Use of oil shale ash in road construction: results of follow-up environmental monitoring.
Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis
2018-01-05
Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.
Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun
2016-09-01
Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...: Short-term risk of surface water or groundwater degradation during construction and short-term risk of surface water or groundwater degradation following construction. In addition, the cumulative effects of... cumulative beneficial effects: Long-term modified groundwater levels and flow patterns, long- term stream...
Environmental Assessment: Construct Mass/Mobility Parking Lot at Grand Forks AFB, North Dakota
2004-02-13
Water: Surface water quality could be degraded, both in the short-term, during actual construction, and over the long-term due to reduced storm water quality caused...term, during actual construction, and over the long-term due to reduced storm water quality caused by the increase of exposed soil. The short-term
Guan, Wei; Yin, Min; He, Tao; Xie, Shuguang
2015-10-01
Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands.
Instruments to reduce the leaching of heavy metals from building materials in the Netherlands.
van Breemen, A J H; Vermij, P H M
2007-01-01
In the Netherlands the leaching of heavy metals from metal building and constructing materials results in serious contamination problems in the water system. The most common sources of these heavy metals in construction materials are copper waterworks and roofs, zinc roofs, gutters and rain pipes, zinced steel, stainless steel, and lead sealing material. In urban waters the surface water and sediment standards are often exceeded. Although building and construction materials are certainly not the only source of heavy metals, they are an important part of the problem. This article focuses on six instruments that are in use in the Netherlands to try to reduce impact on the surface waters. In addition to this, national as well as international, a reconsideration of the risks and surface water standards for several heavy metals is considered. A balanced use of instruments can be considered as the application of a best practice.
NASA Astrophysics Data System (ADS)
Hu, J. C.; Wu, P. C.; Tung, H.; Tsai, M. C.
2017-12-01
In 1968, there were 2,200 wells in the Taipei Basin used for water supply to meet the requirement of high population density. The overuse of ground water lead to the land subsidence rate up to 5 cm/yr. Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin demonstrated temporary fluctuation induced by pumping water for large deep excavation site or engineering usage. The previous study based on precise leveling suggested that the surface deformation was highly associated with the recovery of water level. In 1989, widespread uplift dominated in Taipei basin due to the recovery of ground water Table. In this study, we use 37 high-resolution X-band COSMO-SkyMed radar images from May 2011 to April 2015 to characterize deformation pattern in the period of construction of Mass Rapid Transportation (MRT). We also use 30 wells and 380 benchmarks of precise leveling in Taipei basin to study the correlation of surface deformation and change of ground water table. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, the high water pumping in two major aquifers, Jignme and Wuku Foramtions, before the underground construction for MRT led to inflict surface deformation and no time delay observed for surface deformation during the water pumping. It implies that the poro-elastic effect dominates in major aquifers in Taipei basin.
DOT National Transportation Integrated Search
2014-09-12
In anticipation of regulation involving numeric turbidity limit at highway construction sites, research was : done into the most appropriate, affordable methods for surface water monitoring. Measuring sediment : concentration in streams may be conduc...
A water-budget approach to restoring a sedge fen affected by diking and ditching
Wilcox, Douglas A.; Sweat, Michael J.; Carlson, Martha L.; Kowalski, Kurt P.
2006-01-01
A vast, ground-water-supported sedge fen in the Upper Peninsula of Michigan, USA was ditched in the early 1900s in a failed attempt to promote agriculture. Dikes were later constructed to impound seasonal sheet surface flows for waterfowl management. The US Fish and Wildlife Service, which now manages the wetland as part of Seney National Wildlife Refuge, sought to redirect water flows from impounded C-3 Pool to reduce erosion in downstream Walsh Ditch, reduce ground-water losses into the ditch, and restore sheet flows of surface water to the peatland. A water budget was developed for C-3 Pool, which serves as the central receiving and distribution body for water in the affected wetland. Surface-water inflows and outflows were measured in associated ditches and natural creeks, ground-water flows were estimated using a network of wells and piezometers, and precipitation and evaporation/evapotranspiration components were estimated using local meteorological data. Water budgets for the 1999 springtime peak flow period and the 1999 water year were used to estimate required releases of water from C-3 Pool via outlets other than Walsh Ditch and to guide other restoration activities. Refuge managers subsequently used these results to guide restoration efforts, including construction of earthen dams in Walsh Ditch upslope from the pool to stop surface flow, installation of new water-control structures to redirect surface water to sheet flow and natural creek channels, planning seasonal releases from C-3 Pool to avoid erosion in natural channels, stopping flow in downslope Walsh Ditch to reduce erosion, and using constructed earthen dams and natural beaver dams to flood the ditch channel below C-3 Pool. Interactions between ground water and surface water are critical for maintaining ecosystem processes in many wetlands, and management actions directed at restoring either ground- or surface-water flow patterns often affect both of these components of the water budget. This approach could thus prove useful in guiding restoration efforts in many hydrologically altered and managed wetlands worldwide.
10 CFR 960.5-2-10 - Hydrology.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the host rock and the land surface. (2) Absence of surface-water systems that could potentially cause flooding of the repository. (3) Availability of the water required for repository construction, operation, and closure. (c) Potentially adverse condition. Ground-water conditions that could require complex...
40 CFR 264.301 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subsurface soil or ground water or surface water at anytime during the active life (including the closure... of the liners and soils present between the landfill and ground water or surface water; and (4) All... were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil...
40 CFR 264.301 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subsurface soil or ground water or surface water at anytime during the active life (including the closure... of the liners and soils present between the landfill and ground water or surface water; and (4) All... were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil...
40 CFR 264.301 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subsurface soil or ground water or surface water at anytime during the active life (including the closure... of the liners and soils present between the landfill and ground water or surface water; and (4) All... were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil...
Dunning, C.P.; Feinstein, D.T.; Hunt, R.J.; Krohelski, J.T.
2004-01-01
Numerical models were constructed for simulation of ground-water flow in the Menomonee Valley Brownfield, in Milwaukee, Wisconsin. An understanding of ground-water flow is necessary to develop an efficient program to sample ground water for contaminants. Models were constructed in a stepwise fashion, beginning with a regional, single-layer, analytic-element model (GFLOW code) that provided boundary conditions for a local, eight layer, finite-difference model (MODFLOW code) centered on the Menomonee Valley Brownfield. The primary source of ground water to the models is recharge over the model domains; primary sinks for ground water within the models are surface-water features and the Milwaukee Metropolitan Sewerage District Inline Storage System (ISS). Calibration targets were hydraulic heads, surface-water fluxes, vertical gradients, and ground-water infiltration to the ISS. Simulation of ground-water flow by use of the MODFLOW model indicates that about 73 percent of recharge within the MODFLOW domain circulates to the ISS and 27 percent discharges to gaining surface-water bodies. In addition, infiltration to the ISS comes from the following sources: 36 percent from recharge within the model domain, 45 percent from lateral flow into the domain, 15 percent from Lake Michigan, and 4 percent from other surface-water bodies. Particle tracking reveals that the median traveltime from the recharge point to surface-water features is 8 years; the median time to the ISS is 255 years. The traveltimes to the ISS are least over the northern part of the valley, where dolomite is near the land surface. The distribution of traveltimes in the MODFLOW simulation is greatly influenced by the effective porosity values assigned to the various lithologies.
Impact of surface nanostructure on ice nucleation.
Zhang, Xiang-Xiong; Chen, Min; Fu, Ming
2014-09-28
Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.
NASA Astrophysics Data System (ADS)
Xu, M.; Zhong, L.; Yang, Y.
2017-12-01
Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.
FGD liner experiments with wetlands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsch, W.J.; Ahn, C.; Wolfe, W.E.
1999-07-01
The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigatedmore » the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.« less
Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika
2017-12-01
The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K + , Ca +2 , Mg +2 , etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.
Harvey, Judson W.; Krupa, S.L.; Gefvert, C.J.; Choi, Jungyill; Mooney, R.H.; Giddings, J.B.
2000-01-01
The data presented in this report are products of an investigation that quantified interactions between ground water and surface water at several study sites in the northern Everglades. Goals included identifying the major geologic controls and human alterations that affect interactions between ground water and surface water, and determining how those interactions affect mercury contamination. The primary study area was the 3,815-acre Everglades Nutrient Removal (ENR), a wetland constructed in the early 1990s as a prototype Stormwater Treatment Area (STA), to determine the effectiveness in removing excess nutrients from agricultural drainage. In order to ensure that results from ENR are broadly informative, work was also conducted in Water Conservation Area-2A (WCA-2A), a 105,000-acre basin surrounded by levees. In the past 50 years, WCA-2A has experienced extensive re- engineering of water flow, alterations in the pattern of water-level fluctuations and timing of fire frequency, as well as substantial ecological changes. The most visible ecological alteration is the change in dominance over the past 30 years from a sawgrass wetland to cattail wetland in the northeastern part of WCA-2A. The drastic change in vegetation in WCA-2A resulted at least in part from inputs of excess phosphorus from agricultural drainage. Substantial data collection programs were already in progress in both ENR and WCA- 2A when the present work began. The South Florida Water Management District (SFWMD) constructed the ENR project in 1994 to determine the effectiveness of constructed wetlands for water treatment. Measurements of surface water flow and water quality were made frequently in ENR between 1994 and 1998. Fewer ground water data were collected at ENR, and almost all of it was collected from shallow wells emplaced on perimeter levees. In contrast to the short-term nature of data collection in ENR, hydrologic and chemical data were collected over a much longer period in WCA-2A (since at least the mid- 1970s), but the number of sites and data- collection frequency is much less. Very little prior ground water data were available in WCA-2A. Given the availability of prior information, the present study emphasized the collection of ground water field data, particularly in the interior wetland areas of ENR and WCA- 2A. New wells were emplaced to permit the geologic, hydraulic, and chemical sampling that was needed to characterize interactions between surface water and ground water. In particular, lithology and hydraulic properties of the Surficial aquifer were determined, ground water flow paths and velocities were delineated, hydrologic fluxes between surface water and ground water were measured, and water budgets and surface- subsurface fluxes of mercury were determined. The purpose of this report is to compile under one cover all of the data collected in this investigation. In addition, the report contains a detailed description of the study methods and information about study sites, borehole drilling, well construction, seepage meter installation, and hydraulic and geochemical chemical sampling. Data interpretations are the subject of a companion report.
The integration of constructed wetlands into a treatment system for airport runoff.
Revitt, D M; Worral, P; Brewer, D
2001-01-01
A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.
German, Edward R.
1983-01-01
Lakes Faith, Hope, and Charity were sampled from April 1971 to June 1979 to monitor water quality before, during, and after construction of Maitland Boulevard and the Interstate Highway 4 interchange. Lake Lucien was added to the study in April 1975. Chemical quality of the lakes varies little in comparison with surface runoff, bulk precipitation, and the water in the surficial aquifer. Surface runoff supplied about 19 percent of the direct inflow to the lakes and contributed a total of about 2,000 pounds, per acre of lake surface, of dissolved solids from April 1971 to June 1979, while bulk precipitation contributed about 1,170 pounds per acre. Water quality in the lakes changed during the study, generally for the better. However, an infestation of elodea (Hydrilla verticillata), whose growth is not associated with water quality, developed in Lake Hope near the end of the study and has interfered with recreational use of the lake. (USGS)
1987-09-01
these wetlands. Because of the generally low relief at the Base, several manmade drainage ditches have been constructed to improve surface water ...northerly boundary (Hickock, 1985). Within the Marshall Formation, the water table or piezometric surface con- forms somewhat to the land surface. The...34hills" in the water table underlie hills seen on land. The " lows " in the water table coincide with low areas on land (Vanlier, 1966). Thus, the
Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali
2017-07-01
Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
Planetary-scale surface water detection from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.
2017-12-01
Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.
Technology of surface wastewater purification, including high-rise construction areas
NASA Astrophysics Data System (ADS)
Tsyba, Anna; Skolubovich, Yury
2018-03-01
Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.
Zheng, Yucong; Wang, Xiaochang; Xiong, Jiaqing; Liu, Yongjun; Zhao, Yaqian
2014-04-01
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger river in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface-and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m(3)/(m(2)·day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ± 4.5%, 93.4% ± 2.1%, 54.0% ± 6.3%, 53.9% ± 6.0% and 69.4% ± 4.6%, respectively, which brought about an effective improvement of the river water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
SIMULATION STUDIES OF THE WETTING OF CRYSTALLINE FACES OF COTTON CELLULOSE
USDA-ARS?s Scientific Manuscript database
Models of the surfaces of nano-sized cellulose crystals were constructed and a model droplet of water was placed on each. Then, the model atoms were given motion that corresponds to room temperature (a molecular dynamics simulation), and the spreading of the water over the surfaces was studied. Besi...
An apparatus to measure water optical attenuation length for LHAASO-MD
NASA Astrophysics Data System (ADS)
Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration
2018-06-01
The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.
Estimated Water Flows in 2005: United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Belles, R D; Simon, A J
2011-03-16
Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states inmore » addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.« less
Saltwater-barrier line in Florida : concepts, considerations, and site examples
Hughes, Jerry L.
1979-01-01
Construction of canals and enlargement of streams in Florida has been mostly to alleviate impact of floods and to drain wetlands for development. Land drainage and heavy pumpage from coastal water-table aquifers has degraded potable ground and surface water with saltwater. Control of saltwater intrusion is possible through implementation of certain hydrologic principles. State of Florida statute 373.033 provides for a saltwater-barrier line in areas of saltwater intrusion along canals. A saltwater-barrier line is defined as the allowable landward limit that a canal shall be constructed or enlarged or a stream deepened or enlarged without a salinity-control structure seaward of the saltwater-barrier line. The salinity control structure controls saltwater intrusion along a surface-water channel and assists in controlling saltwater intrusion into shallow aquifers. This report briefly reviews the fundamentals of saltwater intrusion in surface-water channels and associated coastal aquifers, describes the effects of established saltwater-barrier lines in Florida, and gives a history of the use and benefits of salinity-control structures. (Woodard-USGS).
Reiner, Steven R.
2007-01-01
Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Reiner
2007-08-07
Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apfelbaum, Steven L.; Duvall, Kenneth W.; Nelson, Theresa M.
Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric powermore » plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.« less
NASA Astrophysics Data System (ADS)
Kim, Jae Gon
2017-04-01
Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.
Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance,more » surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.« less
Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.
Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng
2016-04-27
Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping Land and Water Surface Topography with instantaneous Structure from Motion
NASA Astrophysics Data System (ADS)
Dietrich, J.; Fonstad, M. A.
2012-12-01
Structure from Motion (SfM) has given researchers an invaluable tool for low-cost, high-resolution 3D mapping of the environment. These SfM 3D surface models are commonly constructed from many digital photographs collected with one digital camera (either handheld or attached to aerial platform). This method works for stationary or very slow moving objects. However, objects in motion are impossible to capture with one-camera SfM. With multiple simultaneously triggered cameras, it becomes possible to capture multiple photographs at the same time which allows for the construction 3D surface models of moving objects and surfaces, an instantaneous SfM (ISfM) surface model. In river science, ISfM provides a low-cost solution for measuring a number of river variables that researchers normally estimate or are unable to collect over large areas. With ISfM and sufficient coverage of the banks and RTK-GPS control it is possible to create a digital surface model of land and water surface elevations across an entire channel and water surface slopes at any point within the surface model. By setting the cameras to collect time-lapse photography of a scene it is possible to create multiple surfaces that can be compared using traditional digital surface model differencing. These water surface models could be combined the high-resolution bathymetry to create fully 3D cross sections that could be useful in hydrologic modeling. Multiple temporal image sets could also be used in 2D or 3D particle image velocimetry to create 3D surface velocity maps of a channel. Other applications in earth science include anything where researchers could benefit from temporal surface modeling like mass movements, lava flows, dam removal monitoring. The camera system that was used for this research consisted of ten pocket digital cameras (Canon A3300) equipped with wireless triggers. The triggers were constructed with an Arduino-style microcontroller and off-the-shelf handheld radios with a maximum range of several kilometers. The cameras are controlled from another microcontroller/radio combination that allows for manual or automatic triggering of the cameras. The total cost of the camera system was approximately 1500 USD.
Nottmeier, Anna M.
2015-12-21
The Ozark aquifer, within the Ozark Plateaus aquifer system (herein referred to as the “Ozark system”), is the primary groundwater source in the Ozark Plateaus physiographic province (herein referred to as the “Ozark Plateaus”) of Arkansas, Kansas, Missouri, and Oklahoma. Groundwater from the Ozark system has historically been an important part of the water resource base, and groundwater availability is a concern in some areas; dependency on the Ozark aquifer as a water supply has caused evolving, localized issues. The construction of a regional potentiometric-surface map of the Ozark aquifer is needed to aid assessment of current and future groundwater use and availability. The regional potentiometric-surface mapping is part of the U.S. Geological Survey (USGS) Groundwater Resources Program initiative (http://water.usgs.gov/ogw/gwrp/activities/regional.html) and the Ozark system groundwater availability project (http://ar.water.usgs.gov/ozarks), which seeks to quantify current groundwater resources, evaluate changes in these resources over time, and provide the information needed to simulate system response to future human-related and environmental stresses.The Ozark groundwater availability project objectives include assessing (1) growing demands for groundwater and associated declines in groundwater levels as agricultural, industrial, and public supply pumping increases to address needs; (2) regional climate variability and pumping effects on groundwater and surface-water flow paths; (3) effects of a gradual shift to a greater surface-water dependence in some areas; and (4) shale-gas production requiring groundwater and surface water for hydraulic fracturing. Data compiled and used to construct the regional Ozark aquifer potentiometric surface will aid in the assessment of those objectives.
NASA Astrophysics Data System (ADS)
Yaeger, M. A.; Reba, M. L.; Massey, J. H.; Adviento-Borbe, A.
2017-12-01
On-farm surface water storage reservoirs have been constructed to address declines in the Mississippi River Valley Alluvial aquifer, the primary source of irrigation for most of the row crops grown in eastern Arkansas. These reservoirs and their associated infrastructure represent significant investments in financial and natural resources, and may cause producers to incur costs associated with foregone crop production and long-term maintenance. Thus, an analysis of reservoir construction trends in the Grand Prairie Critical Groundwater Area (GPCGA) and Cache River Critical Groundwater Area (CRCGA) was conducted to assist future water management decisions. Between 1996 and 2015, on average, 16 and 4 reservoirs were constructed per year, corresponding to cumulative new reservoir surface areas of 161 and 60 ha yr-1, for the GPCGA and the CRCGA, respectively. In terms of reservoir locations relative to aquifer status, after 1996, 84.5% of 309 total reservoirs constructed in the GPCGA and 91.0% of 78 in the CRCGA were located in areas with remaining saturated aquifer thicknesses of 50% or less. The majority of new reservoirs (74% in the GPCGA and 63% in the CRCGA) were constructed on previously productive cropland. The next most common land use, representing 11% and 15% of new reservoirs constructed in the GPCGA and CRCGA, respectively, was the combination of a field edge and a ditch, stream, or other low-lying area. Less than 10% of post-1996 reservoirs were constructed on predominately low-lying land, and the use of such lands decreased in both critical groundwater areas during the past 20 years. These disparities in reservoir construction rates, locations, and prior land uses is likely due to groundwater declines being first observed in the GPCGA as well as the existence of two large-scale river diversion projects under construction in the GPCGA that feature on-farm storage as a means to offset groundwater use.
PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES
The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...
Potentiometric Surface of the Ozark Aquifer near Springfield, Missouri, 2006-07
Richards, Joseph M.; Mugel, Douglas N.
2008-01-01
INTRODUCTION A study of the water resources of the Springfield, Missouri, area in the 1970s determined that a cone of depression, formed by ground-water pumping, had developed in the Ozark aquifer beneath the city (Emmett and others, 1978). Continued ground-water usage in the 1970s and 1980s caused concern that ground-water resources would not be sufficient to meet the future needs of Springfield, Missouri, during periods of drought. As a result, a ground-water flow model of the Springfield area was developed by the U. S. Geological Survey (USGS) to assess the future role of ground water as a water source for the area (Imes, 1989). Results of the USGS model led to a decision by the City Utilities of Springfield to primarily rely on surface water from Stockton Lake as a source of city drinking water. Municipal and industrial ground-water usage continues in Springfield, but at lower rates than previously experienced (Jim Vandike, Missouri Department of Natural Resources, written commun., 2007). Rapid growth in the area has caused commercial, industrial, and domestic water use to increase. Population growth has been especially rapid in Nixa, Ozark, and Republic, and water use in the vicinity of these cities has grown an estimated 39 percent since 1990 (Dintelmann and others, 2006). Unlike Springfield, ground water is the primary source of water for these cities. The increased stress on the Ozark aquifer, the primary aquifer in the study area, has raised new concerns about possible further water-level declines in the areas of increased ground-water use. Although there continues to be new development in the Ozark aquifer, since 1987 no new water-supply wells that produce water from the Springfield Plateau aquifer have been allowed to be constructed in most of Greene and northern Christian counties (Jim Vandike, Missouri Department of Natural Resources, written commun., 2007). There is concern that if the potentiometric surface of the Ozark aquifer continues to decline, increased leakage of contaminants into the Ozark aquifer from the overlying Springfield Plateau aquifer could occur (Jim Vandike, Missouri Department of Natural Resources, written commun., 2007). To address this concern, the USGS, in cooperation with Greene County, Missouri, the U.S. Army Corps of Engineers, and the Missouri Department of Natural Resources, constructed a map of the potentiometric surface of the Ozark aquifer for 2006?2007. The map can be compared to previously constructed potentiometric-surface maps by Emmett and others (1978) and Imes (1989) to evaluate changes in ground-water flow directions, but the comparison is beyond the scope of this report.
Environmental impacts on the hydrology of ephemeral streams and alluvial aquifers
NASA Astrophysics Data System (ADS)
Kuells, C.; Marx, V.; Bittner, A.; Ellmies, R.; Seely, M.
2009-04-01
In arid and semi-arid regions alluvial groundwater resources of ephemeral streams are highly important for water supplies and ecosystems. Recent projects have studied processes of indirect recharge in situ and in detail (Dahan et al., 2008; Klaus et al., 2008). Still, little is known about the vulnerability of these aquifers to environmental impacts like surface dam constructions, land-use changes and climatic conditions as well as the time and type of response to such external impacts. With a catchment size of about 30.000 km² the Swakop River in Namibia is the largest of the country's twelve major ephemeral streams draining westwards into the Atlantic Ocean. The alluvial groundwater resources have been affected by the construction of two major surface water dams in the upper catchment as well as by abstractions for rural water supply, farming and mining downstream of the constructed dams (referred to as lower catchment). The determination of environmental impacts in the Swakop River catchment is difficult due to scarce hydrometric and water quality data. In order to obtain a better understanding of the hydrological system under changing environmental conditions a spatially distributed environmental tracer approach was applied. A longitudinal profile of groundwater samples was taken within a field study along the alluvial aquifer of the Swakop River. The samples were analysed for stable isotopes (18O, 2H), major ions and trace elements as well as for the residence time indicators CFC and SF6. The combined application of groundwater residence time analysis, stable isotope measurements and hydrochemical characterisation was used in order to associate a time scale with groundwater quality data. This method provides dated information on recharge and water quality before and after dam construction and can be used to detect environmental impacts on the hydrological system. CFC-12 analysis resulted in recharge years ranging from 1950 (0.01 pmol/l) to 1992 (1.4 pmol/l). Seven of 14 groundwater samples represent mainly groundwater recharged before or between the construction of surface water dams (1970 and 1978), the remaining samples represent groundwater recharge after dam construction. The groundwater residence time is generally short (recharge mainly after 1980) in the upper catchment and much higher (recharge mainly before 1980 and before dam construction) in the lower part of the catchment. Combining the age and isotope information shows how the surface water dams modified the pattern of groundwater recharge. The lower catchment has been partly cut off from the upper part in terms of indirect groundwater recharge by floods which means that most large floods originating in the headwaters of the Swakop River do not reach the lower alluvial aquifer anymore. The relationship between groundwater age and groundwater constituents helped to define baselines of hydrological properties (origin of water, recharge altitude) and of hydrochemical composition prior to the construction of dams (and other anthropogenic impacts). The well defined relationship between groundwater age and altitude of the river further helps to assess how fast different segments will be affected by these environmental impacts. References Dahan, O., Tatarsky, B., Enzel, Y., Kuells, C., Seely, M., Benito, G. (2008) Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Ground Water, Vol. 46, 3. (6-2008), pp. 450-461. Klaus, J., Kuells, C., Dahan, O. (2008): Evaluating the recharge mechanism of the Lower Kuiseb Dune Area using mixing cell modeling and residence time data. Journal of Hydrology, v. 358, p. 304-316.
Surface wastewater in Samara and their impact on water basins as water supply sources
NASA Astrophysics Data System (ADS)
Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina
2017-10-01
The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.
PERFORMANCE OF RETENTION PONDS AND CONSTRUCTED WETLANDS FOR ATTENUATING BACTERIAL STRESSORS
Microbial contamination from fecal origins in stormwater runoff poses a risk to human health through the consumption of drinking water and recreational and bathing contact with surface waters. Indicator bacteria serve as the regulatory meter by which water quality is measured and...
NASA Astrophysics Data System (ADS)
Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce
2016-04-01
Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and for a range of different pesticides under alternative flow and wetland dimension scenarios. In agreement with observations, model predictions for metaldehyde losses in the monitored system were negligible. The scenario analysis suggested that, even for pesticides with a relatively short aquatic half life, wetland systems would need to be much larger than those studied here in order to get any appreciable attenuation. Shallow systems have highest potential for promoting losses due to biodegradation, if we assume that most degrading organisms reside in fixed biofilms in the sediment. Sorption is not predicted to represent a significant net sink, except over short time scales in the first runoff event after application.
Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem
NASA Astrophysics Data System (ADS)
Gaeuman, D.; Stewart, R. L.
2017-12-01
The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.
Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin
2017-02-14
A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.
NASA Astrophysics Data System (ADS)
Li, Meng; Li, Yu; Xue, Fang; Jing, Xinli
2018-07-01
Resin based superhydrophobic coatings are effective to construct robust superhydrophobic surfaces on large scale without limitation of substrates. However, for most of the common resin based superhydrophobic coatings, it is inevitable to deteriorate environmental or health problems due to release of a large amount volatile solvents. In this work, a kind of water-based organic/inorganic hybrid consisted of acrylate copolymers and superhydrophobic silica nanoparticles were synthesized. The highly water-repellent silica nanoparticles were successfully involved into the aqueous dispersion of acrylate copolymers without additional surfactants. The as-synthesized hybrids simultaneously retain the excellent film-forming property of acrylate resins and amplify the contributions of low surface energy nanoparticles to the superhydrophobicity. Robust superhydrophobic coatings (CA > 160°, CA < 7°) with high adhesion strength, good scratch-resistance and excellent abrasion-resistance were constructed using the synthesized hybrids with significantly reduced content of low surface energy particles and organic solvent. The hybrid coating can stand abrasion up to 300 cycles with a fine sand paper and up to 1200 cycles under rough sand paper abrasion. Benefited from its good water-repellence property, the hybrid coating with a water-based formula not only showed improved water-resistance in comparison with commercial products; but also displayed attractive performances in self-cleaning and oil/water separation processes.
Agricultural landscapes are being urbanized throughout the United States, resulting in the degradation of aquatic systems. Fundamental changes in watershed hydrology result from the construction of impervious surfaces (roofs, streets, sidewalks). As impervious surface area ...
NASA Technical Reports Server (NTRS)
Adam, Niklas M.
2009-01-01
The stability of silver biocide, used to keep drinking water on the CEV potable water sterile, is unknown as the system design is still in progress. Silver biocide in water can deplete rapidly when exposed to various metal surfaces. Additionally, silver depletion rates may be affected by the surface-area-to-volume (SA/V) ratios in the water system. Therefore, to facilitate the CEV water system design, it would be advantageous to know the biocide depletion rates in water exposed to the surfaces of these candidate metals at various SA/V ratios. Certain surface treatments can be employed to reduce the depletion rates of silver compared to the base metal. The purpose of this work is to determine the compatibility of specific spaceflight-certified metals that could used in the design of the CEV potable water system with silver biocide as well as understand the effect of surface are to volume ratios of metals used in the construction of the potable water system on the silver concentration.
DOT National Transportation Integrated Search
2008-01-01
Reliable predictions of the seasonal high : groundwater table (SHGWT) at potential : construction sites are critical for roadway : designs. Maximum SHGWT levels can affect the : construction and maintenance of roads, and : the design and operation of...
Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...
Design and construction of phosphorus removal structures for improving water quality
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) input to surface waters is considered the most limiting nutrient with regard to eutrophication. The result has been a negative impact on recreation, ecosystem diversity, drinking water treatment, and the associated economics of each. Depending on region, over 50% of P inputs to surfa...
Numerical Model of the Hoosic River Flood-Control Channel, Adams, MA
2010-02-01
The model was then used to evaluate the flow conditions associated with the as-built channel configuration. The existing channel conditions were then...end as part of a channel restoration project. The model was to determine if restoration alterations would change water- surface elevations associated ...water-surface elevations associated with the initial design and construction. After as-built flow conditions were established, flow conditions
Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance
Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.
2005-01-01
Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.
Sorenson, S.K.; Cascos, P.V.; Glass, R.L.
1984-01-01
A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)
NASA Astrophysics Data System (ADS)
Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei
2018-05-01
The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.
Use of inexpensive pressure transducers for measuring water levels in wells
Keeland, B.D.; Dowd, J.F.; Hardegree, W.S.
1997-01-01
Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r2 ??? .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35??C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35??C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided. ?? 1997 Kluwer Academic Publishers.
The background state leading to arsenic contamination of Bengal basin groundwater.
Adel, Miah M
2005-12-01
The Bengal basin has the world's densest water diversion constructions on the natural courses of rivers. The most damaging water diversion construction is the Farakka Barrage upon the international River Ganges. The diversion of water through this barrage and other constructions upstream of it has reduced the Ganges flow rate by 2.5 times. The resulting downstream effects are the depletion of surface water resources, more withdrawal than recharge of groundwater, sinking groundwater table, spread in depth and extension of the vadose zone, changes in surface features, climatic changes, etc. An investigation was carried out to find the contributions of water diversion to the arsenic contamination of groundwater in the Bengal basin. The reasonable scenario for arsenic contamination is the oxygen deficiency in groundwater and aeration of arsenopyrites buried in the sediment that would remain under water prior to 1975. The mineral forms water-soluble compounds of arsenic when react with atmospheric oxygen. These soluble arsenic compounds infiltrates to the groundwater. This article summarizes the short-time and incomplete study-based quick conclusions reached by investigators that have totally avoided the vital issue of water diversion. It then shows the depleting condition of the water resources under continuing diversions, the generation of favorable condition for arsenic release, the reasons for low sulfur concentration, the reason for first contamination in the Hugly basin, and the hindrance to water's self-purification. The articles advocates that the restoration of the virgin wetland ecosystems in the Bengal basin following the stoppage of the inordinate amount of unilateral upstream water withdrawals can remove the catastrophe.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong
2017-08-23
Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.
Water resources of the Raft River basin, Idaho-Utah
Nace, Raymond L.; ,
1961-01-01
Much arable land in the Raft River basin of Idaho lacks water for irrigation, and the potentially irrigable acreage far exceeds the amount that could be irrigated with the estimated total supply of water. Therefore, the amount of uncommitted water that could be intercepted and used within the basin is the limiting factor in further development of its native water supply. Water for additional irrigation might be obtained by constructing surface-storage works, by pumping ground water, or by importing surface water. Additional groundwater development is feasible. As an aid to orderly development and use of the water supplies, the report summarizes available geologic and hydrologic data and, by analysis and interpretation, derives an estimate of the recoverable water yield of the basin.
Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J
2003-01-01
The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.
Christensen, Allen H.
1999-01-01
The U.S. Air Force Plant 42 (Plant 42) which is in the Antelope Valley about 1.5 miles northeast of Palmdale and 3 miles southeast of Lancaster in Los Angeles County. Historically, ground water has been the primary source of water owing, in large part, to the scarcity of surface water in the region. Since 1972, supplemental surface water has been imported from the California Water Project to help meet the demand for water. Despite the importation of surface water, ground-water withdrawal for both municipal and agricultural uses is affecting ground-water levels in the vicinity of Plant 42. To better understand the effects of ground-water withdrawal on ground-water levels and movement in the area, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, constructed a generalized water-table-contour map of the aquifer system underlying Plant 42 and the surrounding area.
USDA-ARS?s Scientific Manuscript database
The development of an index for description and monitoring of surface water quality has received significant attention in the water resources literature in recent years, primarily because of the increasing need for assessing water quality and the complex, multidimensional data collected from water q...
USDA-ARS?s Scientific Manuscript database
The objective of this work was to design, construct, and test the self-propelled aquatic platform for imaging, multi-tier water sampling, water quality sensing, and depth profiling to document microbial content and environmental covariates in the interior of irrigation ponds and reservoirs. The plat...
BIOCONVERSION AND MASS TRANSFER OF PESTICIDES IN A MODEL WETLANDS SYSTEM
The widespread use of agrichemicals over the years has impaired the nation's water quality through contamination of soil and of surface and groundwaters. A constructed wetlands environment has natural restorative processes which are attractive methods for improving water qu...
Design of constructed wetlands in the Kankakee watershed, Indiana, include pumping and distribution ditches leaving former channelized river levees intact. Resultant changes in shallow ground water - surface water interactions may be contributing elevated sulfate to wetland ponds...
Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio
USDA-ARS?s Scientific Manuscript database
Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...
A Review of Surface Water Quality Models
Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng
2013-01-01
Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533
Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste
USDA-ARS?s Scientific Manuscript database
Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to hi...
Li, Shuai; Milliken, Ralph E.
2017-01-01
A new thermal correction model and experimentally validated relationships between absorption strength and water content have been used to construct the first global quantitative maps of lunar surface water derived from the Moon Mineralogy Mapper near-infrared reflectance data. We find that OH abundance increases as a function of latitude, approaching values of ~500 to 750 parts per million (ppm). Water content also increases with the degree of space weathering, consistent with the preferential retention of water originating from solar wind implantation during agglutinate formation. Anomalously high water contents indicative of interior magmatic sources are observed in several locations, but there is no global correlation between surface composition and water content. Surface water abundance can vary by ~200 ppm over a lunar day, and the upper meter of regolith may contain a total of ~1.2 × 1014 g of water averaged over the globe. Formation and migration of water toward cold traps may thus be a continuous process on the Moon and other airless bodies. PMID:28924612
Object Detection for Agricultural and Construction Environments Using an Ultrasonic Sensor.
Dvorak, J S; Stone, M L; Self, K P
2016-04-01
This study tested an ultrasonic sensor's ability to detect several objects commonly encountered in outdoor agricultural or construction environments: a water jug, a sheet of oriented strand board (OSB), a metalfence post, a human model, a wooden fence post, a Dracaena plant, a juniper plant, and a dog model. Tests were performed with each target object at distances from 0.01 to 3 m. Five tests were performed with each object at each location, and the sensor's ability to detect the object during each test was categorized as "undetected," "intermittent," "incorrect distance," or "good." Rigid objects that presented a larger surface area to the sensor, such as the water jug and OSB, were better detected than objects with a softer surface texture, which were occasionally not detected as the distance approached 3 m. Objects with extremely soft surface texture, such as the dog model, could be undetected at almost any distance from the sensor. The results of this testing should help designers offuture systems for outdoor environments, as the target objects tested can be found in nearly any agricultural or construction environment.
Assessment of dynamic surface leaching of monolithic surface road materials.
Paulus, Hélène; Schick, Joachim; Poirier, Jean-Eric
2016-07-01
Construction materials have to satisfy, among others, health and environment requirements. To check the environmental compatibility of road construction materials, release of hazardous substances into water must be assessed. Literature mostly describes the leaching behaviour of recycled aggregates for potential use in base or sub-base layers of roads. But little is known about the release of soluble substances by materials mixed with binders and compacted for intended use on road surface. In the present study, we thus performed a diffusion test with sequential renewal of water during a 64 day period according to CEN/TS 16637-2 specifications, on asphalt concretes and hydraulically bound monoliths, two common surface road materials. It is shown that release of dangerous substances is limited in these hydrodynamic conditions. It was particularly true for asphalt concrete leachates where no metallic trace element, sulphate, chloride or fluoride ion could be quantified. This is because of the low hydraulic conductivity and the low polarity of the petroleum hydrocarbon binder of these specimens. For hydraulically bound materials around 20,000 mg/m(2) of sulphate diffused from the monoliths. It is one order of magnitude higher than chloride diffusion and two orders of magnitude higher than fluoride release. No metallic trace element, except small quantities of copper in the last eluate could be quantified. No adverse effect is to be expected for human and environmental health from the leachates of these compacted surface road construction materials, because all the measured parameters were below EU (Council Directive 98/83/EC) or WHO guidelines for drinking water standards. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design high water clearances for highway pavements : [executive summary].
DOT National Transportation Integrated Search
2008-01-01
The majority of state roads in Florida are built using asphalt concrete surfaces. They are constructed in layers. The bottom layer consists of the native soil. The top layer is the surface course, or pavement. It is built upon one or more intermediat...
Topographic map of Golden Gate Estates, Collier County, Florida
Jurado, Antonio
1981-01-01
Construction of canals related to land development in the Golden Gate Estates area of Collier County, Fla., has altered the natural drainage pattern of the watershed. The area of approximately 300 square miles was topographically mapped with a contour interval of 0.5 foot to assist in determining the effects of canal construction on the surface-water and ground-water resources in the watershed. The topographic map was prepared at a scale of 1:48,000 using aerial photography and ground-control points. (USGS)
Rice, William E
2004-12-01
A sub-surface desert water harvester was constructed in the sagebrush steppe habitat of south-central Idaho, U.S.A. The desert water harvester utilizes a buried micro-catchment and three buried storage tanks to augment water for wildlife during the dry season. In this region, mean annual precipitation (MAP) ranges between about 150-250 mm (6"-10"), 70% of which falls during the cold season, November to May. Mid-summer through early autumn, June through October, is the dry portion of the year. During this period, the sub-surface water harvester provides supplemental water for wildlife for 30-90 days, depending upon the precipitation that year. The desert water harvester is constructed with commonly available, "over the counter" materials. The micro-catchment is made of a square-shaped, 20 mL. "PERMALON" polyethylene pond liner (approximately 22.9 m x 22.9 m = 523 m2) buried at a depth of about 60 cm. A PVC pipe connects the harvester with two storage tanks and a drinking trough. The total capacity of the water harvester is about 4777 L (1262 U.S. gallons) which includes three underground storage tanks, a trough and pipes. The drinking trough is refined with an access ramp for birds and small animals. The technology is simple, cheap, and durable and can be adapted to other uses, e.g. drip irrigation, short-term water for small livestock, poultry farming etc. The desert water harvester can be used to concentrate and collect water from precipitation and run-off in semi-arid and arid regions. Water harvested in such a relatively small area will not impact the ground water table but it should help to grow small areas of crops or vegetables to aid villagers in self-sufficiency.
Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface
NASA Technical Reports Server (NTRS)
Grugel, R. N.
2008-01-01
Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... of the Clean Water Act for the Angelina & Neches River Authority's Proposal to Construct Lake Columbia, a Proposed 10,133- Surface-Acre Water Supply Reservoir in Cherokee and Smith Counties, TX AGENCY... pursuant to Section 404 of the Clean Water Act. The proposed activity would involve the discharge of...
Environmental Assessment: Extend Parking Lot Building 807 at Grand Forks AFB, North Dakota
2003-07-17
Surface water quality could be degraded, both in the short-term, during actual construction, and over the long-term due to reduced storm water quality caused...over the long-term due to reduced storm water quality caused by the increase of paved area. The short-term effects come from possible erosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, G.R.; Watson, J.T.
1993-05-01
One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less
NASA Astrophysics Data System (ADS)
Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John
2018-01-01
In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.
Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins
2018-01-01
Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
NASA Astrophysics Data System (ADS)
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi
2017-12-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan
2017-01-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265
Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven
2005-01-01
Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the agricultural industry by urban growth. Present-day agricultural supplies are obtained largely from surface-water sources in Palm Beach County and ground-water sources in Miami-Dade County, whereas Broward County agricultural growers have been largely displaced. The construction of a complex canal drainage system and large well fields has substantially altered the surface- and ground-water hydrologic systems. The drainage system constructed between 1910 and 1928 mostly failed to transport flood flows, however, and exacerbated periods of low rainfall and drought by overdraining the surficial aquifer system. Following completion of the 1930s Hoover Dike levee system that was designed to reduce Lake Okeechobee flood flows, the Central and Southern Florida Flood Control Project initiated the restructure of the existing conveyance system in 1948 through canal expansion, construction of protective levees and control structures, and greater management of ground-water levels in the surficial aquifer system. Gated canal control structures discharge excess surface water during the wet season and remain closed during the dry season to induce recharge by canal seepage and well withdrawals. Management of surface water through canal systems has successfully maintained lower ground-water levels inland to curb urban and agricultural flooding, and has been used to increase ground-water levels near the coast to impede saltwater intrusion. Coastal discharge, however, appears to have declined, due in part to water being rerouted to secondary canals, and to induced recharge to the surficial aquifer system by large municipal withdrawals. Southeastern Florida is underlain by Holocene- to Tertiary-age karstic limestone deposits that form (in descending order): a highly prolific surficial aquifer system, a poorly permeable intermediate confining system, and a permeable Floridan aquifer system. Prior to construction of a complex drainage netwo
Parnell, J.M.
1997-01-01
The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.
Albuquerque's constructed wetland pilot project for wastewater polishing
Michael D. Marcus; Shannon M. House; Nathan A. Bowles; Robert T. Sekiya; J. Steven Glass
1999-01-01
The City of Albuquerque has funded the Constructed Wetland Pilot Project (CWPP) since 1995 at the City's Southside Water Reclamation Plant (SWRP). Results from CWPP and other wetland treatment projects indicate that appropriately designed surface-flow wetlands could increase the cost-efficiencies of wastewater treatment, as well as help the City meet present and...
Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water
NASA Astrophysics Data System (ADS)
Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji
2013-03-01
New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.
NASA Astrophysics Data System (ADS)
Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit
2017-04-01
Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D groundwater flow model, which was based on the scarce geologic information and the electromagnetic geophysical results, could answer the subsurface hydraulic connection between GDEs. Moreover, the gravity-driven regional groundwater flow concept could help to interpret the hydraulically nested flow systems (local and intermediate). Validation of numerical simulation by natural surface conditions and phenomena was performed. Consequently, the position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. Anthropogenic activities and climate change have great impact on groundwater. Since the GDEs are fed by local flow systems, the impact of climate change and anthropogenic activities could be notable, therefore the highly vulnerable wetlands have to be in focus of water management and natural conservation policy.
Shift in the microbial community composition of surface water and sediment along an urban river.
Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu
2018-06-15
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kronvang, B.; Højberg, A. L.; Hoffmann, C. C.; Windolf, J.; Blicher-Mathiesen, G.
2015-12-01
Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Therefore, a new era of targeted implemented measures was the outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models that enable a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage, buffer strips and constructed buffer strips. The results of these studies will be shared in this presentation.
Water wells on St. Thomas, U.S. Virgin Islands
Steiger, J.I.; Kessler, Richard
1993-01-01
This report is a compilation of well-inventory data collected from December 1989 to December 1990 on St. Thomas, U.S. Virgin Islands from 367 wells. The report includes well locations on 1982, 7.5 minute series, USGS topographic maps, which are published to scale, and tables of selected well data. The report includes the following well information; well name, U.S. Geological Survey Ground Water Site Identification number, use of water, year well constructed, reported depth of well, measured depth of well, casing diameter, type of well finish and finish interval, land surface altitude of well, depth to water below land surface, date water level measured, and well yield. (USGS)
NASA Astrophysics Data System (ADS)
Chu, Fuqiang; Wu, Xiaomin
2016-05-01
Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.
Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.
2002-01-01
The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4) gridded surfaces from a previous three-dimensional geologic model. In addition, digital elevation model data were used in conjunction with these data to define ground-surface altitudes. These data, properly oriented in three dimensions by using geographic information systems, were combined and gridded to produce the upper surfaces of the hydrogeologic units used in the flow model. The final geometry of the framework model is constructed as a volumetric model by incorporating the intersections of these gridded surfaces and by applying fault truncation rules to structural features from the geologic map and cross sections. The cells defining the geometry of the hydrogeologic framework model can be assigned several attributes such as lithology, hydrogeologic unit, thickness, and top and bottom altitudes.
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-05
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.
Perreault, Jeff A.
2007-01-01
American Memorial Park, a unit of the National Park Service on the Island of Saipan, includes among its features a 27-acre estuarine system that has become a rarity within the Commonwealth of the Northern Mariana Islands. The estuarine system's mosaic of marshy areas interspersed with emergent wetlands and mixed wet forests provides critical habitat for various migratory and resident waterfowl, including two Federally listed endangered species: the Marianas gallinule (Gallinula chloropus guami) and the nightingale reed warbler (Acrocephalus luscinia). With sensitivity to the park's ecologic assets and the uncertainty associated with locally rapid urbanization, a need to better understand the hydrology of American Memorial Park was recognized. To address that need, a reconnaissance study of the park was undertaken during August and September 2005. The goals of the study were (1) to describe the occurrence and salinity of surface and ground water within the park; (2) to develop a hydrologic model of the park area of the island, with emphasis on the 27-acre estuarine system; and (3) to identify additional data needed to further develop this model. With regard to surface water, three freshwater inputs to the park's natural wetland are possible: direct rainfall, seaward-flowing ground water, and overland flow. Direct rainfall, which is an important source of freshwater to the wetland, commonly exceeds evapotranspiration both seasonally and per storm. The seaward flow of ground water is likely to be a source of freshwater to the wetland because ground water generally has an upward vertical component in the nearshore environment. Overland flow upgradient of the park could potentially contribute a significant input of freshwater during periods of intense rainfall, but roads that flank the park's perimeter act as a barrier to surficial inflows. During the reconnaissance, four discrete bodies, or zones, of surface water were observed within the park's natural wetland. Conductivity within these surface-water zones typically ranged from 1,540 to 4,370 microsiemens per centimeter (?S/cm) at 25?C, although values as low as 829 and as high as 8,750 ?S/cm were measured. As a result of these observations, the American Memorial Park wetland area meets the definition criteria of an estuarine system that is dominantly oligohaline. Conductivity was also measured in a constructed wetland that was built within the park to augment the storm-drainage infrastructure of the village of Garapan. Reverse-osmosis facilities, in operation at hotels adjacent to the park, have historically discharged highly saline wastewater into the storm-drainage system. This collective storm and wastewater flow is routed into the constructed wetland and from there into the ocean. The conductivity of water in the constructed wetland ranged from 45,000 to 62,500 ?S/cm, exceeding nominal seawater values by as much as 25 percent, with the highest conductivities recorded near discharging storm drains. With regard to ground water, the reconnaissance included installation of a ground-water-monitoring network. Data collected from this network identified the presence of freshwater underlying the park and indicated that surface water is directly connected to ground water in the natural wetland because the water levels of both surface water and ground water directly varied with the tide. Conductivities of ground-water samples from wells in the monitoring network indicated that ground-water salinity was geographically related: conductivities were lower (801-2,490 ?S/cm) in surficially dry areas, intermediate (6,090-9,180 ?S/cm) in natural-wetland areas, and higher (18,250-27,700 ?S/cm) in areas adjacent to the constructed wetland and its associated ocean-discharge channel. Synoptic water-level surveys were made to enhance understanding of the spatial expression of the water table; they were scheduled to overlap with peak and trough tidal signals to enable limited characteri
Observation-well network for collection of ground-water level data in Massachusetts
Socolow, Roy S.
1994-01-01
Aquifers--water-bearing deposits of sand and gravel, glacial till, and fractured bedrock--provide an extensive and readily accessible ground-water supply in Massachusetts. Ground water affects our everyday lives, not just in terms of how much water is available, but also in terms of the position of ground-water levels in relation to land surface. Knowledge of ground-water levels is needed by Federal, State, and local agencies to help plan, manage, and protect ground-water supplies, and by private construction companies for site planning and evaluation. A primary part of the mission of the U.S. Geological Survey (USGS), Water Resources Division, is the systematic collection of ground-water, surface-water, and water-quality data. These data are needed to manage and protect the nation's water resources. The Massachusetts-Rhode Island District of the USGS, in cooperation with the Massachusetts Department of Environmental Management (DEM), Office of Water Resources, and county and town environmental agencies, has maintained a network of observation wells throughout the Commonwealth since the mid 1930's. The purpose of this network is to monitor seasonal and long-term changes in groundwater storage in different lithologic, topographic, and geographic settings. These data are analyzed to provide a monthly index of ground-water conditions to aid in water-resources management and planning, and to define long-term changes in water levels resulting from manmade stresses (such as pumping and construction-site drainage) and natural stresses (such as floods and droughts).
Improved or unimproved urban areas effect on soil and water quality
USDA-ARS?s Scientific Manuscript database
Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without negative im...
ERIC Educational Resources Information Center
Mayshark, Robin K.
1992-01-01
Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…
Plastron Respiration Using Commercial Fabrics
Atherton, Shaun; Brennan, Joseph C.; Morris, Robert H.; Smith, Joshua D.E.; Hamlett, Christopher A.E.; McHale, Glen; Shirtcliffe, Neil J.; Newton, Michael I.
2014-01-01
A variety of insect and arachnid species are able to remain submerged in water indefinitely using plastron respiration. A plastron is a surface-retained film of air produced by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of commercially available water repellent fabrics and polymer membranes is investigated, and how the surface of the materials mimics this mechanism of underwater respiration is demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage of the surface with the plastron air layer was measured using confocal microscopy. A zinc/oxygen cell is used to consume oxygen within containers constructed from the different membranes, and the oxygen consumed by the cell is compared to the change in oxygen concentration as measured by an oxygen probe. By comparing the membranes to an air-tight reference sample, it was found that the membranes facilitated oxygen transfer from the water into the container, with the most successful membrane showing a 1.90:1 ratio between the cell oxygen consumption and the change in concentration within the container. PMID:28788469
Kammerer, Phil A.; Sherrill, Marvin G.
1979-01-01
Mean annual suspended-sediment loads during 1968-74 range from 13 to 60 tons per square mile, with 74 to 86 percent of the total transported during periods when surface water contributes to streamflow. These sediment loads are at the low end of the range previously reported for streams in the "Driftless Area".
Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin
2012-09-25
The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.
Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.
Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali
2016-11-23
Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.
El-Naggar, Hesham M
2010-01-01
The main activity in Siwa Oasis society is the agriculture, it depends on the groundwater. The agricultural drainage water and the unused saline water of naturally flowing springs are poured into four main salty lakes. This leads to an increase in the surface area of the saltwater lakes, marshes and rise in water table levels. to investigate some environmental engineering interventions to control the expansion of saltwater surface area in Siwa Oasis. Field visits, observation sheets and questionnaire survey with farmers were carried out to find out the main environmental problems in the Oasis. Environmental survey was carried out to collect different rocks and stones samples as natural construction materials from the desert that surrounds Siwa Oasis. Physical analyses, chemical composition and principal mechanical parameters were conducted on the collected samples. After the analysis, the safa rocks were the best natural construction materials in the Siwa Oasis. So, it could be used to build a construction wall around the salty lakes and marshes. Walls could convert the lakes into basins. The water will be evaporated at high rate during summer season by solar energy. After evaporation, the remaining salty rock named "karshef" can be easily collected from the lakes to be used as a low cost construction material for traditional building houses in Siwa Oasis. Therefore, the water level of lakes will be reduced to dryness and land could be reused as agricultural land. Among different rocks, safa rocks proved to be the best natural construction materials to construct a defense wall around the lakes and marshes. They will save about 80% of the concrete cost. The formed karshef rocks from the lakes will be used in the construction of the traditional building houses which will save about 90% of the concrete buildings. This intervention will save energy as it exchanges fuel consuming man-made material such as cement with naturally made material. This can reduce the green house gases generated from the cement industry. Economical feasibility study should be carried out to estimate the capital cost for the retaining wall.
Anderson, Mark T.
1995-01-01
The study of ground-water and surface-water interactions often employs streamflow-gaging records and hydrologic budgets to determine ground-water seepage. Because ground-water seepage usually is computed as a residual in the hydrologic budget approach, all uncertainty of measurement and estimation of budget components is associated with the ground-water seepage. This uncertainty can exceed the estimate, especially when streamflow and its associated error of measurement, is large relative to other budget components. In a study of Rapid Creek in western South Dakota, the hydrologic budget approach with hydrochemistry was combined to determine ground-water seepage. The City of Rapid City obtains most of its municipal water from three infiltration galleries (Jackson Springs, Meadowbrook, and Girl Scout) constructed in the near-stream alluvium along Rapid Creek. The reach of Rapid Creek between Pactola Reservoir and Rapid City and, in particular the two subreaches containing the galleries, were studied intensively to identify the sources of water to each gallery. Jackson Springs Gallery was found to pump predominantly ground water with a minor component of surface water. Meadowbrook and Girl Scout Galleries induce infiltration of surface water from Rapid Creek but also have a significant component of ground water.
Engineering solutions for polymer composites solar water heaters production
NASA Astrophysics Data System (ADS)
Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.
2016-06-01
Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.
The Revival of a Failed Constructed Wetland Treating of a High Fe Load AMD
A.D. Karathanasis; C.D. Barton
1999-01-01
Acid mine drainage (AMD) from abandoned mines has significantly impaired water quality in eastern Kentucky. A small surface flow wetland constructed in 1989 to reduce AMD effects and subsequently failed after six months of operation was renovated by incorporating anoxic limestone drains (ALDs) and anaerobic subsurface drains promoting vertical flow through successive...
Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.
Yi, Quanghee; Stewart, Mark
2018-01-01
The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.
Nedbal, Václav; Brom, Jakub
2018-08-15
Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.
Potentiometric Surface of the Ozark Aquifer in Northern Arkansas, 2007
Pugh, Aaron L.
2008-01-01
The Ozark aquifer in northern Arkansas is composed of dolomite, limestone, sandstone, and shale of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 58 well and 5 spring water-level measurements collected in 2007 in Arkansas and Missouri, has a maximum water-level altitude measurement of 1,169 feet in Carroll County and a minimum water-level altitude measurement of 118 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the west, northwest, and north in the western part of the study area. Comparing the 2007 potentiometric-surface map with a predevelopment potentiometric-surface map indicates general agreement between the two surfaces except in the northwestern part of the study area. Potentiometric-surface differences can be attributed to withdrawals related to increasing population, changes in public-supply sources, processes or water withdrawals outside the study area, or differences in data-collection or map-construction methods. The rapidly increasing population within the study area appears to have some effect on ground-water levels. Although, the effect appears to have been minimized by the development and use of surface-water distribution infrastructure, suggesting most of the incoming populations are fulfilling their water needs from surface-water sources. The conversion of some users from ground water to surface water may be allowing water levels in wells to recover (rise) or decline at a slower rate, such as in Benton, Carroll, and Washington Counties.
NASA Astrophysics Data System (ADS)
Tanaka, Mio; Morita, Katsuaki; Yamamoto, Makoto; Sakaue, Hirotaka
2015-11-01
A collision of a supercooled-water droplet on an object creates ice accretion on its surface. These icing problems can be seen in any cold environments and may lead to severe damages on aircrafts, ships, power cables, trees, road signs, and architectures. To solve these problems, various studies on ice-prevention and ice-prediction techniques have been conducted. It is very important to know the detail freezing mechanism of supercooled water droplets to propose or improve those techniques. The icing mechanism of a single supercooled-water droplet impacting on object surface would give us great insights for constructing those techniques. In the present study, we use a dual-luminescent imaging technique to measure the time-resolved temperatures of a supercooled water droplet impacting with different speed. The technique we applied consists of high-speed color camera and two luminescent probes. We will report the current status of this experiment in the presentation.
Li, Jing; Li, Fadong; Liu, Qiang
2017-07-01
Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli
2015-08-01
Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time-Dependent Liquid Transport on a Biomimetic Topological Surface.
Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei
2018-05-02
Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.
Vymazal, Jan; Březinová, Tereza
2015-02-01
Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong. Copyright © 2014 Elsevier Ltd. All rights reserved.
2002-03-01
groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium
Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je
2010-04-06
In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.
Environmental factors in golf course development: a case study
Lisa Mason-Fradette; Robert S. Bristow
1995-01-01
Environmental constraints become apparent when one considers the maintenance and operation of a golf course. The high demand for water, proximity to surface or ground water supplies and the potential threats by the perpetuation of the grounds. This investigation of a new golf course construction site will identify the threats to the environment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HYDRAULICS Erosion and Sediment Control on Highway Construction Projects § 650.203 Policy. It is the policy... pollution of surface and ground water resources. Guidance for the development of standards used to minimize...
Code of Federal Regulations, 2011 CFR
2011-04-01
... HYDRAULICS Erosion and Sediment Control on Highway Construction Projects § 650.203 Policy. It is the policy... pollution of surface and ground water resources. Guidance for the development of standards used to minimize...
Code of Federal Regulations, 2010 CFR
2010-04-01
... HYDRAULICS Erosion and Sediment Control on Highway Construction Projects § 650.203 Policy. It is the policy... pollution of surface and ground water resources. Guidance for the development of standards used to minimize...
Code of Federal Regulations, 2012 CFR
2012-04-01
... HYDRAULICS Erosion and Sediment Control on Highway Construction Projects § 650.203 Policy. It is the policy... pollution of surface and ground water resources. Guidance for the development of standards used to minimize...
Code of Federal Regulations, 2014 CFR
2014-04-01
... HYDRAULICS Erosion and Sediment Control on Highway Construction Projects § 650.203 Policy. It is the policy... pollution of surface and ground water resources. Guidance for the development of standards used to minimize...
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...
NASA Astrophysics Data System (ADS)
Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian
2018-04-01
The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.
Surfing with capillary waves: a survival strategy for trapped bees
NASA Astrophysics Data System (ADS)
Roh, Chris; Gharib, Morteza
2017-11-01
Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
Creation of wettability contrast patterns on metallic surfaces via pen drawn masks
NASA Astrophysics Data System (ADS)
Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.
2017-12-01
Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.
Combining Imagery and Models to Understand River Dynamics
NASA Astrophysics Data System (ADS)
Blain, C. A.; Mied, R. P.; Linzell, R. S.
2014-12-01
Rivers pose one of the most challenging environments to characterize. Their geometric complexity and continually changing position and character are difficult to measure under optimal circumstances. Further compounding the problem is the often inaccessibility of these areas around the globe. Yet details of the river bank position and bed elevation are essential elements in the construction of accurate predictive river models. To meet this challenge, remote sensing imagery is first used to initialize the construction of advanced high resolution river circulation models. In turn, such models are applied to dynamically interpret remotely-sensed surface features. A method has been developed to automatically extract water and shoreline locations from arbitrarily sourced high resolution (~1m gsd) visual spectrum imagery without recourse to the spectral or color information. The approach relies on quantifying the difference in image texture between the relatively smooth water surface and the comparatively rough surface of surrounding land. Processing the segmented land/water interface results in ordered, continuous shoreline coordinates that bound river model construction. In the absence of observed bed elevations, one of several available analytic bathymetry cross-sectional relations are applied to complete the river model configuration. Successful application of this approach to the Snohomish River, WA and the Pearl River, MS are demonstrated. Once constructed, a hydrodynamic model of the river model can also be applied to unravel the dynamics responsible for observed surface features in the imagery. At a creek-river confluence in the Potomac River, MD, an ebb tide front observed in the imagery is analyzed using the model. The result is knowledge that an ebb shoal located just outside of the creek must be present and is essential for front formation. Furthermore, the front is found to be persistent throughout the tidal cycle, although it changes sign between ebb and flood phases. The presence of the creek only minimally modifies the underlying currents.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong
2018-01-31
Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.
Morris, Fred
1986-01-01
This report, the twelfth in a series of annual reports presenting hydrologic data collected from the area of the Tennessee-Tombigbee Waterway, covers the fiscal year ending September 30, 1985. The Waterway, under construction since the early 1970s, was completed in January 1985. Included are data on groundwater levels and quality; surface water stage, discharge, and quality; and disposal area water levels, water quality, and rainfall. These data were obtained at the request of the U.S. Army Corps of Engineers, Mobile and Nashville Districts, as part of comprehensive programs to monitor the hydrologic effects of construction and operation of the Waterway. (Author 's abstract)
24 CFR 203.12 - Mortgage insurance on proposed or new construction.
Code of Federal Regulations, 2011 CFR
2011-04-01
... conditions (i.e., rock formations, unstable soils or slopes, high ground water levels, inadequate surface... of the improvements. The Builder's Certification must be provided to the appraiser for reference...
24 CFR 203.12 - Mortgage insurance on proposed or new construction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... conditions (i.e., rock formations, unstable soils or slopes, high ground water levels, inadequate surface... of the improvements. The Builder's Certification must be provided to the appraiser for reference...
Well characteristics influencing arsenic concentrations in ground water.
Erickson, Melinda L; Barnes, Randal J
2005-10-01
Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.
Groundwater utilization through the centuries focusing οn the Hellenic civilizations
NASA Astrophysics Data System (ADS)
Angelakis, Andreas N.; Voudouris, Konstantinos S.; Mariolakos, Ilias
2016-08-01
Groundwater has been utilized since the Prehistoric times. Water supply of some Minoan settlements on the eastern side of the island of Crete (Greece) was based on groundwater. Later on, many wells were constructed in several areas of Greece and their use expanded through subsequent periods. The greatest achievement in groundwater exploitation by ancient Greeks was the construction of long underground galleries or qanats, which collected water from springs and alluvial deposits. In Classical times, most of the wells were on private properties and their owners were forced by regulations to maintain the wells in good condition and ready for use in wartime. During that period, the first scientific theories of Aristotle and Theophrastus were developed in regards to hydrological phenomena, and the processes involved in the formation of surface water and groundwater were clarified. Wells played a major part in urban water supply during the Roman period, in which famous aqueducts were constructed to transfer water; however, several regions of Greece were self-sufficient in water, supplied by many wells from the Prehistoric to the Byzantine period. People understood the local geological conditions and, according to their culture, constructed and managed their own types of wells. In addition to the wells and aqueducts, the hydraulic technology included cisterns to store rainwater, and systems to capture spring water for transport by aqueducts. The examples of hydro-technologies and water management practices described in this paper may have some relevance for water engineering even in modern times.
American River Watershed Investigation, California. Volume 3. Appendix M
1991-12-01
curing of the concrete and for general construction. The water used in concrete mixes must be free from injurious materials. Water from the American River...in achieving the desired bond strength between lifts. Water is needed for curing and to maintain freshness of lift joints. Lift surfaces should be kept...dizziness, throat pain, breathing difficulty and coughing . The health effects caused by combined concentrations of certain sulfur oxides and ozone
Water Remedial Investigation Report, Version 2.2. Volume 1
1989-03-01
Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Saturated, Shale at the Aluvial - Bedrock Contact) C...sorption of contaminants onto channel sediments . The addit;on of rain water and snow melt may also dilute contaminant concentrations. Contaminant...surface water and potentially contaminated sediments are transported from South Plants north into Basin A, W RI -4 03/14/89 4-28 southeast into Lower Derby
Groundwater Flow Through a Constructed Treatment Wetland
2002-03-01
sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil
Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia
2014-09-01
A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.
Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer
NASA Astrophysics Data System (ADS)
Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.
A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.
Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars
Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.
2004-01-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest. ?? 2004 Elsevier Inc. All rights reserved.
Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars
NASA Astrophysics Data System (ADS)
Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro
2004-09-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest.
NASA Astrophysics Data System (ADS)
Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.
2017-06-01
Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.
NASA Astrophysics Data System (ADS)
Siddiqi, A.; Muhammad, A.; Wescoat, J. L., Jr.
2017-12-01
Large-scale, legacy canal systems, such as the irrigation infrastructure in the Indus Basin in Punjab, Pakistan, have been primarily conceived, constructed, and operated with a techno-centric approach. The emerging socio-hydrological approaches provide a new lens for studying such systems to potentially identify fresh insights for addressing contemporary challenges of water security. In this work, using the partial definition of water security as "the reliable availability of an acceptable quantity and quality of water", supply reliability is construed as a partial measure of water security in irrigation systems. A set of metrics are used to quantitatively study reliability of surface supply in the canal systems of Punjab, Pakistan using an extensive dataset of 10-daily surface water deliveries over a decade (2007-2016) and of high frequency (10-minute) flow measurements over one year. The reliability quantification is based on comparison of actual deliveries and entitlements, which are a combination of hydrological and social constructs. The socio-hydrological lens highlights critical issues of how flows are measured, monitored, perceived, and experienced from the perspective of operators (government officials) and users (famers). The analysis reveals varying levels of reliability (and by extension security) of supply when data is examined across multiple temporal and spatial scales. The results shed new light on evolution of water security (as partially measured by supply reliability) for surface irrigation in the Punjab province of Pakistan and demonstrate that "information security" (defined as reliable availability of sufficiently detailed data) is vital for enabling water security. It is found that forecasting and management (that are social processes) lead to differences between entitlements and actual deliveries, and there is significant potential to positively affect supply reliability through interventions in the social realm.
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
49 CFR 178.520 - Standards for textile bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...
30 CFR 7.67 - Construction test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 7.66. (a) Test procedures. (1) The blasting unit shall be dropped 20 times from a height of 3 feet... each time in an attempt to have a different surface, corner, or edge strike the floor first for each... shall be submerged in 1 foot of water for 1 hour in each of 3 tests. The water temperature shall be...
Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface.
Dong, Anning; Yan, Lei; Sun, Lihuan; Yan, Shichao; Shan, Xinyan; Guo, Yang; Meng, Sheng; Lu, Xinghua
2018-06-01
Revealing the nature of a hydrogen-bond network in water structures is one of the imperative objectives of science. With the use of a low-temperature scanning tunneling microscope, water clusters on a Au(111) surface were directly imaged with molecular resolution by a functionalized tip. The internal structures of the water clusters as well as the geometry variations with the increase of size were identified. In contrast to a buckled water hexamer predicted by previous theoretical calculations, our results present deterministic evidence for a flat configuration of water hexamers on Au(111), corroborated by density functional theory calculations with properly implemented van der Waals corrections. The consistency between the experimental observations and improved theoretical calculations not only renders the internal structures of absorbed water clusters unambiguously, but also directly manifests the crucial role of van der Waals interactions in constructing water-solid interfaces.
The use of dynamic modeling in assessing tritium phytoremediation
Karin T. Rebel; Susan J. Riha; John C. Seaman; Clinton d. Barton
2005-01-01
To minimize movement of tritium into surface waters at the Mixed Waste Management Facility at the Savannah River Site, tritiumcontaminated groundwater released to the surface along seeps in the hillside is being retained in a constructed pond and used to irrigate forest acreage that lies over the contaminated groundwater. Management of the application of tritium-...
Latex-modified concrete overlay containing Type K cement.
DOT National Transportation Integrated Search
2005-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Potentiometric surface of the Catahoula aquifer in central Louisiana, 2013
Fendick, Jr., Robert B.; Carter, Kayla
2015-12-09
The potentiometric surface of the Catahoula aquifer was constructed by using the altitude of water levels measured at 29 wells during the period May through September 2013. The altitude of water levels ranged from 0.02 ft above the National Geodetic Vertical Datum of 1929 (NGVD 29) in well Co-51 to 238 ft above NGVD 29 in well Na-317. Groundwater movement in the Catahoula aquifer is generally to the southeast and towards discharge areas beneath the Sabine, Red, Little, and Tensas River Valleys.
Babin, Volodymyr; Leforestier, Claude; Paesani, Francesco
2013-12-10
The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.
Ely, D. Matthew; Kahle, Sue C.
2012-01-01
A three-dimensional, transient numerical model of groundwater and surface-water flow was constructed for Chamokane Creek basin to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate the effects of potential increases in groundwater pumping on groundwater and surface-water resources in the basin. The Chamokane Creek model was constructed using the U.S. Geological Survey (USGS) integrated model, GSFLOW. GSFLOW was developed to simulate coupled groundwater and surface-water resources. The model uses 1,000-foot grid cells that subdivide the model domain by 102 rows and 106 columns. Six hydrogeologic units in the model are represented using eight model layers. Daily precipitation and temperature were spatially distributed and subsequent groundwater recharge was computed within GSFLOW. Streamflows in Chamokane Creek and its major tributaries are simulated in the model by routing streamflow within a stream network that is coupled to the groundwater-flow system. Groundwater pumpage and surface-water diversions and returns specified in the model were derived from monthly and annual pumpage values previously estimated from another component of this study and new data reported by study partners. The model simulation period is water years 1980-2010 (October 1, 1979, to September 30, 2010), but the model was calibrated to the transient conditions for water years 1999-2010 (October 1, 1998, to September 30, 2010). Calibration was completed by using traditional trial-and-error methods and automated parameter-estimation techniques. The model adequately reproduces the measured time-series groundwater levels and daily streamflows. At well observation points, the mean difference between simulated and measured hydraulic heads is 7 feet with a root-mean-square error divided by the total difference in water levels of 4.7 percent. Simulated streamflow was compared to measured streamflow at the USGS streamflow-gaging station-Chamokane Creek below Falls, near Long Lake (12433200). Annual differences between measured and simulated streamflow for the site ranged from -63 to 22 percent. Calibrated model output includes a 31-year estimate of monthly water budget components for the hydrologic system. Five model applications (scenarios) were completed to obtain a better understanding of the relation between groundwater pumping and surface-water resources. The calibrated transient model was used to evaluate: (1) the connection between the upper- and middle-basin groundwater systems, (2) the effect of surface-water and groundwater uses in the middle basin, (3) the cumulative impacts of claims registry use and permit-exempt wells on Chamokane Creek streamflow, (4) the frequency of regulation due to impacted streamflow, and (5) the levels of domestic and stockwater use that can be regulated. The simulation results indicated that streamflow is affected by existing groundwater pumping in the upper and middle basins. Simulated water-management scenarios show streamflow increased relative to historical conditions as groundwater and surface-water withdrawals decreased.
Application of Jason-2/3 Altimetry for Virtual Gauging and Flood Forecasting in Mekong Basin
NASA Astrophysics Data System (ADS)
Lee, H.; Hossain, F.; Okeowo, M. A.; Nguyen, L. D.; Bui, D. D.; Chang, C. H.
2016-12-01
Vietnam suffers from both flood and drought during the rainy and dry seasons, respectively, due to its highly varying surface water resources. However, the National Center for Water Resources Planning and Investigation (NAWAPI) states that only 7 surface water monitoring stations have been constructed in Central and Highland Central regions with 100 station planned to be constructed by 2030 throughout Vietnam. For the Mekong Delta (MD), the Mekong River Commission (MRC) provides 7-day river level forecasting, but only at the two gauge stations located near the border between Cambodia and Vietnam (http://ffw.mrcmekong.org/south.htm). In order to help stakeholder agencies monitor upstream processes in the rivers and manage their impacts on the agricultural sector and densely populated delta cities, we, first of all, construct the so-called virtual stations throughout the entire Mekong River using the fully automated river level extraction tool with Jason-2/3 Geophysical Research Record (GDR) data. Then, we discuss the potentials and challenges of river level forecasting using Jason-2/3 Interim GDR (IGDR) data, which has 1 - 2 days of latency, over the Mekong River. Finally, based on our analyses, we propose a forecasting system for the Mekong River by drawing from our experience in operationalizing Jason-2 altimetry for Bangladesh flood forecasting.
Laboratory-based geoelectric monitoring of water infiltration in consolidated ground
NASA Astrophysics Data System (ADS)
Yang, Lining; Sun, Qiang; Yang, Haiping
2018-04-01
Infiltration usually plays a significant role in construction failures and transfer of contaminants. Therefore, it is very important to monitor underground water migration. In this study, a soil infiltration experiment was carried out using an indoor model test. The water infiltration characteristics were recorded and analyzed based on the response of the geoelectric field, including the primary field potential, self-potential, excitation current and apparent resistivity. The phreatic water surface and the infiltration velocity were determined. The inversion results were compared with direct observations. The results showed that the changes in the geoelectric field parameters explain the principles of groundwater flow. The infiltration velocity and the phreatic surface can be determined based on the primary field potential response and the excitation current. When the phreatic surface reached the location of the electrodes, the primary field potential and self-potential decreased rapidly whereas the excitation current increased rapidly. The height of the phreatic surface and the infiltration time exhibited a linear relationship for both the observation data and the calculations of the excitation current. The apparent resistivity described the infiltration status in the soil and tracked the phreatic surface accurately.
Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah
Kenney, Terry A.; Freeman, Michael L.
2011-01-01
The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.
A new device for collecting time-integrated water samples from springs and surface water bodies
Panno, S.V.; Krapac, I.G.; Keefer, D.A.
1998-01-01
A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.
2007-07-01
waste, or solid waste management would be expected with implementation of the no-action alternative. Soils and Water. Impacts to soils and water...resources would be negligible. Construction would disturb about 2.5 acres, but best management practices such as silt fencing and soil surface watering...Intergovernmental Coordination for Environmental Planning tpy U.S. tons per year United States IWMP Integrated Waste Management Plan USACE United States
Environmental Assessment of the Relocation and Construction of a Military Working Dog (MWD) Kennel
2006-12-01
specified area to function. Components include transportation and circulation (i.e., movement of vehicles), utilities, solid waste handling, and...sites to appropriate receiving surface waters. For several reasons, storm water systems can employ a variety of devices to slow the movement of water...football field) Fence 3,600 meters 05 CDCII Preschool Playground 8,800 05 CDCII Pretoddler Playground 5,225 05 CDCII Toddler Playground 6,450 05
The assessment of waters ecological state of the Crimea coastal near high-rise construction zones
NASA Astrophysics Data System (ADS)
Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran
2018-03-01
The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.
NASA Astrophysics Data System (ADS)
Kebede, Seifu; Abdalla, Osman; Sefelnasr, Ahmed; Tindimugaya, Callist; Mustafa, Osman
2017-05-01
Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.
Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments
Hirai, Miho; Nishi, Shinro; Tsuda, Miwako; Sunamura, Michinari; Takaki, Yoshihiro; Nunoura, Takuro
2017-01-01
Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA. PMID:29187708
Rewis, D.L.
1995-01-01
A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.
Performance specification for high performance concrete overlays on bridges.
DOT National Transportation Integrated Search
2004-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.
Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W
2014-01-01
One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.
2006-04-01
Interagency Working Group on Environmental Justice defines adverse as “having deleterious effects on human health or the environment that is significant...Drinking water for Scott AFB is provided by the Illinois-American Water Company and no potable water wells are located on the installation. As a result...Environment Scott Air Force Base, Illinois April 2006 Illinois-American Water Company uses the Mississippi River as its source of drinking water and
Andersen, Douglas C.
2007-01-01
A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.
Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S
2005-08-16
The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.
Land Capability Potential Index (LCPI) for the Lower Missouri River Valley
Jacobson, Robert B.; Chojnacki, Kimberly A.; Reuter, Joanna M.
2007-01-01
The Land Capability Potential Index (LCPI) was developed to serve as a relatively coarse-scale index to delineate broad land capability classes in the valley of the Lower Missouri River. The index integrates fundamental factors that determine suitability of land for various uses, and may provide a useful mechanism to guide land-management decisions. The LCPI was constructed from integration of hydrology, hydraulics, land-surface elevations, and soil permeability (or saturated hydraulic conductivity) datasets for an area of the Lower Missouri River, river miles 423–670. The LCPI estimates relative wetness based on intersecting water-surface elevations, interpolated from measurements or calculated from hydraulic models, with a high-resolution land-surface elevation dataset. The potential for wet areas to retain or drain water is assessed using soil-drainage classes that are estimated from saturated hydraulic conductivity of surface soils. Terrain mapping that delineates areas with convex, concave, and flat parts of the landscape provides another means to assess tendency of landscape patches to retain surface water.
NASA Astrophysics Data System (ADS)
Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.
2017-12-01
The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.
Woolfenden, Linda R.; Nishikawa, Tracy
2014-01-01
Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, the cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, the town of Windsor, the California American Water Company, and the County of Sonoma, undertook development of a fully coupled groundwater and surface-water model to better understand and to help manage the hydrologic resources in the Santa Rosa Plain watershed. The purpose of this report is to (1) describe the construction and calibration of the fully coupled groundwater and surface-water flow model for the Santa Rosa Plain watershed, referred to as the Santa Rosa Plain hydrologic model; (2) present results from simulation of the Santa Rosa Plain hydrologic model, including water budgets, recharge distributions, streamflow, and the effect of pumping on water-budget components; and (3) present the results from using the model to evaluate the potential hydrologic effects of climate change and variability without pumpage for water years 2011-99 and with projected pumpage for water years 2011-40.
Origin of 1/f noise in hydration dynamics on lipid membrane surfaces
Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji
2015-01-01
Water molecules on lipid membrane surfaces are known to contribute to membrane stability by connecting lipid molecules and acting as a water bridge. Although water structures and diffusivities near the membrane surfaces have been extensively studied, hydration dynamics on the surfaces has remained an open question. Here we investigate residence time statistics of water molecules on the surface of lipid membranes using all-atom molecular dynamics simulations. We show that hydration dynamics on the lipid membranes exhibits 1/f noise. Constructing a dichotomous process for the hydration dynamics, we find that residence times in each state follow a power-law with exponential cutoff and that the process can be regarded as a correlated renewal process where interoccurrence times are correlated. The results imply that the origin of the 1/f noise in hydration dynamics on the membrane surfaces is a combination of a power-law distribution with cutoff of interoccurrence times of switching events and a long-term correlation between the interoccurrence times. These results suggest that the 1/f noise attributed to the correlated renewal process may contribute to the stability of the hydration layers and lipid membranes. PMID:25743377
Trends in Streamflow Characteristics in Hawaii, 1913-2002
Oki, Delwyn S.
2004-01-01
The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. In Hawaii, surface-water resources are developed for both offstream uses (for example, drinking water, agriculture, and industrial uses) and instream uses (for example, maintenance of habitat and ecosystems, recreational activities, aesthetic values, maintenance of water quality, conveyance of irrigation and domestic water supplies, and protection of traditional and customary Hawaiian rights). Possible long-term trends in streamflow characteristics have important implications for water users, water suppliers, resource managers, and citizens in the State. Proper management of Hawaii's streams requires an understanding of long-term trends in streamflow characteristics and their potential implications. Effects of long-term downward trends in low flows in streams include potential loss of habitat for native stream fauna and reduced water availability for offstream and instream water uses. Effects of long-term upward trends in high flows in streams include construction of bridges and water-conveyance structures that are potentially unsafe if they are not designed with proper consideration of trends in high flows.
Torak, Lynn J.; Crilley, Dianna M.; Painter, Jaime A.
2006-01-01
Hydrogeologic data and water-chemistry analyses indicate that Lake Seminole leaks into the Upper Floridan aquifer near Jim Woodruff Lock and Dam, southwestern Georgia and northwestern Florida, and that ground water enters Lake Seminole along upstream reaches of the lake's four impoundment arms (Chattahoochee and Flint Rivers, Spring Creek, and Fishpond Drain). Written accounts by U.S. Army Corps of Engineers geologists during dam construction in the late 1940s and early 1950s, and construction-era photographs, document karst-solution features in the limestone that comprise the lake bottom and foundation rock to the dam, and confirm the hydraulic connection of the lake and aquifer. More than 250 karst features having the potential to connect the lake and aquifer were identified from preimpoundment aerial photographs taken during construction. An interactive map containing a photomosaic of 53 photographic negatives was orthorectfied to digital images of 1:24,000-scale topographic maps to aid in identifying karst features that function or have the potential to function as locations of water exchange between Lake Seminole and the Upper Floridan aquifer. Some identified karst features coincide with locations of mapped springs, spring runs, and depressions that are consistent with sinkholes and sinkhole ponds. Hydrographic surveys using a multibeam echosounder (sonar) with sidescan sonar identified sinkholes in the lake bottom along the western lakeshore and in front of the dam. Dye-tracing experiments indicate that lake water enters these sinkholes and is transported through the Upper Floridan aquifer around the west side of the dam at velocities of about 500 feet per hour to locations where water 'boils up' on land (at Polk Lake Spring) and in the channel bottom of the Apalachicola River (at the 'River Boil'). Water discharging from Polk Lake Spring joins flow from a spring-fed ground-water discharge zone located downstream of the dam; the combined flow disappears into a sinkhole located on the western floodplain of the river and is transmitted through the Upper Floridan aquifer, eventually discharging to the Apalachicola River at the River Boil. Acoustic Doppler current profiling yielded flow estimates from the River Boil in the range from about 140 to 220 cubic feet per second, which represents from about 1 to 3 percent of the average daily flow in the river. Binary mixing-model analysis using naturally occurring isotopes of oxygen and hydrogen (oxygen-18 and deuterium) indicates that discharge from the River Boil consists of a 13-to-1 ratio of lake water to ground water and that other sources of lake leakage and discharge to the boil probably exist. Analyses of major ions, nutrients, radon-222, and stable isotopes of hydrogen and oxygen contained in water samples collected from 29 wells, 7 lake locations, and 5 springs in the Lake Seminole area during 2000 indicate distinct chemical signatures for ground water and surface water. Ground-water samples contained higher concentrations of calcium and magnesium, and higher alkalinity and specific conductance than surface-water samples, which contained relatively high concentrations of total organic carbon and sulfate. Solute and isotopic tracers indicate that, from May to October 2000, springflow exhibited more ground-water qualities (high specific conductance, low dissolved oxygen, and low temperature) than surface water; however, the ratio of ground water to surface water of the springs was difficult to quantify from November to April because of reduced springflow and rapid mixing of springflow and lake water during sampling. The saturation index of calcite in surface-water samples indicates that while surface water is predominately undersaturated with regard to calcite year-round, a higher potential for dissolution of the limestone matrix exists from late fall through early spring than during summer. The relatively short residence time (5-7 hours) and rapid flow velocity
Groundwater conditions in Georgia, 2012–14
Peck, Michael F.; Painter, Jaime A.
2016-12-07
The U.S. Geological Survey collects groundwater data and conducts studies to monitor hydrologic conditions, better define groundwater resources, and address problems related to water supply, water use, and water quality. In Georgia, water levels were monitored continuously at 181 wells during calendar year 2012, 185 wells during calendar year 2013, and at 171 wells during calendar year 2014. Because of missing data or short periods of record (less than 3 years) for several of these wells, a total of 164 wells are discussed in this report. These wells include 17 in the surficial aquifer system, 18 in the Brunswick aquifer system and equivalent sediments, 68 in the Upper Floridan aquifer, 15 in the Lower Floridan aquifer and underlying units, 10 in the Claiborne aquifer, 1 in the Gordon aquifer, 11 in the Clayton aquifer, 16 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 6 in crystalline-rock aquifers. Data from the well network indicate that water levels generally rose during the 2012 through 2014 calendar-year period, with water levels rising in 151 wells, declining in 12, and remained about the same in 1. Water levels declined over the long-term period of record at 94 wells, increased at 60 wells, and remained relatively constant at 10 wells.In addition to continuous water-level data, periodic water-level measurements were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in the following areas in Georgia: the Brunswick-Glynn County area during August 2012 and October 2014 and in the Albany-Dougherty County area during November 2012 and November 2014. Periodic water-level measurements were also collected and used to construct potentiometric surface maps for the Cretaceous aquifer system in the Augusta-Richmond County area during August 2012 and July 2014. In general, water levels in these areas were higher during 2014 than during 2012; however, the configuration of the potetiometric surface in each of the areas showed little change.In the Brunswick area, maps showing chloride concentration of water in the Upper Floridan aquifer (constructed using data collected from 25 wells during August 2012 and from 32 wells during October 2014) indicate that chloride concentrations remained above the U.S. Environmental Protection Agency's secondary drinking-water standard in an approximately 2-square-mile area. During calendar years 2012 through 2014, chloride concentrations generally increased in over 90 percent of the wells sampled with a maximum increase of 410 milligrams per liter in a well located in the north-central part of the Brunswick area.
Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.
2008-01-01
Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic conditions.
NASA Astrophysics Data System (ADS)
Ricko, M.; Birkett, C. M.; Beckley, B. D.
2017-12-01
The NASA/USDA Global Reservoir and Lake Monitor (G-REALM) offers multi-mission satellite radar altimetry derived surface water level products for a subset of large reservoirs, lakes, and wetlands. These products complement the in situ networks by providing stage information at un-gauged locations, and filling existing data gaps. The availability of both satellite-based rainfall (e.g., TRMM, GPCP) and surface water level products offers great opportunities to estimate and monitor additional hydrologic properties of the lake/reservoir systems. A simple water balance model relating the net freshwater flux over a catchment basin to the lake/reservoir level has been previously utilized (Ricko et al., 2011). The applicability of this approach enables the construction of a longer record of surface water level, i.e. improving the climate data record. As instrument technology and data availability evolve, this method can be used to estimate the water level of a greater number of water bodies, and a greater number of much smaller targets. In addition, such information can improve water balance estimation in different lake, reservoir, wetland, and river systems, and be very useful for assessment of improved prediction of surface water availability. Connections to climatic variations on inter-annual to inter-decadal time-scales are explored here, with a focus on a future ability to predict changes in storage volume for water resources or natural hazards concerns.
NASA Astrophysics Data System (ADS)
Akin, Mutluhan
2013-03-01
This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.
Van Horn, Richard; Fields, F.K.
1974-01-01
In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may provide a source of water for domestic or stock use but are undesirable if they appear in a foundation excavation for a building. Thus, the location of areas that may be affected by floods and other surface water is important to people concerned with land-use planning, zoning, and legislation, and with the environment in which we must live.
Chip seal design and specifications : final report.
DOT National Transportation Integrated Search
2016-12-01
Chip seals or seal coats, are a pavement preservation method constructed using a layer of asphalt binder that is covered by a uniformly graded aggregate. The benefits of chip seal include: sealing surface cracks, keeping water from penetrating the su...
Iron and copper release in drinking-water distribution systems.
Shi, Baoyou; Taylor, James S
2007-09-01
A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.
McManus, B.C.
1995-01-01
A map showing ground-water levels in part of Lower Providence Township, Montgomery County, Pennsylvania, was constructed from water levels measured in 62 wells from May and June 1994. Observed water-level altitudes range from 60 feet above sea level near the Betzwood Picnic Area to 187 feet above sea level near the intersection of Egypt Road and Rittenhouse Road in Lower Providence Township.
Orem, William H.; Swarzenski, Peter W.; McPherson, Benjamin F.; Hedgepath, Marion; Lerch, Harry E.; Reich, Christopher; Torres, Arturo E.; Corum, Margo D.; Roberts, Richard E.
2007-01-01
The Loxahatchee River and Estuary are small, shallow, water bodies located in southeastern Florida. Historically, the Northwest Branch (Fork) of the Loxahatchee River was primarily a freshwater system. In 1947, the river inlet at Jupiter was dredged for navigation and has remained permanently open since that time. Drainage patterns within the basin have also been altered significantly due to land development, road construction (e.g., Florida Turnpike), and construction of the C-18 and other canals. These anthropogenic activities along with sea level rise have resulted in significant adverse impacts on the ecosystem over the last several decades, including increased saltwater encroachment and undesired vegetation changes in the floodplain. The problem of saltwater intrusion and vegetation degradation in the Loxahatchee River may be partly induced by diminished freshwater input, from both surface water and ground water into the River system. The overall objective of this project was to assess the seasonal surface water and groundwater interaction and the influence of the biogeochemical characteristics of shallow groundwater and porewater on vegetation health in the Loxahatchee floodplain. The hypothesis tested are: (1) groundwater influx constitutes a significant component of the overall flow of water into the Loxahatchee River; (2) salinity and other chemical constituents in shallow groundwater and porewater of the river floodplain may affect the distribution and health of the floodplain vegetation.
The Contribution of Reservoirs to Global Land Surface Water Storage Variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tian; Nijssen, Bart; Gao, Huilin
Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variationsmore » is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.« less
Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji
2015-12-02
To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.
NASA Astrophysics Data System (ADS)
Goodrich, J. P.; Cayan, D. R.
2017-12-01
California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before surface water data are compiled. We can then develop groundwater pumping and storage predictions in real time, and make them available to water managers. In addition, we are working toward future projections by coupling the regional CVHM to downscaled GCM output to assess future scenarios of water availability in this critical region.
Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques
Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji
2016-01-01
Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices. PMID:27046771
Water Availability for the Western United States - Key Scientific Challenges
Anderson, Mark Theodore; Woosley, Lloyd H.
2005-01-01
In the Western United States, the availability of water has become a serious concern for many communities and rural areas. Near population centers, surface-water supplies are fully appropriated, and many communities are dependent upon ground water drawn from storage, which is an unsustainable strategy. Water of acceptable quality is increasingly hard to find because local sources are allocated to prior uses, depleted by overpumping, or diminished by drought stress. Some of the inherent characteristics of the West add complexity to the task of securing water supplies. The Western States, including the arid Southwest, have the most rapid population growth in the United States. The climate varies widely in the West, but it is best known for its low precipitation, aridity, and drought. There is evidence that the climate is warming, which will have consequences for Western water supplies, such as increased minimum streamflow and earlier snowmelt events in snow-dominated basins. The potential for departures from average climatic conditions threatens to disrupt society and local to regional economies. The appropriative rights doctrine governs the management of water in most Western States, although some aspects of the riparian doctrine are being incorporated. The 'use it or lose it' provisions of Western water law discourage conservation and make the reallocation of water to instream environmental uses more difficult. The hydrologic sciences have defined the interconnectedness of ground water and surface water, yet these resources are still administered separately by most States. The definition of water availability has been expanded to include sustaining riparian ecosystems and individual endangered species, which are disproportionately represented in the Western States. Federal reserved rights, common in the West because of the large amount of Federal land, exist with quite senior priority dates whether or not water is currently being used. A major challenge for water users in the West is that these reserved rights may supersede other existing users. The minimum amount of water required, however, to sustain native peoples, a riparian system, or an endangered species eventually will need to be known in order to manage the available water supply. Periodic inventory and assessment of the amounts and trends of water available in surface water and ground water are needed to support water management. There is a widespread perception that the amount of available water is diminishing with time. This and other perceptions about water availability should be replaced by objective data and analysis. Some data are presented here for the major Western rivers that show that flows are not decreasing in most streams and rivers in the West. Systematic information is lacking to make broad assessments of ground-water availability, but available data for specific aquifers indicate that these aquifers are being depleted, especially near population centers. The complexity added to the issue of Western water availability by these and other factors gives rise to a significant role of science. Science has played a role in support of Western water development from the beginning, and the role has evolved and changed over time as society's values have changed. In this report, the role of science is discussed in three phases: (1) development and construction, (2) consequences and environmental awareness, and (3) sustainability. The development and construction phase includes some historical accounting of water development in the West and shows how some precedents set in those early days are still applied today. Science has played an important role in the second phase by objectively pointing out the consequences of this development and construction phase, such as the effects from converting rivers to reservoirs, the effects of ground-water pumping on surface water in streams, land-surface subsidence, and the changes in water quality brought about by the dispo
Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.
Brix, H; Koottatep, T; Laugesen, C H
2007-01-01
The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.
Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.
1986-01-01
The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, D.L.; Stark, J.R.
1990-01-01
A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifermore » caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow.« less
Water waves generated by impulsively moving obstacle
NASA Astrophysics Data System (ADS)
Makarenko, Nikolay; Kostikov, Vasily
2017-04-01
There are several mechanisms of tsunami-type wave formation such as piston displacement of the ocean floor due to a submarine earthquake, landslides, etc. We consider simplified mathematical formulation which involves non-stationary Euler equations of infinitely deep ideal fluid with submerged compact wave-maker. We apply semi-analytical method [1] based on the reduction of fully nonlinear water wave problem to the integral-differential system for the wave elevation together with normal and tangential fluid velocities at the free surface. Recently, small-time asymptotic solutions were constructed by this method for submerged piston modeled by thin elliptic cylinder which starts with constant acceleration from rest [2,3]. By that, the leading-order solution terms describe several regimes of non-stationary free surface flow such as formation of inertial fluid layer, splash jets and diverging waves over the obstacle. Now we construct asymptotic solution taking into account higher-order nonlinear terms in the case of submerged circular cylinder. The role of non-linearity in the formation mechanism of surface waves is clarified in comparison with linear approximations. This work was supported by RFBR (grant No 15-01-03942). References [1] Makarenko N.I. Nonlinear interaction of submerged cylinder with free surface, JOMAE Trans. ASME, 2003, 125(1), 75-78. [2] Makarenko N.I., Kostikov V.K. Unsteady motion of an elliptic cylinder under a free surface, J. Appl. Mech. Techn. Phys., 2013, 54(3), 367-376. [3] Makarenko N.I., Kostikov V.K. Non-linear water waves generated by impulsive motion of submerged obstacle, NHESS, 2014, 14(4), 751-756.
Entiat 4Mile WELLs Completion Report, 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowksi, Richard
2007-01-01
The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen overmore » a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).« less
Scholz, C; Jones, T G; West, M; Ehbair, A M S; Dunn, C; Freeman, C
2016-09-01
The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in water quality (nutrient removal) of a nearby drinking water reservoir. Inflow and outflow of the Free Water Surface (FWS) CW were monitored on a weekly basis and over a period of 6 months. Physicochemical parameters including pH, conductivity and dissolved oxygen (DO) were measured, as well as nutrients and dissolved organic and inorganic carbon (DOC, DIC) concentration. The CW was seen to contribute to water quality improvement; results show that nutrient removal took place within weeks after construction. It was found that 72 % of initial nitrate (N03 (-)), 53 % of initial phosphate (PO4 (3-)) and 35 % of initial biological oxygen demand (BOD) were removed, calculated as a total over the whole sampling period. From our study, it can be concluded that while inorganic nutrients do decline in CWs, the DOC outputs increases. This may suggest that CWs represent a source for DOC. To assess the carbon in- and output a C budget was calculated.
Providing Data and Modeling to Help Manage Water Supplies
Nickles, James
2008-01-01
The Sonoma County Water Agency (SCWA) and other local water purveyors have partnered with the U.S. Geological Survey (USGS) to assess hydrologic conditions and to quan-tify the county-wide interconnections between surface water and ground water. Through this partnership, USGS scientists have completed assessments of the geohydrology and geochemistry of the Sonoma and Alexander Valley ground-water basins. Now, the USGS is constructing a detailed ground-water flow model of the Santa Rosa Plain. It will be used to help identify strategies for surface-water/ground-water management and help to ensure long-term viability of the water supply. The USGS is also working with the SCWA to help meet future demand in the face of possible new restrictions on its main source of water, the Russian River. SCWA draws water from the alluvial aquifer underlying and adjacent to the Russian River and may want to extend riverbank filtration facilities to new areas. USGS scientists are conducting research to charac-terize riverbank filtration processes and changes in water quality during reduced river flows.
Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method
NASA Astrophysics Data System (ADS)
Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong
2018-05-01
With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.
Using computational modeling of river flow with remotely sensed data to infer channel bathymetry
Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Shimizu, Y.
2012-01-01
As part of an ongoing investigation into the use of computational river flow and morphodynamic models for the purpose of correcting and extending remotely sensed river datasets, a simple method for inferring channel bathymetry is developed and discussed. The method is based on an inversion of the equations expressing conservation of mass and momentum to develop equations that can be solved for depth given known values of vertically-averaged velocity and water-surface elevation. The ultimate goal of this work is to combine imperfect remotely sensed data on river planform, water-surface elevation and water-surface velocity in order to estimate depth and other physical parameters of river channels. In this paper, the technique is examined using synthetic data sets that are developed directly from the application of forward two-and three-dimensional flow models. These data sets are constrained to satisfy conservation of mass and momentum, unlike typical remotely sensed field data sets. This provides a better understanding of the process and also allows assessment of how simple inaccuracies in remotely sensed estimates might propagate into depth estimates. The technique is applied to three simple cases: First, depth is extracted from a synthetic dataset of vertically averaged velocity and water-surface elevation; second, depth is extracted from the same data set but with a normally-distributed random error added to the water-surface elevation; third, depth is extracted from a synthetic data set for the same river reach using computed water-surface velocities (in place of depth-integrated values) and water-surface elevations. In each case, the extracted depths are compared to the actual measured depths used to construct the synthetic data sets (with two- and three-dimensional flow models). Errors in water-surface elevation and velocity that are very small degrade depth estimates and cannot be recovered. Errors in depth estimates associated with assuming water-surface velocities equal to depth-integrated velocities are substantial, but can be reduced with simple corrections.
Use of Constructed Wetlands for Polishing Recharge Wastewater
NASA Astrophysics Data System (ADS)
Cardwell, W.
2009-12-01
The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter pharmaceuticals such as acetaminophen (Tylenol) and ibuprofen. 3. Evaluate the use of different wetland plants and their treatment characteristics. 4. Evaluate the effectiveness of the wetlands to allow treated to water to recharge local into a local groundwater aquifer.
Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun
2013-01-01
Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water.
Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa
2010-02-01
The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.
Jeong, Seung-Woo; An, Youn-Joo
2014-01-01
This study suggested the first Korean site-specific ecological surface water quality criteria for the protection of ecosystems near an artillery range at a Korean military training facility. Surface water quality (SWQ) criteria in Korea address human health protection but do not encompass ecological criteria such as limits for metals and explosives. The first objective of this study was to derive site-specific SWQ criteria for the protection of aquatic ecosystems in Hantan River, Korea. The second objective was to establish discharge criteria for the artillery range to protect the aquatic ecosystems of Hantan River. In this study, we first identified aquatic organisms living in the Hantan River, including fishes, reptiles, invertebrates, phytoplankton, zooplankton, and amphibians. Second, we collected ecotoxicity data for these aquatic organisms and constructed an ecotoxicity database for Cd, Cu, Zn, TNT, and RDX. This study determined the ecological maximum permissible concentrations for metals and explosives based on the ecotoxicity database and suggested ecological surface water quality criteria for the Hantan River by considering analytical detection limits. Discharge limit criteria for the shooting range were determined based on the ecological surface water quality criteria suggested for Hantan River with further consideration of the dilution of the contaminants discharged into the river.
Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.
Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B
2016-02-15
Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.
Potentiometric surface of the Ozark aquifer in northern Arkansas, 2004
Schrader, T.P.
2005-01-01
The Ozark aquifer in northern Arkansas comprises dolomites, limestones, sandstones, and shales of Late Cambrian to Middle Devonian age, and ranges in thickness from approximately 1,100 feet to more than 4,000 feet. Hydrologically, the aquifer is complex, characterized by discrete and discontinuous flow components with large variations in permeability. The potentiometric-surface map, based on 59 well and 5 spring water-level measurements collected in 2004 in Arkansas and Missouri, indicates maximum water-level altitudes of about 1,188 feet in Benton County and minimum water-level altitudes of about 116 feet in Randolph County. Regionally, the flow within the aquifer is to the south and southeast in the eastern and central part of the study area and to the northwest and north in the western part of the study area. Comparing the 2004 potentiometric- surface map with a predevelopment potentiometricsurface map indicates general agreement between the two surfaces. Potentiometric-surface differences could be attributed to differences in pumping related to changing population from 1990 to 2000, change in source for public supplies, processes or water use outside the study area, or differences in data-collection or map-construction methods.
Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian
2014-05-01
The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.
U.S. Constructed Area Approaches the Size of Ohio
NASA Astrophysics Data System (ADS)
Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.
2004-06-01
The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.
2007-05-01
Reelfoot Lake and at Dale Hollow Reservoir. However, bald eagles may occur on almost any waterway in the sta te (Tennessee Wildlife Resources Agency...include surface waters ( lakes , rivers, s treams, and springs) and g roundwater. Arnold AFB and the VTS-T lie within the Duck River and the Elk River...Authority. TUB purchases water from the Duck River Utility Commission, whose water source is Normandy Lake . Sewage is treated in a wastewater treatment
McManus, B.C.; Schreffler, C.L.; Rowland, C.J.
1994-01-01
A map showing ground-water levels in Buckingham and Wrightstown Townships, Bucks County, Pennsylvania, was constructed from water levels measured in 251 wells and from 3 reported elevations of quarry sumps from June 1992 through January 1993. Observed water-level altitudes range from 459 feet above sea level along Burnt House Hill Road, south- west of Mechanicsville, to 10 feet above sea level along Swamp Road and Route 232, near Neshaminy Creek in Wrightstown Township.
1990-09-01
and grouting were performed from the rock surface using expandable-air packers . Grouting was performed by injecting, into a hole, a neat grout ( cement ...Water & cement type I & II Mix: ........................... 6:1 to 0.75:1 Connection: .................... Air packer , close to surface...pressure tested then backfilled. The holes were hydraulic-pressure tested with a single air- expanding packer near the surface at 5 psi gauge pressure. If
Liu, Junzhuo; Wu, Yonghong; Wu, Chenxi; Muylaert, Koenraad; Vyverman, Wim; Yu, Han-Qing; Muñoz, Raúl; Rittmann, Bruce
2017-10-01
Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Matamoros, Víctor; Salvadó, Victòria
2012-01-01
The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J. E.; Jackson, L. M.
2001-10-13
This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatmentmore » of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.« less
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
A Water Rich Mars Surface Mission Scenario
NASA Technical Reports Server (NTRS)
Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin
2017-01-01
The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well is assessed as a likely method for extracting water from these bodies of ice. The figure below is a sample of results from this assessment that will be discussed.
NASA Astrophysics Data System (ADS)
Rajib, Md. Mahadi; Farzeen, Parisa; Ali, Mohammad
2017-12-01
In recent years, nanobubble technology has drawn great attention due to its extensive incorporation to substantial aspects of science and technology such as water treatment, drug delivery enhancement to cells, solvent and nutritional supplements manufacturing and many others. Bulk nanobubbles may be present in most aqueous solutions, possibly being constantly created by cosmic radiation and agitation and surface nanobubbles are present at most surfaces [1,2]. But, for utilizing these nanobubbles in a definitive way it's important to know whether an added amount of solution making substance has constructive or adverse effect on the nanobubble. In this work, the change of number density of nanobubbles in ethanol-water solution was studied by varying the ethanol concentration.
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital, and operations and maintenance (O&M) costs for commonly used best management practices (BMPs). Total BMP volume and/or surface area is used to predict these costs. Engineering News Record (ENR) construction cost index was used t...
Pugh, Aaron L.
2010-01-01
Eocene-age sand beds near the base of the Cockfield Formation of Claiborne Group constitute the aquifer known locally as the Cockfield aquifer. Upper-Paleocene age sand beds within the lower parts of the Wilcox Group constitute the aquifer known locally as the Wilcox aquifer. In 2005, reported water withdrawals from the Cockfield aquifer in Arkansas totaled 16.1 million gallons per day, while reported water withdrawals from the Wilcox aquifer in Arkansas totaled 27.0 million gallons per day. Major withdrawals from these units were for industrial and public water supplies with lesser but locally important withdrawals for commercial, domestic, and agricultural uses. During February 2009, 56 water-level measurements were made in wells completed in the Cockfield aquifer and 57 water-level measurements were made in wells completed in the Wilcox aquifer. The results from the 2009 water-level measurements are presented in potentiometric-surface maps and in combination with previous water-level measurements. Trends in water-level change over time within the two aquifers are investigated using water-level difference maps and well hydrographs. Water-level difference maps were constructed for each aquifer using the difference between depth to water measurements made in 2003 to 2009. Well hydrographs for each aquifer were constructed for wells with 20 or more years of historical water-level data. The hydrographs were evaluated individually using linear regression to calculate the annual rise or decline in water levels, and by aggregating the regression results by county and statistically summarizing for the range, mean, and median water-level change in each county. The 2009 potentiometric surface of the Cockfield aquifer map indicates the regional direction of groundwater flow generally towards the east and southeast, except in two areas of intense groundwater withdrawals that have developed into cones of depression. The lowest water-level altitude measured was 43 feet and the highest water-level altitude measured was 351 feet. A water-level difference map was constructed from 54 wells completed in the Cockfield aquifer within Arkansas. The largest rise in water level was 14.9 feet and the largest decline was 27.4 feet. Seven wells had a rise in water level, and the remaining 47 wells had a decline in water level. Hydrographs for 33 wells completed in the Cockfield aquifer were developed. Hydrographs indicate water-level changes in individual wells ranged from rises of 0.33 feet per year to declines of 1.21 feet per year over the 20-year period (1990-2009). County summaries of the linear regression analysis indicate Cleveland and Columbia Counties have mean annual rises. Arkansas, Ashley, Bradley, Calhoun, Chicot, Desha, Drew, Lincoln, and Union Counties have mean annual declines. The potentiometric surface for the Wilcox aquifer is presented using two maps, one for a southern area and another for a northeastern area, because of the absence of water-level data in the central part of the State. The direction of groundwater flow in the southern area is generally the east, except around two cones of depression and around two mounds of elevated water levels. Water-level altitudes in the southern area range from 147 feet to 400 feet. The direction of groundwater flow in the northeastern area is generally to the south and southeast except in an area of intense groundwater withdrawals that has altered the flow to a westerly direction. Two water-level difference maps were constructed using water-level altitudes measured in 2003 to 2009 from 53 wells completed in the Wilcox aquifer within southern and northeastern Arkansas. In the southern area the largest rise in water level was 16.0 feet and the largest decline was 17.7 feet. Eight wells in the southern area had rising water levels and the remaining five wells had declining water levels. In the northeastern area, the largest rise in water level was 1.3 feet and the larg
NASA Astrophysics Data System (ADS)
Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li
2017-08-01
The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.
Ice as a Construction Material
NASA Technical Reports Server (NTRS)
Zuppero, Anthony; Lewis, J.
1998-01-01
This presentation shows how water and ice can enable exceptionally simple ways to construct structures in deep space. Practicality is underscored by applying advanced tank methods being developed for Mars missions. Water or ice is now known to be present or abundant on most objects in the solar system, starting with the planet Mercury. Thermal processes alone can be used to melt ice . The cold of space can refreeze water back into ice. The anomalous low vapor pressure of water, about 7 mm Hg, permits bladder containers. Tanks or bladders made with modern polymer fiber and film can exhibit very small (<0.1 %) equivalent tankage and ullage fractions and thus hold thousands of tons of water per ton bladder. Injecting water into a bladder whose shape when inflated is the desired final shape, such as a space vehicle, provides a convenient way to construct large structures. In space, structures of 1O,OOO-T mass become feasible because the bladder mass is low enough to be launched. The bladder can weigh 1OOO times less than its contents, or 10 T. The bladder would be packed like a parachute. Shaped memory materials and/or gas inflation could reestablish the desired structure shape after unpacking. The water comes from space resources. An example examines construction of torus space vehicle with 100-m nominal dimension. People would live inside the torus. A torus, like a tire on an automobile, would spin and provide synthetic gravity at its inner surface. A torus of order 100 m across would provide a gravity with gradients low enough to mitigate against vertigo.
NASA Astrophysics Data System (ADS)
Pan, Feifei; Wang, Cheng; Xi, Xiaohuan
2016-09-01
Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.
Evidence suggests water once flowed vigorously on Mars
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-10-01
"In some cases, when you do geology, a picture is worth 1000 words," Mars Science Laboratory project scientist John Grotzinger said at a 27 September news briefing to announce that imagery taken by a camera onboard NASA's Mars Curiosity rover shows evidence that water once flowed vigorously in a region on the surface of Mars. One of the pictured rock outcrops, about 10-15 centimeters thick and named Hottah after Canada's Hottah lake, "looked like somebody came along the surface of Mars with a jackhammer and lifted up a sidewalk that you might see in downtown LA in sort of a construction site," said Grotzinger, who is with the California Institute of Technology in Pasadena. "This is a rock that was formed in the presence of water, and we can characterize that water as being a vigorous flow on the surface of Mars," he said. "We were really excited about this because this is one of the reasons we were interested in coming to this landing site, because it presented from orbit quite a strong case that we would find evidence for water on the ground."
A new capture fraction method to map how pumpage affects surface water flow.
Leake, Stanley A; Reeves, Howard W; Dickinson, Jesse E
2010-01-01
All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan.
Estimating variations in global surface water storage
NASA Astrophysics Data System (ADS)
Lettenmaier, D. P.
2016-12-01
Arguably, the most dramatic advances attributable to remote sensing in the hydrologic sciences have involved the extension of knowledge about processes and state variables from the scale of field experiments to regions, continents, and the entire Earth. However, despite the availability of information about total terrestrial water storage over large areas provided by the Gravity Recovery and Climate Experiment (GRACE) mission, we still have remarkably little knowledge of the magnitude of freshwater stored at and near the land surface, and its temporal scales of variation. This is especially true with respect to freshwater storage in natural lakes and manmade reservoirs. Estimates of the amount of water that could be stored in artificial reservoirs are in the neighborhood of 15% of the mean annual runoff from the continents or around 7-8000 km3. However, while global reservoir storage was increasing through about 1980 due to filling of new reservoirs constructed in the second half of the 20th century, it is not even known whether aggregate usable reservoir storage is increasing or decreasing, due to sedimentation effects. With the advent of satellite altimeters (mostly intended to measure ocean surface topography and or the surface elevation of glaciers and ice sheets), along with improved methods for estimating space-time variations in the extent of surface waters, new opportunities have arisen to piece together estimates of storage variations of fractions approaching one-half of the global surface water storage, for periods approaching two decades in some cases. Although this ability is nascent, it offers encouragement that, with the launch of the planned Surface Water and Ocean Topography (SWOT) satellite mission in 2020, which has as a specific objective the measurement of surface water variations, climate-scale understanding of this source of variability in Earth's surface water balance may be at hand. I discuss specific examples of the technology and resulting data sets, including successes and failures.
USDA-ARS?s Scientific Manuscript database
Aluminum-based water treatment residuals (Al-WTR) have a strong affinity to sorb phosphorus. In a proof-of-concept greenhouse column study, Al-WTR was surface-applied at 0, 62, 124, and 248 Mg/ha to 15 cm of soil on top of 46 cm of sand; Al-WTR rates were estimated to capture 0, 10, 20, and 40 year...
Terrain intelligence Chita Oblast (U.S.S.R.)
,
1943-01-01
The following folio of maps and explanatory tables outlines the principal terrain features of the Chita Oblast. Each map and table is devoted to a specialized set of problems; together they cover such subjects as terrain appreciations, rivers, surface-water and ground-water supplies, construction materials, fuels, suitability for temporary roads and airfields, mineral resources, and geology. These maps and data were complied by the United States Geological Survey.
Environmental Assessment, Project MOUNTAINVIEW Facility, Buckley Air Force Base, Colorado
2011-10-01
Overall, construction and demolition activities would have the potential to result in adverse effects on surface water quality, but the development of a ... Studied in Detail This EA examines potential effects of the Proposed Action and No Action Alternative on 10 resource areas: noise, land use, air...not in a floodplain. Any potential indirect effects on floodplains would be addressed through the use of storm water best management practices
Assessing background ground water chemistry beneath a new unsewered subdivision
Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.
2005-01-01
Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.
Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.
Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J
2014-02-27
We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.
Modeling and Remote Sensing of Surface Water Dynamics in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Pokhrel, Y. N.
2017-12-01
The Mekong river is one of the most complex river systems in the world that is shared by six nations in Southeast Asia. The river still remains relatively undammed (most existing dams are in the tributaries and are small), and its hydrology today is dominated by large natural flow variations that support the highly productive agricultural and riverine ecological systems; however, this is changing due to the alterations in land use and construction of new dams both in the tributaries the mainstream (16 mainstream and 110 tributary dams are planned to be completed by 2030). Understanding the changes in surface water dynamics is therefore crucial to provide realistic future predictions of changes in downstream floodplain and riverine ecology due to the construction of dams in the upstream. In this study, we use an integrated hydrological model and remote sensing data to examine the critical role of surface water systems in modulating the river-floodplain ecology in the lower reach of the basin, with a focus on the Tonle Sap lake. We present results on the changes in the seasonality and long-term trend in river-floodplain inundation extent over the past few decades. These results provide new insights on the changing hydrology of the Mekong and important implications for potential future hydrologic changes under accelerating human activities and climate change.
Performances of Metal Concentrations from Three Permeable Pavement Infiltrates
The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...
A protocol for collecting and constructing soil core lysimeters
USDA-ARS?s Scientific Manuscript database
Leaching of nutrients from land applied fertilizers and manure used in agriculture can lead to accelerated eutrophication of surface water. Because the landscape has complex and varied soil morphology, an accompanying disparity in flow paths for leachate through the soil macropore and matrix structu...
SEMINAR PUBLICATION: DESIGN AND CONSTRUCTION OF RCRA/CERCLA FINAL COVERS
Cover systems are an essential part of all land disposal facilities. Covers control moisture infiltration from the surface into closed facilities and limit the formation of leachate and its migration to ground water. The Resource Conservation and Recovery Act (RCRA) Subparts G, K...
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital and operations and maintenance (O&M) for commonly used best management practices (BMPS). Total BMP volume and/or surface area is used to predict these costs. ENR construction cost index was used to adjust cost data to December 2000...
USDA-ARS?s Scientific Manuscript database
Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater....
Monitoring of Water-Level Fluctuation of Lake Nasser Using Altimetry Satellite Data
NASA Astrophysics Data System (ADS)
El-Shirbeny, Mohammed A.; Abutaleb, Khaled A.
2018-05-01
Apart from the Renaissance Dam and other constructed dams on the River Nile tributaries, Egypt is classified globally as a state of scarce water. Egypt's water resources are very limited and do not contribute a significant amount to its water share except the River Nile (55.5 billion m3/year). While the number of population increases every year, putting more stress on these limited resources. This study aims to use remote-sensing data to assess the change in surface area and water-level variation in Lake Nasser using remote-sensing data from Landsat-8 and altimetry data. In addition, it investigates the use of thermal data from Landsat-8 to calculate water loss based on evaporation from Lake Nasser. The eight Landsat-8 satellite images were used to study the change in surface area of Lake Nasser representing winter (January) and summer (June/July) seasons in two consecutive years (2015 and 2016). Time series analyses for 10-day temporal resolution water-level data from Jason-2/OSTM and Jason-3 altimetry was carried out to investigate water-level trends over the long term (1993 and 2016) and short term (2015-2016) in correspondence with the change of the surface area. Results indicated a shrink in the lake surface area in 2016 of approximately 14% compared to the 2015 area. In addition, the evaporation rate in the lake is very high causing a loss of approximately 20% of the total water share from the river Nile.
Hydraulic analysis of the Schoharie Creek bridge
Froehlich, David C.; Trent, Roy E.
1989-01-01
Ten people died on April 5, 1987 as a result of the collapse of two spans of a New York State Thruway bridge into the floodwaters of Schoharie Creek. The cause of the bridge failure was determined to be scour of bed material from under the foundations of piers supporting the bridge. To evaluate the hydraulic conditions that produced the scour, a two-dimensional finite element surface-water flow model was constructed. The model was used to obtain a detailed description of water-surface elevations and depth-averaged velocities within a reach that extends from about 4000 ft downstream of the bridge to about 6000 ft upstream of the bridge.
Fire ants self-assemble into waterproof rafts to survive floods
Mlot, Nathan J.; Tovey, Craig A.; Hu, David L.
2011-01-01
Why does a single fire ant Solenopsis invicta struggle in water, whereas a group can float effortlessly for days? We use time-lapse photography to investigate how fire ants S. invicta link their bodies together to build waterproof rafts. Although water repellency in nature has been previously viewed as a static material property of plant leaves and insect cuticles, we here demonstrate a self-assembled hydrophobic surface. We find that ants can considerably enhance their water repellency by linking their bodies together, a process analogous to the weaving of a waterproof fabric. We present a model for the rate of raft construction based on observations of ant trajectories atop the raft. Central to the construction process is the trapping of ants at the raft edge by their neighbors, suggesting that some “cooperative” behaviors may rely upon coercion. PMID:21518911
Strickland, Alfred Gerald
1995-01-01
Water-level measurements were made on a periodic basis in 16 wells throughout an area of about 730 square miles in Bladen and Robeson Counties, North Carolina, from September 1992 to October 1994. Water levels from the wells were used to construct a map of the potentiometric surface of the upper Cape Fear aquifer in the fall of 1994. This map can be used to infer the direction of ground-water movement in the aquifer. Withdrawals from wells at pumping centers, such as in the Tar Heel and Elizabethtown areas, has disrupted the natural pattern of ground-water flow. Ground water flows toward pumped wells resulting in cones of depression in the potentiometric surface. Water levels measured in 14 wells in 1992 and 1994 were used to estimate change in ground-water levels for the upper Cape Fear aquifer in the study area. During 1992-94, water-level declines occurred in the aquifer throughout much of the area as a result of pumping. The greatest decline was 90.6 feet in Bladen County.
NASA Astrophysics Data System (ADS)
Du Laing, G.; De Vos, R.; Vandecasteele, B.; Lesage, E.; Tack, F. M. G.; Verloo, M. G.
2008-05-01
The effect of the flood water salinity on the mobility of heavy metals was studied for intertidal sediments of the Scheldt estuary (Belgium). Soils and sediments of 4 sampling sites were flooded with water of different salinities (0.5, 2.5, and 5 g NaCl L -1). Metal concentrations were monitored in pore water and surface water. To study the potential effects of flood water salinity on metal bioavailability, duckweed ( Lemna minor) was grown in the surface water. The salinity was found to primarily enhance the mobility of Cd and its uptake by duckweed. Cadmium concentrations in pore water of soils and sediments and surrounding surface waters significantly exceeded sanitation thresholds and quality standards during flooding of initially oxidized sediments. Moreover, the effect was observed already at lower salinities of 0.5 g NaCl L -1. This implies that risks related to Cd uptake by organisms and Cd leaching to ground water are relevant when constructing flooding areas in the brackish zones of estuaries. These risks can be reduced by inducing sulphide precipitation because Cd is then immobilised as sulphide and its mobility becomes independent of flood water salinity. This could be achieved by permanently flooding the polluted sediments, because sulphates are sufficiently available in the river water of the brackish part of the estuary.
NASA Astrophysics Data System (ADS)
Wang, Hua
2018-02-01
In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.
Hydrologic data for Block Island, Rhode Island
Burns, Emily
1993-01-01
This report was compiled as part of a study to assess the hydrogeology and the quality and quantity of fresh ground water on Block Island, Rhode Island. Hydrologic data were collected on Block Island during 1988-91. The data are pre- sented in illustrations and tables. Data collec- ted include precipitation, surfae-water, ground- water, lithologic, and well-construction and dis- charge information. Precipitation data include total monthly precipitation values from 11 rain gages and water-quality analyses of 14 precipi- tation samples from one station. Surface-water data include water-level measurements at 12 ponds, water-quality data for five ponds, and field specific-conductance measurements at 56 surface- water sites (streams, ponds, and springs). Ground- water data include water-level measurements at 159 wells, water-quality data at 150 wells, and field specific-conductance data at 52 wells. Lithologic logs for 375 wells and test borings, and construc- tion and location data for 570 wells, springs, and test borings are included. In addition, the data set contains data on water quality of water samples, collected by the Rhode Island Department of Health during 1976-91, from Fresh and Sands Ponds and from wells at the Block Island Water Company well field north of Sands Pond.
A new capture fraction method to map how pumpage affects surface water flow
Leake, S.A.; Reeves, H.W.; Dickinson, J.E.
2010-01-01
All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.
Research on the Purification Effect of Aquatic Plants Based on Grey Clustering Method
NASA Astrophysics Data System (ADS)
Gu, Sudan; Du, Fuhui
2018-01-01
This paper uses the grey clustering method to evaluate the water quality level of the MingGuan constructed wetland at the import and export of artificial wetlands. Constructed wetland of Ming Guanis established on the basis of the Fuyang River’s water quality improvement, to choose suitable aquatic plants, in order to achieve the Fuyang River water purification effect. Namely TP, TN, NH3-N, DO, COD and COMMn and permanganate index are selected as clustering indicators. Water quality is divided into five grades according to the Surface Water Environmental Quality Standard (GB3838-2002) as the evaluation standard. In order to select the suitable wetland plants, the purification effect of 6 kinds of higher aquatic plants on the sewage of fuyang river was tested. one kind of plants was selected: Typha. The results show that the water quality of the section is gradually changed from V water quality to III water quality. After tartificial wetland of cycle for a long time, Typha has good purification effect. In November, water quality categories are basically concentrated in the VI, V class, may be caused by chemical decomposition of aquatic plants, should strengthen the academic research.
A Framework to Evaluate the Impact of Armourstones on the Chemical Quality of Surface Water.
Duester, Lars; Wahrendorf, Dierk-Steffen; Brinkmann, Corinna; Fabricius, Anne-Lena; Meermann, Björn; Pelzer, Juergen; Ecker, Dennis; Renner, Monika; Schmid, Harald; Ternes, Thomas A; Heininger, Peter
2017-01-01
Today, basic requirements for construction works include the protection of human health and of the environment. In the tension area between economic demands, circular flow economy and environmental safety, a link between the results from standardized leaching tests and the respective environmental quality standards must be created. To derive maximum release limits of metals and metalloids for armourstones in hydraulic engineering, this link is accomplished via a simple model approach. By treating natural materials and industrial by-products the same way, the article delivers an overview on the recent regulative situation in Europe as well as describes and discusses an innovative approach to derive maximum release limits for monolithic construction products in hydraulic engineering on a conceptual level. On a practical level, a list of test parameters is derived by connecting an extensive dataset (seven armourstone materials with five repetitions and 31 elements tested with the worldwide applied dynamic surface leaching test) with surface water quality standards and predicted no effect concentrations. Finally, the leaching tests results are compared with the envisaged maximum release limits, offering a direct comparison between natural materials and industrial by-products.
Strickland, A.G.
1999-01-01
Water-level measurements were made on a periodic basis from October 1994 through November 1998 in 17 wells that tap the upper Cape Fear aquifer. The approximately 730-square-mile study area in Bladen and Robeson Counties is in the southern Coastal Plain of North Carolina. Water-level declines occurred in the aquifer throughout much of the area as a result of pumping during this period. The greatest decline was about 42 feet in Bladen County. Water levels from the wells in the fall of 1998 were used to construct a map of the potentiometric surface of the upper Cape Fear aquifer. This map can be used to infer the direction of ground-water movement in the aquifer. Withdrawals from wells at pumping centers, such as in the Tar Heel and Elizabethtown areas in Bladen County, have caused ground water to flow toward pumped wells, resulting in cones of depression in the potentiometric surface.
Proposed water-supply investigations in Sidamo Province, Ethiopia
Phoenix, David A.
1966-01-01
The present report describes the results of an air and ground hydrologic reconnaissance of some 32,000 square kilometers in Sidamo Province of southern Ethiopia. Existing (1966) water resources developments, chiefly for livestock and village supplies, include surface reservoirs, a few drilled wells, several clusters of dug wells in the Mega area, several scattered springs, and the perennial Dawa Parma River. Surface-water reservoirs range from hand-dug ponds of a few hundred cubic meters capacity to large machine-constructed excavations built to hold 62,000 cubic meters of water. All the existing drilled wells tap saturated alluvium at depths of less than 120 meters. The dug wells tap water-bearing zones in tuffaceous lacustrine deposits or stream-channel alluvium generally at depths of less than 30 meters. The springs mostly rise from fractured Precambrian quartzite and individual discharges are all less than 75 liters per minute. The report also outlines the terms of reference for a longer term water-resources investigation of the region including staffing, housing and equipment requirements and other logistic support.
UMTRA project water sampling and analysis plan, Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.
Swain, Eric D.; Decker, Jeremy D.
2009-01-01
A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature fluctuations which affect manatee behavior. Comparison of the existing conditions simulation with the simulation incorporating restoration changes indicated that the restoration would increase the period of inundation for most of the coastal wetlands. Generally, surface-water salinity was lowered by restoration changes in most of the wetlands areas, especially during the early dry season. However, the opposite pattern was observed in the primary canal habitat for manatees, namely, the Port of the Islands. Salinities at this location tended to be moderately elevated during the dry season, and unchanged during the wet season. Water temperatures were in close agreement between the existing conditions and restoration simulations, although minimum temperatures at the Port of the Islands were slightly higher in the restoration simulation as a result of the additional surface-water ponding and warming that occurs in adjacent wetlands. The TTI application output was used to generate salinity and temperature time series for comparison to manatee field tracking data and an individually-based manatee-behavior model. Overlaying field data with salinity and temperature results from the TTI application reflects the effect of warm water availability and the periodic need for low-salinity drinking water on manatee movements. The manatee-behavior model uses the TTI application data at specific model nodes along the main manatee travel corridors to determine manatee migration patterns. The differences between the existing conditions and restoration scenarios can then be compared for manatee refugia. The TTI application can be used to test a variety of hydrologic conditions and their effect on important criteria.
NASA Astrophysics Data System (ADS)
Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.
2018-01-01
Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.
Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization
NASA Astrophysics Data System (ADS)
Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang
2017-12-01
Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.
NASA Astrophysics Data System (ADS)
Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.
2015-12-01
This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.
Bhagavan, S V B K; Raghu, V
2005-02-01
High levels of fluoride (beyond 1.5 ppm) in ground water as source of drinking water are common in many parts of Andhra Pradesh, India, causing fluorosis. The study carried out in endemic Nalgonda District, Andhra Pradesh, has indicated that the fluoride-rich ground water present in the wells located down stream and close to the surface water bodies is getting diluted by the low-fluoride surface water. Encouraged by this result, check dams were constructed upstream of the identified marginally high fluoride bearing ground water zones in Anantapur District to reduce fluoride levels as an alternate solution for safe drinking water. In this paper, an attempt is made to study the utility and effect of these check dams in dilution of fluoride concentration in drinking water and its resultant impact on the health aspects of certain villagers of Anantapur District through the analysis of their blood serum and urine. Ground water samples from three fluoride-affected villages, blood and urine of males and females from the same villages were collected and analyzed for fluoride using ion selective electrode method. The results indicated that the fluoride levels in blood serum and urine of males in the age group of 5-11 years are found to be the highest. The concentration of fluoride in ground water is directly proportional to the concentration of fluoride in blood serum and urine. The concentration of fluoride in ground water with depth of the aquifer is a function of lithology, amount and duration of rainfall, rate of infiltration, level of ground water exploitation in the area etc. The construction of check dams upstream of the identified marginally high fluoride waters will not only cause additional recharge of ground water but also reduces the fluoride concentration eventually improving the health of the villagers.
Treatment performance of a constructed wetland during storm and non-storm events in Korea.
Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H
2012-01-01
The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.
Periphyton (algae, microorganisms, diatoms, and the matrix they construct) accumulate on surfaces in aquatic ecosystems and have been used as ecological indicators because their characteristics are sensitive to changes in physical and chemical water quality parameters. Diatom com...
A three-dimensional Dirichlet-to-Neumann operator for water waves over topography
NASA Astrophysics Data System (ADS)
Andrade, D.; Nachbin, A.
2018-06-01
Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.
Bayesian evidence for the prevalence of waterworlds
NASA Astrophysics Data System (ADS)
Simpson, Fergus
2017-07-01
Should we expect most habitable planets to share the Earth's marbled appearance? For a planetary surface to boast extensive areas of both land and water, a delicate balance must be struck between the volume of water it retains and the capacity of its perturbations. These two quantities may show substantial variability across the full spectrum of water-bearing worlds. This would suggest that, barring strong feedback effects, most surfaces are heavily dominated by either water or land. Why is the Earth so finely poised? To address this question, we construct a simple model for the selection bias that would arise within an ensemble of surface conditions. Based on the Earth's ocean coverage of 71 per cent, we find substantial evidence (Bayes factor K ≃ 6) supporting the hypothesis that anthropic selection effects are at work. Furthermore, due to the Earth's proximity to the waterworld limit, this model predicts that most habitable planets are dominated by oceans spanning over 90 per cent of their surface area (95 per cent credible interval). This scenario, in which the Earth has a much greater land area than most habitable planets, is consistent with results from numerical simulations and could help explain the apparently low-mass transition in the mass-radius relation.
NASA Astrophysics Data System (ADS)
Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki
The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.
ANNUAL WATER BUDGETS FOR A FORESTED SINKHOLE WETLAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Dr. Andrew Jason; Neary, Vincent S
2012-01-01
Annual water budgets spanning two years, 2004 and 2005, are constructed for a sinkhole wetland in the Tennessee Highland Rim following conversion of 13 % of its watershed to impervious surfaces. The effect of watershed development on the hydrology of the study wetland was significant. Surface runoff was the dominant input, with a contribution of 61.4 % of the total. An average of 18.9 % of gross precipitation was intercepted by the canopy and evaporated. Seepage from the surface water body to the local groundwater system accounted for 83.1 % of the total outflow. Deep recharge varied from 43.2 %more » (2004) to 12.1 % (2005) of total outflow. Overall, evapotranspiration accounted for 72.4 % of the total losses, with an average of 65.7 % lost from soil profile storage. The annual water budgets indicate that deep recharge is a significant hydrologic function performed by isolated sinkhole wetlands, or karst pans, on the Tennessee Highland Rim. Continued hydrologic monitoring of sinkhole wetlands are needed to evaluate hydrologic function and response to anthropogenic impacts. The regression technique developed to estimate surface runoff entering the wetland is shown to provide reasonable annual runoff estimates, but further testing is needed.« less
Drought, Land-Use Change, and Water Availability in California's Central Valley
NASA Astrophysics Data System (ADS)
Faunt, C. C.; Sneed, M.; Traum, J.
2015-12-01
The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasseff, Byron
2016-07-29
NUFLOOD Version 1.x is a surface-water hydrodynamic package designed for the simulation of overland flow of fluids. It consists of various routines to address a wide range of applications (e.g., rainfall-runoff, tsunami, storm surge) and real time, interactive visualization tools. NUFLOOD has been designed for general-purpose computers and workstations containing multi-core processors and/or graphics processing units. The software is easy to use and extensible, constructed in mind for instructors, students, and practicing engineers. NUFLOOD is intended to assist the water resource community in planning against water-related natural disasters.
A-3 Test Stand construction update
NASA Technical Reports Server (NTRS)
2007-01-01
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
A-3 Test Stand construction update
2007-12-18
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
Handling the decline of ground water using artificial recharge areas
NASA Astrophysics Data System (ADS)
Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky
2017-11-01
Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.
An assessment of the performance of municipal constructed wetlands in Ireland.
Hickey, Anthony; Arnscheidt, Joerg; Joyce, Eadaoin; O'Toole, James; Galvin, Gerry; O' Callaghan, Mark; Conroy, Ken; Killian, Darran; Shryane, Tommy; Hughes, Francis; Walsh, Katherine; Kavanagh, Emily
2018-03-15
While performance assessments of constructed wetlands sites around the world have appraised their capacity for effective removal of organics, a large variance remains in these sites' reported ability to retain nutrients, which appears to depend on differences in design, operation and climate factors. Nutrient retention is a very important objective for constructed wetlands, to avoid eutrophication of aquatic environments receiving their effluents. This study assessed the performance of constructed wetlands in terms of nutrient retention and associated parameters under the humid conditions of Ireland's temperate maritime climate. A review of the performance of 52 constructed wetland sites from 17 local authorities aimed to identify the best performing types of constructed wetlands and the treatment factors determining successful compliance with environmental standards. Data analysis compared effluent results from constructed wetlands with secondary free surface flow or tertiary horizontal subsurface flow, hybrid systems and integrated constructed wetlands with those from small-scale mechanical wastewater treatment plants of the same size class. Nutrient concentrations in effluents of constructed wetlands were negatively correlated (p < .01) with specific area, i.e. the ratio of surface area and population equivalents. The latest generation of integrated constructed wetlands, which had applied design guidelines issued by the Department of the Environment, performed best. Storm management design features improved treatment performance of constructed wetlands significantly (p < .05) for total suspended solids concentrations and exceedance frequency of limit values for total nitrogen. Mechanical wastewater treatment plants, secondary free surface water and tertiary horizontal subsurface flow wetlands showed a very large variance in effluent concentrations for organic and nutrient parameters. E. coli numbers in effluents were lowest for integrated constructed wetlands with an arithmetic mean of 89 MPN/100 ml. Despite Ireland's humid climate, some constructed wetland sites achieved long or frequent periods of zero effluent discharge and thus did not transfer any waterborne pollution to their receptors during these periods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Water availability and land subsidence in the Central Valley, California, USA
NASA Astrophysics Data System (ADS)
Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.
2016-05-01
The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
Water availability and land subsidence in the Central Valley, California, USA
Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin
2016-01-01
The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.
Enabling unassisted solar water splitting by iron oxide and silicon
Jang, Ji-Wook; Du, Chun; Ye, Yifan; ...
2015-06-16
A solution for large-scale solar energy storage is photoelectrochemical (PEC) water splitting. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. We show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversiblemore » hydrogen electrode) is achieved. In conclusion, this result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.« less
Groh, Tyler A; Gentry, Lowell E; David, Mark B
2015-05-01
Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).
Gough, William T; Farina, Stacy C; Fish, Frank E
2015-06-01
Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) 'steaming', which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) 'paddle-assisted flying', during which the ducks lifted their bodies out of the water and used their feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 m s(-1)) was calculated for S. mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface. © 2015. Published by The Company of Biologists Ltd.
Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei
2015-12-01
The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.
NASA Astrophysics Data System (ADS)
Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.
2017-02-01
The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.
Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface
NASA Astrophysics Data System (ADS)
van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype
2014-05-01
Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.
Lake Billy Shaw Operations and Maintenance, Final Annual Report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, Guy; Pero, Vincent
Lake Billy Shaw is a newly constructed earthen dam reservoir with a surface area of 430 acres. Construction on the dam and structures was complete in November of 1998. The fish screen structures were complete in December of 1998, with initial filling in May 1999. Upon initial filling, dam structures, monitoring wells, fish screen structures, and lake level were monitored daily, with recordings being taken three times/week. During June 1999 the water to the lake was turned off in order to complete additional construction work on the lake. This work included installation of culverts around the perimeter road, installation ofmore » boat launches, finish work on the spillway structure, pumphouse and well protection and planting 4 trees along the entrance to the boat launch area. The water was turned on again in late September 1999 with all structures having been checked, fish screens greased and maintained and well levels being monitored. In 2000 the Operations and Maintenance portion of the project began with monitoring of piezometers, water levels, biological monitoring, riparian plantings, protection of shorelines, and maintenance of structures and appurtances.« less
pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface.
Ambrosio, Francesco; Wiktor, Julia; Pasquarello, Alfredo
2018-03-28
We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pH PZC , and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO 4 (010)-water interface, yields a pH PZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p K a values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.
Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles
NASA Astrophysics Data System (ADS)
Kenmoe, Stephane; Biedermann, P. Ulrich
2018-02-01
ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Forman, Barton A.; Draper, Clara S.; Liu, Qing
2013-01-01
A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.
Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.
2013-01-01
Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.
Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.
2008-01-01
The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.
2011-12-01
The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02 wetland showed biomarkers for sulfate-reducing bacteria. Sulfate-reduction and methane-oxidation rates in the sediments were determined using radiotracer techniques. Sulfate-reduction was detected in all depths of sediment cores, even in surface detritus layers. Gas measurements from H-02 sediments demonstrated that methane is available to support a methane oxidizing community, and active methane-oxidation was detected in the sediments and overlying water. Our results demonstrate that the H-02 wetlands are functioning successfully to remove Cu and Zn from influent waters. The continued success and long-term sustainability of the functioning H-02 system is predicated on maintaining in situ biogeochemistry. However, the relative importance of various biogeochemical cycles remains unclear. For example, the Cu and Zn deposited in the sediments are associated with organic detritus at the sediment surface; the extent and rate at which the metals will redistribute to more recalcitrant sulfide mineral phases remain to be determined. Thus, the H-02 wetland system is a valuable resource not only for metal removal at SRS, but also can further enhance the understanding of wetland function within the scientific and regulatory communities.
46 CFR 151.10-20 - Hull construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle reactions (if applicable) shall be determined. The hull bending stress shall not exceed the applicable... hull. In such case, the hull stress shall not exceed either 50 percent of the minimum ultimate tensile...
46 CFR 151.10-20 - Hull construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...
46 CFR 151.10-20 - Hull construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle... limits of paragraphs (b)(2) (i), (ii), or (iii) of this section. The maximum tank bending moment and... maximum hull and tank bending moments and tank saddle reactions. (ii) All independent tank barges...
The organophosphorus insecticide azinphos-methyl was applied once to the surface of 12 of 18 littoral enclosure mesocosms (5 x 10m) constructed in a 2-ha pond near Duluth, Minnesota. Water, sediment, macrophytes, and adult fathead minnows were analyzed for residue to determine th...
NASA Astrophysics Data System (ADS)
Farrell, K. W.
2015-10-01
The proposed Chryse Planitia EZ centered near the VL-1 landing site has evidence for adequate water ice, silica, and load-bearing bedrock surface resources to utilize as infrastructure for long-term missions to support humans.
Surface-water characteristics and quality on the Osage Reservation, Osage County, Oklahoma, 1999
Abbott, Marvin M.; Tortorelli, Robert L.
2002-01-01
Concern about the effects of early oil-industry practices of surface disposal of produced-brine water prompted an investigation of the surface-water quality on the Osage Reservation. About 38,600 oil wells have been drilled on the Osage Reservation since drilling began in 1896. The Osage Reservation comprises three major drainage basins. The Caney River Basin is in the northeast, the Bird Creek Basin is in the southeast, and the Salt Creek Basin in the west. Variations in streamflow on the Osage Reservation during a year primarily result from variations in the quantity and frequency of rainfall, evapotranspiration, and reservoir operations. Most streams do not flow during low rainfall periods in late summer, early fall, and in winter. Percent of mean annual discharge is largest during March through June, averaging 54 to 62 percent and smallest during December, January, July, and August, averaging only 14 to 21 percent. The basin areas of Caney River in the reservation (251 square miles), Salt Creek (273 square miles), and Sand Creek (227 square miles) are about the same and the basin areas of the Bird Creek Basin (418 square miles) and Homily Creek Basin (383 square miles) are similar in area. One hundred forty surface-water sites were sampled once during either February, March or August 1999. The surface-drainage areas, incremental basins, between sample sites along a stream, range in size from 0.26 to 123 square miles with a median of 8.6 square miles. Total number of oil wells upgradient of the samples sites is 31,432 or 80 percent of the total in the reservation. The total number of oil wells in the Caney River Basin in the reservation (2,975 wells), Salt Creek Basin (4,619 wells), and Sand Creek Basin (3,858 wells) are about the same and the total number of oil wells in the Bird Creek Basin (8,858 wells) and Hominy Creek Basin (7,842 wells) are similar. The number of oil wells per square mile in the incremental basins ranges for 0.86 to 154. Surface-water quality monitoring had been conducted previously at two sites included in this study. Dissolved chloride concentrations for the two samples collected during 1999 were equaled or exceeded at both sites by the historical data. There is no statistically significant difference between the distribution of the dissolved chloride concentrations from the surface water and nearby ground-water samples. The surface-water quality samples had significantly lesser concentrations of dissolved solids, sulfate, and nitrite plus nitrate as nitrogen than the ground-water samples. Chloride yield, reported in tons per day per square mile, is the chloride load divided by the basin area upstream of the sample site. The mean of the chloride yields for all the samples was 0.07 ton per day per square mile. Many sample locations where yields were greater than 0.07 ton per day per square mile were areas where dissolved chloride concentrations from surface-water samples were greater than 250 milligrams per liter in an earlier water-quality investigation. An investigation of possible relations between the surface-water quality data and the oil-well construction data for the incremental basins and for 1-mile radial distance upstream in the incremental basins was conducted. The oil-well data also were grouped by the time periods of activity into pre-1930, 1930 to 1970, and post-1970. These groups attempt to account for differences in industry drilling and producing practices associated with various periods. No statistically significant correlations were found between the surface-water quality data and the oil-well construction data.
Strickland, Alfred Gerald
1994-01-01
Water-level measurements were made in 68 wells throughout an area of about 860 square miles in Bladen and Robeson Counties, North Carolina, during September and October 1992. Water levels from 58 wells were used to determine the configuration of the potentiometric surface of the Black Creek aquifer. A map of the potentiometric surface shows the potential for ground water to flow from recharge areas in the local uplands to discharge areas, such as local streams and wells. Pumping from wells at major pumping centers, such as Elizabethtown in Bladen County and Lumberton in Robeson County, where water-level declines of more than 12 feet were recorded from 1988 to 1992, has resulted in cones of depression in the potentiometric surface. The cones were about 4 and 6 miles long across the major axes beneath the Elizabethtown and Lumberton areas, respectively, in 1992. Water levels measured in eight wells in 1988 and 1992, supplemented with water levels in two additional wells from driller's well- construction records, were used to estimate average yearly rates of ground-water change for the upper Cape Fear aquifer for part of the study area. During 1988-92, water-level declines occurred in the aquifer throughout much of the area as a result of pumping. The greatest decline, an average of 4.1 feet per year, was in Bladen County.
Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.
2005-01-01
The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.
NASA Astrophysics Data System (ADS)
Maxwell, R. M.; Condon, L. E.; Kollet, S. J.
2013-12-01
Groundwater is an important component of the hydrologic cycle yet its importance is often overlooked. Aquifers are a critical water resource, particularly in irrigation, but also participates in moderating the land-energy balance over the so-called critical zone of 2-10m in water table depth. Yet,the scaling behavior of groundwater is not well known. Here, we present the results of a fully-integrated hydrologic model run over a 6.3M km2 domain that covers much of North America focused on the continental United States. This model encompasses both the Mississippi and Colorado River watersheds in their entirety at 1km resolution and is constructed using the fully-integrated groundwater-vadose zone-surface water-land surface model, ParFlow. Results from this work are compared to observations (both of surface water flow and groundwater depths) and approaches are presented for observing of these integrated systems. Furthermore, results are used to understand the scaling behavior of groundwater over the continent at high resolution. Implications for understanding dominant hydrological processes at large scales will be discussed.
NASA Astrophysics Data System (ADS)
Zhou, Chen; Li, Guoqiang; Li, Chuanzong; Zhang, Zhen; Zhang, Yachao; Wu, Sizhu; Hu, Yanlei; Zhu, Wulin; Li, Jiawen; Chu, Jiaru; Hu, Zhijia; Wu, Dong; Yu, Liandong
2017-10-01
In this work, a kind of three-level cobblestone-like anatase TiO2 microcone array was fabricated on titanium sheets by femtosecond laser-induced self-assembly. This three level structure consisted of cobblestone-like features (15-25 μm in height and 20-35 μm in diameter), ˜460 nm ripple-like features, and smaller particles (10-500 nm). The formation of microcone arrays can be ascribed to the interaction of alternant laser beam ablation. TiO2 surfaces display dual-responsive water/oil reversible wetting via heat treatment and selective UV irradiation without fluorination. It is indicated that three-level scale surface roughness can amplify the wetting character of the Ti surface, and the mechanism for reversible switching between extreme wettabilities is caused by the conversion between Ti-OH and Ti-O. Moreover, the double-faced superhydrophobic and double-faced superhydrophilic Ti samples were constructed, which exhibited stable superhydrophobicity and underwater superoleophobicity in water-oil solution, respectively, even when strongly shaken. Finally, we present the hybrid-patterned TiO2 surface and realized reversible switching pattern wettability.
Polarimetric thermal emission from periodic water surfaces
NASA Technical Reports Server (NTRS)
Yueh, S. H.; Nghiem, S. V.; Kwok, R.; Wilson, W. J.; Li, F. K.; Johnson, J. T.; Kong, J. A.
1993-01-01
Experimental results and theoretical calculations are presented to study the polarimetric emission from water surfaces with directional features. For our ground-based Ku-band radiometer measurements, a water pool was constructed on the roof of a building in the Jet Propulsion Laboratory, and a fiberglass surface with periodic corrugations in one direction was impressed on the top of the water surface to create a stationary water surface underneath it. It is observed that the measured Stokes parameters of corrugated fiberglass-covered water surfaces are functions of azimuth angles and agree very well with the theoretical calculations. The theory, after being verified by the experimental data, was then used to calculate the Stokes parameters of periodic surfaces without fiberglass surface layer and with rms height of the order of wind-generated water ripples. The magnitudes of the azimuthal variation of the calculated emissivities at horizontal and vertical polarizations corresponding to the first two Stokes parameters are found to be comparable to the values measured by airborne radiometers and SSM/I. In addition, the third Stokes parameter not shown in the literature is seen to have approximately twice the magnitude of the azimuth variation of either T(sub h) or T(sub v), which may make it more sensitive to the row direction, while less susceptive to noises because the atmospheric and system noises tend to be unpolarized and are expected to be cancelled out when the third Stokes parameter is derived as the difference of two or three power measurements, as indicated by another experiment carried out at a swimming pool with complicated surroundings. The results indicate that passive polarimetry is a potential technology in the remote sensing of ocean wind vector which is a crucial component in the understanding of global climate change. Issues related to the application of microwave passive polarimetry to ocean wind are also discussed.
Li, Qijun; Zhou, Ming; Yang, Mingyang; Yang, Qingfeng; Zhang, Zhixun; Shi, Jing
2018-02-21
Phosphorescence shows great potential for application in bioimaging and ion detection because of its long-lived luminescence and high signal-to-noise ratio, but establishing phosphorescence emission in aqueous environments remains a challenge. Herein, we present a general design strategy that effectively promotes phosphorescence by utilising water molecules to construct hydrogen-bonded networks between carbon dots (CDs) and cyanuric acid (CA). Interestingly, water molecules not only cause no phosphorescence quenching but also greatly enhance the phosphorescence emission. This enhancement behaviour can be explained by the fact that the highly ordered bound water on the CA particle surface can construct robust bridge-like hydrogen-bonded networks between the CDs and CA, which not only effectively rigidifies the C=O bonds of the CDs but also greatly enhances the rigidity of the entire system. In addition, the CD-CA suspension exhibits a high phosphorescence lifetime (687 ms) and is successfully applied in ion detection based on its visible phosphorescence.
Thiel, Andreas
2010-07-01
Water management has been significantly reshaped throughout recent decades in Europe and worldwide. Vivid examples of this restructuring include Southern European coastal zones which have been transformed into the European "pleasure periphery" over the last 40 years, requiring significant changes in water service provision. Taking it as an illustrative case of the Southern European coastal freshwater crisis and the way different European Member States have dealt with it, the article provides an account of the Algarve, indicative of typical Portuguese dynamics, and compares it with developments in other European countries. Expanding demands on water services in this region led to a crisis situation throughout the nineties, which was resolved by shifting physical infrastructures and competencies to the supra-local level. The re-scaling of water management was instrumental to expanding national control over the sector at the expense of local authorities and privatization. The national level used European funds and regulations to re-configure the institutional and infrastructure set-up in order to provide for tourism and agricultural expansion. Quality tourism was constructed as a decentral, hegemonic state spatial project, with the Algarvian's entire water resource base being put at its disposal. The solution found illustrates a modified version of the supply side and surface water oriented "hydraulic paradigm" in Portugal: geared towards tourism and urban areas and the maintenance of irrigation agriculture. Delays in infrastructures, ideological preferences, maintaining national control over strategic water services and territoriality contributed towards the construction of water services as part of this hegemonic state spatial strategy for tourism expansion.
NASA Astrophysics Data System (ADS)
Thiel, Andreas
2010-07-01
Water management has been significantly reshaped throughout recent decades in Europe and worldwide. Vivid examples of this restructuring include Southern European coastal zones which have been transformed into the European “pleasure periphery” over the last 40 years, requiring significant changes in water service provision. Taking it as an illustrative case of the Southern European coastal freshwater crisis and the way different European Member States have dealt with it, the article provides an account of the Algarve, indicative of typical Portuguese dynamics, and compares it with developments in other European countries. Expanding demands on water services in this region led to a crisis situation throughout the nineties, which was resolved by shifting physical infrastructures and competencies to the supra-local level. The re-scaling of water management was instrumental to expanding national control over the sector at the expense of local authorities and privatization. The national level used European funds and regulations to re-configure the institutional and infrastructure set-up in order to provide for tourism and agricultural expansion. Quality tourism was constructed as a decentral, hegemonic state spatial project, with the Algarvian’s entire water resource base being put at its disposal. The solution found illustrates a modified version of the supply side and surface water oriented “hydraulic paradigm” in Portugal: geared towards tourism and urban areas and the maintenance of irrigation agriculture. Delays in infrastructures, ideological preferences, maintaining national control over strategic water services and territoriality contributed towards the construction of water services as part of this hegemonic state spatial strategy for tourism expansion.
NASA Astrophysics Data System (ADS)
Frankel, R. J.
1981-05-01
A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1990-05-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less
Hydrologic data for an investigation of the Smith River Watershed through water year 2010
Nilges, Hannah L.; Caldwell, Rodney R.
2012-01-01
Hydrologic data collected through water year 2010 and compiled as part of a U.S. Geological Survey study of the water resources of the Smith River watershed in west-central Montana are presented in this report. Tabulated data presented in this report were collected at 173 wells and 65 surface-water sites. Figures include location maps of data-collection sites and hydrographs of streamflow. Digital data files used to construct the figures, hydrographs, and data tables are included in the report. Data collected by the USGS are also stored in the USGS National Water Information System database and are available through the USGS National Water Information System Water Data for Montana Web page at http://waterdata.usgs.gov/mt/nwis/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Da; Peng, Yuan; Wang, Qi
2016-04-18
Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by twomore » orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.« less
Hansen, Arnold J.; Molenaar, Dee
1976-01-01
General information is presented on water resources--with emphasis on ground-water occurrence and availability--in that part of Kitsap County (referred to as Trident Impact Area) that would be most affected by the development of the Trident submarine construction facility at Bangor, Washington. The estimated 1970 water use in the study area averaged about 13 million gallons per day (mgd); of this amount about 9 mgd came from surface-water sources--from a large reservoir outside the study area--and about 4 mgd came from ground water pumped from two aquifers in the area. Anticipated water use soon will be about 18 to 21 mgd; virtually all the additional quantity required (about 5 to 8 mgd) above present use must come from ground-water sources. Preliminary evaluation of the aquifers suggests that an additional 1.5 mgd can be developed from the upper aquifer and 7 mgd from the lower aquifer. Existing wells tapping the lower aquifer might yield additional water and increase the total yield in the area by 3.5 mgd, and new wells drilled in selected areas could produce an additional 3.5 mgd from this aquifer. However, additional, large-scale ground-water withdrawal from the lower aquifer could induce saltwater intrusion into wells situated in coastal areas. (Woodard-USGS)
Roley, Sarah S; Tank, Jennifer L; Stephen, Mia L; Johnson, Laura T; Beaulieu, Jake J; Witter, Jonathan D
2012-01-01
Streams of the agricultural Midwest, USA, export large quantities of nitrogen, which impairs downstream water quality, most notably in the Gulf of Mexico. The two-stage ditch is a novel restoration practice, in which floodplains are constructed alongside channelized ditches. During high flows, water flows across the floodplains, increasing benthic surface area and stream water residence time, as well as the potential for nitrogen removal via denitrification. To determine two-stage ditch nitrogen removal efficacy, we measured denitrification rates in the channel and on the floodplains of a two-stage ditch in north-central Indiana for one year before and two years after restoration. We found that instream rates were similar before and after the restoration, and they were influenced by surface water NO3- concentration and sediment organic matter content. Denitrification rates were lower on the constructed floodplains and were predicted by soil exchangeable NO3- concentration. Using storm flow simulations, we found that two-stage ditch restoration contributed significantly to NO3- removal during storm events, but because of the high NO3- loads at our study site, < 10% of the NO3- load was removed under all storm flow scenarios. The highest percentage of NO3- removal occurred at the lowest loads; therefore, the two-stage ditch's effectiveness at reducing downstream N loading will be maximized when the practice is coupled with efforts to reduce N inputs from adjacent fields.
Owen-Joyce, Sandra J.
2000-01-01
This report summarizes a comprehensive study and development of the method documented in Owen-Joyce and others (2000). That report and one for the area upstream from Laguna Dam (Wilson and Owen-Joyce, 1994) document the accounting-surface method to identify wells that yield water that will be replaced by water from the Colorado River. Downstream from Laguna Dam, the Colorado River is the source for nearly all recharge to the river aquifer. The complex surface-water and ground-water system that exists in the area is, in part, the result of more than 100 years of water-resources development. Agriculture is the principal economy and is possible only with irrigation. The construction and operation of canals provides the means to divert and distribute Colorado River water to irrigate agricultural lands on the flood plains and mesas along the Colorado and Gila Rivers, in Imperial and Coachella Valleys, and in the area upstream from Dome along the Gila River. Water is withdrawn from wells for irrigation, dewatering, and domestic use. The area downstream from Laguna Dam borders additional areas of agricultural development in Mexico where Colorado River water also is diverted for irrigation.
Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping
2010-12-15
Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.
Studies of the Earth Energy Budget and Water Cycle Using Satellite Observations and Model Analyses
NASA Technical Reports Server (NTRS)
Campbell, G. G.; VonderHarr, T. H.; Randel, D. L.; Kidder, S. Q.
1997-01-01
During this research period we have utilized the ERBE data set in comparisons to surface properties and water vapor observations in the atmosphere. A relationship between cloudiness and surface temperature anomalies was found. This same relationship was found in a general circulation model, verifying the model. The attempt to construct a homogeneous time series from Nimbus 6, Nimbus 7 and ERBE data is not complete because we are still waiting for the ERBE reanalysis to be completed. It will be difficult to merge the Nimbus 6 data in because its observations occurred when the average weather was different than the other periods, so regression adjustments are not effective.
Development and field testing of a Light Aircraft Oil Surveillance System (LAOSS)
NASA Technical Reports Server (NTRS)
Burns, W.; Herz, M. J.
1976-01-01
An experimental device consisting of a conventional TV camera with a low light level photo image tube and motor driven polarized filter arrangement was constructed to provide a remote means of discriminating the presence of oil on water surfaces. This polarized light filtering system permitted a series of successive, rapid changes between the vertical and horizontal components of reflected polarized skylight and caused the oil based substances to be more easily observed and identified as a flashing image against a relatively static water surface background. This instrument was flight tested, and the results, with targets of opportunity and more systematic test site data, indicate the potential usefulness of this airborne remote sensing instrument.
The derivation of water quality criteria of copper in Biliu River
NASA Astrophysics Data System (ADS)
Zheng, Hongbo; Jia, Xinru
2018-03-01
Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.
Surface-subsurface flow modeling: an example of large-scale research at the new NEON user facility
NASA Astrophysics Data System (ADS)
Powell, H.; McKnight, D. M.
2009-12-01
Climate change is predicted to alter surface-subsurface interactions in freshwater ecosystems. These interactions are hypothesized to control nutrient release at diel and seasonal time scales, which may then exert control over epilithic algal growth rates. The mechanisms underlying shifts in complex physical-chemical-biological patterns can be elucidated by long-term observations at sites that span hydrologic and climate gradients across the continent. Development of the National Ecological Observatory Network (NEON) will provide researchers the opportunity to investigate continental-scale patterns by combining investigator-driven measurements with Observatory data. NEON is a national-scale research platform for analyzing and understanding the impacts of climate change, land-use change, and invasive species on ecology. NEON features sensor networks and experiments, linked by advanced cyberinfrastructure to record and archive ecological data for at least 30 years. NEON partitions the United States into 20 ecoclimatic domains. Each domain hosts one fully instrumented Core Aquatic site in a wildland area and one Relocatable site, which aims to capture ecologically significant gradients (e.g. landuse, nitrogen deposition, urbanization). In the current definition of NEON there are 36 Aquatic sites: 30 streams/rivers and 6 ponds/lakes. Each site includes automated, in-situ sensors for groundwater elevation and temperature; stream flow (discharge and stage); pond water elevation; atmospheric chemistry (Tair, barometric pressure, PAR, radiation); and surface water chemistry (DO, Twater, conductivity, pH, turbidity, cDOM, nutrients). Groundwater and surface water sites shall be regularly sampled for selected chemical and isotopic parameters. The hydrologic and geochemical monitoring design provides basic information on water and chemical fluxes in streams and ponds and between groundwater and surface water, which is intended to support investigator-driven modeling studies. Theoretical constructs, such as the River Continuum Concept, that aim to elucidate general mechanistic underpinnings of freshwater ecosystem function via testable hypotheses about relative rates of photosynthesis and respiration, for example, may be readily examined using data collected at hourly time scales at the NEON facility once constructed. By taking advantage of NEON data and adding PI-driven research to the Observatory, we can further our understanding of the relative roles of water flow, nutrients, temperature, and light on freshwater ecosystem function and structure.
Paillet, Frederick; Hite, Laura; Carlson, Matthew
1999-01-01
Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.
Laboratory Studies of Sea-Ice-Wave Interactions
NASA Astrophysics Data System (ADS)
Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.
2016-12-01
A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1991-02-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less
Gangloff, Michael M; Perkins, Michael; Blum, Peter W; Walker, Craig
2015-03-01
Coal has been extracted via surface and sub-surface mining for decades throughout the Appalachian Mountains. New interest in ridge-top mining has raised concerns about possible waterway impacts. We examined effects of forestry, mining, and road construction-based disturbance on physico-chemistry and macroinvertebrate communities in east-central Tennessee headwater streams. Although 11 of 30 sites failed Tennessee's biocriteria scoring system, invertebrate richness was moderately high and we did not find significant differences in any water chemistry or habitat parameters between sites with passing and failing scores. However, conductivity and dissolved solid concentrations appeared elevated in the majority of study streams. Principal components (PCs) analysis indicated that six PCs accounted for ~77 % of among-site habitat variability. One PC associated with dissolved oxygen and specific conductance explained the second highest proportion of among-site variability after catchment area. Specific conductance was not correlated with catchment area but was strongly correlated with mining activity. Composition and success of multivariate models using habitat PCs to predict macroinvertebrate metrics was highly variable. PC scores associated with water chemistry and substrate composition were most frequently included in significant models. These results suggest that impacts of historical and current coal mining remain a source of water quality and macroinvertebrate community impairment in this region, but effects are subtle. Our results suggest that surface mining may have chronic and system-wide effects on habitat conditions and invertebrate communities in Cumberland Plateau streams.
Ruhl, J.F.
2002-01-01
A steady state single layer, two-dimensional ground-water flow model constructed with the computer program MODFLOW,combined with the particle-tracking computer program MODPATH, was used to track water particles (upgradient) from the two well fields. A withdrawal rate of 625 m3/d was simulated for each well field. The ground-water flow paths delineated areas of contributing recharge that are 0.38 and 0.65 km2 based on 10- and 50-year travel times, respectively. The flow paths that define these areas extend for maximum distances of about 350 and 450 m, respectively, from the wells. At well field A the area of contributing recharge was delineated for each well as separate withdrawal points. At well field B the area of contributing recharge was delineated for the two wells as a single withdrawal point. Delineation of areas of contributing recharge to the well fields from land surface would require construction of a multi-layer ground-water flow model.
Heat pump water heater and method of making the same
Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.
2001-01-01
An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.
Riverbank filtration in China: A review and perspective
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Zhai, Yuanzheng; Zuo, Rui; Li, Jiao; Chen, Haiyang
2016-10-01
Riverbank filtration (RBF) for water supplies is used widely throughout the world because it guarantees a sustainable quantity and improves water quality. In this study, the development history and the technical overview of RBF in China are reviewed and summarized. Most RBF systems in China were constructed using vertical wells, horizontal wells, and infiltration galleries in flood plains, alluvial fans, and intermountain basins. Typical pollutants such as NH4+, pathogens, metals, and organic materials were removed or diluted by most RBF investigated. There have recently been many investigations of the interaction between groundwater and surface water and biogeochemical processes in RBF. Comprehensive RBF applications should include not only the positive but also negative effects. Based on a discussion of the advantages and disadvantages, the perspectives of China's RBF technology development were proposed. To protect the security of water supply, China's RBF systems should establish a management system, monitoring system and forecasting system of risk. Guidelines of RBF construction and management should also be issued on the basic of relevant fundamental investigations such as climate influence, clogging, and purification mechanism of water-quality improvement.
NASA Astrophysics Data System (ADS)
Zhou, Linjie; Gao, Kang; Jiao, Zhiwei; Wu, Mengyuan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi
2018-05-01
Synthetic antifouling membrane surfaces with dual-defense mechanisms (fouling-resistant and fouling-release mechanism) were constructed through the synergy of perfluorosulfonic acid (PFSA) and SiO2 nanoparticles. During the nonsolvent induced phase separation (NIPS) process, the amphiphilic PFSA polymers spontaneously segregated to membrane surfaces and catalyzed the hydrolysis-polycondensation of tetraethyl orthosilicate (TEOS) to generate hydrophilic SiO2 nanoparticles (NPs). The resulting PVDF/PFSA/SiO2 hybrid membranes were characterized by contact angle measurements, FTIR, XPS, SEM, AFM, TGA, and TEM. The hydrophilic microdomains and low surface energy microdomains of amphiphilic PFSA polymers respectively endowed membrane surfaces with fouling-resistant mechanism and fouling-release mechanism, while the hydrophilic SiO2 NPs intensified the fouling-resistant mechanism. When the addition of TEOS reached 3 wt%, the hybrid membrane with optimal synergy of PFSA and SiO2 NPs displayed low flux decline (17.4% DRt) and high flux recovery (99.8% FRR) during the filtration of oil-in-water emulsion. Meanwhile, the long-time stability test verified that the hybrid membrane possessed persistent antifouling performance.
Performance of OTEC Heat Exchanger Materials in Tropical Seawaters
NASA Astrophysics Data System (ADS)
Larsen-Basse, Jorn
1985-03-01
The corrosion of several aluminum alloys in flowing Hawaiian surface seawater and water from 600 m depth for exposure periods up to three years has been studied. The alloys tested in cold water were Alclad (7072) 3003 and 3004; and bare 3004 and 5052). All show some pitting. Pit growth is slow, and pits do not penetrate the cladding. In the warm water, only uniform corrosion has been found. All alloys corrode at the same, low rate of˜3 μm/year after an initial short period of more rapid corrosion. This behavior is closely linked to the formation of a protective inorganic scale film on the surface. It consists of precipitated scale minerals from the seawater and aluminum corrosion products. The results indicate that OTEC evaporator heat exchangers constructed of aluminum alloys should have acceptable service lives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-11-21
The 50-acre Lake Sandy Jo Landfill is located in the Black Oak community (predominantly residential) of southwestern Gary in Lake County, Indiana. From about 1971 until about 1980, the lake was filled in with construction and demolition debris, municipal garbage, industrial wastes, hazardous materials, and possibly drummed wastes. These wastes are partly to completely exposed on the landfill surface. Surface soil, subsurface soil, surface water, sediment, and ground water show a variety of metal and organic chemical carcinogens. Toxic noncarcinogen priority pollutants found were chloromethane, copper, cyanide, lead, mercury, and silver. Inorganic soil levels found on the site for leadmore » and cadmium exceed levels of concern that would permit unrestricted use of the site. Remedial measures would be necessary before the site could be granted unrestricted use.« less
Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.
Kynkäänniemi, Pia; Ulén, Barbro; Torstensson, Gunnar; Tonderski, Karin S
2013-01-01
One measure used in Sweden to mitigate eutrophication of waters is the construction of small wetlands (free water surface wetland for phosphorus retention [P wetlands]) to trap particulate phosphorus (PP) transported in ditches and streams. This study evaluated P retention dynamics in a newly constructed P wetland serving a 26-ha agricultural catchment with clay soil. Flow-proportional composite water samples were collected at the wetland inlet and outlet over 2 yr (2010-2011) and analyzed for total P (TP), dissolved P (DP), particulate P (PP), and total suspended solids (TSS). Both winters had unusually long periods of snow accumulation, and additional time-proportional water samples were frequently collected during snowmelt. Inflow TP and DP concentrations varied greatly (0.02-1.09 mg L) during the sampling period. During snowmelt in 2010, there was a daily oscillation in P concentration and water flow in line with air temperature variations. Outflow P concentrations were generally lower than inflow concentrations, with net P losses observed only in August and December 2010. On an annual basis, the wetland acted as a net P sink, with mean specific retention of 69 kg TP, 17 kg DP, and 30 t TSS ha yr, corresponding to a reduction in losses of 0.22 kg TP ha yr from the agricultural catchment. Relative retention was high (36% TP, 9% DP, and 36% TSS), indicating that small constructed wetlands (0.3% of catchment area) can substantially reduce P loads from agricultural clay soils with moderately undulating topography. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H
2007-01-01
Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.
Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.
Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato
2015-10-01
One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adhikari, B.; Verhoeven, R.; Troch, P.
The farmer managed irrigation systems (FMIS) represent those systems which are constructed and operated solely by the farmers applying their indigenous technology. The FMIS generally outperform the modern irrigation systems constructed and operated by the government agencies with regard to the water delivery effectiveness, agricultural productivity etc., and the presence of a sound organization responsible to run the FMIS, often referred to as the ‘social capital’, is the key to this success. This paper studies another important aspect residing in the FMIS: potentials to expand the irrigation area by means of their proper rehabilitation and modernization. Taking the case study of the Babai Irrigation Project in Nepal, it is demonstrated that the flow, which in the past was used to irrigate the 5400 ha area covered by three FMIS, can provide irrigation to an additional 8100 ha in the summer, 4180 ha vegetables in the winter and 1100 ha maize in the spring season after the FMIS rehabilitation. The “priority water rights” of the FMIS part have been evaluated based on relevant crop water requirement calculations and is found to be equal to 85.4 million m 3 per year. Consequently, the dry season irrigation strategy at the extension area could be worked out based on the remaining flow. By storing the surplus discharge of the monsoon and autumn in local ponds, and by consuming them in dry period combined with nominal partial irrigation practice, wheat and mustard can be cultivated over about 4000 ha of the extension area. Furthermore, storage and surface irrigation both contribute to the groundwater recharge. The conjunctive use of ground, surface and harvested water might be the mainstream in the future for a sustainable irrigation water management in the region.
Mapping the Dynamics of Surface Water Extent 1999-2015 with Landsat 5, 7, and 8 Archives
NASA Astrophysics Data System (ADS)
Pickens, A. H.; Hansen, M.; Hancher, M.; Potapov, P.
2016-12-01
Surface water extent fluctuates through both seasons and years due to changes in climatic conditions and human extraction and impoundments. This study maps the presence of surface water every month since January 1999, evaluates the detection reliability, visualizes the trends, and explores future applications. The Global Land Analysis and Discovery group at the University of Maryland developed a 30-m mask of persistent water during the growing seasons of 2000-2012 in conjunction with the Global Forest Change product published by Hansen et al. in 2013. A total of 654,178 Landsat 7 scenes were used for the study. Persistent water was defined as all pixels with water classified in more than 50% of observations over the study period. We validated this mask by stratifying and comparing against a random sample of 135 RapidEye, single-date images at 5-m resolution. It was found to have estimated user's and producer's accuracies of 94% and 88%, respectively. This estimated error is due primarily to temporal differences, such as dam construction, and to mixed water-land pixels along water body edges and narrow rivers. In order to investigate temporal extent dynamics, we expanded our analysis of surface water to classify every Landsat 5, 7, and 8 scene since 1999, augmented with elevation data from SRTM and ASTER, via a series of decision trees applied using Google Earth Engine. The water and land observations are aggregated per each month of each year. We developed a model to visualize the dynamic trend in surface water presence since 1999, either per month or annually as shown below. This model can be used directly to assess the seasonal and inter-annual trends globally or regionally, or the raw monthly counts can be used for more intensive hydrological analysis and as inputs for other related studies such as wetland mapping.
Influence of handpiece maintenance sprays on resin bonding to dentin.
Sugawara, Toyotarou; Kameyama, Atsushi; Haruyama, Akiko; Oishi, Takumi; Kukidome, Nobuyuki; Takase, Yasuaki; Tsunoda, Masatake
2010-01-01
To investigate the influence of maintenance spray on resin bonding to dentin. The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical), and resin composite (Clearfil AP-X, Kuraray Medical) build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick) perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS) testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test. Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups) showed significantly lower μTBS than control specimens (P < 0.05). However, there was no significant difference between the spray-contaminated groups (P > 0.05). Maintenance spray significantly reduces the bond strength of Clearfil SE Bond to dentin.
Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Field, J. G.
2009-12-01
A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.
The stable isotopes of site wide waters at an oil sands mine in northern Alberta, Canada
NASA Astrophysics Data System (ADS)
Baer, Thomas; Barbour, S. Lee; Gibson, John J.
2016-10-01
Oil sands mines have large disturbance footprints and contain a range of new landforms constructed from mine waste such as shale overburden and the byproducts of bitumen extraction such as sand and fluid fine tailings. Each of these landforms are a potential source of water and chemical release to adjacent surface and groundwater, and consequently, the development of methods to track water migration through these landforms is of importance. The stable isotopes of water (i.e. 2H and 18O) have been widely used in hydrology and hydrogeology to characterize surface water/groundwater interactions but have not been extensively applied in mining applications, or specifically to oil sands mining in northern Alberta. A prerequisite for applying these techniques is the establishment of a Local Meteoric Water Line (LMWL) to characterize precipitation at the mine sites as well as the development of a 'catalogue' of the stable water isotope signatures of various mine site waters. This study was undertaken at the Mildred Lake Mine Site, owned and operated by Syncrude Canada Ltd. The LMWL developed from 2 years (2009/2012) of sample collection is shown to be consistent with other LMWLs in western Canada. The results of the study highlight the unique stable water isotope signatures associated with hydraulically placed tailings (sand or fluid fine tailings) and overburden shale dumps relative to natural surface water and groundwater. The signature associated with the snow melt water on reclaimed landscapes was found to be similar to ground water recharge in the region. The isotopic composition of the shale overburden deposits are also distinct and consistent with observations made by other researchers in western Canada on undisturbed shales. The process water associated with the fine and coarse tailings streams has highly enriched 2H and 18O signatures. These signatures are developed through the non-equilibrium fractionation of imported fresh river water during evaporation from cooling towers used within the raw water process circuit. This highly fractionated surface water eventually becomes part of the recycled tailings water circuit, and as a consequence it undergoes further non-equilibrium fractionation as a result of surface evaporation, leading to additional enrichment along local evaporation lines.
Adhesion switch on a gecko-foot inspired smart nanocupule surface
NASA Astrophysics Data System (ADS)
Song, Wenlong
2014-10-01
A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation.A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04090b
A Field Exercise on Groundwater Flow Using Seepage Meters and Mini-Piezometers.
ERIC Educational Resources Information Center
Lee, David R.; Cherry, John A.
1979-01-01
Basic principles of physical hydrogeology and the nature of hydrologic interactions between groundwater and surface water can be demonstrated using two devices, the miniature piezometer and the seepage meter which can be cheaply constructed by the teacher and students. Use of the devices and learning activities are presented. (RE)
Batty, Lesley C; Younger, Paul L
2004-11-01
The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.
Using cerium anomaly as an indicator of redox reactions in constructed wetland
NASA Astrophysics Data System (ADS)
Liang, R.
2013-12-01
The study area, Chiayi County located in southern Taiwan, has highly developed livestock. The surface water has very low dissolved oxygen and high NH4. Under the situation, constructed wetland becomes the most effective and economic choice to treat the wastewater in the natural waterways. Hebao Island free surface constructed wetland started to operate in late 2006. It covers an area of 0.28 km2 and is subdivided into 3 major cells, which are sedimentation cell, 1st aeration cell with rooted plants and 2nd aeration cell with float plants. The water depth of cells ranges from 0.6 m to 1.2 m. The total hydraulic retention time is about a half day. In this study, the water samples were sequentially collected along the flow path. The results of hydrochemical analysis show that the untreated inflow water can be characterized with enriched NH4 (11 ppm), sulfate (6 ppm) and arsenic (50 ppb). The removal efficiency of NH4 in the first two cells is <15%. However, the efficiency dramatically increases in the 2nd aeration cell, which is over 90%. Simultaneously, almost all of the hydrochemical properties, including EC, Ca, Mg, As Fe, Mn and other heavy metals, decrease while dissolve oxygen increases close to saturated level and aluminum is almost doubled in the exit of constructed wetland. However, the removal of sulfate and phosphate is very weak. It is worth to note that arsenic is still higher than the permissible limits recommended by WHO (10 ppb). The wetland operation should be tuned to take more arsenic away in the future. As demonstrated in the above, oxidation reaction is the most dominant mechanism to remove pollutants from the wastewater; therefore, dissolved oxygen is traditionally considered as an important indicator to evaluate the operation efficiency of wetland. However, it would need longer time to achieve equilibrium state of redox reaction involving dissolved oxygen due to the slower reaction rate. For example, the input water in this study has fairly high dissolved oxygen (5 ppm) but the NH4 content is still high, which indicates a non-equilibrium condition. In this study, the cerium anomaly is alternatively utilized to evaluate the water redox state. The results demonstrate that the input water has the negative cerium anomaly of -0.16. Along the flow path, the cerium negative anomaly does not change in the first two cells and dramatically becomes -0.23 in cell 3. The trend of cerium anomaly is more close to the removal efficiency of NH4 rather than dissolve oxygen. Accordingly, cerium anomaly could become a better indicator of removal efficiency of constructed wetland.
Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R
2017-11-15
Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function. Copyright © 2017 Elsevier B.V. All rights reserved.
Treatment of atrazine in nursery irrigation runoff by a constructed wetland.
Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D
2003-02-01
To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain.
Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuefer, Svetlana
2013-03-31
This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused bymore » the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the baseline conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake's hydrological response to snowdrift melt, and cost assessment of snowdrift‐generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open‐water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21-29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision Support System (NSDSS) for Water Resources Planning and Management." The results of these projects were implemented in the NSDSS model and added to the annual water budget. This implementation allows one to account for snowdrift contributions during ice road planning with the NSDSS and assists with mitigating those risks associated with potentially unfavorable climate and hydrological conditions (that is, surface storage deficit and/or low precipitation).« less
A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands
Winter, Thomas C.
1988-01-01
Wetlands occur in geologic and hydrologic settings that enhance the accumulation or retention of water. Regional slope, local relief, and permeability of the land surface are major controls on the formation of wetlands by surface-water sources. However, these landscape features also have significant control over groundwater flow systems, which commonly play a role in the formation of wetlands. Because the hydrologic system is a continuum, any modification of one component will have an effect on contiguous components. Disturbances commonly affecting the hydrologic system as it relates to wetlands include weather modification, alteration of plant communities, storage of surface water, road construction, drainage of surface water and soil water, alteration of groundwater recharge and discharge areas, and pumping of groundwater. Assessments of the cumulative effects of one or more of these disturbances on the hydrologic system as related to wetlands must take into account uncertainty in the measurements and in the assumptions that are made in hydrologic studies. For example, it may be appropriate to assume that regional groundwater flow systems are recharged in uplands and discharged in lowlands. However, a similar assumption commonly does not apply on a local scale, because of the spatial and temporal dynamics of groundwater recharge. Lack of appreciation of such hydrologic factors can lead to misunderstanding of the hydrologic function of wetlands within various parts of the landscape and mismanagement of wetland ecosystems.
NASA Astrophysics Data System (ADS)
Lesin, Yu V.; Hellmer, M. C.
2016-08-01
Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.
Fluvial Volumes, Timescales, and Intermittency in Milna Crater, Mars
NASA Technical Reports Server (NTRS)
Buhler, P.; Fassett, C. I.; Head, J. W.; Lamb, M. P.
2017-01-01
Ancient lake deposits and valley networks on Mars provide strong evidence that its surface was once modified by liquid water, but the extent of that modification is still debated. Ancient lacustrine deposits in Milna Crater provide insight into the timescale and fluid volume required to construct fluvially derived sedimentary deposits near the Noachian-Hesperian boundary. Placing the lacustrine deposits their regional context in Paraná Valles provides a quantitative measurement of the intermittency of large, water-mediated sediment transport events in that region.
2012-12-01
thick sand layer was placed, the excess surface water was drained off, completing the saturated loose sand layer (Figure 22). Ten pore pressure...during flight. ERDC/GSL TR-12-37 17 Figure 28. Lasers to measure top of I-wall deflection. A 1/4-in. water supply tube was installed to provide...inflow rate via the 1/4-in. tubing would not fill the basin faster than any underseepage would develop because of the relative foundation weakness
Long-Term Drainage from the Riprap Side Slope of a Surface Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuanfang
Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less
Rìos-Montes, Karina A; Casas-Zapata, Juan C; Briones-Gallardo, Roberto; Peñuela, Gustavo
2017-04-03
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L -1 ) and one concentration of glucose (20 mg L -1 ) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18-6.35 mm), coarse gravel (12.70-25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%-85.31%) were found when using fine gravel (3.18-6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18-6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.
NASA Astrophysics Data System (ADS)
Price, J. S.; Petrone, R. M.; Strack, M.; Cooper, D. J.
2017-12-01
In the Alberta oil sands region, fen peatlands comprised 50% of the boreal landscape. Oil sands mining has stripped over 800 km2 of land surface to access bitumen, necessitating landscape reclamation to re-establish functional wetlands. Fens are peat-dominated wetlands that commonly rely on groundwater to supplement their water budget and deliver dissolved solutes that impart a distinct geochemistry, hence vegetation community. A numerical model was used to test the concept and guide selection of earth materials and system geometry. The goal was to maintain the placed peat in a sufficiently wet condition to support wetland plants and become a net carbon sink, in this sub-humid climate. The 32.1 ha Nikanotee Fen Watershed comprises a 7.7 ha upland, that was designed to recharge sufficient water, and deliver it to the 2.9 ha fen via groundwater flow. These features are surrounded by other reclaimed slopes designed to store water, rather than deliver it downslope. Four years of monitoring since construction show the fen maintains a high water table, and the peatland has become a strong carbon sink, even though the hydrological performance of construction materials varied substantially from what was anticipated (lower hydraulic conductivity). However, solutes associated with the tailings sand used in construction are moving towards the fen, and are expected to influence the future vegetation community and system biogeochemistry. One of the biggest uncertainties is the changing performance of soils and vegetation as they develop.
Improving irrigation efficiency : the need for a relevant sequence of the management tools
NASA Astrophysics Data System (ADS)
Fayolle, Y.
2009-04-01
With 70 % of worldwide withdrawals, irrigation efficiency is a key issue in the overall problem of water resources. Management of water dedicated to agriculture should be improved to secure food production and save water to deal with increasing domestic and industrial demands. This paper is based on the results of a collaborative research project conducted in India with a local NGO (the Aga Khan Rural Support Programme, AKRSP(I)) during which GIS were tested. It is aimed at analyzing the efficiency of water usage in a water development programme conducted by the partner NGO in the semi-arid margins of Gujarat state. The analysis raises the question of the articulation of legal, institutional, economical, and technical tools to improve water efficiency. The NGO supervises the construction of surface water harvesting structures for irrigation purposes. Following a participatory approach, it creates and trains user groups to which the management of dams would then be devolved. User group membership depends on financial contribution to the building costs. A legal vacuum regarding surface water management combined with unequal investment capacities favor the concentration of water resources in the hands of a limited number of farmers. This causes low water use efficiency, irrigation choices being mostly oriented to high water consumptive crops and recipient farmers showing no interest in investing in water saving techniques. Our observations favor equality of access and paying more attention to the sequence in which management tools are articulated. On a national scale, as a prerequisite, water user rights as well as NGO's intervention legal framework should be clarified. On a project scale, before construction, information systems could help to identify all potential beneficiaries and optimize equality of access. It aims at reducing the volume of water per farmer to encourage them to irrigate low water consumptive crops and invest in water saving techniques. Depending on individual investment capacities, financial support could be proposed to favor investments in micro-irrigation devices. Finally, we suggest delaying the use of economic tools, giving up financial participation to the building costs (to limit their discriminating effect on user groups access), and limiting their applications to watering charges to cover maintenance expenses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-17
The Lang Property National Priorities List Site is located in Pemberton Township, Burlington County, New Jersey. Unauthorized disposal of hazardous wastes occurred on approximately two acres of the 40-acre site. The contaminant classes that were identified on the site are volatile organic compounds (VOCs), semi-volatile organic compounds (semi-VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. The contaminant classes of concern are PCBs, VOCs, and semi-VOCs for on-site ground water. VOCs is the contaminant class of concern for sediments and surface water. The on-site ground water is highly contaminated; at the maximum chemical concentrations detected, use of thismore » water without treatment would pose a human health concern. The potential does exist for human exposure to ground water contaminants by ingestion, inhalation of volatilized VOCs from ground water, and dermal absorption. The surface soils are also highly contaminated and represent a current possible as well as future human health concern for trespassers, blueberry farm workers and harvesters, and construction and remedial workers.« less
2017-04-12
RASSOR 2.0, a mining robot in work for the moon or Mars, shows off its dexterity in the Regolith Bin at Kennedy Space Center. RASSOR stands for Regolith Advanced Surface Systems Operations Robot. On the surface of Mars, mining robots like RASSOR will dig down into the regolith and take the material to a processing plant where usable elements such as hydrogen, oxygen and water can be extracted for life support systems. Regolith also shows promise for both construction and creating elements for rocket fuel.
Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.
1970-01-01
The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that accretion decreases with decreasing depth to water level. The decrease in accretion is attributed mostly to the increase in evapotranspiration from the aquifer, and where water levels are very near the land surface, to the rejection of recharge. The maximum accretion and the decrease in accretion with the decrease in depth to water are dependent upon the climate and the thickness and lithology of the fine-grained material overlying the aquifer. Dams on the Arkansas and Verdigris Rivers will impose a direct change in water levels in the aquifers adjacent to the rivers. This change will be attenuated by the resultant change in accretion to the aquifer. The analogs of aquifers in the valleys were used to determine the change in ground-water level from preconstruction to postconstruction conditions.
NASA Astrophysics Data System (ADS)
Gaedeke, A.; Arp, C. D.; Liljedahl, A. K.; Daanen, R. P.; Whitman, M. S.
2016-12-01
A changing climate is leading to rapid transformations of hydrological processes in low-gradient Arctic terrestrial ecosystems which are dominated by lakes and ponds, wetlands, polygonised tundra, and connecting stream and river networks. The aim of this study is to gain a deeper understanding of the impacts of climate and land use change on surface water availability and connectivity by utilizing the process-based, spatially distributed hydrological model WaSiM. Crea Creek Watershed (30 km2), which is located in the National Petroleum Reserve-Alaska (NPR-A) was chosen as study area because of its permafrost landforms (bedfast and floating ice lakes, high and low centered polygons), existing observational data (discharge, snow depth, and meteorological variables since 2009), and resource management issues related to permafrost degradation and aquatic habitat dynamics. Foremost of concern is oil development scheduled to begin starting in 2017 with the construction of a permanent road and drilling pad directly within the Crea Watershed. An interdisciplinary team consisting of scientists and regional stakeholders defined the following scenarios to be simulated using WaSiM: (1) industrial development (impact of water removal from lakes (winter) for ice road construction on downstream (summer) runoff), (2) permanent road construction to allow oil companies access to develop and extract petroleum, and (3) potential modes of climate change including warmer, snowier winters and prolonged drought during summers. Downscaled meteorological output from the Weather Research & Forecasting Model (WRF) will be used as the forcing for analysis of climate scenarios alone and for assessment of land-use responses under varying climate scenarios. Our results will provide regional stakeholders with information on the impacts of climate and land use change on surface water connectivity that affects aquatic habitat, as well as lake hydrologic interactions with permafrost. These finding will also benefit local communities that rely on these systems for subsistence and the petroleum industry in the mitigation of environmental impacts to permafrost landscapes within the NPR-A and elsewhere.
Hays, Phillip D.
2001-01-01
Recharge augmentation by construction of infiltration impoundments is a potential means of increasing aquifer water levels and aquifer yield that is under consideration for the Sparta aquifer in southeastern Arkansas. The aquifer is a major water resource for municipal, industrial, and agricultural uses, and approximately 287 million gallons per day was pumped from the aquifer in Arkansas in 1995; this is double the amount pumped in 1975. Historically, the Sparta aquifer has provided abundant water of high quality. In recent years, however, the demand for water in some areas has resulted in withdrawals from the Sparta that significantly exceed recharge to the aquifer, and considerable declines have occurred in the potentiometric surface. To better manage the Sparta aquifer, water users in Arkansas are evaluating and implementing a variety of management practices and assessing alternative, surface-water sources to reduce stress upon the Sparta aquifer. One approach to managing and maximizing use of the Sparta aquifer is augmenting recharge to the aquifer by construction of infiltration lakes or canals within the recharge area. The basic concept of augmented recharge is simply to increase the amount of water being introduced into the aquifer so that more water will be available for use. Ground-water flow model simulations were conducted to assess the effectiveness of constructing lakes or canals to augment recharge. Results show that construction of five new lakes in the Sparta recharge area upgradient from major pumping centers or construction of a series of canals along the length of the recharge area yield notable benefit to aquifer conditions when compared with simulations entailing no augmentation of recharge. Augmentation of recharge in the Sparta aquifer with emplacement of lakes provides slight increase to aquifer water levels. The presence of the lakes increased simulated aquifer water levels 0.5 foot or more across a broad area comprising all or a substantial part of 19 counties after the 30-year simulation period. Substantial increases of 5 feet or greater are limited to a smaller area proximal to the lakes. Increases of 5 feet or more are seen in El Dorado, Pine Bluff, and Stuttgart. The positive effect of the lakes on aquifer water levels is rapidly realized after emplacement of the lakes. For example, in the El Dorado area more than 3 feet of a total of 8 feet of water-level increase is seen in the first 5 years of the simulation; in the Pine Bluff area 9 feet of a total of 16 feet of increase occurs within 5 years. Sustainable yield from the aquifer could be expected to be increased within the zone of influence of the lakes. Augmentation of recharge in the Sparta aquifer with emplacement of canals provides considerable increase of aquifer water levels. The zone of influence in the aquifer with canal-augmented recharge extends from the recharge area eastward to the Mississippi River. Aquifer water levels exhibit an increase of 5 feet or more across a broad area comprising all or a substantial part of 15 counties. Increases of 20 feet or more are seen in El Dorado, Pine Bluff, and Stuttgart. The amount of water moving into the aquifer is substantially increased under this scenario, and the amount of water removed from storage is decreased, thereby, increasing aquifer conditions considerably. Sustainable yield from the aquifer could be expected to be greater within the zone of influence of the canals as compared to either the scenario without recharge augmentation or recharge augmentation with lakes. The effect of the canal on aquifer water levels is rapidly realized after emplacement of the canals. For example, in the El Dorado area, 22 feet of a total of 30 feet of increase is seen in the first 5 years of the simulation; in the Pine Bluff area, 15 feet of a total of 24 feet of increase occurs within 5 years. As constructed, the model simulations imply that any lakes or canals constructed would maintain exce
Weedon, Christopher Michael; Murphy, Clodagh; Sweaney, Geoff
2017-01-01
Owing to legislation change (which made General Binding Rules effective from 1 January 2015) unless discharge is to specified environmentally sensitive sites, small sewage discharges (SSDs) in England - that is, <2 m 3 d -1 to ground; <5 m 3 d -1 to surface waters - no longer require an Environmental Permit (EP) and need not be registered for exemption, provided discharge to surface waters is preceded by treatment using equipment complying with BS EN 12566. This effectively excludes the use of treatment wetlands, unless covered by an EP, because the cost of certification to EN 12566 for bespoke designs is prohibitive. EPs take up to four months to obtain. Therefore, the new legislation has created a commercial disadvantage for constructed wetlands treating SSDs, compared with mass-produced sewage treatment plants. However, the UK statutory pollution regulators have maintained a dialogue with the Constructed Wetland Association (CWA), with a view to assessing whether treatment of SSD using constructed wetlands might be allowable, without requiring EPs. This paper presents treatment performance data obtained over 15 years, from a variety of full-scale operational treatment wetlands, as supporting evidence for design guidelines, proposed by the CWA to the UK regulators, for the implementation of constructed wetlands continuously passively treating SSD to 20:30:20 mg l -1 BOD/SS/NH4-N under a wide range of loading rates. Relevant experience of UK designers, installers and operators since the early 1990s is included, resulting in recommended physical design criteria and loading rates for compact vertical flow reed beds, presented here as key elements of the draft guidelines.
Hanson, Randall T.; Ritchie, Andre; Boyce, Scott E.; Ferguson, Ian; Galanter, Amy; Flint, Lorraine E.; Henson, Wesley
2018-05-31
Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin, and northern part of the Conejos-Médanos Basin, with the entire region referred to as the “Transboundary Rio Grande” or TRG. These tools provide a means to understand hydrologic system response to the evolution of water use in the region, its availability, and potential operational constraints of the RGP.The conceptual model identified surface-water and groundwater inflows and outflows that included the movement and use of water both in natural and in anthropogenic systems. The groundwater-flow system is characterized by a layered geologic sedimentary sequence combined with the effects of groundwater pumping, operation of the RGP, natural runoff and recharge, and the application of irrigation water at the land surface that is captured and reused in an extensive network of canals and drains as part of the conjunctive use of water in the region.Historical groundwater-level fluctuations followed a cyclic pattern that were aligned with climate cycles, which collectively resulted in alternating periods of wet or dry years. Periods of drought that persisted for one or more years are associated with low surface-water availability that resulted in higher rates of groundwater-level decline. Rates of groundwater-level decline also increased during periods of agricultural intensification, which necessitated increasing use of groundwater as a source of irrigation water. Agriculture in the area was initially dominated by alfalfa and cotton, but since 1970 more water-intensive pecan orchards and vegetable production have become more common. Groundwater levels substantially declined in subregions where drier climate combined with increased demand, resulting in periods of reduced streamflows.Most of the groundwater was recharged in the Rio Grande Valley floor, and most of the pumpage and aquifer storage depletion was in Mesilla Basin agricultural subregions. A cyclic imbalance between inflows and outflows resulted in the modeled cyclic depletion (groundwater withdrawals in excess of natural recharge) of the groundwater basin during the 75-year simulation period of 1940–2014. Changes in groundwater storage can vary considerably from year to year, depending on land use, pumpage, and climate conditions. Climatic drivers of wet and dry years can greatly affect all inflows, outflows, and water use. Although streamflow and, to a minor extent, precipitation during inter-decadal wet-year periods replenished the groundwater historically, contemporary water use and storage depletion could have reduced the effects of these major recharge events. The average net groundwater flow-rate deficit for 1953–2014 was estimated to be about 8,990 acre-feet per year.
Hanson, R.T.; Ritchie, Andre; Boyce, Scott E.; Galanter, Amy E.; Ferguson, Ian A.; Flint, Lorraine E.; Henson, Wesley R.
2018-05-31
Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin, and northern part of the Conejos-Médanos Basin, with the entire region referred to as the “Transboundary Rio Grande” or TRG. These tools provide a means to understand hydrologic system response to the evolution of water use in the region, its availability, and potential operational constraints of the RGP.The conceptual model identified surface-water and groundwater inflows and outflows that included the movement and use of water both in natural and in anthropogenic systems. The groundwater-flow system is characterized by a layered geologic sedimentary sequence combined with the effects of groundwater pumping, operation of the RGP, natural runoff and recharge, and the application of irrigation water at the land surface that is captured and reused in an extensive network of canals and drains as part of the conjunctive use of water in the region.Historical groundwater-level fluctuations followed a cyclic pattern that were aligned with climate cycles, which collectively resulted in alternating periods of wet or dry years. Periods of drought that persisted for one or more years are associated with low surface-water availability that resulted in higher rates of groundwater-level decline. Rates of groundwater-level decline also increased during periods of agricultural intensification, which necessitated increasing use of groundwater as a source of irrigation water. Agriculture in the area was initially dominated by alfalfa and cotton, but since 1970 more water-intensive pecan orchards and vegetable production have become more common. Groundwater levels substantially declined in subregions where drier climate combined with increased demand, resulting in periods of reduced streamflows.Most of the groundwater was recharged in the Rio Grande Valley floor, and most of the pumpage and aquifer storage depletion was in Mesilla Basin agricultural subregions. A cyclic imbalance between inflows and outflows resulted in the modeled cyclic depletion (groundwater withdrawals in excess of natural recharge) of the groundwater basin during the 75-year simulation period of 1940–2014. Changes in groundwater storage can vary considerably from year to year, depending on land use, pumpage, and climate conditions. Climatic drivers of wet and dry years can greatly affect all inflows, outflows, and water use. Although streamflow and, to a minor extent, precipitation during inter-decadal wet-year periods replenished the groundwater historically, contemporary water use and storage depletion could have reduced the effects of these major recharge events. The average net groundwater flow-rate deficit for 1953–2014 was estimated to be about 8,990 acre-feet per year.
Analytical characterization of selective benthic flux components in estuarine and coastal waters
King, Jeffrey N.
2011-01-01
Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.
Murgulet, Dorina; Murgulet, Valeriu; Spalt, Nicholas; Douglas, Audrey; Hay, Richard G
2016-12-01
There is a lack of understanding and methods for assessing the effects of anthropogenic disruptions, (i.e. river fragmentation due to dam construction) on the extent and degree of groundwater-surface water interaction and geochemical processes affecting the quality of water in semi-arid, coastal catchments. This study applied a novel combination of electrical resistivity tomography (ERT) and elemental and isotope geochemistry in a coastal river disturbed by extended drought and periodic flooding due to the operation of multiple dams. Geochemical analyses show that the saltwater barrier causes an increase in salinity in surface water in the downstream river as a result of limited freshwater inflows, strong evaporation effects on shallow groundwater and mostly stagnant river water, and is not due to saltwater intrusion by tidal flooding. Discharge from bank storage is dominant (~84%) in the downstream fragment and its contribution could increase salinity levels within the hyporheic zone and surface water. When surface water levels go up due to upstream freshwater releases the river temporarily displaces high salinity water trapped in the hyporheic zone to the underlying aquifer. Geochemical modeling shows a higher contribution of distant and deeper groundwater (~40%) in the upstream river and lower discharge from bank storage (~13%) through the hyporheic zone. Recharge from bank storage is a source of high salt to both upstream and downstream portions of the river but its contribution is higher below the dam. Continuous ERT imaging of the river bed complements geochemistry findings and indicate that while lithologically similar, downstream of the dam, the shallow aquifer is affected by salinization while fresher water saturates the aquifer in the upstream fragment. The relative contribution of flows (i.e. surface water releases or groundwater discharge) as related to the river fragmentation control changes of streamwater chemistry and likely impact the interpretation of seasonal trends. Copyright © 2016 Elsevier B.V. All rights reserved.
The influence of wind farm development on the hydrochemistry and ecology of an upland stream.
Millidine, K J; Malcolm, I A; McCartney, A; Laughton, R; Gibbins, C N; Fryer, R J
2015-08-01
Despite perceptions of pristine condition, upland environments are increasingly subject to a range of anthropogenic pressures including air pollution, climate change, land-use change and evolving land management strategies. Although they have received little attention to date, the large-scale development of upland wind farms also has the potential to disturb vegetation and soils, alter hydrology and water quality and, thus, impact freshwater ecosystems. This paper presents the findings of a 5-year study of the impacts of wind farm construction on the freshwater environment. Data on water quality, invertebrate and fish populations were collected for 2 years before construction and for the following 3 years covering the construction period and the initial period of the farm's operation. In contrast to previous studies, the impacts of the wind farm development were assessed for a suite of potentially affected hydrochemical variables using a before-after-control-impact (BACI) analysis that allowed separation of construction effects from spatial and temporal variability in hydroclimatological conditions, thereby providing an improved, more robust evidence base. There was a small but significant negative effect of construction on pH, alkalinity (Alk) and acid neutralising capacity (ANC) in the upper part of the treatment catchment, which was where the wind farm was situated. The effects were more marked under higher flow conditions. It is hypothesised that this reflects changes in hydrological processes with increased near-surface runoff or organic acid mobilisation. There was no indication that either invertebrate community structure or fish densities were impacted by construction and the resulting effects on water quality.
NASA Astrophysics Data System (ADS)
Tian, L.; Shu, A. P.; Huang, L.
2017-12-01
Along with accelerating in Chinese urbanization, a increasing number of urban construction projects have been built, which cause the growth of impervious surface ratio in cities. Large areas of impervious surface hinders city normal natural water cycles, increases surface runoff coefficient, brings flood peak forward, and increases risk of flooding . Therefore, with the view of reducing risk of urban waterlogging disaster, improving water resource cyclic utilization, and maximizing recovery of urban eco-hydrological process, China begins to promote Sponge city construction using LID as core idea. The paper take five kinds of collecting and utilization rainwater measure as research example, analysis their characteristic ,take investment cost, economic benefit and enviromental benefit as principle of assessment. The weight of the evaluation criterion are gained by entropy method. The final evaluation of urban stormwater measures configuration mode based on the low impact development with PROMETHEE method . The sensitivity of evaluation criterion are analysised by GAIA. Finally, the examples are given to explain the feasibility . The result shows that comprehensive benefit of the mode containing green roof, permeable pavement, Sunken green space and rainwater harvesting tank is the highest. It turn out that reasonable and various types rainwater measures and high land utilization is significant for increasing the its comprehensive efficiency. Besides, the environmental benefit of urban rainwater measures is significantly greater than the economic benefit. There is a positive correlation between plant significantly greater than the economic benefit. There is a positive correlation between plant shallow groove, sunken green space and comprehensive benefit of rainwater measure. Because they can effectively removes water pollutants in stormwater. The studies not only have a great significance in optimizing configuration mode of urban rainwater measures, but also push development of the sponge city construction and propel exploration in developmental model of ideal city forward.
Biogeochemical processes controlling density stratification in an iron-meromictic lake
NASA Astrophysics Data System (ADS)
Nixdorf, E.; Boehrer, B.
2015-06-01
Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.
Schrader, T.P.
2009-01-01
The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission and the Arkansas Geological Survey has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group (herein referred to as the Sparta Sand and the Memphis Sand, respectively), since the 1920s. Groundwater withdrawals have increased while water levels have declined since monitoring was initiated. Herein, aquifers in the Sparta Sand and Memphis Sand will be referred to as the Sparta-Memphis aquifer throughout Arkansas. During the spring of 2007, 309 water levels were measured in wells completed in the Sparta-Memphis aquifer. During the summer of 2007, 129 water-quality samples were collected and measured for temperature and specific conductance and 102 were collected and analyzed for chloride from wells completed in the Sparta-Memphis aquifer. Water-level measurements collected in wells screened in the Sparta-Memphis aquifer were used to produce a regional potentiometric-surface map. The regional direction of groundwater flow in the Sparta-Memphis aquifer is generally to the south-southeast in the northern half of Arkansas and to the east and south in the southern half of Arkansas, away from the outcrop area except where affected by large ground-water withdrawals. The highest water-level altitude measured in the Sparta-Memphis aquifer was 326 feet above National Geodetic Vertical Datum of 1929, located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 161 feet below National Geodetic Vertical Datum of 1929 in Union County near the southern boundary of the study area. Eight cones of depression (generally represented by closed contours) are located in the following counties: Bradley, Drew, and Ashley; Calhoun; Cleveland; Columbia; Crittenden; Arkansas, Jefferson, and Lincoln; Cross and Poinsett; and Union. Two large depressions are shown on the 2007 potentiometric-surface map, centered in Jefferson and Union Counties, as a result of large withdrawals for industrial and public supplies. The depression centered in Jefferson County deepened and expanded in recent years into Arkansas and Prairie Counties as a result of large withdrawals for irrigation and public supply. The area enclosed within the 40-foot contour has expanded on the 2007 potentiometric-surface map when compared with the 2005 potentiometric-surface map. In 2003, the depression in Union County was elongated east and west and beginning to coalesce with the depression in Columbia County. The deepest measurement during 2007 in the center of the depression in Union County has risen 38 feet since 2003. The area enclosed by the deepest contour, 160 feet below National Geodetic Vertical Datum of 1929, on the 2007 potentiometric-surface map is less than 10 percent of the area on the 2005 potentiometric-surface map. A broad depression in western Poinsett and Cross Counties was first shown in the 1995 potentiometric-surface map caused by withdrawals for irrigation extending north to the Poinsett-Craighead County line, and south into Cross County. A water-level difference map was constructed using the difference between water-level measurements made during 2003 and 2007 from 283 wells. The difference in water level between 2003 and 2007 ranged from -49.8 to 60.0 feet. Areas with a general rise in water levels are shown in northern Arkansas, Columbia, southern Jefferson, and most of Union Counties. In the area around west-central Union County, water levels rose as much as 60.0 feet with water levels in 15 wells rising 20 feet or more, which is an average annual rise of 5 feet or more. Water levels generally declined throughout most of the rest of Arkansas. Hydrographs from 157 wells were constructed with a minimum of 25 years of water-level measurements. During the period 1983-2007, the county mean annual water level rose in Calhoun, Columbia, Hot Spring, and Lafayette Counties. Mean an
NASA Astrophysics Data System (ADS)
Zhu, Xiaobin; Wu, Jichun; Nie, Huijun; Guo, Fei; Wu, Jianfeng; Chen, Kouping; Liao, Penghui; Xu, Hongxia; Zeng, Xiankui
2018-06-01
Inter-basin water transfer projects (IBWTPs) can involve basins as water donors and water receivers. In contrast to most studies on IBWTPs, which mainly impact the surface-water eco-environment, this study focuses on the impacts of an IBWTP on groundwater and its eco-environment in a water donor basin in an arid area, where surface water and groundwater are exchanged. Surface water is assumed to recharge groundwater and a groundwater numerical simulation model was constructed using MODFLOW. The model was used to quantitatively evaluate the impact of an IBWTP located in the upstream portion of Nalenggele River (the biggest river in the Qaidam basin, Northwest China). The impact involved decrease in spring flow, drawdown of groundwater, reduction in oasis area, and an increase in species replacement of oasis vegetation in the midstream and downstream of the river. Results show that the emergence sites of springs at the front of the oasis will move 2-5 km downstream, and the outflow of springs will decrease by 42 million m3/a. The maximum drawdown of groundwater level at the front of the oasis will be 3.6 m and the area across which groundwater drawdown exceeds 2.0 m will be about 59.02 km2, accounting for 2.71% of the total area of the oasis. Under such conditions, reeds will gradually be replaced by Tamarix, shrubs, and other alternative plant species. These findings have important implications for the optimization of water resource allocation and protection of the eco-environment in arid regions.
Gachango, F G; Pedersen, S M; Kjaergaard, C
2015-12-01
Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.
Development of an evaporation-optimized and water-permeable pavement
NASA Astrophysics Data System (ADS)
Starke, P.; Göbel, P.; Coldewey, W. G.
2009-04-01
During recent decades, urban areas have been threatened more frequently by flood events. Furthermore, the potential for damage from these events has increased on average. The construction of houses, streets and parking lots has caused this trend by sealing the ground surface, i.e. these water-impermeable areas reduce the natural infiltration and evaporation-rates, and in some cases it is even completely stopped. The consequence is the so called "urban water cycle". Water from precipitation cannot be stored anywhere and so there is an immediate and very high surface run-off effect. Especially after intense rain events, canalisations and sewage-treatment plants are overloaded and this leads to higher costs for water treatment and to environmental damage. A practical solution to this problem is the use of water-permeable pavements. Here higher infiltration rates lead to a groundwater recharge that is greater than that of natural soils. The consequences from using these surfaces are already noticeable in many places through increasing groundwater levels. These increases cause damage to buildings. A second difference from a natural-soil water-balance is a lower evapotranspiration rate. Up to now the evaporation rates for water-permeable pavements has not been established accurately. The aim of the applied research project at the University of Muenster, which is sponsored by the DBU (The German Federal Environmental Foundation), is to gain knowledge of urban evaporation rates and of water-permeable surfaces, especially water-permeable pavements. Water-permeable pavements consist of the paving stone surface and the two sub-base layers below. Pre-investigations show that evaporation can be influenced by the complete sub-base. Therefore, the first step was to investigate which materials are used for sub-base construction. All in all, 27 materials were collected from throughout Germany and these materials were then tested (in terms of physical and hydraulic attributes) in the soil-mechanics laboratory of the University of Muenster. For their street construction useability, and having regard to evaporation, a selection of appropriate materials were built into a test field. The test field consisted of seven hexagonal areas each about 10 m2 large, which are placed in a honeycomb manner. The evaporation measurements are carried out with a WERNER tunnel-evaporation gauge (TUV) which is able to detect the actual evaporation rate. Its functional principle also allows a direct comparison between the middle reference area and one outer area of the test field. Every measuring period lasts one week and after that the TUV is moved to between the next outer area and the reference area. So the TUV rotates over the whole test field and every measuring area is covered by a measurement. In addition, a Hellman rain-gauge near the test field enables the measurement of a direct precipitation-evaporation ratio. Since the start of the measurements in July 2008, the first results collected showed that measureable differences in evaporation rates could be detected after a few measuring periods, i.e. the differences are up to 32% between the reference area and one outer area. In July 2009, the six outer measuring areas of the test field will be replaced and, based on the actual results collected, the sub-base layers will be replaced by an evaporation-optimized sub-base. The new outer measuring areas will only differ in terms of a different paving-stone surface. These paving stones are actually under developement and under laboratory testing (i.e. permeability, porosity, capillary water and evaporationrates), and so they will be evaporation-opimized. The open-air test in the test field is to assure and compare the evaporation rates. As a final result, the evaporation-optimized and water-permeable pavement and the knowledge of its exact drainage ratio will allow city planners or architects to build water-permeable streets with due regard to the respective area-specific conditions. This new developed pavement is an approximation to the water balance of a natural soil. In this way, the danger of flooding can be further reduced in urban areas.
Use of pressure manifestations following the water plasma expansion for phytomass disintegration.
Maroušek, Josef; Kwan, Jason Tai Hong
2013-01-01
A prototype capable of generating underwater high-voltage discharges (3.5 kV) coupled with water plasma expansion was constructed. The level of phytomass disintegration caused by transmission of the pressure shockwaves (50-60 MPa) followed by this expansion was analyzed using gas adsorption techniques. The dynamics of the external surface area and the micropore volume on multiple pretreatment stages of maize silage and sunflower seeds was approximated with robust analytical techniques. The multiple increases on the reaction surface were manifest in up to a 15% increase in cumulative methane production, which was itself manifest in the overall acceleration of the anaerobic fermentation process. Disintegration of the sunflower seeds allowed up to 45% higher oil yields using the same operating pressure.
Electric double layer at metal oxide surfaces:static properties of the cassiterite-water interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, L.; Zhang, Z.; Machesky, M .L.
2007-03-24
The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Zhang, Zhan; Machesky, Michael L.
2007-01-01
The structure of water at the (110) surface of cassiterite ({alpha}-SnO{sub 2}) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively chargedmore » variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile ({alpha}-TiO{sub 2}) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH{sub pzc}) that agrees very well with those determined experimentally (about 4.4 at 298 K).« less
Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert
2010-09-01
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.
2010-01-01
DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the surface barrier was completed in April 2008. In the soil below the surface barrier (Nests C and D), the CP measurements showed that water content at the soil between 0.6-m and 2.3-m depths was very stable, indicating no climatic impacts on soil water condition beneath the barrier. The NP-measured water content showed that soil water drainage seemed occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) in FY09. The HDU-measured water pressure decreased consistently in the soil above 5-m depth, indicating soil water drainage at these depths of the soil. In the soil below the edge of the surface barrier (Nest B), the CP-measured water content was relatively stable through the year except at the 0.9-m depth; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) but at a slightly smaller magnitude than those in Nests C and D; the HDU-measurements show that the pressure head changes in FY09 in Nest B were less than those for C and D but more than those for A. The soil-water-pressure head was more sensitive to soil water regime changes under dry conditions. In the soil beneath the barrier, the theoretical steady-state values of pressure head is equal to the negative of the distance to groundwater table. Hence, it is expected that, in the future, while the water content become stable, the pressure head will keep decreasing for a long time (e.g., many years). These results indicate that the T Tank Farm surface barrier was performing as expected by intercepting the meteoric water from infiltrating into the soil and the soil was becoming drier gradually. The barrier also has some effects on the soil below the barrier edge but at a reduced magnitude.« less
Water resources of the Port Madison Indian Reservation, Washington
Lum, W.E.
1979-01-01
The study summarized in this report was made to provide Suquamish Tribal leaders with information on the reservation 's surface- and ground-water resources. The Tribal leaders need this information to help manage and protect their water resources against over-development. The quantity of ground water estimated to be available for withdrawal on a long-term basis is about 600 million gallons per year in the western part of the reservation and 400 million gallons per year in the eastern part of the reservation. It should be possible, economically and practically, to capture at least 40 percent of this ground water with properly constructed and located wells before it is discharged into the sea. This is enough water to supply at least 5,000 and 3,500 people with domestic water in these respective areas--about four times the present population. Of nine stream sites that were studied, the lowest average streamflows for a 7-day period estimated to occur an average of once in 2 years were 1.3 cubic feet per second or less. Streams at three of the sites have been observed dry at least once. The short period of data collection during this study limits the accuracy of statistical estimates of low flows. Both surface and ground water are of good quality with no unusual or harmful constituents; there was no evidence of major pollution in 1977. In the future, seawater intrusion into the ground-water system and pollution of the surface water by improperly treated sewage waste water could become problems. (Woodard-USGS).
Promoting the management and protection of private water wells.
Simpson, Hugh
Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.
Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina
Cardinell, A.P.; Howe, S.S.
1997-01-01
A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.
Physical and Biological Impacts of Changing Land-Uses and the Environment
NASA Astrophysics Data System (ADS)
English, W. R.; Pike, J. W.; Jolley, L. W.; Goddard, M. A.; Biondi, M. J.; Hur, J. M.; Powell, B. A.; Morse, J. C.
2005-05-01
A goal of the Changing Land Use and the Environment (CLUE) project is to characterize surface water quality impacted by land-use change in the Saluda and Reedy River watersheds of South Carolina. The CLUE project focuses on impacts common to urban development including 1. sedimentation from construction sites, 2. alteration of discharge and channel morphology due to increased impervious surfaces, 3. macroinvertebrate community response to sedimentation and habitat alteration, and 4. microbial contamination. We found that mean streambed particle size was reduced in developing areas. Stream cross-sectional areas enlarged in catchments with high percentages of impervious surfaces. Sedimentation and altered discharge resulted in the benthic macroinvertebrate community showing a general reduction in biotic integrity values and reductions in Plecoptera taxa richness. Fecal coliform levels were higher for both surface water and bottom sediments in and below urbanized areas during base flows. Levels of fecal coliform in samples collected during storm flows were significantly higher than in base flows, and were correlated with high sediment loads.
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
An underwater ranging system based on photoacoustic effect occurring on target surface
NASA Astrophysics Data System (ADS)
Ni, Kai; Hu, Kai; Li, Xinghui; Wang, Lidai; Zhou, Qian; Wang, Xiaohao
2016-11-01
In this paper, an underwater ranging system based on photoacoustic effect occurring on target surface is proposed. In this proposal, laser pulse generated by blue-green laser is directly incident on target surface, where the photoacoustic effect occurs and a sound source is formed. And then the sound wave which is also called photoacoustic signal is received by the ultrasonic receiver after passing through water. According to the time delay between transmitting laser and receiving photoacoustic signal, and sound velocity in water, the distance between the target and the ultrasonic receiver can be calculated. Differing from underwater range finding by only laser, this approach can avoid backscattering of laser beam, so easier to implement. Experimental system according to this principle has been constructed to verify the feasibility of this technology. The experimental results showed that a ranging accuracy of 1 mm can be effectively achieved when the target is close to the ultrasonic receiver.
Bush, Peter W.; Barr, G. Lynn; Clarke, John S.; Johnston, Richard H.
1987-01-01
A map, constructed as a part of the Floridan Regional Aquifer-System Analysis (RASA), shows the potentiometric surface of the Upper Floridan aquifer for May 1985. It is based on measurements of water level or artesian pressure made in about 2 ,500 wells during the period May 13 to 24, 1985. Only measurements from tightly cased wells open exclusively to the Upper Floridan aquifer were used to make the map. These included 1,425 wells in Florida, 924 in Georgia, 133 in South Carolina, and 21 in Alabama. The potentiometric surface of the Upper Floridan aquifer changed little between 1980 and 1985. Significant water level declines were observed only in southwest Georgia and west-central Florida. Low rainfall during early 1985 and associated pumping for irrigation caused the declines in both areas. (Lantz-PTT)
Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes
NASA Astrophysics Data System (ADS)
Wang, N.; Ferraro, R. R.
2013-12-01
Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.
200-BP-1 Prototype Hanford Barrier -- 15 Years of Performance Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Draper, Kathryn E.; Link, Steven O.
2011-09-30
Monitoring is an essential component of engineered barrier system design and operation. A composite capacitive cover, including a capillary break and an evapotranspiration (ET) barrier at the Hanford Site, is generating data that can be used to help resolve these issues. The prototype Hanford barrier was constructed over the 216-B-57 Crib in 1994 to evaluate surface-barrier constructability, construction costs, and physical and hydrologic performance at the field scale. The barrier has been routinely monitored between November 1994 and September 1998 as part of a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) treatability test of barrier performance formore » the 200 BP 1 Operable Unit. Since FY 1998, monitoring has focused on a more limited set of key water balance, stability, and biotic parameters. In FY 2009, data collection was focused on: (1) water-balance monitoring, consisting of precipitation, runoff, soil moisture storage, and drainage measurements with evapotranspiration calculated by difference; (2) stability monitoring, consisting of asphalt-layer-settlement, basalt-side-slope-stability, and surface-elevation measurements; (3) vegetation dynamics; and (4) animal use. September 2009 marked 15 years since the start of monitoring and the collection of performance data. This report describes the results of monitoring activities during the period October 1, 2008, through September 30, 2009, and summarizes the 15 years of performance data collected from September 1994 through September 2009.« less
Atmospheric stability analysis over statically and dynamically rough surfaces
NASA Astrophysics Data System (ADS)
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
A synoptic view of golf course management
NASA Astrophysics Data System (ADS)
Katula, Robert L.
1996-03-01
The maintenance, construction, and redesign of private, public, and municipal golf courses in the United States is a multi-billion dollar industry. The entire golf course maintenance market, according to the National Golf Foundation, was 6.2 billion per year in 1991. The average maintenance cost in the United States was approximately 40,000 per hole per year for the over 15,000 golf courses in the United States in 1991. Golf course maintenance costs have risen 500 percent from 1971 to 1991. These costs are projected to continue to increase at a rate of 8 percent per year due to the demand for quality playing surfaces, increased use of non-potable water, and taxes on water and chemicals required to maintain turfgrass. The golf course construction and redesign market continues to maintain a rate of over 300 new golf courses and redesigned courses completed each year. The average construction costs run from 4 to 6 million and the average redesign costs 2 to 3 million per course. In order to create a perfectly maintained golf course, golf course managers may use as many as 25 different pesticides, fertilizers, and herbicides to control insects and turf disease. Further, turfgrass is often stressed to its limits when kept at the unnatural heights required to obtain firm and fast greens and fairways. The daily practice of living on the edge is often done with limited knowledge of changes taking place on the golf course, of the location of soil types and fertility, of surface and subsurface drainage, and of previous maintenance practices. There is a growing concern in the golf course industry that the concentration of chemicals and water required to maintain today's golf course may endanger ground water supplies for the surrounding ecosystem. This paper will describe the general methodology PTS used to develop a new management system for the maintenance, construction, and redesign of golf courses. The management system integrates remote sensing technology, geographic information systems analysis, and global positioning satellite survey capabilities to bring a total solution to bear on golf courses.
Cevik, Emre; Carbas, Buket Bezgin; Senel, Mehmet; Yildiz, Huseyin Bekir
2018-08-15
In this study, a photo-bioelectrochemical fuel cell was constructed for photocurrent generation by illuminating the electrodes within an aqueous solution. In this purpose, gold electrode was coated with poly 4-(4H-Dithieno [3,2-b:2',3'-d]pyrol-4-yl) aniline, P(DTP-Ph-NH 2 ) conductive polymer film by using electrochemical polymerization. Then, P(DTP-Ph-NH 2 ) conductive polymer film coated surface was electrochemically modified with cytochrome C which covalently linked onto the surface via bis-aniline functionality of the polymer film and formed crosslinked-structure. The thylakoid membrane was attached on the surface of this electrode by using bissulfosaxinimidyl suberate (BS 3 ) and used as photo-anode in photo-bioelectrochemical fuel cell. The photo-cathode of the photo-bioelectrochemical fuel cell fabrication was followed by the modification of conductive polymer poly[5-(4H-dithieno [3,2-b:2',3'-d]pyrol-4-yl) naphtalene-1-amine] film coating, glutaraldehyde activation, and bilirubin oxidase enzyme immobilization. During the photosynthesis occurring in thylakoid membrane under the light, water was oxidized and separated; while oxygen was released in anode side, the cathode side was reduced the oxygen gas into the water via a bio-electro-catalytic method. The cytochrome C was used for binding of thylakoid membrane to the electrode surface and play an important role for transferring of electrons released as a result of photosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Large Scale Groundwater Flow Model for Ho Chi Minh City and its Catchment Area, Southern Vietnam
NASA Astrophysics Data System (ADS)
Sigrist, M.; Tokunaga, T.; Takizawa, S.
2005-12-01
Ho Chi Minh City (HCMC) has become a fast growing city in recent decades and is still growing at a high pace. The water demand for more than 7 million people has increased tremendously, too. Beside surface water, groundwater is used in big amounts to satisfy the need of water. By now, more than 200,000 wells have been developed with very little control. To investigate the sustainability of the water abstraction, a model had been built for the HCMC area and its surrounding. On the catchment scale (around 24,000km2); however, many questions have remained unsolved. In this study, we first gathered and complied geological and hydrogeological information as well as data on groundwater quality to get an idea on regional groundwater flow pattern and problems related to the temporal change of the groundwater situation. Two problems have been depicted by this study. One is the construction of a water reservoir upstream of the Saigon River. This construction has probably changed the water table of the unconfined aquifer, and hence, has significantly changed the properties of soils in some areas. The other problem is the distribution of salty groundwater. Despite the distance of more than 40km from the seashore, groundwater from some wells in and around HCMC shows high concentrations of chloride. Several wells started to produce non-potable water. The chloride concentrations show a complicated and patchy distribution below HCMC, suggesting the possibility of the remnant saltwater at the time of sediment deposition. On the other hand, seawater invades along the streams far beyond HCMC during the dry season and this might be one of the possible sources of salty groundwater by vertical infiltration. A large-scale geological model was constructed and transformed into a hydrogeological model to better understand and quantify the groundwater flow system and the origin of saltwater. Based on the constructed model and numerical calculation, we discuss the influence of reservoir construction on the groundwater situation at the upstream Saigon River, and possible factors for the existence of salty groundwater underneath HCMC.
Surface tension dominates insect flight on fluid interfaces.
Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu
2016-03-01
Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Shinji; Takeuchi, Ryuji; Salden, Walter
2007-07-01
A hydrogeological conceptual model has been developed based on pressure responses observed at multilevel pressure monitoring zones in seven boreholes and surface tilt data in and around the Mizunami Underground Research Laboratory site. Pressure changes caused by some earthquakes, cross-hole hydraulic testing, and shaft excavation activities are considered. Surface tilt has been measured from the half way of the shaft excavation phase. The shaft excavation has been commenced from July 2003 with two shafts (Main shaft and Ventilation shaft). By the end of October 2005, discharging of water in the shafts has been halted at the depths of 172 mmore » and 191 m respectively to allow modifications to be made to the water treatment facility due to an excess of F and B concentration in the water. This results in the recovery of the groundwater levels and filling of the underground workings. Beginning in February 2006 pumping has been resumed and the underground workings have been re-occupied. Continuous groundwater pressure and surface tilt measurements with some numerical analysis during the shaft excavation phase show the existence of the flow barrier fault predicted from the surface-based investigation phase and hydraulic parameter around the shafts. (authors)« less
Surface tension dominates insect flight on fluid interfaces
Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu
2016-01-01
ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640
Modeling of Waves Propagating in Water with a Crushed Ice Layer on the Free Surface
NASA Astrophysics Data System (ADS)
Szmidt, Kazimierz
2017-12-01
A transformation of gravitational waves in fluid of constant depth with a crushed ice layer floating on the free fluid surface is considered. The propagating waves undergo a slight damping along their path of propagation. The main goal of the study is to construct an approximate descriptive model of this phenomenon.With regard to small displacements of the free surface, a viscous type model of damping is considered, which corresponds to a continuous distribution of dash-pots at the free surface of the fluid. A constant parameter of the dampers is assumed in advance as known parameter of damping. This parameter may be obtained by means of experiments in a laboratory flume.
2004-05-01
from the north. Most of the birds winter in western parts of the state, particularly at Reelfoot Lake and Dale Hollow Reservoir, but bald eagles may...Hydrology Hydrological features consist of surface waters ( lakes , rivers, streams, and springs) and groundwater. Arnold AFB lies within the Duck River and
V. C. Hasfurther; G. L. Kerr; G. Parks; J. Wetstein
1994-01-01
Three Parshall flumes were installed within East and West Glacier Lakes watersheds during the summer of 1987. Each Parshall flume was prefabricated fiberglass construction fitted with a hypolon liner to bring as much groundwater flow as possible to the surface so that it could be measured by passing the water through the flume. The liner was buried as deep as was...
Predictive model for ice formation on superhydrophobic surfaces.
Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom
2011-12-06
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. © 2011 American Chemical Society
Satellite Monitoring of Boston Harbor Water Quality: Initial Investigations
NASA Astrophysics Data System (ADS)
Sheldon, P.; Chen, R. F.; Schaaf, C.; Pahlevan, N.; Lee, Z.
2016-02-01
The transformation of Boston Harbor from the "dirtiest in America" to a National Park Area is one of the most remarkable estuarine recoveries in the world. A long-term water quality dataset from 1991 to present exists in Boston Harbor due to a $3. 8 billion lawsuit requiring the harbor clean-up. This project uses discrete water sampling and underway transects with a towed vehicle coordinated with Landsat 7 and Landsat 8 to create surface maps of chlorophyll a (Chl a), dissolved organic matter (CDOM and DOC), total suspended solids (TSS), diffuse attenuation coefficient (Kd_490), and photic depth in Boston Harbor. In addition, 3 buoys have been designed, constructed, and deployed in Boston Harbor that measure Chl a and CDOM fluorescence, optical backscatter, salinity, temperature, and meteorological parameters. We are initially using summer and fall of 2015 to develop atmospheric corrections for conditions in Boston Harbor and develop algorithms for Landsat 8 data to estimate in water photic depth, TSS, Chl a, Kd_490, and CDOM. We will report on initial buoy and cruise data and show 2015 Landsat-derived distributions of water quality parameters. It is our hope that once algorithms for present Landsat imagery can be developed, historical maps of water quality can be constructed using in water data back to 1991.
Detection of Leaks in Water Distribution System using Non-Destructive Techniques
NASA Astrophysics Data System (ADS)
Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.
2018-05-01
Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.
Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.
2013-01-01
Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738
NASA Astrophysics Data System (ADS)
Ramachandran, Rahul
Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.
NASA Astrophysics Data System (ADS)
Deng, H.; Wood, L.; Overeem, I.; Hutton, E.
2016-12-01
Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1990-01-01
A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.
Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria
Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv
2017-01-01
We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season (N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. PMID:27821689
D Animation Reconstruction from Multi-Camera Coordinates Transformation
NASA Astrophysics Data System (ADS)
Jhan, J. P.; Rau, J. Y.; Chou, C. M.
2016-06-01
Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.
Roth, Jason L.; Capel, Paul D.
2012-01-01
North-central Iowa is an agriculturally intensive area comprising the southeastern portion of the Prairie Pothole Region, a landscape containing a high density of enclosed topographical depressions. Artificial drainage practices have been implemented throughout the area to facilitate agricultural production. Vertical surface drains are utilized to drain the topographical depressions that accumulate water. This study focuses on the hydrology of a drained topographical depression located in a 39.5 ha agricultural field. To assess the hydrology of the drained depression, a water balance was constructed for 11 ponding events during the 2008 growing season. Continuous pond and groundwater level data were obtained with pressure transducers. Flows into the vertical surface drain were calculated based on pond depth. Precipitation inflows and evaporative outflows of the ponds were calculated using climatic data. Groundwater levels were used to assess groundwater/pond interactions. Results of the water balances show distinct differences between the inflows to and outflows from the depression based on antecedent conditions. In wet conditions, groundwater inflow sustained the ponds. The ponds receded only after the groundwater level declined to below the land surface. In drier conditions, groundwater was not a source of water to the depression. During these drier conditions, infiltration comprised 30% of the outflows from the depression during declining pond stages. Over the entire study period, the surface drain, delivering water to the stream, was the largest outflow from the pond, accounting for 97% of the outflow, while evapotranspiration was just 2%. Precipitation onto the pond surface proved to be a minor component, accounting for 4% of the total inflows.
NASA Astrophysics Data System (ADS)
Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall
2014-05-01
Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be significant, the impacts of this may be greatly diminished when considering wetland size in relation to catchment area. As such, this increased understanding will be valuable when considering the implications of rural land use management for water quality improvement. This knowledge could also be applied to further enhancing our knowledge of gas regional/global gas emissions from freshwater systems, which at the moment are poorly constrained.
Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.
Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee
2016-03-01
In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. Copyright © 2015 Elsevier B.V. All rights reserved.
Tucci, Patrick
1982-01-01
A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)
Transient Climate Effects of Large Impacts on Titan
NASA Technical Reports Server (NTRS)
Zahnle, Kevin J.; Korycansky, Donald; Nixon, Conor A.
2013-01-01
Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We find that a nominal Menrva impact is big enough to raise the surface temperature by approx. 80 K and to double the amount of methane in the atmosphere. The extra methane drizzles out of the atmosphere over hundreds of years. An upper-limit Menrva is just big enough to raise the surface to water's melting point. The putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al., 2009) is big enough to raise the surface temperature to 350-400 K. Water rain must fall and global meltwaters might range between 50 m to more than a kilometer deep, depending on the details. Global meltwater oceans do not last more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth. Significant near-surface clathrate formation is possible as Titan cools but faces major kinetic barriers.
Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te
2006-11-01
A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.
NASA Astrophysics Data System (ADS)
Hamid, T.; Ahmed, K. M.
2016-12-01
Bangladesh is among the most densely populated countries in the world. Rapid and unplanned urbanization in Bangladesh has resulted in heterogeneous land use pattern and larger demands for municipal water. To meet the ever-increasing demand of water for such population, the usage of treated domestic waste water (DWW) has become a viable option that can serve specific purposes, i.e. homestead irrigation, managed aquifer recharge (MAR) in major cities like Khulna, the largest city in the southwest coastal region. It is an attractive solution to minimize the deficit between the demand and supply of water in the study area where, in specific parts, city-dwellers suffer year round shortage of potable water due to high salinity in shallow depths. However, certain degree of treatment is mandatory for DWW in order to ensure the compliance of the output water with a set of standards and regulations for the DWW reuse. At present, the DWW is being treated through Constructed Wetlands but the treated water is not used and discharged into the sewer system. Wastewater that has been treated through a constructed wetland is a resource that can be used for productive uses in homestead garden irrigation, artificial aquifer recharge, and other non-potable uses. The study addresses the effectiveness of constructed wetlands in improving the quality of wastewater through on the hydro-geochemical characterization of both raw and treated DWW as well as baseline water quality analysis of surface and ground water in and around the treatment plant with consideration of seasonal variations. The study aims at sustainable development through conservation of water, satisfaction of demands, reliability of water supply, contribution to urban food supply, sustenance of livelihood and replenishment of the depleting aquifer by assessing the suitability of the treated DWW for various non-potable uses and also to provide guidelines for possible uses of treated DWW without adverse impact on environment and ecology.
NASA Astrophysics Data System (ADS)
Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.
2015-05-01
Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.
Aguirre, Paula; Ojeda, Esther; García, Joan; Barragán, Jesús; Mujeriego, Rafael
2005-01-01
The objective of this article is to evaluate the effect of water depth on organic matter removal efficiency in horizontal subsurface flow constructed wetlands (SSFs). Experiments were carried out in a pilot plant comprising eight parallel SSF of almost equal surface area (54-56 m2 each) and treating urban wastewater. Each SSF differs from the others in the aspect ratio or the size of the granular medium or the water depth. During a period of two years, the shallow SSFs (0.27 m water depth) removed more chemical oxygen demand (COD) (72-81%), biochemical oxygen demand (BOD)5 (72-85%), ammonia (35-56%), and dissolved reactive phosphorus (DRP) (8-23%) than deep SSFs (0.5 m water depth) (59-64% for COD; 51-57% for BOD5; 18-29% for ammonia; and 0-7% for DRP). Experiments carried out during the summer indicated that sulphate reduction accounted for a clearly higher organic matter removal in the deep SSFs than in the shallow ones. Denitrification seemed to be a significant mechanism for organic matter removal to occur in shallow SSFs. The results suggest that the relative contribution of different metabolic pathways varies with depth.
Meyer, William; Patrick, Leslie
1980-01-01
The effect of the artificial recharge experiments on water levels at Spring Acres subdivision, Anchorage, Alaska, was evaluated using two digital models constructed to simulate groundwater movement and water-level rises induced by the artificial recharge. The models predicted that the artificial recharge would have caused water levels in the aquifer immediately underlying Spring Acres subdivision to rise 0.2 foot from May 20 to August 7, 1975. The models also predicted a total rise in groundwater levels of 1.1 feet at this location from July 16, 1973 to August 7, 1975, as a result of the artificial-recharge experiments. Water-level data collected from auger holes in March 1975 by a consulting firm for the contractor indicated a depth to water of 6-7 feet below land surface at Spring Acres subdivision at this time. Water levels measured in and near Spring Acres subdivision several years before and after the 1973-75 artificial-recharge experiments showed seasonal rises of 2 to 12.4 feet. A depth to water below land surface of 2.6 feet was measured 600 feet from the subdivision in 1971 and in the subdivision in 1977. Average measured depth to water in the area was 7.0 feet from early 1976 to September 1979. (USGS)
Gellenbeck, D.J.; Hunter, Yvonne R.
1994-01-01
Since 1984, hydrologic data have been collected as part of a U.S. Geological Survey study of the occurrence and movement of acidic contamination in the aquifer and streams of the Pinal Creek drainage basin near Globe, Arizona. Ground-water data from that study are presented for water years 1992 and 1993 and include location, construction information, site plans, water levels, chemical and physical field measurements, and selected chemical analyses of water samples for 10 monitoring well groups. During January 1993, a flood occurred in Pinal Creek that resulted in a record peak discharge of 5,700 cubic feet per second. During this flood, well group 450 was destroyed. Surface-water data are presented for 13 sites and include discharge measurements, chemical and physical field measure- ments, and chemical analyses of water. Data from a solute-transport study that was conducted in November 1992 are presented for shallow ground-water and surface-water sites along Pinal Creek. During this study, variations in metal chemistry with distance along Pinal Creek and depth below the streambed were determined and two filter sizes were used to quantify the partitioning of metals between dissolved and particulate phases. Monthly precipi- tation data and long-term precipitation statistics are presented for two sites.
Monti, Jack; Busciolano, Ronald J.
2009-01-01
The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less accurate than those measured at observation wells, which are not pumped. In this report, all water-level altitudes are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).
Konieczki, A.D.; Brown, J.G.; Parker, J.T.C.
2008-01-01
Since 1984, hydrologic data have been collected as part of a U.S. Geological Survey study of the occurrence and movement of acidic contamination in the aquifer and streams of the Pinal Creek drainage basin near Globe, Arizona. Ground-water data from that study are presented for water years 1997 through 2004 and include location, construction information, site plans, water levels, chemical and physical field measurements, and selected chemical analyses of water samples for 31 project wells. Hydrographs of depth to ground water are also included. Surface-water data for four sites are also presented and include selected chemical analyses of water samples. Monthly precipitation data and long-term precipitation statistics are presented for two sites. Chemical analyses of samples collected from the stream and shallow ground water in the perennial reach of Pinal Creek are also included.
Andraski, Brian J.; Prudic, David E.; ,
1997-01-01
The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.
Antibacterial properties of modified biodegradable PHB non-woven fabric.
Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V
2016-08-01
The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Olsen, J. H.; Liu, H. T.
1973-01-01
The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface.
NASA Astrophysics Data System (ADS)
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
Emergent thermodynamics in a system of macroscopic, chaotic surface waves
NASA Astrophysics Data System (ADS)
Welch, Kyle J.
The properties of conventional materials are inextricably linked with their molecular composition; to make water flow like wine would require changing its molecular identity. To circumvent this restriction, I have constructed and characterized a two-dimensional metafluid, so-called because its constitutive dynamics are derived not from atoms and molecules but from macroscopic, chaotic surface waves excited on a vertically agitated fluid. Unlike in conventional fluids, the viscosity and temperature of this metafluid are independently tunable. Despite this unconventional property, our system is surprisingly consistent with equilibrium thermodynamics, despite being constructed from macroscopic, non-equilibrium elements. As a programmable material, our metafluid represents a new platform on which to study complex phenomena such as self-assembly and pattern formation. We demonstrate one such application in our study of short-chain polymer analogs embedded in our system.
Salinas Villafane, Omar R; Igarashi, Toshifumi; Harada, Shusaku; Kurosawa, Mitsuru; Takase, Toshio
2012-12-01
This paper describes the chemistry of porewater when constructing different soil layers on acidic weathered rock of a closed mine to remediate the surface environment. Three cases were set on a flat surface of the site, all under different layer systems. Case 1 was only composed of weathered rocks. A top neutralization layer was constructed on the weathered rocks in case 2, whereas both an upper low-permeable and middle neutralization layers were constructed on the weathered rocks in case 3. The low-permeable layer of 30 cm thick consists of clay, and the neutralization layer of 30 cm thick consists of the mixture of the weathered rock and calcium carbonate as a neutralizer. Porewater sampling systems and soil sensors to measure temperature, water content, and electrical conductivity were set at different depths. In case 1, steadily high concentrations of heavy metals were observed regardless of the depth, and the pH ranged from 2 to 4. In cases 2 and 3, a dramatic decrease in concentrations of heavy metals was observed, even below the neutralization layer. For both cases, pH values were circumneutral. There were no significant seasonable changes in heavy metals concentrations and pH of porewater by considering the temperature and precipitation. In addition, the water content of the layers in case 3 fluctuated more mildly than that in cases 1 and 2, indicating that the low-permeable layer reduced the rate of infiltration. Therefore, a significant reduction in the load of heavy metals released from the site can be achieved by both implementing neutralization and low-permeable layers.
Gillip, Jonathan A.; Czarnecki, John B.; Mugel, Douglas N.
2008-01-01
The Springfield Plateau and Ozark aquifers are important sources of ground water in the Ozark Plateaus aquifer system. Water from these aquifers is used for agricultural, domestic, industrial, and municipal water sources. Changing water use over time in these aquifers presents a need for updated potentiometric-surface maps of the Springfield Plateau and Ozark aquifers. The Springfield Plateau aquifer consists of water-bearing Mississippian-age limestone and chert. The Ozark aquifer consists of Late Cambrian to Middle Devonian age water-bearing rocks consisting of dolostone, limestone, and sandstone. Both aquifers are complex with areally varying lithologies, discrete hydrologic units, varying permeabilities, and secondary permeabilities related to fractures and karst features. During the spring of 2006, ground-water levels were measured in 285 wells. These data, and water levels from selected lakes, rivers, and springs, were used to create potentiometric-surface maps for the Springfield Plateau and Ozark aquifers. Linear kriging was used initially to construct the water-level contours on the maps; the contours were subsequently modified using hydrologic judgment. The potentiometric-surface maps presented in this report represent ground-water conditions during the spring of 2006. During the spring of 2006, the region received less than average rainfall. Dry conditions prior to the spring of 2006 could have contributed to the observed water levels as well. The potentiometric-surface map of the Springfield Plateau aquifer shows a maximum measured water-level altitude within the study area of about 1,450 feet at a spring in Barry County, Missouri, and a minimum measured water-level altitude of 579 feet at a well in Ottawa County, Oklahoma. Cones of depression occur in Dade, Lawrence and Newton Counties in Missouri and Delaware and Ottawa Counties in Oklahoma. These cones of depression are associated with private wells. Ground water in the Springfield Plateau aquifer generally flows to the west in the study area, and to surface features (lakes, rivers, and springs) particularly in the south and east of the study area where the Springfield Plateau aquifer is closest to land surface. The potentiometric-surface map of the Ozark aquifer indicates a maximum measured water-level altitude of 1,303 feet in the study area at a well in Washington County, Arkansas, and a minimum measured water-level altitude of 390 feet in Ottawa County, Oklahoma. The water in the Ozark aquifer generally flows to the northwest in the northern part of the study area and to the west in the remaining study area. Cones of depression occur in Barry, Barton, Cedar, Jasper, Lawrence, McDonald, Newton, and Vernon Counties in Missouri, Cherokee and Crawford Counties in Kansas, and Craig and Ottawa Counties in Oklahoma. These cones of depression are associated with municipal supply wells. The flow directions, based on both potentiometric-surface maps, generally agree with flow directions indicated by previous studies.
Groundwater conditions in Georgia, 2015–16
Gordon, Debbie W.; Painter, Jaime A.
2018-02-21
The U.S. Geological Survey collects groundwater data and conducts studies to monitor hydrologic conditions, define groundwater resources, and address problems related to water supply, water use, and water quality. In Georgia, water levels were monitored continuously at 157 wells during calendar years 2015 and 2016. Because of missing data or short periods of record (less than 5 years) for several of these wells, data for 147 wells are presented in this report. These wells include 15 in the surficial aquifer system, 18 in the Brunswick aquifer system and equivalent sediments, 59 in the Upper Floridan aquifer, 13 in the Lower Floridan aquifer and underlying units, 9 in the Claiborne aquifer, 1 in the Gordon aquifer, 8 in the Clayton aquifer, 16 in the Cretaceous aquifer system, 2 in Paleozoic-rock aquifers, and 6 in crystalline-rock aquifers. Data from the well network indicate that water levels generally rose during the 10-year period from 2007 through 2016, with water levels rising in 105 wells and declining in 31 wells; insufficient data prevented determination of a 10-year trend in 11 wells. Water levels declined over the long-term period of record at 80 wells, increased at 62 wells, and remained relatively constant at 5 wells.In addition to continuous water-level data, periodic water-level data were collected and used to construct potentiometric-surface maps for the Upper Floridan aquifer in the Brunswick–Glynn County area during October 2015 and October 2016 and in the Albany–Dougherty County area during December 2015 and November and December 2016. Periodic water-level measurements were also collected and used to construct potentiometric-surface maps for the Cretaceous aquifer system in the Augusta–Richmond County area during July 2015 and June 2016. In general, water levels in the Upper Floridan aquifer were higher during 2015 than during 2016 in the Brunswick–Glynn County and Albany–Dougherty County areas due to higher precipitation during 2015. Water levels were lower, however, during 2015 than during 2016 in the Cretaceous aquifer system in the Augusta–Richmond County area.In the Brunswick area, maps showing the chloride concentration of water in the Upper Floridan aquifer constructed using data collected from 33 wells during October 2015 and from 30 wells during October 2016 indicate that chloride concentrations remained above the U.S. Environmental Protection Agency’s secondary drinking-water standard in an approximately 2-square-mile area. During calendar years 2015–16, chloride concentrations generally were similar to those measured during 2012–14; however, some wells did show an increase in chloride concentration, likely due to increases in pumping.
Sanders, C.L.
1987-01-01
A study to determine the effect of the construction of a shopping and business center, and of the construction and improvement of several highways on floodflow in the Filbin Creek drainage basin near North Charleston, South Carolina was performed. Discharge hydrographs were synthesized using computerized U.S. Soil Conservation Service unit hydrograph methods and routed using reservoir, step backwater, and culvert flow programs. Construction of the shopping and business center, according to plans of July 1986, will raise the water surface elevations upstream of Interstate Highway 26 by about 2.0 ft for runoff from 100-yr rainfall. Structures at Seaboard Railroad downstream of U.S. Highway 52, U.S. Highway 52, and Virginia Avenue would cause about 2.0, 2.6, and 4.1 ft of backwater, respectively. (Author 's abstract)
2003-01-01
level scs Soil Conservation Service DOD Department of Defense SF square foot DOPAA Description of the Proposed SHPO State Historic Preservation...relatively level and most of the area has already been developed. Consequently, most surface soils have been previously disturbed or paved over. Surface... soils arc well drained sands and lo<\\ffiS with slight to moderate hazard of wind and water erosion. As a tenant organization. Nl’vtANG is required to
NASA Astrophysics Data System (ADS)
Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua
2018-01-01
Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.
Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas
NASA Astrophysics Data System (ADS)
Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman
2014-05-01
Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park area.
Evaluation of Ground-Water Resources From Available Data, 1992, East Molokai Volcano, Hawaii
Anthony, Stephen S.
1995-01-01
Available ground-water data for East Molokai Volcano consist of well-construction information and records of ground-water pumpage, water levels, and chloride concentrations. Ground-water pumpage records are available for ten wells. Seventeen long-term (10 years or more) records of water-level and/or chloride concentration are available for eleven wells; however, only seven of these records are for observation wells. None of the available data show significant long-term changes in water level or chloride concentration; however, short-term changes due to variations in the quantity of water pumped, and rainfall are evident. Evaluation of the historical distribution and rates of ground-water pumpage, and variations in water levels and chloride concentrations is constrained by the scanty distribution of spatial and temporal data. Data show a range in water levels from greater than 850 feet above mean sea level in wells located in the windward valley of Waikolu to about 10 feet in wells located east of Kualapuu to 1 to 5 feet in the wells located along the south shore of East Molokai Volcano. An accurate contour map of water levels and chloride concentrations at the surface of the basal-water body cannot be constructed for any time period. Because water-level and chloride data are not collected at regular time intervals, many long-term records are incomplete. Information on the variation in chloride concentration with depth through the freshwater part of the basal-water body and into the zone of transition between freshwater and saltwater does not exist.
Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.
2014-01-01
The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially away from groundwater mounds that have formed beneath upland tributaries that lose water where they flow on alluvial fans on the margins of the valley. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells. Surface-water samples were collected in 2001 at four sites including Carter, Pony Hollow (two sites), and Chafee Creeks, and from six wells throughout the aquifer. Calcium dominates the cation composition and bicarbonate dominates the anion composition in groundwater and surface-water samples and none of the common inorganic constituents collected exceeded any Federal or State water-quality standards. Groundwater samples were collected from six wells all completed in the unconfined sand and gravel aquifer. Concentrations of calcium and magnesium dominated the ionic composition of the groundwater in all wells sampled. Nitrate, orthophosphate, and trace metals were detected in all groundwater samples, but none were more than U.S. Environmental Protection Agency or New York State Department of Health regulatory limits.
Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08
Moyer, Douglas; Hyer, Kenneth
2009-01-01
Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using turbidity as a surrogate) downstream from the pipeline crossings, and (2) provide continuous turbidity data that enable the development of a real-time turbidity-input warning system and assessment of long-term changes in turbidity conditions. Water-quality conditions were assessed using continuous water-quality monitors deployed upstream and downstream from the pipeline crossings in Indian Creek and the unnamed tributary. These paired upstream and downstream monitors were outfitted with turbidity, pH (for Indian Creek only), specific-conductance, and water-temperature sensors. Water-quality data were collected continuously (every 15 minutes) during three phases of the pipeline construction: pre-construction, during construction, and post-construction. Continuous turbidity data were evaluated at various time steps to determine whether the construction of the pipeline crossings had an effect on downstream suspended-sediment conditions in Indian Creek and the unnamed tributary. These continuous turbidity data were analyzed in real time with the aid of a turbidity-input warning system. A warning occurred when turbidity values downstream from the pipeline were 6 Formazin Nephelometric Units or 15 percent (depending on the observed range) greater than turbidity upstream from the pipeline crossing. Statistical analyses also were performed on monthly and phase-of-construction turbidity data to determine if the pipeline crossing served as a long-term source of sediment. Results of this intensive water-quality monitoring effort indicate that values of turbidity in Indian Creek increased significantly between the upstream and downstream water-quality monitors during the construction of the Jewell Ridge pipeline. The magnitude of the significant turbidity increase, however, was small (less than 2 Formazin Nephelometric Units). Patterns in the continuous turbidity data indicate that the actual pipeline crossing of Indian Creek had little influence of downstream water quality; co
Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation
NASA Astrophysics Data System (ADS)
Yonetani, Yoshiteru
2017-12-01
Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold.
Lee, Jongho; Boo, Chanhee; Ryu, Won-Hee; Taylor, André D; Elimelech, Menachem
2016-05-04
In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the desalination/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable desalination performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater.
Code of Federal Regulations, 2014 CFR
2014-07-01
... notice, as well as Broadcast Notice to Mariners and Local Notice to Mariners. (2) Violations of this RNA... Regulated Navigation Area (RNA): All navigable waters, surface to bottom, on the Kennebec River within a 300....11 and 165.13 apply within the RNA. (2) In accordance with the general regulations, entry into or...
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1977-01-01
Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.
Swarzenski, Christopher M.; Mize, Scott V.
2014-01-01
The Mississippi River-Gulf Outlet (MRGO) was constructed between 1958 and 1968 to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for ocean-going vessels. In 2006, the U.S. Congress directed the U.S. Army Corps of Engineers (USACE) to develop and implement a plan to deauthorize a portion of the MRGO ship channel from its confluence with the Gulf Intracoastal Waterway to the Gulf of Mexico. In 2009, in accordance with plans submitted to Congress, the USACE built a rock barrier across the MRGO near Hopedale, Louisiana. Following Hurricane Katrina, Congress also authorized the USACE to implement the Hurricane Storm Damage Risk Reduction System (HSDRRS) by building structures in the MRGO and adjacent surface waters, to reduce vulnerability of this area to storm surge. The HSDRRS includes the Gulf Intracoastal Waterway-Lake Borgne Surge Barrier and Gate Complex near mile 58 of the deauthorized portion of the MRGO and the Seabrook Gate Complex on the Inner Harbor Navigation Canal (IHNC). By blocking or limiting tidal exchange in the MRGO, these barriers could affect water quality in the MRGO and nearby waters including Lake Pontchartrain, the IHNC, and Lake Borgne. In 2008, the U.S. Geological Survey, in cooperation with the USACE, began a study to document the effects of the construction activities on salinity and dissolved oxygen in these surface waters. Data were collected from August 2008 through October 2012. Completion of the rock barrier in the vicinity of mile 35 in July 2009 reduced hydrologic circulation and separated the MRGO into two distinct salinity regimes, with substantially fresher conditions prevailing upstream from the rock barrier. The rock barrier also contributed to a zone of hypoxia (dissolved oxygen less than 2 milligrams per liter) that formed along the channel bottom during the warmer summer months in each year of this monitoring; the zone was much more developed downstream from the rock barrier. The most extensive hypoxic zone was measured in October 2009 when it extended at least 34 miles in the MRGO, from mile 20 to mile 54. Construction of the surge barrier and flood gates did not affect salinity or dissolved oxygen in any comparable manner. The factors that contributed the most to hypoxia in the MRGO were the reductions in tidal water movement there after completion of the rock barrier combined with the channel depth in the MRGO, in places 10 to 30 feet deeper than surrounding surface water bodies. These factors helped to stratify salinity by reducing vertical mixing in the water column.
Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael
2009-01-01
This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.
Attama, A A; Reichl, S; Müller-Goymann, C C
2009-08-01
The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.
Refraction of microwave signals by water vapor
NASA Technical Reports Server (NTRS)
Goldfinger, A. D.
1980-01-01
Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).
He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid
2012-11-15
Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huffman, Brad A.; Abraham, Joju
2010-01-01
Water-resources data were collected to describe the hydrologic conditions at the Allison Woods research station near Statesville, North Carolina, in the Piedmont Physiographic Province of North Carolina. Data collected by the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, from April 2005 through September 2008 are presented in this report. Data presented include well-construction characteristics and periodic groundwater-level measurements for 29 wells, borehole geophysical logs for 8 wells, hourly groundwater-level measurements for 5 wells, continuous water-quality measurements for 3 wells, periodic water-quality samples for 12 wells and 1 surface-water station, slug-test results for 11 wells, and shallow groundwater-flow maps. In addition, the geology and hydrogeology at the site are summarized.
Environment and health: environmental sanitation and community water supply.
1997-01-01
This article identifies important features of two 5-Year Plans in India. Currently, only about 200 cities have even a partial sewage system. Elementary sewage systems are nonexistent in rural villages. In 1990, under 5% of rural population had access to sanitary facilities. The result is widespread soil and water pollution and its accompanying disease. The Rural Water Supply Program was proposed in the 5th Plan, but was implemented in the 7th Plan (1985-90). Construction of latrines is still too low. Resources were insufficiently mobilized for latrine construction. An alternative would be to institute cost recovery and user pays principles. Low cost technology could be substituted. Low cost latrine systems should conform with users' social habits, local culture, and the customs of the community. The system should be affordable to users. The technology should be user-friendly and rely on use of local materials and workers. Over 90% of the population rely on community water supply facilities. Health has not benefited from the access to water supplies. The reasons are low hygienic standards, lack of water quality surveillance, and poor maintenance of equipment. The community does not participate. By 1996, people's access to water was reduced to 1 km in the plains, and 50 m in hilly areas. Surface waters are contaminated by fecal matter, fluoride, nitrate, and arsenic. The Water Quality Surveillance Program lacks an institutional framework and human resource development. There is a need for education about hygiene, unsafe drinking water, and poor sanitation for people and agency staff.
Delgado-Martin, J; Juncosa-Rivera, R; Falcón-Suárez, I; Canal-Vila, J
2013-11-01
Following the technical closure of the brown lignite Meirama mine (NW Spain) in April 2008, the reclamation of the mined area is being accomplished with the controlled flooding of its large pit. During the first 7 months of flooding, the sequential arrest of the ground water dewatering system led to the growth of an acidic water body of about 2 hm3. Since October 2008, the surface waters from some local streams have been diverted towards the pit so that these have become the major water input in the flooding process. Surface water has promoted a major change in the chemical composition of the lake water so that, at present, its surface has a circum neutral pH, net alkalinity, and low conductivity. At present, the lake has slightly more than one half of its final volume, and it is expected the overflow in 3 to 3.5 years. The lake is meromictic, with a sharp chemocline separating the acidic monimolimnion (pH≈3.2, acidity≈150 mg CaCO3/L, κ 25≈2.4 mS/cm) from the main water body (pH≈6.5, alkalinity≈15 mg CaCO3/L, κ 25≈0.3 mS/cm). Oxygen is being depleted at the bottom of the lake so that the monimolimnion became anoxic in January 2011. Above the chemocline, the composition of the lake is similar, but not identical, to that of the flooding stream waters. Close to the surface, some constituents (pH, metals) show strong seasonal variations in coincidence with the phytoplankton growing periods. Those parameters whose limits are legally prescribed comply with the corresponding water quality standards, and they are also consistent with the forecasting results obtained in early modeling. At present, a project considering the construction of an uptake tunnel to exploit the lake is being developed for the emergency water supply of the metropolitan area of A Coruña.
High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.
Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz
2016-06-15
The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.
Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria.
Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv
2017-02-08
We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season ( N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. © The American Society of Tropical Medicine and Hygiene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO 3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m 2 in vacuum and 0.45 J/m 2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m 2, in good agreement with a value of 1.11 J/m 2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing collector molecules that can bind specifically to bastnasite.« less
Hydrologic indices for nontidal wetlands
Lent, Robert M.; Weiskel, Peter K.; Lyford, Forest P.; Armstrong, David S.
1997-01-01
Two sets of hydrologic indices were developed to characterize the water-budget components of nontidal wetlands. The first set consisted of six water-budget indices for input and output variables, and the second set consisted of two hydrologic interaction indices derived from the water-budget indices. The indices then were applied to 19 wetlands with previously published water-budget data. Two trilinear diagrams for each wetland were constructed, one for the three input indices and another for the three output indices. These two trilinear diagrams then were combined with a central quadrangle to form a Piper-type diagram, with data points from the trilinear diagrams projected onto the quadrangle. The quadrangle then was divided into nine fields that summarized the water-budget information. Two quantitative "interaction indices" were calculated from two of the six water-budget indices (precipitation and evapotranspiration). They also were obtained graphically from the water-budget indices, which were first projected to the central quadrangle of a Piper-type diagram from the flanking trilinear plots. The first interaction index (l) defines the strength of interaction between a wetland and the surrounding ground- and surface-water system. The second interaction index (S) defines the nature of the interaction between the wetland and the surrounding ground- and surface-water system (source versus sink). Evaluation of these indices using published wetland water-budget data illustrates the usefulness of the technique.
Construction and performance of a long-term earthen liner experiment
Cartwright, Keros; Krapac, Ivan G.; Bonaparte, Rudolph
1990-01-01
In land burial schemes, compacted soil barriers with low hydraulic conductivity are commonly used in cover and liner systems to control the movement of liquids and prevent groundwater contamination. An experimental liner measuring 8 x 15 x 0.9 m was constructed with design criteria and equipment to simulate construction of soil liners built at waste disposal facilities. The surface of the liner was flooded with a 29.5 cm deep pond on April 12, 1988. Infiltration of water into the liner has been monitored for two years using 4 large-ring (1.5 m OD) and 32 small-ring (0.28 m OD) infiltrometers, and a water-balance that accounts for total infiltration and evaporation. Average long-term infiltration fluxes based on two years of monitoring are 5.8 x 10-9 cm/s, 6.0 x 10-8 cm/s and 5.6 x 10-8 for the large-ring, small-ring, and water-balance data, respectively. The saturated hydraulic conductivity of the liner based on small-ring data, estimated using Darcy's Law and the Green-Ampt Approximation, is 3 x 10-8 and 4 x 10-8 cm/s, respectively. All sets of data indicate that the liner's performance exceed that which is required by the U.S. EPA.
NASA Astrophysics Data System (ADS)
Grippo, Mark; Hayse, John W.; O'Connor, Ben L.
2015-01-01
The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.
1990-12-08
Range : 50,000 miles This multispectral map of Australia, and surrounding seas was obtained by the Galileo spacecraft's Near Infrared Mapping Spectrometer shortly after closest approach. The image shows various ocean, land and atmospheric cloud features as they appear in three of the 408 infrared colors or wavelengths sensed by the instrument. The wavelength of 0.873 micron, represented as blue in the photo, shows regions of enhanced liquid water absorption, i.e. the Pacific and Indian oceans. The 0.984-micron band, represented as red, shows areas of enhanced ground reflection as on the Australian continent. This wavelength is also s ensitive to the reflectivity of relatively thick clouds. The 0.939-micron wavelength, shown as green, is a strong water-vapor-absorbing band, and is used to accentuate clouds lying above the strongly absorbing lower atmosphere. When mixed with the red indicator of cloud reflection, the green produces a yellowish hue; this indicates thick clouds. The distinctive purplish color off the northeast coast marks the unusually shallow waters of the Great Barrier Reef and the Coral Sea. Here the blue denoting water absorption combines with the red denoting reflection from coral and surface marine organisms to produce thiss unusual color. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft is a combines mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 micron (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopically analyze atmospheres and surfaces and construct thermal and chemical maps.
Grippo, Mark; Hayse, John W; O'Connor, Ben L
2015-01-01
The cumulative impacts of utility-scale solar energy facilities on aquatic ecosystems in the Southwestern United States are of concern, considering the many existing regional anthropogenic stressors. We review the potential impacts of solar energy development on aquatic habitat and biota. The greatest potential for impacts is related to the loss, fragmentation, or prolonged drying of ephemeral water bodies and drainage networks resulting from the loss of desert washes within the construction footprint of the facility. Groundwater-dependent aquatic habitat may also be affected by operational groundwater withdrawal in the case of water-intensive solar technologies. Solar panels have also been found to attract aquatic insects and waterbirds, potentially resulting in mortality. Avoiding construction activity near perennial and intermittent surface waters is the primary means of reducing impacts on aquatic habitats, followed by measures to minimize erosion, sedimentation, and contaminant inputs into waterways. Currently, significant data gaps make solar facility impact assessment and mitigation more difficult. Examples include the need for more regional and site-specific studies of surface-groundwater connectivity, more detailed maps of regional stream networks and riparian vegetation corridors, as well as surveys of the aquatic communities inhabiting ephemeral streams. In addition, because they often lack regulatory protection, there is also a need to develop valuation criteria for ephemeral waters based on their ecological and hydrologic function within the landscape. By addressing these research needs, we can achieve the goal of greater reliance on solar energy, while at the same time minimizing impacts on desert ecosystems.
Effect on water resources from upstream water diversion in the Ganges basin.
Adel, M M
2001-01-01
Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.
Thermal behaviour of an urban lake during summer
NASA Astrophysics Data System (ADS)
Solcerova, Anna; van de Ven, Frans
2015-04-01
One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.
Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect
NASA Astrophysics Data System (ADS)
Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.
2017-10-01
The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.
New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils
NASA Astrophysics Data System (ADS)
Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.
2006-05-01
Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.
30 CFR 75.1708-1 - Surface structures; fireproof construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...
Buber, Ece; Yuzer, Abdulcelil; Soylemez, Saniye; Kesik, Melis; Ince, Mine; Toppare, Levent
2017-03-01
A novel glucose oxidase (GOx) based amperometric biosensor utilizing a conducting polymer (CP), multi walled carbon nanotubes (MWCNTs) and a novel water soluble zinc phthalocyanine (ZnPc) was constructed. For this purpose, a novel ZnPc was synthesized to examine the role of being a part of support material for enzyme deposition. High water solubility was achieved with the introduction of tetra quaternized imidazolyl moieties at the peripheral positions of phthalocyanine. In order to fabricate the proposed biosensor, a graphite electrode was firstly modified with poly[9,9-di-(2-ethylhexyl)- fluorenyl-2,7-diyl] end capped with N,N-Bis(4- methylphenyl)-4-aniline (PFLA) and MWCNTs. Then, GOx was co-immobilized with ZnPc onto the modified surface. To the best our knowledge, a sensor design which combines conjugated polymer/MWCNTs/ZnPc was attempted for the first time and this approach resulted in improved biosensor characteristics. The constructed biosensor showed a linear response for glucose between 0.025-1.0mM with a detection limit of 0.018mM. K M app and sensitivity values were calculated as 0.53mM and 82.18μAmm -1 cm -2 , respectively. Moreover, scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques were used to investigate the surface modifications. Finally, fabricated biosensor was tested on beverages for glucose detection successfully. Copyright © 2016 Elsevier B.V. All rights reserved.
Control of groundwater in surface mining
NASA Astrophysics Data System (ADS)
Brawner, C. O.
1982-03-01
The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.
Chemical stabilization of subgrade soil for the strategic expeditionary landing field
NASA Astrophysics Data System (ADS)
Conaway, M. H.
1983-06-01
The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna
2010-12-28
Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.
A facile method to fabricate a superhydrophobic surface with biomimetic structure on magnesium alloy
NASA Astrophysics Data System (ADS)
Bai, Zigang; Zhu, Jiyuan
2018-06-01
Superhydrophobic surface was obtained via a convenient two-step method in this paper on magnesium alloy. The microstructured oxide or hydroxide layers were constructed on the Mg alloy though hydrothermal process. The treated sample was modified with low-energy surface material. After modification, the contact angle of water droplet on the surface is higher than 150° which indicates superhydrophobicity. With scanning electron microscope(SEM), mammillaria-herrerae-like rough structure was obtained. The composition of the superhydrophobic film was analyzed by using x-ray Diffraction instrument and Fourier-transform infrared spectrometer. Moreover, the superhydrophobic surface has good stability. The potentiodynamic polarization test shows that the corrosion current density of superhydrophobic surface was 1–2 order of magnitudes smaller than the bare substrate, which means the anti-corrosion performance has been improved significantly. This route offers an environmentally-benign and effective way to fabricate superhydrophobic surface without using complicated equipment and dangerous chemicals.
Innovative reuse of drinking water sludge in geo-environmental applications.
Caniani, D; Masi, S; Mancini, I M; Trulli, E
2013-06-01
In recent years, the replacement of natural raw materials with new alternative materials, which acquire an economic, energetic and environmental value, has gained increasing importance. The considerable consumption of water has favoured the increase in the number of drinking water treatment plants and, consequently, the production of drinking water sludge. This paper proposes a protocol of analyses capable of evaluating chemical characteristics of drinking water sludge from surface water treatment plants. Thereby we are able to assess their possible beneficial use for geo-environmental applications, such as the construction of barrier layers for landfill and for the formation of "bio-soils", when mixed with the stabilized organic fraction of municipal solid waste. This paper reports the results of a study aimed at evaluating the quality and environmental aspects of reconstructed soils ("bio-soil"), which are used in much greater quantities than the usual standard, for "massive" applications in environmental actions such as the final cover of landfills. The granulometric, chemical and physical analyses of the sludge and the leaching test on the stabilized organic fraction showed the suitability of the proposed materials for reuse. The study proved that the reuse of drinking water sludge for the construction of barrier layers and the formation of "bio-soils" reduces the consumption of natural materials, the demand for landfill volumes, and offers numerous technological advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sludge quantification at water treatment plant and its management scenario.
Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab
2017-08-15
Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.
Gilfedder, B S; Hofmann, H; Cartwright, I
2013-01-15
There is little known about the short-term dynamics of groundwater-surface water exchange in losing rivers. This is partly due to the paucity of chemical techniques that can autonomously collect high-frequency data in groundwater bores. Here we present two new instruments for continuous in situ (222)Rn measurement in bores for quantifying the surface water infiltration rate into an underlying or adjacent aquifer. These instruments are based on (222)Rn diffusion through silicone tube membranes, either wrapped around a pole (MonoRad) or strung between two hollow end pieces (OctoRad). They are combined with novel, robust, low-cost Geiger counter (222)Rn detectors which are ideal for long-term autonomous measurement. The down-hole instruments have a quantitative response time of about a day during low flow, but this decreases to <12 h during high-flow events. The setup was able to trace river water bank infiltration during moderate to high river flow during two field experiments. Mass-balance calculations using the (222)Rn data gave a maximum infiltration rate of 2 m d(-1). These instruments offer the first easily constructible system for continuous (222)Rn analysis in groundwater, and could be used to trace surface water infiltration in many environments including rivers, lakes, wetlands, and coastal settings.
Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.
Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi
2014-01-01
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.
Isidro, J; Llanos, J; Sáez, C; Lobato, J; Cañizares, P; Rodrigo, M A
2018-09-15
This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min -1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sañudo-Fontaneda, Luis A; Charlesworth, Susanne M; Castro-Fresno, Daniel; Andres-Valeri, Valerio C A; Rodriguez-Hernandez, Jorge
2014-01-01
Pervious pavements have become one of the most used sustainable urban drainage system (SUDS) techniques in car parks. This research paper presents the results of monitoring water quality from several experimental car park areas designed and constructed in Spain with bays made of interlocking concrete block pavement, porous asphalt, polymer-modified porous concrete and reinforced grass with plastic and concrete cells. Moreover, two different sub-base materials were used (limestone aggregates and basic oxygen furnace slag). This study therefore encompasses the majority of the materials used as permeable surfaces and sub-base layers all over the world. Effluent from the test bays was monitored for dissolved oxygen, pH, electric conductivity, total suspended solids, turbidity and total petroleum hydrocarbons in order to analyze the behaviour shown by each combination of surface and sub-base materials. In addition, permeability tests were undertaken in all car parks using the 'Laboratorio Caminos Santander' permeameter and the Cantabrian Portable Infiltrometer. All results are presented together with the influence of surface and sub-base materials on water quality indicators using bivariate correlation statistical analysis at a confidence level of 95%. The polymer-modified porous concrete surface course in combination with limestone aggregate sub-base presented the best performance.
Heat Rejection Concepts for Lunar Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.
Liu, Shen; McGree, James; Hayes, John F; Goonetilleke, Ashantha
2016-10-01
Potential human health risk from waterborne diseases arising from unsatisfactory performance of on-site wastewater treatment systems is driven by landscape factors such as topography, soil characteristics, depth to water table, drainage characteristics and the presence of surface water bodies. These factors are present as random variables which are spatially distributed across a region. A methodological framework is presented that can be applied to model and evaluate the influence of various factors on waterborne disease potential. This framework is informed by spatial data and expert knowledge. For prediction at unsampled sites, interpolation methods were used to derive a spatially smoothed surface of disease potential which takes into account the uncertainty due to spatial variation at any pre-determined level of significance. This surface was constructed by accounting for the influence of multiple variables which appear to contribute to disease potential. The framework developed in this work strengthens the understanding of the characteristics of disease potential and provides predictions of this potential across a region. The study outcomes presented constitutes an innovative approach to environmental monitoring and management in the face of data paucity. Copyright © 2016 Elsevier B.V. All rights reserved.
Schrader, T.P.; Jones, J.S.
2007-01-01
The U.S. Geological Survey in cooperation with the Arkansas Natural Resources Commission, the Arkansas Geological Commission, and the Louisiana Department of Transportation and Development has monitored water levels in the Sparta Sand of Claiborne Group and Memphis Sand of Claiborne Group since the 1920's. Ground-water withdrawals have increased while water levels have declined since monitoring was initiated. This report has been produced to describe ground-water levels in the aquifers in the Sparta Sand and Memphis Sand and provide information for the management of this valuable resource. The 2005 potentiometric-surface map of the aquifers in the Sparta Sand and Memphis Sand was constructed using water-level data collected in 333 wells in Arkansas and 120 wells in Louisiana during the spring of 2005. The highest water-level altitude measured in Arkansas was 327 feet above National Geodetic Vertical Datum of 1929 located in Grant County in the outcrop at the western boundary of the study area; the lowest water-level altitude was 189 feet below National Geodetic Vertical Datum of 1929 in Union County. The highest water-level altitude measured in Louisiana was 246 feet above National Geodetic Vertical Datum of 1929 located in Bossier Parish in the outcrop area near the western boundary of the study area; the lowest water-level altitude was 226 feet below National Geodetic Vertical Datum of 1929 in central Ouachita Parish. Three large depressions centered in Columbia, Jefferson, and Union Counties in Arkansas are the result of large withdrawals for industrial and public supplies. In Louisiana, three major pumping centers are in Ouachita, Jackson, and Lincoln Parishes. Water withdrawals from these major pumping centers primarily is used for industrial and public-supply purposes. Withdrawals from Ouachita and Lincoln Parishes and Union County, Arkansas, primarily for industrial purposes, have caused the resulting cones of depression to coalesce so that the -40 foot potentiometric contour encircles the three pumping centers. Seven smaller depressions are evident on the 2005 Sparta-Memphis potentiometric-surface map located in Webster and Winn Parishes, Louisiana, and Calhoun, Cleveland, western Columbia, Desha, and Lafayette Counties, Arkansas. The depression in Calhoun County initially was shown in the 1996-1997 potentiometric surface. The depression in Desha County initially was shown in the 1999 potentiometric surface. The depressions in Webster and Winn Parishes were shown as early as 1975. The depressions in Cleveland, western Columbia, and Lafayette Counties initially were shown in the 2003 potentiometric surface. A map of differences in water-level measurements between 2001 and 2005 was constructed using the difference between water-level measurements from 294 wells in Arkansas and 29 wells in Louisiana. The difference in water levels between 2001 and 2005 ranged from -30.1 to 44.6 feet. The largest rise of 44.6 feet in water level measured was in Union County in Arkansas. The largest decline of 30.1 feet in water level measured was in Columbia County in Arkansas. Areas with a general rise in water levels in Arkansas are shown in Arkansas, Columbia, Craighead, Jefferson, Prairie, and the western half of Union Counties. The area around west-central Union County had rises as much as 44.6 feet, with seven wells showing a rise of 20 feet or greater, which is an annual rise of 5 feet or greater. Areas in Arkansas with a general decline in water level are shown in western Bradley, eastern Calhoun, Cleveland, Cross, Desha, Drew, Lafayette, Lee, Lincoln, Lonoke, Poinsett, and the eastern half of Union Counties. In Louisiana, the water-level difference map showed a general rise in water levels in northern Claiborne, northern Webster, and northwestern Union Parishes mainly because of a decrease in industrial withdrawals in southern Arkansas, particularly Union County. Another rise in water level was indicated in western
Nash, J.T.; John, D.A.; Malcolm, M.J.; Briggs, P.H.; Crock, J.G.
1986-01-01
The U.S. Geological Survey and the St. Johns River Water Management District are investigating the hydrogeology of the Floridan aquifer system. An essential element of this investigation is the design and construction of a monitor well network in the lower saline water-bearing zone which occurs at about 2,000 ft below land surface. During 1985, a well near Ponte Vedra in northeast St. Johns County was completed into the lower saline water-bearing zone at a depth of 1,980 to 2,035 ft below land surface. This well and other wells drilled under this or other programs will be used to monitor water levels and water chemistry of the lower saline zone. Chloride concentrations in water above the lower saline zone ranged from 14 to 270 mg/L and specific conductance ranged from 450 to 1,440 micromhos/cm c. In the lower zone, chloride concentrations were as much as 16,210 mg/L and specific conductance as much as 46,000 micromhos per centimeter. Aquifer head and artesian flow from the well generally increased with depth. Water temperatures also increased from 23 C in the upper part of the aquifer to more than 28 C in the lower saline zone. (USGS)
Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release.
Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng
2016-08-01
Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future.
Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release
Meng, Xiangshi; Gui, Bo; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng
2016-01-01
Stimuli-responsive metal-organic frameworks (MOFs) have gained increasing attention recently for their potential applications in many areas. We report the design and synthesis of a water-stable zirconium MOF (Zr-MOF) that bears photoresponsive azobenzene groups. This particular MOF can be used as a reservoir for storage of cargo in water, and the cargo-loaded MOF can be further capped to construct a mechanized MOF through the binding of β-cyclodextrin with the azobenzene stalks on the MOF surface. The resulting mechanized MOF has shown on-command cargo release triggered by ultraviolet irradiation or addition of competitive agents without premature release. This study represents a simple approach to the construction of stimuli-responsive mechanized MOFs, and considering mechanized UiO-68-azo made from biocompatible components, this smart system may provide a unique MOF platform for on-command drug delivery in the future. PMID:27493996
Vapour-mediated sensing and motility in two-component droplets
NASA Astrophysics Data System (ADS)
Cira, N. J.; Benusiglio, A.; Prakash, M.
2015-03-01
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Hydrology of C-3 watershed, Seney National Wildlife Refuge, Michigan
Sweat, Michael J.
2001-01-01
Proposed changes to watershed management practices near C-3 Pool at Seney National Wildlife Refuge will affect surface-water flow patterns, ground-water levels, and possibly local plant communities. Data were collected between fall 1998 and spring 2000 to document existing conditions and to assess potential changes in hydrology that might occur as a consequence of modifications to water management practices in C-3 watershed.Minimum and maximum measured inflows and outflows for the study period are presented in light of proposed management changes to C-3 watershed. Streamflows ranged from 0 to 8.61 cubic meters per second. Low or zero flow was generally measured in late summer and early fall, and highest flows were measured during spring runoff and winter rain events. Ground-water levels varied by about a half meter, with levels closest to or above the land surface during spring runoff into the early summer, and with levels generally below land surface during late fall into early winter.A series of optional management practices that could conserve and restore habitat of the C-3 watershed is described. Modifications to the existing system of a drainage ditch and control structures are examined, as are the possibilities of reconnecting streams to their historical channels and the construction of additional or larger control structures to further manage the distribution of water in the watershed. The options considered could reduce erosion, restore presettlement streamflow conditions, and modify the ground-water gradient.
Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper
Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.
2007-01-01
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.
1990-09-01
Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.
Ions in water: Free energies, surface effects, and geometrical constraints
NASA Astrophysics Data System (ADS)
Herce, Henry David
In this work, we present our results for ion solvation in finite and infinite water clusters. Molecular Dynamic simulations are used to connect the fundamental macroscopic quantities such as free energy, internal energy and entropy with the underlying microscopic description. Molecular dynamics studies complement experimental results and lead to a deeper insight into the solvation and diffusion of ionic species. Beyond its intrinsic interest, the ion solvation problem has practical relevance because of its role as ideal model system with which to construct and test ion-water interaction potentials. The ionic charging free energy is a very sensitive probe for the treatment of electrostatics in any given simulation setting. In this work, we present methods to compute the ionic charging free energy in systems characterized by atomic charges, and higher-order multipoles, mainly dipoles and quadrupoles. The results of these methods under periodic boundary conditions and spherical boundary conditions are then compared. For the treatment of spherical boundary conditions, we introduce a generalization of Gauss' law that links the microscopic variables to the relevant thermodynamic quantities. Ionic solvation in finite clusters is a problem relevant for many areas of chemistry and biology, such as the gas-liquid interface of tropospheric aerosol particles, or the interphase between water and proteins, membranes, etc. Careful evaluations of the free energy, internal energy and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following: (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodine-like ion in a polarizable water cluster, but not in a non-polarizable water cluster.
Bartos, Timothy T.; Hallberg, Laura L.
2011-01-01
The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains aquifer system from March to June 2009. The groundwater levels were used to construct a map of the potentiometric surface of the High Plains aquifer system. In addition, depth to water and estimated saturated-thickness maps of the aquifer system were constructed using the potentiometric-surface map.
Gypsum-karst problems in constructing dams in the USA
Johnson, K.S.
2008-01-01
Gypsum is a highly soluble rock and is dissolved readily to form caves, sinkholes, disappearing streams, and other karst features that typically are also present in limestones and dolomites. Gypsum karst is widespread in the USA and has caused problems at several sites where dams were built, or where dam construction was considered. Gypsum karst is present (at least locally) in most areas where gypsum crops out, or is less than 30-60 m below the land surface. These karst features can compromise on the ability of a dam to hold water in a reservoir, and can even cause collapse of a dam. Gypsum karst in the abutments or foundation of a dam can allow water to pass through, around, or under a dam, and solution channels can enlarge quickly, once water starts flowing through such a karst system. The common procedure for controlling gypsum karst beneath the dam is a deep cut-off trench, backfilled with impermeable material, or a close-spaced grout curtain that hopefully will fill all cavities. In Oklahoma, the proposed Upper Mangum Dam was abandoned before construction, because of extensive gypsum karst in the abutments and impoundment area. Catastrophic failure of the Quail Creek Dike in southwest Utah in 1989 was due to flow of water through an undetected karstified gypsum unit beneath the earth-fill embankment. The dike was rebuilt, at a cost of US $12 million, with construction of a cut-off trench 600 m long and 25 m deep. Other dams in the USA with severe gypsum-karst leakage problems in recent years are Horsetooth and Carter Lake Dams, in Colorado, and Anchor Dam, in Wyoming. ?? 2007 Springer-Verlag.
Christopher Peterson
2010-01-01
In forests, termites serve as âsoil engineers,â translocating mineral soil to the surface, constructing macropores to improve water infiltration, increase soil minerals and organic carbon, facilitate the growth of microbes and affect the growth of vegetation. The future productivity of a forest site therefore depends to some degree on termite activity. Termites could...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (RNA): All navigable waters, surface to bottom, on the Piscataqua River within a 300 yard radius of... 33 CFR 165.10, 165.11, and 165.13 apply within the RNA, and in addition: (2) In accordance with the... caution and operate in such a manner as to produce no wake. (4) Vessels must comply with all directions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (RNA): All navigable waters, surface to bottom, on the Piscataqua River within a 300 yard radius of... 33 CFR 165.10, 165.11, and 165.13 apply within the RNA, and in addition: (2) In accordance with the... caution and operate in such a manner as to produce no wake. (4) Vessels must comply with all directions...
The influence of small-mammal burrowing activity on water storage at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landeen, D.S.
This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator).more » Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.« less
Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.
2000-01-01
This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.
Fisk, Gregory G.; Ferguson, S.A.; Rankin, D.R.; Wirt, Laurie
1994-01-01
In June 1988, The U.S. Geological Survey began a 4-year study of the occurrence and movement of radionuclides and other chemical constituents in ground water and surface water in the Little Colorado River basin in Arizona and New Mexico. Radionuclides and other chemical constituents occur naturally in water, rock, and sediment throughout the region; however, discharge of mine--dewatering effluents released by mining operations increased the quantity of radionuclides and other chemical contaminants. Additionally, in 1979, the failure of a tailings-pond dike resulted in the largest known single release of water contaminated by uranium tailings in the United States. Ground-water data and surface-water data were collected from July 1988 through September 1991. Sixty-nine wells were sampled, and collected data include well- construction information, lithologic logs, water levels and chemical analysis of water samples. The wells include 31 wells drilled by the U.S. Geological Survey, 7 wells drilled by the New Mexico Environment Department, 11 private wells, and 20 temporary drive-point wells; in addition, 1 spring was sampled. Data from nine continual-record and five partial-record stxeamflow-gaging stations include daily mean discharge, daily mean suspended-sediment concentration and discharge, and chemical analysis for discrete water and sediment samples. Precipitation data also were collected at the nine continual-record stations.
Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions.
Gui, P; Inamori, R; Matsumura, M; Inamori, Y
2007-01-01
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.
Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain
2015-12-30
Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation
NASA Astrophysics Data System (ADS)
Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao
2018-01-01
Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.
Lord, D.G.; Barringer, J.L.; Johnsson, P.A.; Schuster, P.F.; Walker, R.L.; Fairchild, J.E.; Sroka, B.N.; Jacobsen, Eric
1990-01-01
Data from a 1983-86 acidic-deposition study at McDonalds Branch basin, a small (2.35-sq-mi) forested watershed in Lebanon State Forest, New Jersey include mineralogy of soil and depositional clays; physical and chemical analyses of soils; hydrologic measurements (precipitation and throughfall amounts, stream stage and discharge, and water-table altitudes); and water quality data from precipitation, throughfall, soil water, surface water, and groundwater. Site locations, collector designs, and well- construction data also are presented. The pH of bulk precipitation to McDonalds Branch basin over the sampling period (January 1985 to March 1986) ranged from 4.0 to 4.7, with a mean of approximately 4.3. Stream pH ranged from 3.2 to 4.8 and generally increased in a downstream direction. In general sulfate was the dominant anion throughout the basin. Aluminum concentrations commonly were elevated in surface and groundwaters, and were as high as 10,000 micrograms/L at one upstream site on McDonalds Branch. Dissolved organic carbon was an important component of stream waters in some locations and ranged in concentration from 1/1 to 37 mg/L. (USGS)
Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique
NASA Astrophysics Data System (ADS)
Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung
2016-05-01
We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.
Huang, Zhenxun; Sun, Fengqiang; Zhang, Yu; Gu, Kaiyuan; Zou, Xueqiong; Huang, Yuying; Wu, Qingsong; Zhang, Zihe
2011-04-15
Taking a colloidal monolayer floating on the surface of a precursor solution as template, free-standing CdS/Cd composites and pure CdS (CdS-based) ordered porous films had been prepared by a temperature-assisted photochemical strategy. After irradiation with UV-light and heat treatment, the films formed hemi-spherical pores due to the preferable deposition of CdS and Cd onto the PS spheres during the photochemical and interfacial reactions. When the temperature increased from 15 to 60°C, the air/water interface gradually changed into a vapor/water interface on the surface of the solution, resulting in variations of the final compositions. The optical properties of the films were hence changed. Because of the free-standing characteristic, the ordered porous films were first transferred on surface of polluted solutions as photocatalysts, which was a new mode in application of photocatalysts. The photocatalytic activities of films showed regular variations with the compositions in photodegradation of Rhodamine B. This method provides a simple route for tuning the properties of porous films through control of its composition and a flexible application of films on any surface. Copyright © 2011 Elsevier Inc. All rights reserved.
Naftz, D.L.; Yahnke, J.; Miller, J.; Noyes, S.
2005-01-01
Constructed and natural wetlands can accumulate elevated levels of Se; however, few data are available on cost-effective methods for remobilization and removal of Se from these areas. A field experiment was conducted to assess the effectiveness of flooding on the removal of Se from dry surface sediments. The 83-m2 flood-experiment plot contained 10 monitoring wells, a water-quality minimonitor (continuous measurement of pH, specific conductance, water temperature, and dissolved O2), a down-hole Br electrode, and 2 pressure transducers. Flooding was initiated on August 27, 2002, and a Br tracer was added to water delivered through a pipeline to the flood plot during the first 1.2 h. Standing water depth in the flood plot was maintained at 0.3 m through September 1, 2002. The Br tracer data indicate a dual porosity system that includes fracture (mud cracks) and matrix flow components. Mean vertical water velocities for the matrix flow component were estimated to range from 0.002 to 0.012 m/h. Dissolved (less than 0.45 ??m) Se increased from pre-flood concentrations of less than 10 ??g/L to greater than 800 ??g/L during flooding in samples from deep (2.0 m below land surface) ground water. Selenium concentrations exceeded 5500 ??g/L in samples from shallow (0.8 m below land surface) ground water. Ratios of Se to Br in water samples indicate that Se moved conservatively during the experiment and was derived from leaching of near-surface sediments. Cumulative Se flux to the deep ground water during the experiment ranged from 9.0 to 170 mg/m2. Pre- and post-flood surface soil sampling indicated a mean Se flux of 720 mg/m2 through the top 15 cm of soil. Ground-water samples collected 8 months after termination of the flood experiment contained Se concentrations of less than 20 ??g/L. The minimonitor data indicate a rapid return to chemically reducing conditions in the deep ground water, limiting the mobility of the Se dissolved in the water pulse introduced during the flood experiment. Ratios of Se to Br in deep ground-water samples collected 8 months after the experiment confirmed the removal of Se from the aqueous phase. Based on the median Se flux rate estimated during the experiment of 0.65 mg/h/m2 (n = 52), 7 flooding cycles would be required to meet the 4 ??g/g remediation goal in surface soils from the SLWMA wetland.
Liu, Rui; Coffman, Reid
2016-07-23
More than 1.15 million cubic meters (1.5 million cubic yards) of sediment require annual removal from harbors and ports along Ohio's Lake Erie coast. Disposing of these materials into landfills depletes land resources, while open water placement of these materials deteriorates water quality. There are more than 14,000 acres of revitalizing brownfields in Cleveland, U.S., many containing up to 90% impervious surface, which does not allow "infiltration" based stormwater practices required by contemporary site-based stormwater regulation. This study investigates the potential of sintering the dredged material from the Harbor of Cleveland in Lake Erie to produce lightweight aggregate (LWA), and apply the LWA to green roof construction. Chemical and thermal analyses revealed the sintered material can serve for LWA production when preheated at 550 °C and sintered at a higher temperature. Through dewatering, drying, sieving, pellet making, preheating, and sintering with varying temperatures (900-1100 °C), LWAs with porous microstructures are produced with specific gravities ranging from 1.46 to 1.74, and water absorption capacities ranging from 11% to 23%. The water absorption capacity of the aggregate decreases as sintering temperature increases. The LWA was incorporated into the growing media of a green roof plot, which has higher water retention capacity than the conventional green roof system.
Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST)
NASA Astrophysics Data System (ADS)
Arroyave, Jeison Manuel; Puccia, Virginia; Zanini, Graciela P.; Avena, Marcelo J.
2018-06-01
Phosphate adsorption at the metal oxide-water interface has been intensely studied, and the system phosphate-goethite in aqueous media is normally used as a model system with abundant information regarding adsorption-desorption under very different conditions. In spite of this, there is still discussion on whether the main inner-sphere surface complexes that phosphate forms on goethite are monodentate or bidentate. A new spectroscopic technique, InfraRed Surface Titration (IRST), is presented here and used to systematically explore the surface speciation of phosphate on goethite in the pH range 4.5-9.5 at different surface coverages. IRST enabled to construct distribution curves of surface species and distribution curves of dissolved phosphate species. In combination with the CD-MUSIC surface complexation model it was possible to conclude that surface complexes are monodentate. Very accurate distribution curves were obtained, showing a crossing point at pH 5.5 at a surface coverage of 2.0 μmol m-2, with a mononuclear monoprotonated species predominating at pH > 5.5 and a mononuclear diprotonated species prevailing at pH < 5.5. On the contrary, at the low surface coverage of 0.7 μmol m-2 there is no crossing point, with the mononuclear monoprotonated species prevailing at all pH. IRST can become a powerful technique to investigate structure, properties and reactions of any IR-active surface complex at the solid-water interface.
The AMIGA enhancement of the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Maldera, S.
2014-06-01
The AMIGA (Auger Muons and Infill for the Ground Array) enhancement of the Auger Surface Detector consists of a 23.5 km2 infill area instrumented with water-Cherenkov detector stations accompanied by 30 m2 of scintillator counters, buried 2.3 m underground. The spacing of 750 m between the surface detectors extends the energy range as low as 3 × 1017 eV, thus allowing the study of the energy region where the transition between galactic and extra-galactic cosmic rays is expected to take place. We describe the reconstruction of the events observed with the infill water-Cherenkov detector array and the derived energy spectrum. We also discuss the basic properties of the muon detector modules obtained from measurements and tests during the construction phase and from the first data in the field.
NASA Astrophysics Data System (ADS)
Dyakonova, Tatyana; Khoperskov, Alexander
2018-03-01
The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.
Wei, Qinguo; Zhang, Honghai; Guo, Dongge; Ma, Shisheng
2016-05-28
We displayed four types of Solanum nigrum metallothionein (SMT) for the first time on the surface of Saccharomyces cerevisiae using an α-agglutinin-based display system. The SMT genes were amplified by RT-PCR. The plasmid pYES2 was used to construct the expression vector. Transformed yeast strains were confirmed by PCR amplification and custom sequencing. Surface-expressed metallothioneins were indirectly indicated by the enhanced cadmium sorption capacity. Flame atomic absorption spectrophotometry was used to examine the concentration of Cd(2+) in this study. The transformed yeast strains showed much higher resistance ability to Cd(2+) compared with the control. Strikingly, their Cd(2+) accumulation was almost twice as much as that of the wild-type yeast cells. Furthermore, surface-engineered yeast strains could effectively adsorb ultra-trace cadmium and accumulate Cd(2+) under a wide range of pH levels, from 3 to 7, without disturbing the Cu(2+) and Hg(2+). Four types of surfaceengineered Saccharomyces cerevisiae strains were constructed and they could be used to purify Cd(2+)-contaminated water and adsorb ultra-trace cadmium effectively. The surface-engineered Saccharomyces cerevisiae strains would be useful tools for the bioremediation and biosorption of environmental cadmium contaminants.
Huang, Su-Chen; Chang, Fang-Chih; Lo, Shang-Lien; Lee, Ming-Yu; Wang, Chu-Fang; Lin, Jyh-Dong
2007-06-01
In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 degrees C for 15 min with raw aggregate pellets fed at 750 degrees C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.
Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan
2018-04-01
We report the design, fabrication and characterization of novel TiO2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO2 nanotube photonic crystals are fabricated by annealing of anodized TiO2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm-2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.
Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.
Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan
2018-04-02
We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.
Liquid film demonstration experiment Skylab SL-4
NASA Technical Reports Server (NTRS)
Darbro, W.
1975-01-01
The liquid film demonstration experiment performed on Skylab 4 by Astronaut Gerald Carr, which involved the construction of water and soap films by boundary expansion and inertia, is discussed. Results include a 1-ml globule of water expanded into a 7-cm-diameter film as well as complex film structures produced by inertia whose lifetimes are longer in the low-g environment. Also discussed are 1-g acceleration experiments in which the unprovoked rupture of films was photographed and film lifetimes of stationary and rotated soap films were compared. Finally, there is a mathematical discussion regarding minimal surfaces, an isoperimetric problem, and liquid films.
Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents.
Wan, Peng; Wu, Jingyao; Tan, LiLi; Zhang, Bingchun; Yang, Ke
2013-07-01
Micro-nanometer scale structure of nubby clusters overlay was constructed on the surface of an AZ31 magnesium alloy by a wet chemical method. The super-hydrophobicity was achieved with a water contact angle of 142° and a sliding angle of about 5°. The microstructure and composition of the super-hydrophobic surface were characterized by SEM and FTIR. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to evaluate the corrosion behavior, and the hemocompatibility of the super-hydrophobic surface was investigated by means of hemolytic and platelet adhesion tests. Results showed that the super-hydrophobic treatment could improve the corrosion resistance of magnesium alloys in PBS and inhibit blood platelet adhesion on the surface, which implied excellent hemocompatibility with controlled degradation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting
2018-01-01
This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.
Measuring human-induced land subsidence from space
Bawden, Gerald W.; Sneed, M.; Stork, S.V.; Galloway, D.L.
2003-01-01
Satellite Interferometric Synthetic Aperture Radar (InSAR) is a revolutionary technique that allows scientists to measure and map changes on the Earth's surface as small as a few millimeters. By bouncing radar signals off the ground surface from the same point in space but at different times, the radar satellite can measure the change in distance between the satellite and ground (range change) as the land surface uplifts or subsides. Maps of relative ground-surface change (interferograms) are constructed from the InSAR data to help scientists understand how ground-water pumping, hydrocarbon production, or other human activities cause the land surface to uplift or subside. Interferograms developed by the USGS for study areas in California, Nevada, and Texas are used in this fact sheet to demonstrate some of the applications of InSAR to assess human-induced land deformation
The Central Valley Hydrologic Model
NASA Astrophysics Data System (ADS)
Faunt, C.; Belitz, K.; Hanson, R. T.
2009-12-01
Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial and temporal variability in climate, land-use changes, and available surface-water deliveries. For example, the droughts of 1976-77 and 1987-92 led to reduced streamflow and surface-water deliveries and increased evapotranspiration and groundwater pumpage throughout most of the valley, resulting in a decrease in groundwater storage. Since the mid-1990s, annual surface-water deliveries generally have exceeded groundwater pumpage, resulting in an increase or no change in groundwater storage throughout most of the valley. However, groundwater is still being removed from storage during most years in the southern part of the Central Valley. The CVHM is designed to be coupled with Global Climate Models to forecast the potential supply of surface-water deliveries, demand for groundwater pumpage, potential subsidence, and changes in groundwater storage in response to different climate-change scenarios. The detailed database on texture properties coupled with CVHM's ability to simulate the combined effects of recharge and discharge make CVHM particularly useful for assessing water-management plans, such as conjunctive water use, conservation of agriculture land, and land-use change. In the future, the CVHM could be used in conjunction with optimization models to help evaluate water-management alternatives to effectively utilize the available water resources.
Measuring Fluxes Of Heat To A Plasma-Arc Anode
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim
1995-01-01
Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.
Blake, Johanna M.; Miltenberger, Keely; Stewart, Anne M.; Ritchie, Andre; Montoya, Jennifer; Durr, Corey; McHugh, Amy; Charles, Emmanuel
2018-02-07
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, conducted a study to assess the water resources and potential effects on the water resources from oil and gas development in the Tri-County planning area, Sierra, Doña Ana, and Otero Counties, New Mexico. Publicly available data were used to assess these resources and effects and to identify data gaps in the Tri-County planning area.The Tri-County planning area includes approximately 9.3 million acres and is within the eastern extent of the Basin and Range Province, which consists of mountain ranges and low elevation basins. Three specific areas of interest within the Tri-County planning area are the Jornada del Muerto, Tularosa Basin, and Otero Mesa, which is adjacent to the Salt Basin. Surface-water resources are limited in the Tri-County planning area, with the Rio Grande as the main perennial river flowing from north to south through Sierra and Doña Ana Counties. The Tularosa Creek is an important surface-water resource in the Tularosa Basin. The Sacramento River, which flows southeast out of the Sacramento Mountains, is an important source of recharge to aquifers in the Salt Basin. Groundwater resources vary in aquifer type, depth to water, and water quality. For example, the Jornada del Muerto, Tularosa Basin, and Salt Basin each have shallow and deep aquifer systems, and water can range from freshwater, with less than 1,000 milligrams per liter (mg/L) of total dissolved solids, to brine, with greater than 35,000 mg/L of total dissolved solids. Water quality in the Tri-County planning area is affected by the dissolution of salt deposits and evaporation which are common in arid regions such as southern New Mexico. The potential for oil and gas development exists in several areas within the Tri-County area. As many as 81 new conventional wells and 25 coalbed natural gas wells could be developed by 2035. Conventional oil and gas well construction in the Tri-County planning area is expected to require 1.53 acre-feet (acre-ft) (500,000 gallons) of water per well, similar to requirements in the nearby Permian Basin of New Mexico, while construction of unconventional wells is expected to require 7.3 acre-ft of water per well. Produced waters in the Permian Basin have high total dissolved solids, in the brackish to brine range.Data gaps identified in this study include the limited detailed data on surface-water resources, the lack of groundwater data in areas of interest, and the lack of water chemistry data related to oil and gas development issues. Surface waters in the Tri-County planning area are sparse; some streams are perennial, and most are ephemeral. A more detailed study of the ephemeral channels and their interaction with groundwater could provide a better understanding of the importance of these surface-water resources. Groundwater data used in this study are from the USGS National Water Information System, which does not have continuous water-level depth data at many of the sites in the Tri-County planning area. On Otero Mesa, no recurrent groundwater-level data are available at any one site. The water-quality data compiled in this study provide a good overview of the general chemistry of groundwater in the Tri-County planning area. To fully understand the groundwater resources, it would be helpful to have more wells in specific areas of interest for groundwater-level and water-quality measurements.
Thompson, Ryan F.; Johnson, Michaela R.; Andersen, Michael J.
2007-01-01
The U.S. Army Corps of Engineers has constructed emergent sandbar habitat on sections of the Missouri River bordering South Dakota and Nebraska downstream from Gavins Point Dam to create and enhance habitat for threatened and endangered bird species. Two areas near river miles 761.3 and 769.8 were selected for construction of emergent sandbar habitat. Pre- and postconstruction data were collected by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, to evaluate the success of the habitat management techniques. Data collected include pre- and postconstruction channel-geometry data (bathymetric and topographic) for areas upstream from, downstream from, and within each construction site. Water-velocity data were collected for selected parts of the site near river mile 769.8. Instruments and methods used in data collection, as well as quality-assurance and quality-control measures, are described. Geospatial channel-geometry data are presented for transects of the river channel as cross sections and as geographical information system shapefiles. Geospatial land-surface elevation data are provided for part of each site in the form of a color-shaded relief map. Geospatial water-velocity data also are provided as color-shaded maps and geographical information system shapefiles.
Design and optimisation of novel configurations of stormwater constructed wetlands
NASA Astrophysics Data System (ADS)
Kiiza, Christopher
2017-04-01
Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.
Parliman, D.J.
2000-01-01
In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.