural to anthropogenic sources and from headstream to downstream areas. These data were used to assess variability in microbial community structure and diversity along in the Fenghe River, China. The relationship between bacterial diversity and environmental parameters was statistically analyzed. An average of 1682 operational taxonomic units was obtained. Microbial diversity increased from the headstream to downstream and tended to be greater in sediment compared with water. The water samples near the headstream endured relatively low Shannon and Chao1 indices. These diversity indices and the number of observed species in the water and sediment samples increase downstream. The parameters also differ in the two river tributaries. Community structures shift based on the extent of nitrogen pollution variation in the sediment and water samples. The four most dominant genera in the water community were Escherichia, Acinetobacter, Comamonadaceae, and Pseudomonas. In the sediments, the most dominant genera were Stramenopiles, Flavobacterium, Pseudomonas, and Comamonadaceae. The number of ammonia-oxidizing archaea in the headstream water slightly differed from that in the sediment but varied considerably in the downstream sediments. Statistical analysis showed that community variation is correlated with changes in ammonia nitrogen, total nitrogen, and nitrate nitrogen. This study identified different microbial community structures in river water and sediments. Overall this study emphasized the need to elucidate spatial variations in bacterial diversity in water and sediments associated with physicochemical gradients and to show the effects of such variation on waterborne microbial community structures.
Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao
2015-07-01
Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.
Prinos, Scott T.; Lietz, A.C.; Irvin, R.B.
2002-01-01
Ground-water resources in southern Florida are under increasing stress caused by a rapid growth in population. As a result of increased demands on aquifers, water managers need more timely and accurate assessments of ground-water conditions in order to avoid or reduce adverse effects such as saltwater intrusion, loss of pumpage in residential water-supply wells, land-surface subsidence, and aquifer compaction. Hydrologic data were analyzed from three aquifer systems in southern Florida: the surficial aquifer system, which includes the Biscayne aquifer; the intermediate aquifer system, which includes the sandstone and mid-Hawthorn aquifers; and the Florida aquifer system represented by the lower Hawthorn producing zone. Long-term water-level trends were analyzed using the Seasonal Kendall trend test in 83 monitoring wells with a daily-value record spanning 26 years (1974-99). The majority of the wells with data for this period were in the Biscayne aquifer in southeastern Florida. Only 14 wells in southwestern Florida aquifers and 9 in the surficial aquifer system of Martin and Palm Beach Counties had data for the full period. Because many monitoring wells did not have data for this full period, several shorter periods were evaluated as well. The trend tests revealed small but statistically significant upward trends in most aquifers, but large and localized downward trends in the sandstone and mid-Hawthorn aquifers. Monthly means of maximum daily water levels from 246 wells were compared to monthly rainfall totals from rainfall stations in southwestern and southeastern Florida in order to determine which monitoring wells most clearly indicated decreases in water levels that corresponded to prolonged rainfall shortages. Of this total, 104 wells had periods of record over 20 years (after considering missing record) and could be compared against several drought periods. After factors such as lag, seasonal cyclicity, and cumulative functions were considered, the timing of minimum values of water level from 15 ground-water monitoring wells and average minimum rainfall values agreed 57 to 62 percent of the time over a 20 to 26 year period. On average, the timing of water-level minimums and rainfall minimums agreed about 52 percent of the time, and in some cases only agreed 29 percent of the time. A regression analysis was used to evaluate daily water levels from 203 monitoring wells that are currently, or recently had been, part of the network to determine which wells were most representative of each aquifer. The regression also was used to determine which wells provided data that could be used to provide estimations of water levels at other wells in the aquifer with a coefficient of determination (R2 value) from the regression of 0.64 or greater. In all, the regression analysis alone indicated that 35 wells, generally with 10 years or more of data, could be used to directly monitor water levels or to estimate water levels at 180 of 203 wells (89 percent of the network). Ultimately, factors such as existing instrumentation, well construction, long-term water-level trends, and variations of water level and chloride concentration were considered together with the R2 results in designing the final network. The Seasonal Kendall trend test was used to examine trends in ground-water chloride concentrations in 113 wells. Of these wells, 61 showed statistically significant trends. Fifty-six percent (34 of 61 wells) of the observed trends in chloride concentration were upward and 44 percent (27 of 61 wells) were downward. The relation between water level and chloride concentration in 114 ground-water wells was examined using Spearman's r and Pearson's r correlation coefficients. Statistically significant results showed both positive and negative relations. Based on the results of statistical analyses, period of record, well construction, and existing satellite telemetry, 33 monitoring wells were selected that could be used to a
Koltun, G.F.
2014-01-01
This report presents the results of a study to assess potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data (where available) and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for Charles Mill, Clendening, and Piedmont Lakes to 74 calendar years for Pleasant Hill, Senecaville, and Wills Creek Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for the analytical period, in aggregate, and broken down by calendar month. In addition, surplus-water mass curve data were tabulated for each of the lakes. Monthly order statistics of computed withdrawals indicated that, for the three pumping capacities considered, increasing the target minimum flow-by amount tended to reduce the amount of water that can be withdrawn. The reduction was greatest in the lower percentiles of withdrawal; however, increasing the flow-by amount had no impact on potential withdrawals during high flow. In addition, for a given target minimum flow-by amount, increasing the pumping rate typically increased the total amount of water that could be withdrawn; however, that increase was less than a direct multiple of the increase in pumping rate for most flow statistics. Potential monthly withdrawals were observed to be more variable and more limited in some calendar months than others. Monthly order statistics and means of computed daily mean flow-by amounts indicated that flow-by amounts generally tended to be lowest during June–October. Increasing the target minimum flow-by amount for a given pumping rate resulted in some small increases in the magnitudes of the mean and 50th percentile and lower order statistics of computed mean flow-by, but had no effect on the magnitudes of the higher percentile statistics. Increasing the pumping rate for a given target minimum flow-by amount resulted in decreases in magnitudes of higher-percentile flow-by statistics by an amount equal to the flow equivalent of the increase in pumping rate; however, some lower percentile statistics remained unchanged.
Matos, C; Bentes, I; Pereira, S; Gonçalves, A M; Faria, D; Briga-Sá, A
2018-06-12
Rural and urban environments present significant differences between water and energy consumptions. It is important to know, in detail, which factors related to the consumption of these two resources are different in both environments, once that will be those important to manage and discuss in order to improve its use efficiency and sustainability. This research work involves a survey whose aim is to find the factors that in rural and urban environments may justify the differences found in water and energy consumptions. Besides the collection of water and energy consumption data, this survey analyzed 80 variables (socio-demographic, economic, household characterization, among others), that were chosen among the bibliography as possible factors that should influence water and energy consumptions. After the survey application in rural and urban areas and the data statistical treatment, 42 variables remained as truly differentiating factors of rural and urban environments and so as possible determinants of water and energy consumptions. In order to achieve these objectives, a descriptive data analysis and statistical inference (Mann-Whitney-Wilcoxon test and the Chi-square test of homogeneity) were performed. All the 42 differentiating variables that result from this study may be able to justify these differences, however this will not be presented in the paper and it is reserved for future work. Copyright © 2018. Published by Elsevier B.V.
Farnfield, Hannah R; Marcilla, Andrea L; Ward, Neil I
2012-09-01
Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). Copyright © 2012 Elsevier B.V. All rights reserved.
STATISTICAL ESTIMATION AND VISUALIZATION OF GROUND-WATER CONTAMINATION DATA
This work presents methods of visualizing and animating statistical estimates of ground water and/or soil contamination over a region from observations of the contaminant for that region. The primary statistical methods used to produce the regional estimates are nonparametric re...
Chloramine demand estimation using surrogate chemical and microbiological parameters.
Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose
2017-07-01
A model is developed to enable estimation of chloramine demand in full scale drinking water supplies based on chemical and microbiological factors that affect chloramine decay rate via nonlinear regression analysis method. The model is based on organic character (specific ultraviolet absorbance (SUVA)) of the water samples and a laboratory measure of the microbiological (F m ) decay of chloramine. The applicability of the model for estimation of chloramine residual (and hence chloramine demand) was tested on several waters from different water treatment plants in Australia through statistical test analysis between the experimental and predicted data. Results showed that the model was able to simulate and estimate chloramine demand at various times in real drinking water systems. To elucidate the loss of chloramine over the wide variation of water quality used in this study, the model incorporates both the fast and slow chloramine decay pathways. The significance of estimated fast and slow decay rate constants as the kinetic parameters of the model for three water sources in Australia was discussed. It was found that with the same water source, the kinetic parameters remain the same. This modelling approach has the potential to be used by water treatment operators as a decision support tool in order to manage chloramine disinfection. Copyright © 2017. Published by Elsevier B.V.
Mahama, Ayisha Matuamo; Anaman, Kwabena Asomanin; Osei-Akoto, Isaac
2014-06-01
We analysed householders' access to improved water for drinking and other domestic uses in five selected low-income urban areas of Accra, Ghana using a survey of 1,500 households. Our definitions of improved water were different from those suggested by the World Health Organization (WHO). The results revealed that only 4.4% of the respondents had access to improved drinking water compared to 40.7% using the WHO definition. However, 88.7% of respondents had access to improved water for domestic uses compared to 98.3% using the WHO definition. Using logistic regression analysis, we established that the significant determinant of householders' access to improved drinking water was income. However, for access to improved water for other domestic uses, the significant factors were education, income and location of the household. Compared to migrants, indigenous people and people from mixed areas were less likely to have access to improved water for other domestic purposes. For the analysis using the WHO definitions, most of the independent variables were not statistically significant in determining householders' access, and those variables that were significant generated parameter estimates inconsistent with evidence from the literature and anecdotal evidence from officials of public health and water supply companies in Ghana.
Predicting long-term catchment nutrient export: the use of nonlinear time series models
NASA Astrophysics Data System (ADS)
Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda
2010-05-01
After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the ARMA class. In most cases the relative improvement of SETAR models against AR models of first order was low ranging between 1% and 4% with the exception of the three-regime model for the River Stour time-series where the improvement was 48.9%. In comparison, the relative improvement of MSW models was between 44.6% and 52.5 for two-regime and from 60.4% to 75% for three-regime models. However, the visual assessment of models plotted against original datasets showed that despite a high value of RSS, some ARMA models could describe the analyzed time-series better than AR, MA and SETAR models with lower values of RSS. In both datasets MSW models provided a very good visual fit describing most of the extreme values.
NASA Astrophysics Data System (ADS)
Bandoc, Georgeta; Pravalie, Remus
2015-04-01
Interdisciplinary analyses of the relationship between climate system dynamics and agricultural system variation are an essential component for increasing the efficiency of water resource management, and for adapting crops at local level. This paper analyzes the dynamics of the climate water balance (CWB) in the past five decades in Romania's most arid region, Dobrogea, against the background of climate change, as well as the statistical relationship between the variation of CWB values and that of regional agricultural systems. Thus, a first stage consisted in detailed climatic analyses of CWB value variation between 1961 and 2009, based on climatic data provided by 9 regional weather stations. The study mainly focused on CWB trends (mm) recorded annually and seasonally (winter, spring, summer and autumn), using statistical methods such as the Mann-Kendall test and the Sen's slope method, as well as GIS methods in order to visualize the results. The second main stage was directed towards the analysis of the statistical relationship between the aforementioned climate indicator's dynamics and agricultural yields (t / ha / year) in the administrative-territorial units overlapping Dobrogea (generally the plateau region), while corn was considered for the case study as it is one of the region's main crops. In this instance, the agro-climatic data were analyzed / statistically correlated in the 1990-2003 period (depending on data availability for corn production output at administrative unit level), based on Thiessen-Voronoi polygons which were considered to be compact spatial units in which both data categories can be grouped in order to establish interannual relationships. In terms of climate, the results indicated an annual increase of the climatic water deficit at the stations located in the northern region of the study area, with maximum rates of -3.2 mm / year. In contrast, CWB values decreased seasonally (the climatic water deficit increased) roughly throughout Dobrogea (winter, spring and summer, with maximum negative rates of -1.4 mm / year in the warmest season), except for autumn, characterized by general increasing rates, with maximum values in the southwest (2.3 mm / year). However, a general trend overview indicated an overall lack of statistical significance. Considering the 1990-2003 time interval, the data analysis in the Thiessen polygons showed an overall similarity of agro-climatic oscillations, a first assessment of which indicated a general correlation between climate and agricultural data. However, upon analysis of the data series normality criterion, it was found that, during the 14 years, the CWB index variation influenced the dynamics of corn yields especially in the south-central region, in certain cases by up to 50%, causing losses of up to 11 kg / ha / year when the deficit increased by 1 mm. Therefore, while climatic results indicated CWB summer decreases (the most important season in corn productivity dynamics) in the northern region as well, the asymmetries found in agro-climatic data distributions in the northern region did not allow a statistical assessment of the dependence of agriculture on climatic conditions. Hence, for the northern region of the study area, the results indicate the role of additional factors in the dynamics of agricultural systems, which can be both natural (soil and groundwater characteristics) and anthropogenic (management conditions).
NASA Astrophysics Data System (ADS)
Zhang, Ying; Moges, Semu; Block, Paul
2018-01-01
Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.
Manjunatha, A V; Speelman, S; Chandrakanth, M G; Van Huylenbroeck, G
2011-11-01
In the hard rock areas of India, overdraft of groundwater has led to negative externalities. It increased costs of groundwater irrigation and caused welfare losses. At the same time informal groundwater markets are slowly emerging and are believed to improve water distribution and to increase water use efficiency in the irrigation sector. These claims are evaluated in this study. For this purpose data was collected from a sample containing three different groups of water users: water sellers, water buyers and a control group of non-traders. First the socio-economic characteristics of these groups are compared. Then the efficiency of water use of the three groups is studied using Data Envelopment Analysis. The results indicate that groundwater markets provide resource poor farmers access to irrigation water, giving them the opportunity to raise their productivity. Water buyers are furthermore shown to be most efficient in their water use, while water sellers are also shown to be more efficient than the control group. The differences in efficiency between the groups are statistically significant. The demonstrated potential of groundwater markets to improve the efficiency of water use and to increase equity in resource access should be taken into account by the Indian government when deciding on their attitude towards the emerging groundwater markets. Copyright © 2011 Elsevier Ltd. All rights reserved.
Direct and indirect urban water footprints of the United States
NASA Astrophysics Data System (ADS)
Chini, Christopher M.; Konar, Megan; Stillwell, Ashlynn S.
2017-01-01
The water footprint of the urban environment is not limited to direct water consumption (i.e., municipal supplies); embedded water in imported resources, or virtual water transfers, provides an additional component of the urban water footprint. Using empirical data, our analysis extends traditional urban water footprinting analysis to quantify both direct and indirect urban resources for the United States. We determine direct water volumes and their embedded energy through open records requests of water utilities. The indirect component of the urban water footprint includes water indirectly consumed through energy and food, relating to the food-energy-water nexus. We comprehensively quantify the indirect water footprint for 74 metropolitan statistical areas through the combination of various databases, including the Commodity Flow Survey of the U.S. Census Bureau, the U.S. Department of Agriculture, the Water Footprint Network, and the Energy Information Administration. We then analyze spatial heterogeneity in both direct and indirect water footprints, determining the average urban water footprint in the United States to be 1.64 million gallons of water per person per year [6200 m3/person/yr or 17,000 L/person/d], dominated by indirect water. Additionally, our study of the urban water cycle extends beyond considering only water resources to include embedded energy and equivalent carbon dioxide emissions. The inclusion of multiple sectors of the urban water cycle and their underlying processes provides important insights to the overall urban environment, the interdependencies of the food-energy-water nexus, and water resource sustainability. Our results provide opportunities for benchmarking the urban energy-water nexus, water footprints, and climate change potential.
Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane
2012-01-01
In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625
Richards, David C; Lester, Gary; Pfeiffer, John; Pappani, Jason
2018-02-07
Water temperatures are warming throughout the world including the Pacific Northwest, USA. Benthic macroinvertebrates are one of the most important and widely used indicators of freshwater impairment; however, their response to increased water temperatures and their use for monitoring water temperature impairment has been hindered by lack of knowledge of temperature occurrences, threshold change points, or indicator taxa. We present new analysis of a large macroinvertebrate database provided by Idaho Department of Environmental Quality from wadeable streams in Idaho that is to be used in conjunction with our previous analyses. This new analysis provides threshold change points for over 400 taxa along an increasing temperature gradient and provides a list of statistically important indicator taxa. The macroinvertebrate assemblage temperature change point for the taxa that decreased with increased temperatures was determined to be about 20.5 °C and for the taxa assemblage that increased with increased temperatures was about 11.5 °C. Results of this new analysis combined with our previous analysis will also be useful for others in neighboring regions where these taxa occur.
Jácome, Gabriel; Valarezo, Carla; Yoo, Changkyoo
2018-03-30
Pollution and the eutrophication process are increasing in lake Yahuarcocha and constant water quality monitoring is essential for a better understanding of the patterns occurring in this ecosystem. In this study, key sensor locations were determined using spatial and temporal analyses combined with geographical information systems (GIS) to assess the influence of weather features, anthropogenic activities, and other non-point pollution sources. A water quality monitoring network was established to obtain data on 14 physicochemical and microbiological parameters at each of seven sample sites over a period of 13 months. A spatial and temporal statistical approach using pattern recognition techniques, such as cluster analysis (CA) and discriminant analysis (DA), was employed to classify and identify the most important water quality parameters in the lake. The original monitoring network was reduced to four optimal sensor locations based on a fuzzy overlay of the interpolations of concentration variations of the most important parameters.
Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.
Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M
2016-03-01
This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.
Tahri, M; Benyaïch, F; Bounakhla, M; Bilal, E; Gruffat, J J; Moutte, J; Garcia, D
2005-03-01
Concentrations of Al, Fe, Cr, Cu, Ni, Pb and Zn in soils, sediments and water samples collected along the Oued Boufekrane river (Meknes, central Morocco) were determined. In soils, a homogeneous distribution of metal concentrations was observed throughout the study area except for Pb, which presents high enrichment at sites located at the vicinity of a main highway. In sediments, high enrichment, with respect to upstream sites, were observed downstream of the city of Meknes for Al, Cr, Fe and Ni and inside the city for Cu, Zn and Pb. In water samples, the metal contents showed to correlate with their homologues in sediments suggesting that the metal contents in water and sediments have identical origins. Descriptive statistics and multivariate analysis (principal factor method, PFM) were used to assist the interpretation of elemental data. This allowed the determination of the correlations between the metals and the identification of three main factor loadings controlling the metal variability in soils and sediments.
Evaluation of thermograph data for California streams
Limerinos, J.T.
1978-01-01
Statistical analysis of water-temperature data from California streams indicates that, for most purposes, long-term operation of thermographs (automatic water-temperature recording instruments) does not provide a more useful record than either short-term operation of such instruments or periodic measurements. Harmonic analyses were made of thermograph records 5 to 14 years in length from 82 stations. More than 80 percent of the annual variation in water temperature is explained by the harmonic function for 77 of the 82 stations. Harmonic coefficients based on 8 years of thermograph record at 12 stations varied only slightly from coefficients computed using two equally split 4-year records. At five stations where both thermograph and periodic (10 to 23 measurements per year) data were collected concurrently, harmonic coefficients for periodic data were defined nearly as well as those for thermograph data. Results of this analysis indicate that, except where detailed surveillance of water temperatures is required or where there is a chance of temporal change, thermograph operations can be reduced substantially without affecting the usefulness of temperature records.
Bagur, M G; Morales, S; López-Chicano, M
2009-11-15
Unsupervised and supervised pattern recognition techniques such as hierarchical cluster analysis, principal component analysis, factor analysis and linear discriminant analysis have been applied to water samples recollected in Rodalquilar mining district (Southern Spain) in order to identify different sources of environmental pollution caused by the abandoned mining industry. The effect of the mining activity on waters was monitored determining the concentration of eleven elements (Mn, Ba, Co, Cu, Zn, As, Cd, Sb, Hg, Au and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). The Box-Cox transformation has been used to transform the data set in normal form in order to minimize the non-normal distribution of the geochemical data. The environmental impact is affected mainly by the mining activity developed in the zone, the acid drainage and finally by the chemical treatment used for the benefit of gold.
NASA Astrophysics Data System (ADS)
Barberá, J. A.; Andreo, B.
2017-04-01
In upland catchments, the hydrology and hydrochemistry of streams are largely influenced by groundwater inflows, at both regional and local scale. However, reverse conditions (groundwater dynamics conditioned by surface water interferences), although less described, may also occur. In this research, the local river-spring connectivity and induced hydrogeochemical interactions in intensely folded, fractured and layered Cretaceous marls and marly-limestones (Fuensanta river valley, S Spain) are discussed based on field observations, tracer tests and hydrodynamic and hydrochemical data. The differential flow measurements and tracing experiments performed in the Fuensanta river permitted us to quantify the surface water losses and to verify its direct hydraulic connection with the Fuensanta spring. The numerical simulations of tracer breakthrough curves suggest the existence of a groundwater flow system through well-connected master and tributary fractures, with fast and multi-source flow components. Furthermore, the multivariate statistical analysis conducted using chemical data from the sampled waters, the geochemical study of water-rock interactions and the proposed water mixing approach allowed the spatial characterization of the chemistry of the springs and river/stream waters draining low permeable Cretaceous formations. Results corroborated that the mixing of surface waters, as well as calcite dissolution and CO2 dissolution/exsolution, are the main geochemical processes constraining Fuensanta spring hydrochemistry. The estimated contribution of the tributary surface waters to the spring flow during the research period was approximately 26-53% (Fuensanta river) and 47-74% (Convento stream), being predominant the first component during high flow and the second one during the dry season. The identification of secondary geochemical processes (dolomite and gypsum dissolution and dedolomitization) in Fuensanta spring waters evidences the induced hydrogeochemical changes resulting from the allogenic recharge. This research highlights the usefulness of an integrated approach based on river and spring flow examination, dye tracing interpretation and regression and multivariate statistical analysis using hydrochemical data for surface water-groundwater interaction assessment in fractured complex environments worldwide, whose implementation becomes critical for an appropriate groundwater policy.
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
Felmlee, J.K.; Cadigan, R.A.
1982-01-01
Multivariate statistical analyses were performed on data from 156 mineral-spring sites in nine Western States to analyze relationships among the various parameters measured in the spring waters. Correlation analysis and R-mode factor analysis indicate that three major factors affect water composition in the spring systems studied: (1) duration of water circulation, (2) depth of water circulation, and (3) partial pressure of carbon dioxide. An examination of factor scores indicates that several types of hydrogeologic systems were sampled. Most of the samples are (1) older water from deeper circulating systems having relatively high salinity, high temperature, and low Eh or (2) younger water from shallower circulating systems having relatively low salinity, low temperature, and high Eh. The rest of the samples are from more complex systems. Any of the systems can have a relatively high or low content of dissolved carbonate species, resulting in a low or high pH, respectively. Uranium concentrations are commonly higher in waters of relatively low temperature and high Eh, and radium concentrations are commonly higher in waters having a relatively high carbonate content (low pH) and, secondarily, relatively high salinity. Water samples were collected and (or) measurements were taken at 156 of the 171 mineral-spring sites visited. Various samples were analyzed for radium, uranium, radon, helium, and radium-228 as well as major ions and numerous trace elements. On-site measurements for physical properties including temperature, specific conductance, pH, Eh, and dissolved oxygen were made. All constituents and properties show a wide range of values. Radium concentrations range from less than 0.01 to 300 picocuries per liter; they average 1.48 picocuries per liter and have an anomaly threshold value of 171 picocuries per liter for the samples studied. Uranium concentrations range from less than 0.01 to 120 micrograms per liter and average 0.26 micrograms per liter; they have an anomaly threshold value of 48.1 micrograms per liter. Radon content ranges from less than 10 to 110,000 picocuries per liter, averages 549 picocuries per liter and has an anomaly threshold of 20,400 picocuries per liter. Helium content ranges from -1,300 to +13,000 parts per billion relative to atmospheric helium; it averages +725 parts per billion and has an anomaly threshold of 10,000 parts per billion. Radium-228 concentrations range from less than 2.0 to 33 picocuries per liter; no anomaly threshold was determined owing to the small number of samples. All of the anomaly thresholds may be somewhat high because the sampling was biased toward springs likely to be radioactive. The statistical variance in radium and uranium concentrations unaccounted for by the identified factors testifies to the complexity of some hydrogeologic systems. Unidentified factors related to geologic setting and the presence of uranium-rich rocks in the systems also affect the observed concentrations of the radioactive elements in the water. The association of anomalous radioactivity in several springs with nearby known uranium occurrences indicates that other springs having anomalous radioactivity may also be associated with uranium occurrences as yet undiscovered.
NASA Astrophysics Data System (ADS)
Xue, J.; Sherchan, S. P.; Lamar, F. G.; Lin, S.; Lamori, J. G.
2017-12-01
Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10- month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.
NASA Technical Reports Server (NTRS)
Graves, M. E.; King, R. L.; Brown, S. C.
1973-01-01
Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.
Impacts of mining on water and soil.
Warhate, S R; Yenkie, M K N; Pokale, W K
2007-04-01
Out of seven coal mines situated in Wardha River Valley located at Wani (Dist. Yavatmal), five open caste coal mines are run by Western Coal Field Ltd, India. The results of 25 water and 19 soil samples (including one over burden) from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri for their pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium are studied in the present work. Statistical analysis and graphical presentation of the results are discussed in this paper.
A study of the utilization of ERTS-1 data from the Wabash River Basin
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The identification and area estimation of crops experiment tested the usefulness of ERTS data for crop survey and produced results indicating that crop statistics could be obtained from ERTS imagery. Soil association mapping results showed that strong relationships exist between ERTS data derived maps and conventional soil maps. Urban land use analysis experiment results indicate potential for accurate gross land use mapping. Water resources mapping demonstrated the feasibility of mapping water bodies using ERTS imagery.
Paillet, Frederick L.; Crowder, R.E.
1996-01-01
Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not possible with the given data set. Additional statistical criteria such as the statistical significance of regressions are used to guide the subsequent calibration of geophysical data in terms of hydraulic variables in those situations where quantitative data inversion is considered appropriate.
Rodrigues-Filho, J L; Abe, D S; Gatti-Junior, P; Medeiros, G R; Degani, R M; Blanco, F P; Faria, C R L; Campanelli, L; Soares, F S; Sidagis-Galli, C V; Teixeira-Silva, V; Tundisi, J E M; Matsmura-Tundisi, T; Tundisi, J G
2015-08-01
The Xingu River, one of the most important of the Amazon Basin, is characterized by clear and transparent waters that drain a 509.685 km2 watershed with distinct hydrological and ecological conditions and anthropogenic pressures along its course. As in other basins of the Amazon system, studies in the Xingu are scarce. Furthermore, the eminent construction of the Belo Monte for hydropower production, which will alter the environmental conditions in the basin in its lower middle portion, denotes high importance of studies that generate relevant information that may subsidize a more balanced and equitable development in the Amazon region. Thus, the aim of this study was to analyze the water quality in the Xingu River and its tributaries focusing on spatial patterns by the use of multivariate statistical techniques, identifying which water quality parameters were more important for the environmental changes in the watershed. Data sampling were carried out during two complete hydrological cycles in twenty-five sampling stations. The data of twenty seven variables were analyzed by Spearman's correlation coefficients, cluster analysis (CA), and principal component analysis (PCA). The results showed a high auto-correlation between variables (> 0.7). These variables were removed from multivariate analyzes because they provided redundant information about the environment. The CA resulted in the formation of six clusters, which were clearly observed in the PCA and were characterized by different water quality. The statistical results allowed to identify a high spatial variation in the water quality, which were related to specific features of the environment, different uses, influences of anthropogenic activities and geochemical characteristics of the drained basins. It was also demonstrated that most of the sampling stations in the Xingu River basin showed good water quality, due to the absence of local impacts and high power of depuration of the river itself.
Study of magnetic fields from power-frequency current on water lines.
Lanera, D; Zapotosky, J E; Colby, J A
1997-01-01
The magnetic fields from power-frequency current flowing on water lines were investigated in a new approach that involved an area-wide survey in a small town. Magnetic fields were measured outside the residence under power cables and over water lines, and each residence was characterized as to whether it received water from a private well or the municipal water system. The magnetic field data revealed two statistical modes when they were related to water supply type. The data also showed that in the case of the high mode, the magnetic field remained constant along the line formed by power drop wires, at the back of the house, and the water hookup service, in front of the house, all the way to the street. The patterns are explained by the coincidence of measurement points and the presence of net current flowing on power mains, power drop conductors, residential plumbing, water service hookups, and water mains. These patterns, together with other characteristics of this magnetic field source, such as the gradual spatial fall-off of this field and the presence of a constant component in the time sequence, portray a magnetic field more uniform and constant in the residential environment than has been thought to exist. Such characteristics make up for the weakness of the source and make net current a significant source of exposure in the lives of individuals around the house, when human exposure to magnetic fields is assumed to be a cumulative effect over time. This, together with the bimodal statistical distribution of the residential magnetic field (related to water supply type), presents opportunities for retrospective epidemiological analysis. Water line type and its ability to conduct power-frequency current can be used as the historical marker for a bimodal exposure inference, as Wertheimer et al. have shown.
Gul, Nida; Shah, Mohammad Tahir; Khan, Sardar; Khattak, Nimat Ullah; Muhammad, Said
2015-12-01
The present study was conducted to investigate the physico-chemical characteristics in drinking water of Mardan District, Pakistan. Furthermore, water quality was evaluated for the risk assessment of arsenic and heavy metals (HMs) and their contamination sources. Representative groundwater samples of shallow and deep sources were collected in the study area. These samples were analyzed for physical parameters, anions, light metals (LMs) and HMs. Results were compared with the drinking water guideline values set by the World Health Organization and the US Environmental Protection Agency. Average concentrations of anions, LMs and HMs were found within the maximum allowable contaminant levels except for bicarbonates, Fe, Cu, and Pb. Results revealed that hazard quotients >1 were observed for shallow groundwater for 10% samples only, suggesting potential health risk from water consumption. Correlation analysis and principal component analysis showed a relationship among various physico-chemical parameters in both shallow and deep groundwater. Statistical analyses suggested the geogenic and anthropogenic sources for possible enhancement of various physico-chemical parameters in the aquifer system of the study area.
Collision-induced evaporation of water clusters and contribution of momentum transfer
NASA Astrophysics Data System (ADS)
Calvo, Florent; Berthias, Francis; Feketeová, Linda; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel
2017-05-01
The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M
2013-01-01
This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.
a Probability-Based Statistical Method to Extract Water Body of TM Images with Missing Information
NASA Astrophysics Data System (ADS)
Lian, Shizhong; Chen, Jiangping; Luo, Minghai
2016-06-01
Water information cannot be accurately extracted using TM images because true information is lost in some images because of blocking clouds and missing data stripes, thereby water information cannot be accurately extracted. Water is continuously distributed in natural conditions; thus, this paper proposed a new method of water body extraction based on probability statistics to improve the accuracy of water information extraction of TM images with missing information. Different disturbing information of clouds and missing data stripes are simulated. Water information is extracted using global histogram matching, local histogram matching, and the probability-based statistical method in the simulated images. Experiments show that smaller Areal Error and higher Boundary Recall can be obtained using this method compared with the conventional methods.
Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bak, Wan; Sung, Baekman; Kim, Jongwoo
2015-01-05
The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less
Friedman, L.C.; Schroder, L.J.; Brooks, M.G.
1986-01-01
Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochicchio, Davide; Panizon, Emanuele; Ferrando, Riccardo
2015-10-14
We compare the performance of two well-established computational algorithms for the calculation of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid (phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free energy of transfer. We model our test systems at two different levels of description, united-atom and coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote special attention to the analysis of statistical errors in the two different methods and propose a general procedure for the error estimation inmore » metadynamics simulations. Metadynamics and umbrella sampling yield the same estimates for the water-membrane free energy profile, but metadynamics can be more efficient, providing lower statistical uncertainties within the same simulation time.« less
Mining influence on underground water resources in arid and semiarid regions
NASA Astrophysics Data System (ADS)
Luo, A. K.; Hou, Y.; Hu, X. Y.
2018-02-01
Coordinated mining of coal and water resources in arid and semiarid regions has traditionally become a focus issue. The research takes Energy and Chemical Base in Northern Shaanxi as an example, and conducts statistical analysis on coal yield and drainage volume from several large-scale mines in the mining area. Meanwhile, research determines average water volume per ton coal, and calculates four typical years’ drainage volume in different mining intensity. Then during mining drainage, with the combination of precipitation observation data in recent two decades and water level data from observation well, the calculation of groundwater table, precipitation infiltration recharge, and evaporation capacity are performed. Moreover, the research analyzes the transforming relationship between surface water, mine water, and groundwater. The result shows that the main reason for reduction of water resources quantity and transforming relationship between surface water, groundwater, and mine water is massive mine drainage, which is caused by large-scale coal mining in the research area.
Blainski, Andressa; Gionco, Barbara; Oliveira, Admilton G; Andrade, Galdino; Scarminio, Ieda S; Silva, Denise B; Lopes, Norberto P; Mello, João C P
2017-02-23
Limonium brasiliense (Boiss.) Kuntze (Plumbaginaceae) is commonly known as "baicuru" or "guaicuru" and preparations of its dried rhizomes have been popularly used in the treatment of premenstrual syndrome and menstrual disorder, and as an antiseptic in genito-urinary infections. This study evaluated the potential antibacterial activity of rhizome extracts against multidrug-resistant bacterial strains using statistical mixture design. The statistical design of four components (water, methanol, acetone, and ethanol) produced 15 different extracts and also a confirmatory experiment, which was performed using water:acetone (3:7, v/v). The crude extracts and their ethyl-acetate fractions were tested against vancomycin-resistant Enterococcus faecium (VREfm), methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, all of which have been implicated in hospital and community-acquired infections. The dry residue, total polyphenol, gallocatechin and epigallocatechin contents of the extracts were also tested and statistical analysis was applied in order to define the fit models to predict the result of each parameter for any mixture of components. The principal component and hierarchical clustering analyses (PCA and HCA) of chromatographic data, as well as mass spectrometry (MS) analysis were performanced to determine the main compounds present in the extracts. The Gram-positive bacteria were susceptible to inhibition of bacterial growth, in special the ethyl-acetate fraction of ternary extracts from water:acetone:ethanol and methanol:acetone:ethanol against, respectively, VREfm (MIC=19µg/mL) and MRSA (MIC=39µg/mL). On the other hand, moderate activity of the ethyl-acetate fractions from primary (except water), secondary and ternary extracts (MIC=625µg/mL) was noted against KPC. The quadratic and special cubic models were significant for polyphenols and gallocatechin contents, respectively. Fit models to dry residue and epigallocatechin contents were not possible. PCA and HCA of the chromatographic fingerprints were disturbed by displacement retention time of some peaks, but the ultraviolet spectra indicated the homogeneous presence of flavan-3-ols characteristic of tannins. The MS confirmed the presence of gallic acid, gallocatechin, and epigallocatechin in extracts, and suggested the presence of monomers and dimers of B- and A-type prodelphinidins gallate, as well as a methyl gallate. Our results showed the antibacterial potential of L. brasiliense extracts against multidrug-resistant Gram-positive bacteria, such as VREfm and MRSA. The statistical design was a important tool to evaluate the biological activity by optimized form. The presence of some phenolic compounds was also demonstrated in extracts. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.
2018-04-01
We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.
Jalava, Katri; Rintala, Hanna; Ollgren, Jukka; Maunula, Leena; Gomez-Alvarez, Vicente; Revez, Joana; Palander, Marja; Antikainen, Jenni; Kauppinen, Ari; Räsänen, Pia; Siponen, Sallamaari; Nyholm, Outi; Kyyhkynen, Aino; Hakkarainen, Sirpa; Merentie, Juhani; Pärnänen, Martti; Loginov, Raisa; Ryu, Hodon; Kuusi, Markku; Siitonen, Anja; Miettinen, Ilkka; Santo Domingo, Jorge W.; Hänninen, Marja-Liisa; Pitkänen, Tarja
2014-01-01
Failures in the drinking water distribution system cause gastrointestinal outbreaks with multiple pathogens. A water distribution pipe breakage caused a community-wide waterborne outbreak in Vuorela, Finland, July 2012. We investigated this outbreak with advanced epidemiological and microbiological methods. A total of 473/2931 inhabitants (16%) responded to a web-based questionnaire. Water and patient samples were subjected to analysis of multiple microbial targets, molecular typing and microbial community analysis. Spatial analysis on the water distribution network was done and we applied a spatial logistic regression model. The course of the illness was mild. Drinking untreated tap water from the defined outbreak area was significantly associated with illness (RR 5.6, 95% CI 1.9–16.4) increasing in a dose response manner. The closer a person lived to the water distribution breakage point, the higher the risk of becoming ill. Sapovirus, enterovirus, single Campylobacter jejuni and EHEC O157:H7 findings as well as virulence genes for EPEC, EAEC and EHEC pathogroups were detected by molecular or culture methods from the faecal samples of the patients. EPEC, EAEC and EHEC virulence genes and faecal indicator bacteria were also detected in water samples. Microbial community sequencing of contaminated tap water revealed abundance of Arcobacter species. The polyphasic approach improved the understanding of the source of the infections, and aided to define the extent and magnitude of this outbreak. PMID:25147923
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robertson, Dale M.; Saad, D.A.; Heisey, D.M.
2006-01-01
Various approaches are used to subdivide large areas into regions containing streams that have similar reference or background water quality and that respond similarly to different factors. For many applications, such as establishing reference conditions, it is preferable to use physical characteristics that are not affected by human activities to delineate these regions. However, most approaches, such as ecoregion classifications, rely on land use to delineate regions or have difficulties compensating for the effects of land use. Land use not only directly affects water quality, but it is often correlated with the factors used to define the regions. In this article, we describe modifications to SPARTA (spatial regression-tree analysis), a relatively new approach applied to water-quality and environmental characteristic data to delineate zones with similar factors affecting water quality. In this modified approach, land-use-adjusted (residualized) water quality and environmental characteristics are computed for each site. Regression-tree analysis is applied to the residualized data to determine the most statistically important environmental characteristics describing the distribution of a specific water-quality constituent. Geographic information for small basins throughout the study area is then used to subdivide the area into relatively homogeneous environmental water-quality zones. For each zone, commonly used approaches are subsequently used to define its reference water quality and how its water quality responds to changes in land use. SPARTA is used to delineate zones of similar reference concentrations of total phosphorus and suspended sediment throughout the upper Midwestern part of the United States. ?? 2006 Springer Science+Business Media, Inc.
Data on microbiological quality assessment of rural drinking water supplies in Poldasht county.
Yousefi, Mahmood; Saleh, Hossein Najafi; Yaseri, Mehdi; Mahvi, Amir Hossein; Soleimani, Hamed; Saeedi, Zhyar; Zohdi, Sara; Mohammadi, Ali Akbar
2018-04-01
In this research, the villages with water supply systems under the supervision of the Water and Wastewater Company in Poldasht County, Iran in 2015 was studied. 648 samples were taken from 57 villages during 12month period to test for microbial quality according to the latest guidelines of WHO. Fecal coliform, coliform, turbidity, pH and free residual chlorine were analyzed. Also we used linear Regression statistical analysis for collected data. Result of Data showed that 13.6% of the villages under study had contaminated water resources. In 100 percent of the water sample resource the turbidity level was less than Iranian maximum permissible levels (5 NTU). There was a linear relation between the Free residual color and Coliform in different month of follow up ( r = -0.154, P < 0.001). Data suggests water resources should be comprehensively planned and monitored keeping in view the WHO recommended parameters.
Use of ocean color scanner data in water quality mapping
NASA Technical Reports Server (NTRS)
Khorram, S.
1981-01-01
Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.
Ging, Patricia B.
1999-01-01
Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.
Applications of MIDAS regression in analysing trends in water quality
NASA Astrophysics Data System (ADS)
Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.
2014-04-01
We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.
NASA Astrophysics Data System (ADS)
Masih, Ilyas; Ahmad, Mobin-ud-Din; Uhlenbrook, Stefan; Turral, Hugh; Karimi, Poolad
This study provides a comprehensive spatio-temporal assessment of the surface water resources of the semi-arid Karkheh basin, Iran, and consequently enables decision makers to work towards a sustainable water development in that region. The analysis is based on the examination of statistical parameters, flow duration characteristics, base flow separation and trend analysis for which data of seven key gauging stations were used for the period of 1961-2001. Additionally, basin level water accounting was carried out for the water year 1993-94. The study shows that observed daily, monthly and annual streamflows are highly variable in space and time within the basin. The streamflows have not been changed significantly at annual scale, but few months have shown significant trends, most notably a decline during May and June and an increase during December and March. The major causes were related to changes in climate, land use and reservoir operations. The study concludes that the water allocations to different sectors were lower than the totally available resources during the study period. However, looking at the high variability of streamflows, changes in climate and land use and ongoing water resources development planning, it will be extremely difficult to meet the demands of all sectors in the future, particularly during dry years.
How well are the climate indices related to the GRACE-observed total water storage changes in China?
NASA Astrophysics Data System (ADS)
Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.
2017-12-01
The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.
River water quality assessment using environmentric techniques: case study of Jakara River Basin.
Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar
2013-08-01
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
Consumer Perception and Preference of Drinking Water Sources
Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed
2016-01-01
Introduction Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. Methods This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples’ preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). Conclusion According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source. PMID:28070256
Consumer Perception and Preference of Drinking Water Sources.
Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed
2016-11-01
Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p < 0.05). Office employees, women and poor families had the most satisfaction from tap water quality. Peoples' preferences for tap water, commercial softener, domestic softener, ghanat (a type of underground cistern) and bottled water were 27.8, 19, 27.8, 40.4 and 3.5% respectively. Dissatisfaction from production of foam, unsuitable taste, unacceptable appearance and other problems in tap water was 11.1, 95.6, 27.8 and 0.4% respectively. Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.
Entropy, recycling and macroeconomics of water resources
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris
2014-05-01
We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences, International Union of Geodesy and Geophysics 3. United Nations (UN) (2012), World Water Development Report 4, UNESCO Publishing
Lightfoot, Emma; O’Connell, Tamsin C.
2016-01-01
Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on) causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals’ homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific homeland should not be attempted. PMID:27124001
Soltani, Shahla; Asghari Moghaddam, Asghar; Barzegar, Rahim; Kazemian, Naeimeh; Tziritis, Evangelos
2017-08-18
Kordkandi-Duzduzan plain is one of the fertile plains of East Azarbaijan Province, NW of Iran. Groundwater is an important resource for drinking and agricultural purposes due to the lack of surface water resources in the region. The main objectives of the present study are to identify the hydrogeochemical processes and the potential sources of major, minor, and trace metals and metalloids such as Cr, Mn, Cd, Fe, Al, and As by using joint hydrogeochemical techniques and multivariate statistical analysis and to evaluate groundwater quality deterioration with the use of PoS environmental index. To achieve these objectives, 23 groundwater samples were collected in September 2015. Piper diagram shows that the mixed Ca-Mg-Cl is the dominant groundwater type, and some of the samples have Ca-HCO 3 , Ca-Cl, and Na-Cl types. Multivariate statistical analyses indicate that weathering and dissolution of different rocks and minerals, e.g., silicates, gypsum, and halite, ion exchange, and agricultural activities influence the hydrogeochemistry of the study area. The cluster analysis divides the samples into two distinct clusters which are completely different in EC (and its dependent variables such as Na + , K + , Ca 2+ , Mg 2+ , SO 4 2- , and Cl - ), Cd, and Cr variables according to the ANOVA statistical test. Based on the median values, the concentrations of pH, NO 3 - , SiO 2 , and As in cluster 1 are elevated compared with those of cluster 2, while their maximum values occur in cluster 2. According to the PoS index, the dominant parameter that controls quality deterioration is As, with 60% of contribution. Samples of lowest PoS values are located in the southern and northern parts (recharge area) while samples of the highest values are located in the discharge area and the eastern part.
NASA Astrophysics Data System (ADS)
Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.
2018-06-01
The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.
NASA Astrophysics Data System (ADS)
Sahu, Paulami; Sikdar, P. K.; Chakraborty, Surajit
2016-02-01
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: `excellent', `good' and `poor' and seven hydrochemical facies are assigned to three broad types: `fresh', `mixed' and `brackish' waters. The `fresh' water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich `brackish' groundwater represents freshening of modified connate water. The `mixed' type groundwater has possibly evolved due to hydraulic mixing of `fresh' and `brackish' waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.
Chen, Li-Jing; Wu, Yan-Fang; Jing, Yu-Xiang; Wang, Cong; Zhang, Yin-Jiang
2012-11-01
The Backshore Wetland of Expo Garden was the emphasis of the World Expo construction project in Shanghai in 2010, China programming district. We carried out studies on the community structure and spatial-temporal variation of copepod from September 2009 to August 2010. Statistical Product and Service Solutions (SPSS) was used for relevant statistical analysis between physicochemical parameters and copepod standing crop. Canonical correspondence analysis (CCA) was applied to further explore the correlation between copepod species and environmental parameters using CANOCO 4.5. A total of 23 copepod species in 11 genera, 6 families were identified. 5 dominant species of copepod were recorded during the survey period. They were Eucyclops serrulatus, Thermocyclops taihokuensis, Mesocyclops leuckarti, Thermocyclops brevifurcatus and Microcyclops varicans. The annual mean density of copepod was (8.6 +/- 16.6) ind x L(-1) and the biomass was (0.083 6 +/- 0.143 1) mg x L(-1). The standing crop of copepod had its first peak in July, the second in October and the bottom in January. The highest trophic level was measured at Site 1, decreasing along the flowing direction of the water current, and the lowest level was found at Site 10. The Margelf index remained low in winter and spring, but was increased in summer and autumn. The community structure of copepod was analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Water temperature, pH, nitrate nitrogen, nitrite nitrogen, TN, TP and dissolved oxygen were strongly correlated with the copepod community structure.
NASA Astrophysics Data System (ADS)
Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai
2014-11-01
Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and climate applications at regional scale.
Rakotondrabe, Felaniaina; Ndam Ngoupayou, Jules Remy; Mfonka, Zakari; Rasolomanana, Eddy Harilala; Nyangono Abolo, Alexis Jacob; Ako Ako, Andrew
2018-01-01
The influence of gold mining activities on the water quality in the Mari catchment in Bétaré-Oya (East Cameroon) was assessed in this study. Sampling was performed within the period of one hydrological year (2015 to 2016), with 22 sampling sites consisting of groundwater (06) and surface water (16). In addition to measuring the physicochemical parameters, such as pH, electrical conductivity, alkalinity, turbidity, suspended solids and CN - , eleven major elements (Na + , K + , Ca 2+ , Mg 2+ , NH 4 + , Cl - , NO 3 - , HCO 3 - , SO 4 2- , PO 4 3- and F - ) and eight heavy metals (Pb, Zn, Cd, Fe, Cu, As, Mn and Cr) were also analyzed using conventional hydrochemical methods, Multivariate Statistical Analysis and the Heavy metal Pollution Index (HPI). The results showed that the water from Mari catchment and Lom River was acidic to basic (5.40
NASA Astrophysics Data System (ADS)
Akiyama, Sanae; Hattanji, Tsuyoshi; Matsushi, Yuki; Matsukura, Yukinori
2015-10-01
This study aims at estimating the controlling factors for the denudation rates of limestone, which often forms solution dolines on karst tablelands. Our approaches include (1) electrical resistivity tomography (ERT) to reveal shallow subsurface structures and hydrological settings, (2) automated monitoring of volumetric water content in soil profiles and manual measurements of subsurface CO2 concentrations and soil water chemistry, and (3) a field weathering experiment using limestone tablets with the micro-weight loss technique for determining current denudation rates. The field experiment and monitoring were carried out over 768 days from 2009-2011 at four sites with varying topographic and hydrological conditions along the sideslope of a doline on the Akiyoshi-dai karst plateau in SW-Japan. The installation depths of the limestone tablets were 15 cm or 50 cm below the slope surface. The soil moisture conditions varied site by site. Water-saturated conditions continued for 40-50% of the whole experimental period at 50-cm depth of upper and middle sites, while only 0-10% of the experimental period was water-saturated at the other sites. Chemical analysis revealed that the soil water was chemically unsaturated with calcite for all the sites. Spatial differences in concentrations of CO2 in soil pore air were statistically less significant. The denudation rates of the buried limestone tablets were 17.7-21.9 mg cm- 2 a- 1 at the upper and middle slopes, where the soil was water-saturated for a long time after precipitation. The lowest denudation of 3.9 mg cm- 2 a- 1 was observed on lower slopes where soil was not capable of maintaining water at a near saturation level even after precipitation. Statistical analysis revealed that the denudation rates of the tablets were strongly controlled by the duration for which soil pores were saturated by water (the conditions defined here are degrees of water saturation greater than 97%). Electrical resistivity tomography indicated that areas with high soil moisture conditions were located at the deeper zone on the lower slopes and the bottom of the doline, where denudation would be faster.
Isotopic analysis of uranium in natural waters by alpha spectrometry
Edwards, K.W.
1968-01-01
A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.
Functional-analytical capabilities of GIS technology in the study of water use risks
NASA Astrophysics Data System (ADS)
Nevidimova, O. G.; Yankovich, E. P.; Yankovich, K. S.
2015-02-01
Regional security aspects of economic activities are of great importance for legal regulation in environmental management. This has become a critical issue due to climate change, especially in regions where severe climate conditions have a great impact on almost all types of natural resource uses. A detailed analysis of climate and hydrological situation in Tomsk Oblast considering water use risks was carried out. Based on developed author's techniques an informational and analytical database was created using ArcGIS software platform, which combines statistical (quantitative) and spatial characteristics of natural hazards and socio-economic factors. This system was employed to perform areal zoning according to the degree of water use risks involved.
Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water
NASA Astrophysics Data System (ADS)
Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio
2010-10-01
Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.
Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.
2016-01-01
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory
2016-07-05
Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.
Missouri StreamStats—A water-resources web application
Ellis, Jarrett T.
2018-01-31
The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged locations.
Site Suitability Analysis for Beekeeping via Analythical Hyrearchy Process, Konya Example
NASA Astrophysics Data System (ADS)
Sarı, F.; Ceylan, D. A.
2017-11-01
Over the past decade, the importance of the beekeeping activities has been emphasized in the field of biodiversity, ecosystems, agriculture and human health. Thus, efficient management and deciding correct beekeeping activities seems essential to maintain and improve productivity and efficiency. Due to this importance, considering the economic contributions to the rural area, the need for suitability analysis concept has been revealed. At this point, Multi Criteria Decision Analysis (MCDA) and Geographical Information Systems (GIS) integration provides efficient solutions to the complex structure of decision- making process for beekeeping activities. In this study, site suitability analysis via Analytical Hierarchy Process (AHP) was carried out for Konya city in Turkey. Slope, elevation, aspect, distance to water resources, roads and settlements, precipitation and flora criteria are included to determine suitability. The requirements, expectations and limitations of beekeeping activities are specified with the participation of experts and stakeholders. The final suitability map were validated with existing 117 beekeeping locations and Turkish Statistical Institute 2016 beekeeping statistics for Konya province.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanderNoot, Victoria A.; Haroldsen, Brent L.; Renzi, Ronald F.
2010-03-01
In a multiyear research agreement with Tenix Investments Pty. Ltd., Sandia has been developing field deployable technologies for detection of biotoxins in water supply systems. The unattended water sensor or UWS employs microfluidic chip based gel electrophoresis for monitoring biological analytes in a small integrated sensor platform. This instrument collects, prepares, and analyzes water samples in an automated manner. Sample analysis is done using the {mu}ChemLab{trademark} analysis module. This report uses analysis results of two datasets collected using the UWS to estimate performance of the device. The first dataset is made up of samples containing ricin at varying concentrations andmore » is used for assessing instrument response and detection probability. The second dataset is comprised of analyses of water samples collected at a water utility which are used to assess the false positive probability. The analyses of the two sets are used to estimate the Receiver Operating Characteristic or ROC curves for the device at one set of operational and detection algorithm parameters. For these parameters and based on a statistical estimate, the ricin probability of detection is about 0.9 at a concentration of 5 nM for a false positive probability of 1 x 10{sup -6}.« less
Spatial variations in water quality of river Ganga with respect to land uses in Varanasi.
Sharma, Shikha; Roy, Arijit; Agrawal, Madhoolika
2016-11-01
Water quality of a river is a function of surrounding environment and land use due to its connectivity with land, resulting in pollutants finding their way through land. This necessitates a spatially explicit study of river ecology. The paper presents a pioneer study to establish and explore the linkage between land use and water quality of river Ganga in Varanasi district. The land use land cover (LULC) map of 20 km of river stretch for buffer radii of 1000 m in Varanasi revealed that riparian vegetation is negligible in the district. The hierarchical cluster analysis of LULC data suggested that there are two major land use categories, viz., urban and agriculture. The land use wise principal component analysis (PCA) suggested that urbanized areas are major contributor of metals, whereas agricultural land contributes organic matter into the river. The Spearman correlation study revealed that with rising urbanization, the pollutant load into the river increased compared to that from agricultural land use. The statistical analysis of the data clearly concluded that water quality of river Ganga at Varanasi was a function of adjacent land use. The study provides an insight anticipating the Indian government to embrace the relationship of land use to river water quality while formulating policies for the upcoming River Regulation Zone.
Li, Siyue; Zhang, Quanfa
2011-06-15
Water samples were collected for determination of dissolved trace metals in 56 sampling sites throughout the upper Han River, China. Multivariate statistical analyses including correlation analysis, stepwise multiple linear regression models, and principal component and factor analysis (PCA/FA) were employed to examine the land use influences on trace metals, and a receptor model of factor analysis-multiple linear regression (FA-MLR) was used for source identification/apportionment of anthropogenic heavy metals in the surface water of the River. Our results revealed that land use was an important factor in water metals in the snow melt flow period and land use in the riparian zone was not a better predictor of metals than land use away from the river. Urbanization in a watershed and vegetation along river networks could better explain metals, and agriculture, regardless of its relative location, however slightly explained metal variables in the upper Han River. FA-MLR analysis identified five source types of metals, and mining, fossil fuel combustion, and vehicle exhaust were the dominant pollutions in the surface waters. The results demonstrated great impacts of human activities on metal concentrations in the subtropical river of China. Copyright © 2011 Elsevier B.V. All rights reserved.
Multifractal analysis of geophysical time series in the urban lake of Créteil (France).
NASA Astrophysics Data System (ADS)
Mezemate, Yacine; Tchiguirinskaia, Ioulia; Bonhomme, Celine; Schertzer, Daniel; Lemaire, Bruno Jacques; Vinçon leite, Brigitte; Lovejoy, Shaun
2013-04-01
Urban water bodies take part in the environmental quality of the cities. They regulate heat, contribute to the beauty of landscape and give some space for leisure activities (aquatic sports, swimming). As they are often artificial they are only a few meters deep. It confers them some specific properties. Indeed, they are particularly sensitive to global environmental changes, including climate change, eutrophication and contamination by micro-pollutants due to the urbanization of the watershed. Monitoring their quality has become a major challenge for urban areas. The need for a tool for predicting short-term proliferation of potentially toxic phytoplankton therefore arises. In lakes, the behavior of biological and physical (temperature) fields is mainly driven by the turbulence regime in the water. Turbulence is highly non linear, nonstationary and intermittent. This is why statistical tools are needed to characterize the evolution of the fields. The knowledge of the probability distribution of all the statistical moments of a given field is necessary to fully characterize it. This possibility is offered by the multifractal analysis based on the assumption of scale invariance. To investigate the effect of space-time variability of temperature, chlorophyll and dissolved oxygen on the cyanobacteria proliferation in the urban lake of Creteil (France), a spectral analysis is first performed on each time series (or on subsamples) to have an overall estimate of their scaling behaviors. Then a multifractal analysis (Trace Moment, Double Trace Moment) estimates the statistical moments of different orders. This analysis is adapted to the specific properties of the studied time series, i. e. the presence of large scale gradients. The nonlinear behavior of the scaling functions K(q) confirms that the investigated aquatic time series are indeed multifractal and highly intermittent .The knowledge of the universal multifractal parameters is the key to calculate the different statistical moments and thus make some predictions on the fields. As a conclusion, the relationships between the fields will be highlighted with a discussion on the cross predictability of the different fields. This draws a prospective for the use of this kind of time series analysis in the field of limnology. The authors acknowledge the financial support from the R2DS-PLUMMME and Climate-KIC BlueGreenDream projects.
Network analysis applications in hydrology
NASA Astrophysics Data System (ADS)
Price, Katie
2017-04-01
Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain underexplored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five longterm USGS streamflow and water quality gages, allowing network application of longterm flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long term and eventbased hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwatersurface water interactions.
NASA Astrophysics Data System (ADS)
Lagerwall, Gareth; Kiker, Gregory; Muñoz-Carpena, Rafael; Wang, Naiming
2017-01-01
The coupled regional simulation model, and the transport and reaction simulation engine were recently adapted to simulate ecology, specifically Typha domingensis (Cattail) dynamics in the Everglades. While Cattail is a native Everglades species, it has become invasive over the years due to an altered habitat over the last few decades, taking over historically Cladium jamaicense (Sawgrass) areas. Two models of different levels of algorithmic complexity were developed in previous studies, and are used here to determine the impact of various management decisions on the average Cattail density within Water Conservation Area 2A in the Everglades. A Global Uncertainty and Sensitivity Analysis was conducted to test the importance of these management scenarios, as well as the effectiveness of using zonal statistics. Management scenarios included high, medium and low initial water depths, soil phosphorus concentrations, initial Cattail and Sawgrass densities, as well as annually alternating water depths and soil phosphorus concentrations, and a steadily decreasing soil phosphorus concentration. Analysis suggests that zonal statistics are good indicators of regional trends, and that high soil phosphorus concentration is a pre-requisite for expansive Cattail growth. It is a complex task to manage Cattail expansion in this region, requiring the close management and monitoring of water depth and soil phosphorus concentration, and possibly other factors not considered in the model complexities. However, this modeling framework with user-definable complexities and management scenarios, can be considered a useful tool in analyzing many more alternatives, which could be used to aid management decisions in the future.
NASA Astrophysics Data System (ADS)
McKnight, D. M.
2017-12-01
Humic substances are an important class of reactive chemical species in natural waters, and one important role is their capacity to as an electron acceptor and/or electron shuttle to ferric iron present as solid phase ferric oxides. Several lines of evidence point to quinone-like moieties being the main redox active moieties that can be used by microbes in respiration. Concomitantly, the humic fraction of dissolved organic mater (DOM) contains the dominant fluorophores in many natural waters. Examination of excitation emission matrices (EEMs) across redox gradients in diverse aquatic systems show that the EEMs are generally red-shifted under reducing conditions, such as anoxic bottom waters in lakes and hypoxic waters in riparian wetlands. Furthermore, there is striking similarity between the humic fluorophores that are resolved by statistical analysis and the fluorescence spectra of model quinone compounds, with the more reduced species having red-shifted fluorescence spectra. This apparent red-shift can be quantified based on the distribution of apparently "quinone-like", "semi-quinone-like" and "hydroquinone-like" fluorophores determined by the PARAFAC statistical analysis. Because fluorescence spectroscopy can be applied at ambient DOM concentrations for samples that have been maintained in an anoxic condition, fluorescence spectroscopy can provide insight into the role of humic electron shuttling in natural systems. Examples are presented demosntrating the changing EEMs in anoxic bottomwaters in a lake in the McMurdo Dry Valleys following a major flood event and the role of organic material in the mobilization of arsenic in shallow groundwater in South East Asia.
Lagerwall, Gareth; Kiker, Gregory; Muñoz-Carpena, Rafael; Wang, Naiming
2017-01-01
The coupled regional simulation model, and the transport and reaction simulation engine were recently adapted to simulate ecology, specifically Typha domingensis (Cattail) dynamics in the Everglades. While Cattail is a native Everglades species, it has become invasive over the years due to an altered habitat over the last few decades, taking over historically Cladium jamaicense (Sawgrass) areas. Two models of different levels of algorithmic complexity were developed in previous studies, and are used here to determine the impact of various management decisions on the average Cattail density within Water Conservation Area 2A in the Everglades. A Global Uncertainty and Sensitivity Analysis was conducted to test the importance of these management scenarios, as well as the effectiveness of using zonal statistics. Management scenarios included high, medium and low initial water depths, soil phosphorus concentrations, initial Cattail and Sawgrass densities, as well as annually alternating water depths and soil phosphorus concentrations, and a steadily decreasing soil phosphorus concentration. Analysis suggests that zonal statistics are good indicators of regional trends, and that high soil phosphorus concentration is a pre-requisite for expansive Cattail growth. It is a complex task to manage Cattail expansion in this region, requiring the close management and monitoring of water depth and soil phosphorus concentration, and possibly other factors not considered in the model complexities. However, this modeling framework with user-definable complexities and management scenarios, can be considered a useful tool in analyzing many more alternatives, which could be used to aid management decisions in the future.
Perceptions on the use of bottled water in restaurants in Harare's Central Business District (CBD)
NASA Astrophysics Data System (ADS)
Juba, Olivia Sakhile; Tanyanyiwa, Vincent Itai
2018-06-01
Bottled water use continues to expand worldwide and in the last two decades, a significant number of consumers have shifted from tap water to bottled water due to Cryptosporidium outbreaks. Bottled water consumption has increased in Harare due to erratic tap water supplies. Since 2011, forty bottled water brands have been banned because of failure to meet safety and quality standards due to contamination, unsuitable packaging, and wrong labelling. Nevertheless, the bottled water industry continues to thrive as local authorities fail to adequately purify municipal water. The study assessed the perceptions on drinking bottled water in restaurants within Harare's CBD. Demographic and social factors associated with bottled water users were established and the role and influence of stakeholders in bottling and distribution of water documented. A field survey through the administration of questionnaires to fifty restaurant users was carried out to assess the perceptions of people on the use of bottled water in terms of its safety and potential health benefits. Key informant interviews were conducted using a semi-structured interview with ten local water bottling companies as well as representatives from the Environmental Management Agency (EMA) and Standards Association of Zimbabwe (SAZ). Data were analysed using descriptive statistics and logistic regression analysis. Standard descriptive statistics were generated, with 95% confidence intervals (95% CIs). Consumers used bottled water as their primary drinking water source when they perceived that tap water was not safe. Perceptions of purity of water, bottled water convenience, and tap water unavailability seemed to determine consumption patterns among users. Females in the 18-48 age groups were more likely to think that bottled water was cleaner, safer, tasted better and was more convenient than tap water. Consumers regularly purchased bottled water for drinking and used bottled water as their primary drinking water source regardless of cost implications. Government and local authorities need to ensure that pure and clean water is availed in Harare. In addition, the public must be engaged in recognizing the relationships that exist between water quality and the capacity of local authorities to maintain taste and safety standards.
Aguirre-Macedo, M Leopoldina; Vidal-Martinez, Victor M; Herrera-Silveira, Jorge A; Valdés-Lozano, David S; Herrera-Rodríguez, Miguel; Olvera-Novoa, Miguel A
2008-09-01
The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.
Tiwari, Ashwani Kumar; De Maio, Marina
2018-02-01
The aim of the present study was to assess the sulphate [Formula: see text] and iron (Fe) contamination and seasonal variations in the water resources (groundwater, surface water, and mine water) of the West Bokaro coalfield region, India. One hundred and twenty-four water resources samples were collected from the coalfield during the post- and pre-monsoon seasons. The concentrations of [Formula: see text] were determined using ion chromatography and Fe concentrations were analyzed using inductively coupled plasma mass spectrometry. A statistical analysis was used to easily understand the seasonal variations of the elements in the water resources of the area. The concentrations of [Formula: see text] and Fe in the water resources were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location. The water resources of the coalfield were contaminated with high concentrations of [Formula: see text] and Fe, and would require suitable treatment before drinking, domestic and industrial uses.
Research in Computational Astrobiology
NASA Technical Reports Server (NTRS)
Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.
2003-01-01
We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
Water Quality Analysis Tool (WQAT) | Science Inventory | US ...
The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo
Evaluation of Factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia
Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nur Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin; Mustapha, Adamu
2013-01-01
Groun in a very complex way. In this work, multivariate statistical analysis was used to evaluate the factors controlling the groundwater chemistry of Kapas Island (Malaysia). Principal component analysis (P dwater chemistry of small tropical islands is influenced by many factors, such as recharge, weathering and seawater intrusion, among others, which interact with each other CA) was applied to 17 hydrochemical parameters from 108 groundwater samples obtained from 18 sampling sites. PCA extracted four PCs, namely seawater intrusion, redox reaction, anthropogenic pollution and weather factors, which collectively were responsible for more than 87% of the total variance of the island’s hydrochemistry. The cluster analysis indicated that three factors (weather, redox reaction and seawater intrusion) controlled the hydrochemistry of the area, and the variables were allocated to three groups based on similarity. A Piper diagram classified the island’s water types into Ca-HCO3 water type, Na-HCO3 water type, Na-SO4-Cl water type and Na-Cl water type, indicating recharge, mixed, weathering and leached from sewage and seawater intrusion, respectively. This work will provide policy makers and land managers with knowledge of the precise water quality problems affecting the island and can also serve as a guide for hydrochemistry assessments of other islands that share similar characteristics with the island in question. PMID:23648442
Hurst, Dale F; Lambert, Alyn; Read, William G; Davis, Sean M; Rosenlof, Karen H; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J
2014-02-16
Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.
NASA Astrophysics Data System (ADS)
Hurst, Dale F.; Lambert, Alyn; Read, William G.; Davis, Sean M.; Rosenlof, Karen H.; Hall, Emrys G.; Jordan, Allen F.; Oltmans, Samuel J.
2014-02-01
Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.
Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho
2016-01-01
In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in water. Results revealed that kresoxim-methyl readily form acid metabolite. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. In water, influence of various abiotic factors like pH, temperature, light and atmospheric carbon dioxide level on dissipation of kresoxim-methyl was studied. The half life value for kresoxim-methyl and total residue varied from 1 to 26.1 and 6.1 to 94.0 days under different conditions. Statistical analysis revealed the significant effect of abiotic factors on the dissipation of kresoxim-methyl from water.
Streamstats: U.S. Geological Survey Web Application for Streamflow Statistics for Connecticut
Ahearn, Elizabeth A.; Ries, Kernell G.; Steeves, Peter A.
2006-01-01
Introduction An important mission of the U. S. Geological Survey (USGS) is to provide information on streamflow in the Nation's rivers. Streamflow statistics are used by water managers, engineers, scientists, and others to protect people and property during floods and droughts, and to manage land, water, and biological resources. Common uses for streamflow statistics include dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower-facility design and regulation; and flood-plain mapping for establishing flood-insurance rates and land-use zones. In an effort to improve access to published streamflow statistics, and to make the process of computing streamflow statistics for ungaged stream sites easier, more accurate, and more consistent, the USGS and the Environmental Systems Research Institute, Inc. (ESRI) developed StreamStats (Ries and others, 2004). StreamStats is a Geographic Information System (GIS)-based Web application for serving previously published streamflow statistics and basin characteristics for USGS data-collection stations, and computing streamflow statistics and basin characteristics for ungaged stream sites. The USGS, in cooperation with the Connecticut Department of Environmental Protection and the Connecticut Department of Transportation, has implemented StreamStats for Connecticut.
Evaluation and Analysis of Regional Best Management Practices in San Diego, California (USA)
NASA Astrophysics Data System (ADS)
Flint, K.; Kinoshita, A. M.
2017-12-01
In urban areas, surface water quality is often impaired due to pollutants transported by stormwater runoff. To maintain and improve surface water quality, the United States Clean Water Act (CWA) requires an evaluation of available water quality information to develop a list of impaired water bodies and establish contaminant restrictions. Structural Best Management Practices (BMPs) are designed to reduce runoff volume and/or pollutant concentrations to comply with CWA requirements. Local level policy makers and managers require an improved understanding of the costs and benefits associated with BMP installation, performance, and maintenance. The International Stormwater BMP Database (Database) is an online platform for submittal of information about existing BMPs, such as cost, design details, and statistical analysis of influent and effluent pollutant concentrations. While the Database provides an aggregation of data which supports analysis of overall BMP performance at international and national scales, the sparse spatial distribution of the data is not suitable for regional and local analysis. This research conducts an extensive review of local inventory and spatial analysis of existing permanent BMPs throughout the San Diego River watershed in California, USA. Information collected from cities within the San Diego River watershed will include BMP types, locations, dates of installation, costs, expected removal efficiencies, monitoring data, and records of maintenance. Aggregating and mapping this information will facilitate BMP evaluation. Specifically, the identification of spatial trends, inconsistencies in BMP performances, and gaps in current records. Regression analysis will provide insight into the nature and significance of correlations between BMP performance and physical characteristics such as land use, soil type, and proximity to impaired waters. This analysis will also result in a metric of relative BMP performance and will provide a basis for future predictions of BMP effectiveness. Ultimately, results from this work will provide information to local governments and agencies for prioritizing, maintaining and monitoring BMPs, and improvement of hydrologic and water quality modeling in urban systems subject to compliance.
Hydrogeochemical processes and isotopes analysis. Study case: "La Línea Tunnel", Colombia
NASA Astrophysics Data System (ADS)
Piña, Adriana; Donado, Leonardo; Cramer, Thomas
2017-04-01
Hydrogeochemical and stable isotopes analyses have been widely used to identify recharge and discharge zones, flowpaths, type, origin and age of water, chemical processes between minerals and groundwater as well as effects caused by anthropogenic or natural pollution. In this paper we analyze the interactions between groundwater and surface water using as laboratory the tunnels located at the La Línea Massif in the Cordillera Central of the Colombian Andes. The massif is formed by two igneous-metamorphic fractured complexes (Cajamarca and Quebradagrande group) plus andesithic porphyry rocks from the tertiary period. There, eight main fault zones related to surface creeks were identified and main inflows inside the tunnels were reported. 60 water samples were collected in surface and inside the tunnel in fault zones in two different years, 2010 and 2015. To classify water samples, a multivariate statistical analysis combining Factor Analysis (FA) with Hierarchical Cluster Analysis (HCA) was performed. Then, analyses of the major chemical elements and water isotopes (18O, 2H and 3H) were used to define the origin of dissolved components and to analyse the evolution in time. Most samples were classified as bicarbonate calcite water or bicarbonate magnesium water type. Isotopic analyses show a characteristic behavior for east and west watershed and each geologic group. According to the FA and HCA, obtained factors and clusters are first related to the location of the samples (surface or tunnel samples) followed by the geology. Surface samples behave according to the Colombian meteoric line as inflows related to permeable faults while less permeable faults show hydrothermal processes. Finally, water evolution in time shows a decrease of pH, conductivity and Mg2+ related to silicate weathering or precipitation/dissolution processes that affect the spacing in fractures and consequently, the hydraulic properties.
Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh
NASA Astrophysics Data System (ADS)
Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique
2014-09-01
Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and irrigation activities except in some cases. For example, the high hardness in both water samples specifies the active hydraulic relation between surface and groundwater. Moreover, the statistical application and interpretation exhibit a good positive correlation among most of the water constituents which might be the indicator of having tightly grouped, precise homogeneous good-quality water resources around the mining industry. Finally from the environmental degradation point of view, it can be implied that there are no significant parameters or factors observed which are much badly effective on environment except very few cases. Thus, this research strongly recommends for monitoring the water quality in every 6 months or annually around this industry which might be positive for keeping the safe environment and healthy production of the coal mine.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-03-01
This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.
Stefanidis, Konstantinos; Papatheodorou, George
2018-01-01
During the last decades, Mediterranean freshwater ecosystems, especially lakes, have been under severe pressure due to increasing eutrophication and water quality deterioration. In this article, we compared the effectiveness of different data analysis methods by assessing the contribution of environmental parameters to eutrophication processes. For this purpose, principal components analysis (PCA), cluster analysis, and a self-organizing map (SOM) were applied, using water quality data from two transboundary lakes of North Greece. SOM is considered as an advanced and powerful data analysis tool because of its ability to represent complex and nonlinear relationships among multivariate data sets. The results of PCA and cluster analysis agreed with the SOM results, although the latter provided more information because of the visualization abilities regarding the parameters’ relationships. Besides nutrients that were found to be a key factor for controlling chlorophyll-a (Chl-a), water temperature was related positively with algal production, while the Secchi disk depth parameter was found to be highly important and negatively related toeutrophic conditions. In general, the SOM results were more specific and allowed direct associations between the water quality variables. Our work showed that SOMs can be used effectively in limnological studies to produce robust and interpretable results, aiding scientists and managers to cope with environmental problems such as eutrophication. PMID:29562675
Statistical Quality Control of Moisture Data in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D. P.; Rukhovets, L.; Todling, R.
1999-01-01
A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.
Xu, Zhi-ling; Wang, Qiang; Liu, Tian-lin; Guo, Li-ying; Jing, Feng-qiu; Liu, Hui
2006-04-01
To investigate the changes of bone sialoprotein (BSP) in developing dental tissues of rats exposed to fluoride. Twenty rats were randomly divided into two groups, one was with distilled water (control group), the other was with distilled water treated by fluoride (experimental group). When the fluorosis model was established, the changes of the expression of BSP were investigated and compared between the two groups. HE staining was used to observe the morphology of the cell, and immunohistochemisty assay was used to determine the expression of BSP in rat incisor. Student's t test was used for statistical analysis. The ameloblasts had normal morphology and arranged orderly. Immunoreactivitis of BSP was present in matured ameloblasts, dentinoblasts, cementoblasts, and the matrix in the control group. But in the experimental group the ameloblasts arranged in multiple layers, the enamel matrix was confused and the expression of BSP was significantly lower than that of the control group. Statistical analysis showed significant differences between the two groups (P<0.01). Fluoride can inhibit the expression of BSP in developing dental tissues of rats, and then inhibit differentiation of the tooth epithelial cells and secretion of matrix. This is a probable intracellular mechanism of dental fluorosis.
GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)
NASA Astrophysics Data System (ADS)
Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza
2017-12-01
Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.
An integrated logit model for contamination event detection in water distribution systems.
Housh, Mashor; Ostfeld, Avi
2015-05-15
The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stoler, Justin; Weeks, John R.; Appiah Otoo, Richard
2013-01-01
Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water–sealed single-use plastic sleeves–has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa. PMID:23840643
NASA Astrophysics Data System (ADS)
Kuo, Yi-Ming; Liu, Wen-Wen
2015-04-01
The Han River basin is one of the most important industrial and grain production bases in the central China. A lot of factories and towns have been established along the river where large farmlands are located nearby. In the last few decades the water quality of the Han River, specifically in middle and lower reaches, has gradually declined. The agricultural nonpoint pollution and municipal and industrial point pollution significantly degrade the water quality of the Han River. Factor analysis can be applied to reduce the dimensionality of a data set consisting of a large number of inter-related variables. Cluster analysis can classify the samples according to their similar characters. In this study, factor analysis is used to identify major pollution indicators, and cluster analysis is employed to classify the samples based on the sample locations and hydrochemical variables. Water samples were collected from 12 sample sites collected from Xiangyang City (middle Han River) to Wuhan City (lower Han River). Correlations among 25 hydrochemical variables are statistically examined. The important pollutants are determined by factor analysis. A three-factor model is determined and explains over 85% of the total river water quality variation. Factor 1, including SS, Chl-a, TN and TP, can be considered as the nonpoint source pollution. Factor 2, including Cl-, Br-, SO42-, Ca2+, Mg2+, K+, Fe2+ and PO43-, can be treated as the industrial pollutant pollution. Factor 3, including F- and NO3-, reflects the influence of the groundwater or self-purification capability of the river water. The various land uses along the Han River correlate well with the pollution types. In addition, the result showed that the water quality of Han River deteriorated gradually from middle to lower Han River. Some tributaries have been seriously polluted and significantly influence the mainstream water quality of the Han River. Finally, the result showed that the nonpoint pollution and the point pollution both significantly influence water quality in the middle and lower Han River. This study provides an effective method for watershed management and pollution control in Han River.
McKinney, Tim S.; Anning, David W.
2009-01-01
The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.
Access to drinking water and health of populations in Sub-Saharan Africa.
Ntouda, Julien; Sikodf, Fondo; Ibrahim, Mohamadou; Abba, Ibrahim
2013-01-01
Water is at the center of the plant and animal life, the foundation upon which the health of human settlement and development of civilizations rely on. In tropical regions, 80% of diseases are transmitted either by germs in the water, or by vectors staying in it. In Sub-Saharan Africa, statistics show particularly high levels of unmet needs of populations in access to drinking water in a context of socioeconomic development. For this purpose, this study aims to determine the influence of access to drinking water on the health of populations in Sub-Saharan Africa. Using data from Demographic and Health Surveys (DHS) from Cameroon, Senegal and Chad, it is clear from the descriptive analysis that 60% (Cameroon), and 59% (Chad) of the cases of childhood diarrhea in these two countries are due to the consumption of dirty water. In terms of explanatory analysis, we note that when a household in Cameroon, Senegal or Chad does not have access to drinking water, children under 5 years old residing there are respectively 1.29, 1.27 and 1.03 times more likely to have diarrhea than those residing in households with easy access to drinking water. In view of these results, it is recommended to increase access to drinking water in particular by reducing disparities between the rich and poor people. Copyright © 2013 Académie des sciences. All rights reserved.
Development and testing of a fast conceptual river water quality model.
Keupers, Ingrid; Willems, Patrick
2017-04-15
Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sustainability of mega water diversion projects: Experience and lessons from China.
Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan
2018-04-01
Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.
Lotfipour, Farzaneh; Valizadeh, Hadi; Shademan, Shahin; Monajjemzadeh, Farnaz
2015-01-01
One of the most significant issues in pharmaceutical industries, prior to commercialization of a pharmaceutical preparation is the "preformulation" stage. However, far too attention has been paid to verification of the software assisted statistical designs in preformulation studies. The main aim of this study was to report a step by step preformulation approach for a semisolid preparation based on a statistical mixture design and to verify the predictions made by the software with an in-vitro efficacy bioassay test. Extreme vertices mixture design (4 factors, 4 levels) was applied for preformulation of a semisolid Povidone Iodine preparation as Water removable ointment using different PolyEthylenGlycoles. Software Assisted (Minitab) analysis was then performed using four practically assessed response values including; Available iodine, viscosity (N index and yield value) and water absorption capacity. Subsequently mixture analysis was performed and finally, an optimized formulation was proposed. The efficacy of this formulation was bio-assayed using microbial tests in-vitro and MIC values were calculated for Escherichia coli, pseudomonaaeruginosa, staphylococcus aureus and Candida albicans. Results indicated the acceptable conformity of the measured responses. Thus, it can be concluded that the proposed design had an adequate power to predict the responses in practice. Stability studies, proved no significant change during the one year study for the optimized formulation. Efficacy was eligible on all tested species and in the case of staphylococcus aureus; the prepared semisolid formulation was even more effective. PMID:26664368
Evaluation of simethicone-coated cellulose as a negative oral contrast agent for abdominal CT.
Sahani, Dushyant V; Jhaveri, Kartik S; D'souza, Roy V; Varghese, Jose C; Halpern, Elkan; Harisinghani, Mukesh G; Hahn, Peter F; Saini, Sanjay
2003-05-01
Because of the increased clinical use of computed tomography (CT) for imaging the abdominal vasculature and urinary tract, there is a need for negative contrast agents. The authors undertook this study to assess the suitability of simethicone-coated cellulose (SCC), which is approved for use as an oral contrast agent in sonography, for use as a negative oral contrast agent in abdominal CT. This prospective study involved 40 adult patients scheduled to undergo abdominal CT for the evaluation of hematuria. Prior to scanning, 20 subjects received 800 mL of SCC and 20 received 800 mL of water as an oral contrast agent. Imaging was performed with a multi-detector row helical scanner in two phases, according to the abdominal CT protocol used for hematuria evaluation at the authors' institution. The first, "early" phase began an average of 15 minutes after the ingestion of contrast material; the second, "late" phase began an average of 45 minutes after the ingestion of contrast material. Blinded analysis was performed by three abdominal radiologists separately, using a three-point scale (0 = poor, 1 = acceptable, 2 = excellent) to assess the effectiveness of SCC for marking the proximal, middle, and distal small bowel. Average scores for enhancement with SCC and with water were obtained and compared. Statistical analysis was performed with a Wilcoxon signed-rank test. SCC was assigned higher mean scores than water for enhancement in each segment of the bowel, both on early-phase images (0.8-1.35 for SCC vs 0.6-1.1 for water) and on late-phase images (1.1-1.4 vs 0.81-0.96). Bowel marking with SCC, particularly in the jejunum and ileum, also was rated better than that with water in a high percentage of patients. The differences between the scores for water and for SCC, however, were not statistically significant (P > .05). SCC is effective as a negative oral contrast agent for small bowel marking at CT.
HydroApps: An R package for statistical simulation to use in regional analysis
NASA Astrophysics Data System (ADS)
Ganora, D.
2013-12-01
The HydroApps package is a newborn R extension initially developed to support the use of a recent model for flood frequency estimation developed for applications in Northwestern Italy; it also contains some general tools for regional analyses and can be easily extended to include other statistical models. The package is currently at an experimental level of development. The HydroApps is a corollary of the SSEM project for regional flood frequency analysis, although it was developed independently to support various instances of regional analyses. Its aim is to provide a basis for interplay between statistical simulation and practical operational use. In particular, the main module of the package deals with the building of the confidence bands of flood frequency curves expressed by means of their L-moments. Other functions include pre-processing and visualization of hydrologic time series, analysis of the optimal design-flood under uncertainty, but also tools useful in water resources management for the estimation of flow duration curves and their sensitivity to water withdrawals. Particular attention is devoted to the code granularity, i.e. the level of detail and aggregation of the code: a greater detail means more low-level functions, which entails more flexibility but reduces the ease of use for practical use. A balance between detail and simplicity is necessary and can be resolved with appropriate wrapping functions and specific help pages for each working block. From a more general viewpoint, the package has not really and user-friendly interface, but runs on multiple operating systems and it's easy to update, as many other open-source projects., The HydroApps functions and their features are reported in order to share ideas and materials to improve the ';technological' and information transfer between scientist communities and final users like policy makers.
Influence of water quality on the embodied energy of drinking water treatment.
Santana, Mark V E; Zhang, Qiong; Mihelcic, James R
2014-01-01
Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.
Consumptive Water-Use Coefficients for the Great Lakes Basin and Climatically Similar Areas
Shaffer, Kimberly H.; Runkle, Donna L.
2007-01-01
Consumptive water use is the portion of water withdrawn (for a particular use) that is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. This report, which is organized by water?use categories, includes consumptive?use coefficients for the Great Lakes Basin (including Canada) and for areas climatically similar to the Great Lakes Basin. This report also contains an annotated bibliography of consumptive water?use coefficients. Selected references are listed for consumptive?use data from elsewhere in the world. For the industrial water?use category, the median consumptive?use coefficients were 10 percent for the Great Lakes Basin, climatically similar areas, and the world; the 25th and 75th percentiles for these geographic areas were comparable within 6 percent. The combined domestic and public?supply consumptive?use statistics (median, 25th and 75th percentiles) were between 10 to 20 percent for the various geographic areas. Although summary statistics were similar for coefficients in the livestock and irrigation water?use categories for the Great Lakes Basin and climatically similar areas, statistic values for the world on a whole were substantially lower (15 to 28 percent lower). Commercial and thermoelectric power consumptive?use coefficient statistics (median, 25th, and 75th percentile) also were comparable for the Great Lakes Basin and climatically similar areas, within 2 percent. References for other countries were not found for commercial and thermoelectric power water?use categories. The summary statistics for the mining consumptive?use coefficients varied, likely because of differences in types of mining, processes, or equipment.
NASA Astrophysics Data System (ADS)
Kawzenuk, B.; Sellars, S. L.; Nguyen, P.; Ralph, F. M.; Sorooshian, S.
2017-12-01
The CONNected objECT (CONNECT) algorithm is applied to Integrated Water Vapor Transport (IVT) data from the NASA's Modern-Era Retrospective Analysis for Research and Applications - Version 2 reanalysis product for the period 1980 to 2016 to study water vapor transport globally. The algorithm generates life-cycle records as statistical objects for the time and space location of the evolving strong vapor transport events. Global statistics are presented and used to investigate how climate variability impacts the events' location and frequency. Results show distinct water vapor object frequency and seasonal peaks during NH and SH Winter. Moreover, a positive linear trend in the annual number of objects is reported, increasing by 3.58 objects year-over-year (with 95% confidence, +/- 1.39). In addition, we show five distinct regions where these events typically exist (southeastern United States, eastern China, South Pacific south of 25°S, eastern South America and off the southern tip of South Africa), and where they rarely exist (eastern South Pacific Ocean and central southern Atlantic Ocean between 5°N-25°S). In addition, the event frequency and geographical location are also shown to be related to the Arctic Oscillation, Pacific North American Pattern, and the Quasi-Biennial Oscillation.
Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.
1999-01-01
An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899
Microbial contamination and disinfection methods of pacifiers
NELSON, Paulo; LOUVAIN, Márcia Costa; MACARI, Soraia; LUCISANO, Marília Pacífico; da SILVA, Raquel Assed Bezerra; de QUEIROZ, Alexandra Mussolino; GATON-HERNÁNDEZ, Patrícia; da SILVA, Léa Assed Bezerra
2015-01-01
Objectives To evaluate the microbial contamination of pacifiers by Mutans Streptococci (MS) and the efficacy of different methods for their disinfection. Methods Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox® or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman’s non-parametric test (a=0.05). Results The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox® spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Conclusions Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox®). PMID:26537723
Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-07-01
Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.
Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique
Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam
2014-01-01
Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050
Statistical estimation of the potential possibilities for panoramic hydro-optic laser sensing
NASA Astrophysics Data System (ADS)
Shamanaev, Vitalii S.; Lisenko, Andrey A.
2017-11-01
For statistical estimation of the potential possibilities of the lidar with matrix photodetector placed on board an aircraft, the nonstationary equation of laser sensing of a complex multicomponent sea water medium is solved by the Monte Carlo method. The lidar return power is estimated for various optical sea water characteristics in the presence of solar background radiation. For clear waters and brightness of external background illumination of 50, 1, and 10-3 W/(m2ṡμmṡsr), the signal/noise ratio (SNR) exceeds 10 to water depths h = 45-50 m. For coastal waters, SNR >= 10 for h = 17-24 m, whereas for turbid sea waters, SNR >= 10 only to depths h = 8-12 m. Results of statistical simulation have shown that the lidar system with optimal parameters can be used for water sensing to depths of 50 m.
The bio-optical properties of CDOM as descriptor of lake stratification.
Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo
2006-11-01
Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.
Van Metre, Peter C.; Reutter, David C.
1995-01-01
Only limited suspended-sediment data were available. Four sites had daily sediment-discharge records for three or more water years (October 1 to September 30) between 1974 and 1985. An additional three sites had periodic measurements of suspended-sediment concentrations. There are differences in concentrations and yields among sites; however, the limited amount of data precludes developing statistical or cause-and-effect relations with environmental factors such as land use, soil, and geology. Data are sufficient, and the relation is pronounced enough, to indicate trapping of suspended sediment by Livingston Reservoir.
Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers
Handschuh, Harald; O’Dwyer, Jean; Adley, Catherine C.
2017-01-01
The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline’s drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water. PMID:28114359
Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers.
Handschuh, Harald; Ryan, Michael P; O'Dwyer, Jean; Adley, Catherine C
2017-01-01
The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline's drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water.
Fragmented Flows: Water Supply in Los Angeles County
NASA Astrophysics Data System (ADS)
Pincetl, Stephanie; Porse, Erik; Cheng, Deborah
2016-08-01
In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water—a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways—through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.
Braeye, T; DE Schrijver, K; Wollants, E; van Ranst, M; Verhaegen, J
2015-03-01
SUMMARY On 6 December 2010 a fire in Hemiksem, Belgium, was extinguished by the fire brigade with both river water and tap water. Local physicians were asked to report all cases of gastroenteritis. We conducted a retrospective cohort study among 1000 randomly selected households. We performed a statistical and geospatial analysis. Human stool samples, tap water and river water were tested for pathogens. Of the 1185 persons living in the 528 responding households, 222 (18·7%) reported symptoms of gastroenteritis during the time period 6-13 December. Drinking tap water was significantly associated with an increased risk for gastroenteritis (relative risk 3·67, 95% confidence interval 2·86-4·70) as was place of residence. Campylobacter sp. (2/56), norovirus GI and GII (11/56), rotavirus (1/56) and Giardia lamblia (3/56) were detected in stool samples. Tap water samples tested positive for faecal indicator bacteria and protozoa. The results support the hypothesis that a point-source contamination of the tap water with river water was the cause of the multi-pathogen waterborne outbreak.
Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...
2017-11-20
The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less
Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone
NASA Astrophysics Data System (ADS)
Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain
2017-10-01
Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra
The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less
Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries
Breu, Thomas; Bader, Christoph; Messerli, Peter; Heinimann, Andreas; Rist, Stephan; Eckert, Sandra
2016-01-01
This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as ‘water grabbing’. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources—such as China, India, and all Gulf States except Saudi Arabia—invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk. PMID:26943794
Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries.
Breu, Thomas; Bader, Christoph; Messerli, Peter; Heinimann, Andreas; Rist, Stephan; Eckert, Sandra
2016-01-01
This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as 'water grabbing'. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources--such as China, India, and all Gulf States except Saudi Arabia--invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.
Risley, John C.; Granato, Gregory E.
2014-01-01
6. An analysis of the use of grab sampling and nonstochastic upstream modeling methods was done to evaluate the potential effects on modeling outcomes. Additional analyses using surrogate water-quality datasets for the upstream basin and highway catchment were provided for six Oregon study sites to illustrate the risk-based information that SELDM will produce. These analyses show that the potential effects of highway runoff on receiving-water quality downstream of the outfall depends on the ratio of drainage areas (dilution), the quality of the receiving water upstream of the highway, and the concentration of the criteria of the constituent of interest. These analyses also show that the probability of exceeding a water-quality criterion may depend on the input statistics used, thus careful selection of representative values is important.
Artificial neural network modeling of the water quality index using land use areas as predictors.
Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin
2015-02-01
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756
Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina
2014-01-01
A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.
Metal concentrations in water and sediments from tourist beaches of Acapulco, Mexico.
Jonathan, M P; Roy, P D; Thangadurai, N; Srinivasalu, S; Rodríguez-Espinosa, P F; Sarkar, S K; Lakshumanan, C; Navarrete-López, M; Muñoz-Sevilla, N P
2011-04-01
A survey on the metal concentrations (As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, Zn) in beach water and sediments is reported from the tourist destination of Acapulco city on the Pacific coast of Mexico. The concentration of dissolved trace metals (DTMs) in beach water and acid leachable trace metals (ALTMs) in sediments indicated that they are anthropogenic in nature due to the increased tourist activities in the crowded beach locations. The statistical analysis indicates Fe and Mn play a major role as metal scavengers in both the medium (water and sediment) and the higher value of other metals is site specific in the study area, indicating that they are transported from the local area. Comparison results suggest that the beach water quality has deteriorated more than the sediments and special care needs to be taken to restore the beach quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ma, Deqiang; Zhang, Liyu; Fang, Qinhua; Jiang, Yuwu; Elliott, Michael
2017-05-15
Large scale coastal land-claim and sea-enclosing (CLASE) activities have caused habitat destruction, biodiversity losses and water deterioration, thus the local governments in China have recently undertaken seabed dredging and dyke opening (SDADO) as typical ecological restoration projects. However, some projects focus on a single impact on hydrodynamic conditions, water quality or marine organisms. In a case study in Xiamen, China, an integrated effects assessment framework centres on ecohydrology, using modeling of hydrodynamic conditions and statistical analysis of water quality, was developed to assess the effects of ecological restoration projects. The benefits of SDADO projects include improving hydrodynamic conditions and water quality, as a precursor to further marine biological improvements. This study highlights the need to comprehensively consider ecological effects of SDADO projects in the planning stage, and an integrative assessment method combining cumulative effects of hydrodynamic conditions, water quality and biological factors. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Yuejun; Huang, Yanhe; Jie, Yang
2017-08-01
The soil and water loss in Pinus massoniana forests is an urgent environmental problem in the red soil region of southern China.Using the method of field monitoring, by analogy and statistical analysis, The characteristics of soil and water loss of Pinus massoniana forests in Quaternary red soil region under 30 rainfall were analyzed,the results show that the relationship models of rainfall,runoff and sediment of pure Pinus massoniana plot were slightly different from the naked control plot,were all the univariate quadratic linear regression models.the contribution of runoff and sediment in different rain types were different, and the water and soil loss in Pinus massoniana forest was most prominent under moderate rain.The merging effect of sparse Pinus massoniana forest on raindrop, aggravated the degree of soil and water loss to some extent.
NASA Astrophysics Data System (ADS)
Nguyen, A.; Mueller, C.; Brooks, A. N.; Kislik, E. A.; Baney, O. N.; Ramirez, C.; Schmidt, C.; Torres-Perez, J. L.
2014-12-01
The Sierra Nevada is experiencing changes in hydrologic regimes, such as decreases in snowmelt and peak runoff, which affect forest health and the availability of water resources. Currently, the USDA Forest Service Region 5 is undergoing Forest Plan revisions to include climate change impacts into mitigation and adaptation strategies. However, there are few processes in place to conduct quantitative assessments of forest conditions in relation to mountain hydrology, while easily and effectively delivering that information to forest managers. To assist the USDA Forest Service, this study is the final phase of a three-term project to create a Decision Support System (DSS) to allow ease of access to historical and forecasted hydrologic, climatic, and terrestrial conditions for the entire Sierra Nevada. This data is featured within three components of the DSS: the Mapping Viewer, Statistical Analysis Portal, and Geospatial Data Gateway. Utilizing ArcGIS Online, the Sierra DSS Mapping Viewer enables users to visually analyze and locate areas of interest. Once the areas of interest are targeted, the Statistical Analysis Portal provides subbasin level statistics for each variable over time by utilizing a recently developed web-based data analysis and visualization tool called Plotly. This tool allows users to generate graphs and conduct statistical analyses for the Sierra Nevada without the need to download the dataset of interest. For more comprehensive analysis, users are also able to download datasets via the Geospatial Data Gateway. The third phase of this project focused on Python-based data processing, the adaptation of the multiple capabilities of ArcGIS Online and Plotly, and the integration of the three Sierra DSS components within a website designed specifically for the USDA Forest Service.
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Hogue, T. S.
2011-12-01
Global climate models (GCMs) are primarily used to generate historical and future large-scale circulation patterns at a coarse resolution (typical order of 50,000 km2) and fail to capture climate variability at the ground level due to localized surface influences (i.e topography, marine, layer, land cover, etc). Their inability to accurately resolve these processes has led to the development of numerous 'downscaling' techniques. The goal of this study is to enhance statistical downscaling of daily precipitation and temperature for regions with heterogeneous land cover and topography. Our analysis was divided into two periods, historical (1961-2000) and contemporary (1980-2000), and tested using sixteen predictand combinations from four GCMs (GFDL CM2.0, GFDL CM2.1, CNRM-CM3 and MRI-CGCM2 3.2a. The Southern California area was separated into five county regions: Santa Barbara, Ventura, Los Angeles, Orange and San Diego. Principle component analysis (PCA) was performed on ground-based observations in order to (1) reduce the number of redundant gauges and minimize dimensionality and (2) cluster gauges that behave statistically similarly for post-analysis. Post-PCA analysis included extensive testing of predictor-predictand relationships using an enhanced canonical correlation analysis (ECCA). The ECCA includes obtaining the optimal predictand sets for all models within each spatial domain (county) as governed by daily and monthly overall statistics. Results show all models maintain mean annual and monthly behavior within each county and daily statistics are improved. The level of improvement highly depends on the vegetation extent within each county and the land-to-ocean ratio within the GCM spatial grid. The utilization of the entire historical period also leads to better statistical representation of observed daily precipitation. The validated ECCA technique is being applied to future climate scenarios distributed by the IPCC in order to provide forcing data for regional hydrologic models and assess future water resources in the Southern California region.
Implant Fixture Heat Transfer During Abutment Preparation.
Aleisa, Khalil; Alkeraidis, Abdullah; Al-Dwairi, Ziad Nawaf; Altahawi, Hamdi; Lynch, Edward
2015-06-01
The purpose of the study was to evaluate the effect of water flow rate on the heat transmission in implants during abutment preparation using a diamond bur in a high-speed dental turbine. Titanium-alloy abutments (n = 32) were connected to a titanium-alloy implant embedded in an acrylic resin within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each) according to the water flow rate used during the preparation phase. Group 1 had a water flow rate of 24 mL/min, and group 2 had a water flow rate of 40 mL/min. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute with a coarse tapered diamond bur using a high-speed dental handpiece. Thermocouples embedded at the cervix of the implant surface were used to record the temperature of heat transmission from the abutment preparation. Heat generation was measured at 3 distinct times (immediately and 30 seconds and 60 seconds after the end of preparation). Statistical analyses were carried out using 2-way analysis of variance and the Student t test. Water flow rates (24 mL vs 40 mL) and time interval had no statistically significant effect on the implant's temperature change during the abutment preparation stage (P = .431 and P = .064, respectively). Increasing the water flow rate from 24 to 40 mL/min had no influence on the temperature of the implant fixture recorded during preparation of the abutment.
NASA Astrophysics Data System (ADS)
Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua
2016-06-01
Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.
[Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].
Li, Xue-Ding
2012-07-01
There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Discussion on water resources value accounting and its application
NASA Astrophysics Data System (ADS)
Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu
2018-06-01
The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.
Rand, R.S.; Clark, R.N.; Livo, K.E.
2011-01-01
The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Hao, W.; Zhu, T.; Yuan, L.; Xiao, F.
2017-09-01
In this paper, Statistical Distribution based Conditional Random Fields (STA-CRF) algorithm is exploited for improving marginal ice-water classification. Pixel level ice concentration is presented as the comparison of methods based on CRF. Furthermore, in order to explore the effective statistical distribution model to be integrated into STA-CRF, five statistical distribution models are investigated. The STA-CRF methods are tested on 2 scenes around Prydz Bay and Adélie Depression, where contain a variety of ice types during melt season. Experimental results indicate that the proposed method can resolve sea ice edge well in Marginal Ice Zone (MIZ) and show a robust distinction of ice and water.
Low-flow characteristics for selected streams in Indiana
Fowler, Kathleen K.; Wilson, John T.
2015-01-01
The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.
[Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].
Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu
2005-11-01
Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.
HPLC determination of caffeine in coffee beverage
NASA Astrophysics Data System (ADS)
Fajara, B. E. P.; Susanti, H.
2017-11-01
Coffee is the second largest beverage which is consumed by people in the world, besides the water. One of the compounds which contained in coffee is caffeine. Caffeine has the pharmacological effect such as stimulating the central nervous system. The purpose of this study is to determine the level of caffeine in coffee beverages with HPLC method. Three branded coffee beverages which include in 3 of Top Brand Index 2016 Phase 2 were used as samples. Qualitative analysis was performed by Parry method, Dragendorff reagent, and comparing the retention time between sample and caffeine standard. Quantitative analysis was done by HPLC method with methanol-water (95:5v/v) as mobile phase and ODS as stationary phasewith flow rate 1 mL/min and UV 272 nm as the detector. The level of caffeine data was statistically analyzed using Anova at 95% confidence level. The Qualitative analysis showed that the three samples contained caffeine. The average of caffeine level in coffee bottles of X, Y, and Z were 138.048 mg/bottle, 109.699 mg/bottle, and 147.669 mg/bottle, respectively. The caffeine content of the three coffee beverage samples are statistically different (p<0.05). The levels of caffeine contained in X, Y, and Z coffee beverage samples were not meet the requirements set by the Indonesian Standard Agency of 50 mg/serving.
CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.
Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark
2016-07-19
Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.