Sample records for water surface slopes

  1. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  2. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces.

    PubMed

    Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping

    2013-12-21

    Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.

  3. Velocity and stage data collected in a laboratory flume for water-surface slope determination using a pipe manometer

    USGS Publications Warehouse

    Lee, Jonathan K.; Visser, H.M.; Jenter, H.L.; Duff, M.P.

    2000-01-01

    U.S. Geological Survey (USGS) hydrologists and ecologist are conducting studies to quantify vegetative flow resistance in order to improve numerical models of surface-water flow in the Florida Everglades. Water-surface slope is perhaps the most difficult of the flow resistance parameters to measure in the Everglades due to the very low gradients of the topography and flow. In an effort to measure these very small slopes, a unique pipe manometer was developed for the local measurement of water-surface slopes on the order of 1 centimeter per kilometer (cm/km). According to theory, a very precise measurement of centerline velocity obtained inside the pipe manometer should serve as a unique proxy for water-surface slope in the direction of the pipe axis. In order to confirm this theoretical relationship and calibrate the pipe manometer, water-surface elevation and pipe centerline velocity data were simultaneously measured in a set of experiments carried out in the tilting flume at the USGS Hydraulic Laboratory Facility at Stennis Space Center, Mississippi. A description of the instrumentation and methods used to evaluate this technique for measuring water-surface slope as well as a summary of the entire data set is presented.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Guo, Pan; University of Chinese Academy of Sciences, Beijing 100049

    Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surfacemore » atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.« less

  5. Shelf-Slope Exchanges near Submarine Canyons in the Southern Mid-Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gong, D.

    2016-02-01

    Shelf-slope exchange processes are major physical drivers of biological productivity near the shelf-break. Observations from two Slocum ocean gliders in Fall 2013 are used to explore the driving mechanisms of cross-shelf-slope exchanges near Norfolk Canyon and Washington Canyon in the southern Mid-Atlantic Bight. Offshore excursion of bottom "cold pool" water, and shoreward intrusion of slope water at surface layer and thermocline depth occurred during northeasterly along-shelf winds. The saline intrusions of surface slope water resided between the cold pool and surface shelf water, and reached the bottom on the outer and mid-shelf, while the offshore excursion of cold pool water was found between the surface and intermediate slope-water over the canyon. Ekman transport calculation shows wind-driven cross-shelf transport can partially explain this interleaving pattern of intrusions. Scaling analysis of double diffusive processes demonstrate that they also likely played a role in the cross-shelf-slope exchange. A unique canyon upwelling event was captured in and around Washington Canyon during a period of southwesterly along-shelf wind and along-shelf flow to the northeast. The water mass distributions and isopycnal responses in both along-canyon and cross-canyon transects are consistent with scaling analysis and numerical studies of canyon upwelling. Temperature-Salinity properties of water masses in the canyon suggest active mixing between shelf and slope water masses near the canyon head. These results point to the importance of wind, double diffusion, and canyon topography on shelf-slope exchange in the MAB.

  6. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  7. Tidally driven water column hydro-geochemistry in a remediating acidic wetland

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Keene, Annabelle F.; Bush, Richard T.; Sullivan, Leigh A.; Wong, Vanessa N. L.

    2011-10-01

    SummaryManaged tidal inundation is a newly evolved technique for remediating coastal acid sulphate soil (CASS) wetlands. However, there remains considerable uncertainty regarding the hydro-geochemical pathways and spatiotemporal dynamics of residual H + and metal(loid) mobilisation into the tidal fringe surface waters of these uniquely iron-rich landscapes. Here, we examine the hydrology and water column chemistry across the intertidal slope of a remediating CASS wetland during several tide cycles. There was extreme spatial and temporal dynamism in water column chemistry, with pH fluctuating by ˜3 units (˜3.5-6.5) during a single tide cycle. Acute acidity was spatially confined to the upper intertidal slope, reflecting surface sediment properties, and tidal overtopping is an important pathway for mobilisation of residual H + and Al 3+ to the water column. Marine derived HCO3- was depleted from surface waters migrating across the intertidal slope and a strong gradient in HCO3- was observed from the tidal fringe to the adjacent tributary channel and nearby estuary. Tidal forcing generated oscillating hydraulic gradients in the shallow fringing aquifer, favouring ebb-tide seepage and driving rapid, heterogeneous advection of groundwater on the lower intertidal slope via surface connected macropores. A combination of diffusive and advective flux across the sediment-water interface led to persistent, elevated surface water Fe 2+ (˜10-1000 μM). The geochemical processes associated with Fe 2+ mobilisation displayed distinct spatial zonation, with low pH, proton-promoted desorption occurring on the upper intertidal slope, whilst circum-neutral pH, Fe(III)-reducing processes dominated the lower intertidal slope. Arsenic was also mobilised into surface waters on the lower intertidal slope under moderate pH (˜6.0) conditions and was strongly positively correlated with Fe 2+. Saturation index values for aragonite were substantially depressed (-1 to -5) and significantly negatively correlated with elevation, thereby presenting a barrier to re-colonisation of the upper intertidal slope by calcifying benthic organisms. These findings highlight the spatially complex hydrological and geochemical controls on surface water quality that can occur in tidally inundated acid sulphate soil environments.

  8. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  9. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    NASA Astrophysics Data System (ADS)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D model could best simulate observed tidal wave propagation and water surface slope. The complexity of the 2D model requires further quantification of parameter sensitivity and improvement of the parametrization routine.

  10. Characteristics of low-slope streams that affect O2 transfer rates

    USGS Publications Warehouse

    Parker, Gene W.; Desimone, Leslie A.

    1991-01-01

    Multiple-regression techniques were used to derive the reaeration coefficients estimating equation for low sloped streams: K2 = 3.83 MBAS-0.41 SL0.20 H-0.76, where K2 is the reaeration coefficient in base e units per day; MBAS is the methylene blue active substances concentration in milligrams per liter; SL is the water-surface slope in foot per foot; and H is the mean-flow depth in feet. Fourteen hydraulic, physical, and water-quality characteristics were regressed against 29 measured-reaeration coefficients for low-sloped (water surface slopes less than 0.002 foot per foot) streams in Massachusetts and New York. Reaeration coefficients measured from May 1985 to October 1988 ranged from 0.2 to 11.0 base e units per day for 29 low-sloped tracer studies. Concentration of methylene blue active substances is significant because it is thought to be an indicator of concentration of surfactants which could change the surface tension at the air-water interface.

  11. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, O; Edinger, E; Guilderson, T P

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface watermore » bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.« less

  12. Velocity of water flow along saturated loess slopes under erosion effects

    NASA Astrophysics Data System (ADS)

    Huang, Yuhan; Chen, Xiaoyan; Li, Fahu; Zhang, Jing; Lei, Tingwu; Li, Juan; Chen, Ping; Wang, Xuefeng

    2018-06-01

    Rainfall or snow-melted water recharge easily saturates loose top soils with a less permeable underlayer, such as cultivated soil slope and partially thawed top soil layer, and thus, may influence the velocity of water flow. This study suggested a methodology and device system to supply water from the bottom soil layer at the different locations of slopes. Water seeps into and saturates the soil, when the water level is controlled at the same height of the soil surface. The structures and functions of the device, the components, and the operational principles are described in detail. A series of laboratory experiments were conducted under slope gradients of 5°, 10°, 15°, and 20° and flow rates of 2, 4, and 8 L min-1 to measure the water flow velocities over eroding and non-eroded loess soil slopes, under saturated conditions by using electrolyte tracing. Results showed that flow velocities on saturated slopes were 17% to 88% greater than those on non-saturated slopes. Flow velocity increased rapidly under high flow rates and slope gradients. Saturation conditions were suitable in maintaining smooth rill geomorphology and causing fast water flow. The saturated soil slope had a lubricant effect on the soil surface to reduce the frictional force, resulting in high flow velocity. The flow velocities of eroding rills under different slope gradients and flow rates were approximately 14% to 33% lower than those of non-eroded rills on saturated loess slopes. Compared with that on a saturated loess slope, the eroding rill on a non-saturated loess slope can produce headcuts to reduce the flow velocity. This study helps understand the hydrodynamics of soil erosion and sediment transportation of saturated soil slopes.

  13. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    PubMed

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  14. Relationship between landscape characteristics and surface water quality.

    PubMed

    Chang, C L; Kuan, W H; Lui, P S; Hu, C Y

    2008-12-01

    The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.

  15. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these conditions.

  16. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  17. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  18. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    USGS Publications Warehouse

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  19. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    USGS Publications Warehouse

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon

    2017-01-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  20. AirSWOT observations versus hydrodynamic model outputs of water surface elevation and slope in a multichannel river

    NASA Astrophysics Data System (ADS)

    Altenau, Elizabeth H.; Pavelsky, Tamlin M.; Moller, Delwyn; Lion, Christine; Pitcher, Lincoln H.; Allen, George H.; Bates, Paul D.; Calmant, Stéphane; Durand, Michael; Neal, Jeffrey C.; Smith, Laurence C.

    2017-04-01

    Anabranching rivers make up a large proportion of the world's major rivers, but quantifying their flow dynamics is challenging due to their complex morphologies. Traditional in situ measurements of water levels collected at gauge stations cannot capture out of bank flows and are limited to defined cross sections, which presents an incomplete picture of water fluctuations in multichannel systems. Similarly, current remotely sensed measurements of water surface elevations (WSEs) and slopes are constrained by resolutions and accuracies that limit the visibility of surface waters at global scales. Here, we present new measurements of river WSE and slope along the Tanana River, AK, acquired from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission. Additionally, we compare the AirSWOT observations to hydrodynamic model outputs of WSE and slope simulated across the same study area. Results indicate AirSWOT errors are significantly lower than model outputs. When compared to field measurements, RMSE for AirSWOT measurements of WSEs is 9.0 cm when averaged over 1 km squared areas and 1.0 cm/km for slopes along 10 km reaches. Also, AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics, while model outputs of spatial variations in slope are very poor. Combining AirSWOT and future SWOT measurements with hydrodynamic models can result in major improvements in model simulations at local to global scales. Scientists can use AirSWOT measurements to constrain model parameters over long reach distances, improve understanding of the physical processes controlling the spatial distribution of model parameters, and validate models' abilities to reproduce spatial variations in slope. Additionally, AirSWOT and SWOT measurements can be assimilated into lower-complexity models to try and approach the accuracies achieved by higher-complexity models.

  1. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  2. Modeling the Impact of Soil and Water Conservation on Surface and Ground Water Based on the SCS and Visual Modflow

    PubMed Central

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources. PMID:24244427

  3. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  4. The effect of plant root system on temperature and moisture of road cutting slope in seasonal frozen regions

    NASA Astrophysics Data System (ADS)

    Shan, W.; Guo, Y.

    2009-04-01

    In recent years, in the seasonal frozen regions of Northeast China, the construction of highway improved enormously people's journey condition, but also brought a series of environmental question. In order to meet the route requirement, it is inevitable to excavate the mountain slope, which damage the surface vegetation and cut off the runoff passage of groundwater, cause the outcrop of underground water on the cutting slope and affecte the intrinsic ground stress equilibrium of the slope body, lead to the redistribution of ground stress and the heat balance change in near-surface of the cutting slope. Under influence of rainfall in autumn and the cold climate in winter, the moisture transfer to frozen zone of cutting slope and lead to the frost heave in shallow depth of the slope. During the thawing period in spring, with effect of integrated factors including rainfall and increasing temperature, ice kernels both on the surface and near the surface of cut slope thaw quickly. The water melting from frozen soil, will hampered by frozen layer in process of infiltration. As a result, the water content of the intersection between the freezing and melting layer is high enough to be saturation or even over-saturation, and accordingly cause the intrinsic effective stress on the slope body decreased. Under the function of gravity, near-surface slope collapses partially or entirely. As experience of highway construction accumulated, and the consciousness of environmental protection strengthen, the efficiency and the rationality of plant protection slope was realized gradually, slope protection method has transited gradually from masonry body to combined with plant protection, or complete plant protection. Adopted the method combined field test and lab test, this article analyzed the effect of plant system on the temperature and moisture of soil body, especially the root-soil system in freezing process. The results showed that compared with non plant, the soil body protected by plant had lower moisture content and freeze slowly, which indicated the plant could made the condition of moisture and temperature in the slope better, then reduced the destruction of freezing and thawing to the road slope. The study result could provide theory support for the design of plant protection in the slope of seasonal frozen regions. Key words: road slope, season frozen regions, plant protection, temperature, moisture

  5. [Soil infiltration of snowmelt water in the southern Gurbantunggut Desert, Xinjiang, China].

    PubMed

    Hu, Shun-jun; Chen, Yong-bao; Zhu, Hai

    2015-04-01

    Soil infiltration of snow-melt water is an important income item of water balance in arid desert. The soil water content in west slope, east slope and interdune of sand dune in the southern Gurbantunggut Desert was monitored before snowfall and after snow melting during the winters of 2012-2013 and 2013-2014. According to the principle of water balance, soil infiltration of snow-melt in the west slope, east slope, interdune and landscape scale was calculated, and compared with the results measured by cylinder method. The results showed that the soil moisture recharge from unfrozen layer of unsaturated soil to surface frozen soil was negligible because the soil moisture content before snowfall was lower, soil infiltration of snow-melt water was the main source of soil water of shallow soil, phreatic water did not evaporate during freezing period, and did not get recharge after the snow melting. Snowmelt water in the west slope, east slope, interdune and landscape scale were 20-43, 27-43, 32-45, 26-45 mm, respectively.

  6. The Influence of Upward Groundwater between Joints on the Stability and the Behavior of Dip Slope Failures

    NASA Astrophysics Data System (ADS)

    Weng, C. H.; Lin, M. L.; Hsieh, P. C.

    2016-12-01

    In recent years, landslides have attracted much attention in the engineering field in Taiwan. As previous studies, landslides are induced by earthquakes, rainfall, and groundwater. That groundwater flows into upper layer through vertical joints, upward groundwater, erodes the slope and reduces its stability. Nevertheless, in the literature, the impact of upward groundwater to the location of sliding surface and the behaviors of dip slope failure has not be investigated. In this study, physical model tests with water flow inclinometers are used to investigate the kinematics of dip slope failures under various conditions and to identify the failure modes of specimens (Fig. 1). Besides, the mechanics of one landslide case owing to upward groundwater is studied by numerical simulation. In the physical tests, the effects of upward groundwater on slope stability are investigated with different angles of inclinometers, different position of joints on specimens and different locations of upward seepage. The test results suggest that the upward water pressure becomes lower when the number of joints increases. As the water pressure increases to 3.8 times the weight of one block of the specimen, the block will slide. Another, when the specimen is covered by one granular content layer (see Fig. 2), the failure surface tends to develop at the granular content layer, and its kinematics is similar to debris slide; when the clay seam is below of the specimen, the translational slide occurs along the bottom of the blocks. Moreover, one dip slope case, Taiwan's National Highway No. 3 landslide event, are studied by numerical simulation. According to the results, some points are concluded: water pressure makes tension cracks on the top of the vertical joints on weathered sandstones; with anchor attenuation, the sandstone moves downslope, which makes the shear strain of the slope toe region increases (see Fig. 3). If friction angle of the slope decreases, the slide surface occurs along the weak surface, and it develops to the toe of the slope.

  7. A Study on the Surface and Subsurface Water Interaction Based on the Groundwater Recession Curve

    NASA Astrophysics Data System (ADS)

    Wang, S. T.; Chen, Y. W.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.

    2017-12-01

    The interaction of surface to subsurface water is an important issue for groundwater resources assessment and management. The influences of surface water to groundwater are mainly through the rainfall recharge, river recharge and discharge and other boundary sources. During a drought period, the interaction of river and groundwater may be one of the main sources of groundwater level recession. Therefore, this study explores the interaction of surface water to groundwater via the groundwater recession. During drought periods, the pumping and river interaction together are the main mechanisms causing the recession of groundwater level. In principle, larger gradient of the recession curve indicates more groundwater discharge and it is an important characteristic of the groundwater system. In this study, to avoid time-consuming manual analysis, the Python programming language is used to develop a statistical analysis model for exploring the groundwater recession information. First, the slopes of the groundwater level hydrograph at every time step were computed for each well. Then, for each well, the represented slope to each groundwater level was defined as the slope with 90% exceedance probability. The relationship between the recession slope and the groundwater level can then be obtained. The developed model is applied to Choushui River Alluvial Fan. In most wells, the results show strong positive correlations between the groundwater levels and the absolute values of the recession slopes.

  8. Expected Performance of the Upcoming Surface Water and Ocean Topography Mission Measurements of River Height, Width, and Slope

    NASA Astrophysics Data System (ADS)

    Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.

    2017-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.

  9. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  10. Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge

    NASA Astrophysics Data System (ADS)

    Zavadsky, A.; Shemer, L.

    2017-05-01

    Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.

  11. Automated River Reach Definition Strategies: Applications for the Surface Water and Ocean Topography Mission

    NASA Astrophysics Data System (ADS)

    Frasson, Renato Prata de Moraes; Wei, Rui; Durand, Michael; Minear, J. Toby; Domeneghetti, Alessio; Schumann, Guy; Williams, Brent A.; Rodriguez, Ernesto; Picamilh, Christophe; Lion, Christine; Pavelsky, Tamlin; Garambois, Pierre-André

    2017-10-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure water surface heights and widths for rivers wider than 100 m. At its native resolution, SWOT height errors are expected to be on the order of meters, which prevent the calculation of water surface slopes and the use of slope-dependent discharge equations. To mitigate height and width errors, the high-resolution measurements will be grouped into reaches (˜5 to 15 km), where slope and discharge are estimated. We describe three automated river segmentation strategies for defining optimum reaches for discharge estimation: (1) arbitrary lengths, (2) identification of hydraulic controls, and (3) sinuosity. We test our methodologies on 9 and 14 simulated SWOT overpasses over the Sacramento and the Po Rivers, respectively, which we compare against hydraulic models of each river. Our results show that generally, height, width, and slope errors decrease with increasing reach length. However, the hydraulic controls and the sinuosity methods led to better slopes and often height errors that were either smaller or comparable to those of arbitrary reaches of compatible sizes. Estimated discharge errors caused by the propagation of height, width, and slope errors through the discharge equation were often smaller for sinuosity (on average 8.5% for the Sacramento and 6.9% for the Po) and hydraulic control (Sacramento: 7.3% and Po: 5.9%) reaches than for arbitrary reaches of comparable lengths (Sacramento: 8.6% and Po: 7.8%). This analysis suggests that reach definition methods that preserve the hydraulic properties of the river network may lead to better discharge estimates.

  12. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, A.S.; Ojha, L.; Dundas, C.M.; Mattson, S.S.; Byrne, S.; Wray, J.J.; Cull, S.C.; Murchie, S.L.; Thomas, N.; Gulick, V.C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25?? to 40??) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48??S to 32??S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ???250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  13. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in the north-west Weddell Sea. The lag observed between the two time series is due to the difference in water mass paths to the observation points in Drake Passage. We discuss the role of atmospheric modes of variability such as ENSO and SAM, as well as climate trends, on this relationship and their potential impact on future LWSDW export.

  14. A simulation of rainfall infiltration based on two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xi, Niannian; Liu, Gang; Hao, Shuang

    2016-04-01

    Rainfall infiltration in slope usually is one of major reasons cause landslide, which involves multiphase flow coupling with soil, water and gas. In order to study the mechanism of landslide caused by rainfall infiltration, a simulation of rainfall infiltration of DaPing slope, which locates in the Three Gorges Region of China, is presented based on the numerical solution of governing equations of two-phase flow in this paper. The results of this research suggest that there are two sections can be divided in the surface of slope, one is inflow area and the other is overflow area, according to where it is infiltration and discharge. The general inflow area is on the upside of slope, while the overflow area is on the underside. The middle section of slope is on a fluctuant position between inflow and overflow area, which is dramatically affected by the water content inside of slope. Moreover, the average rate of infiltration is more stable in both inflow and overflow area, whose numerical value is depend on the geometry and transmission characteristics of slope. And the factors of rainfall characteristics, surface flow and temperature have little effect on them. Furthermore, in the inflow area, when rainfall intensity is higher than infiltration the rain on the surface of slope will run off, otherwise water and gas will completely infiltrate through soil. The situation is different in the overflow area whose overland flow condition is depended on whether it is saturated or not inside of slope. When it is saturated in the slope, there is no infiltration in the overflow area. But when it is unsaturated, the infiltration intensity will equal to rainfall intensity. In a summary, the difference from inflow and overflow area is the evidence that the landslide may likely to happen on the slope of overflow area when it comes to a rainfall. It is disadvantageous for slope stability when transmitting the pressure of saturated water weight at the top of slope through the pore gas to groundwater, the groundwater pressure will increased sharply.

  15. Hydraulic visibility and effective cross sections based on hydrodynamical modeling of flow lines gained by satellite altimetry

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Garambois, P. A.; Calmant, S.; Roux, H.; Paris, A.; Monnier, J.; Santos da Silva, J.

    2015-12-01

    Hydrodynamic laws predict that irregularities in a river bed geometry produce spatial and temporal variations in the water level, hence in its slope. Conversely, observation of these changes is a goal of the SWOT mission with the determination of the discharge as a final objective. In this study, we analyse the relationship between river bed undulations and water surface for an ungauged reach of the Xingu river, a first order tributary of the Amazon river. It is crosscut more than 10 times by a single ENVISAT track over a hundred of km. We have determined time series of water levelsat each of these crossings, called virtual stations (VS), hence slopes of the flow line. Using the discharge series computed by Paiva et al. (2013) between 1998 and 2009, Paris et al. (submitted) determined at each VS a rating curve relating these simulated discharge with the ENVISAT height series. One parameter of these rating curves is the zero-flow depth Z 0 . We show that it is possible to explain the spatial and temporal variations of the water surface slope in terms of hydrodynamical response of the longitudinal changes of the river bed geometry given by the successive values of Z 0 . Our experiment is based on an effective, single thread representation of a braided river, realistic values for the Manning coefficient and river widths picked up on JERS images. This study confirms that simulated flow lines are consistent with water surface elevations (WSE) and slopes gained by satellite altimetry. Hydrodynamical signatures are more visible where the river bed geometry varies significantly, and for reaches with a strong downstream control. Therefore, this study suggests that the longitudinal variations of the slope might be an interesting criteria for the question of river segmentation into elementary reaches for the SWOT mission which will provide continuous measurements of the water surface elevation, the slope and the reach width.

  16. Potential water yield response following clearcut harvesting on north and south slopes in northern Idaho

    Treesearch

    Richard G. Cline; Harold F. Haupt; Gaylon S. Campbell

    1977-01-01

    The hydrologic response of small clearcuts on north and south slopes in northern Idaho was investigated. On the north slope, substantial gains (27 to 35 cm) in potential water yield per year resulted from (a) removal of transpiring surfaces associated with plant cover, (b) elimination of snow interception by a closed-canopied forest, and (C) delayed reoccupation of the...

  17. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons with 8 cm ranging precision, the surface altimetry data is acquired with very high spatial and vertical resolution. Examples of these capabilities will be shown using data collected in 2011 along and across the flow axis of the Florida Everglades Shark River Slough, targeting the slough's Long Term Ecology Research (LTER) field sites.

  18. Seasonal flows on warm Martian slopes

    USGS Publications Warehouse

    McEwen, Alfred S.; Ojha, Lujendra; Dundas, Colin M.; Mattson, Sarah S.; Byrne, Shane; Wray, James J.; Cull, Selby C.; Murchie, Scott L.; Thomas, Nicolas; Gulick, Virginia C.

    2011-01-01

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  19. Seasonal flows on warm Martian slopes.

    PubMed

    McEwen, Alfred S; Ojha, Lujendra; Dundas, Colin M; Mattson, Sarah S; Byrne, Shane; Wray, James J; Cull, Selby C; Murchie, Scott L; Thomas, Nicolas; Gulick, Virginia C

    2011-08-05

    Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.

  20. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  1. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  2. Influence of natural surfactants on short wind waves in the coastal Peruvian waters

    NASA Astrophysics Data System (ADS)

    Kiefhaber, D.; Zappa, C. J.; Jähne, B.

    2015-07-01

    Results from measurements of wave slope statistics during the R/V Meteor M91 cruise in the coastal upwelling regions off the coast of Peru are reported. Wave slope probability distributions were measured with an instrument based on the reflection of light at the water surface and a method very similar to the Cox and Munk (1954b) sun glitter technique. During the cruise, the mean square slope (mss) of the waves was found to be very variable, despite the limited range of encountered wind speeds. The Cox and Munk (1954b) parameterization for clean water is found to overestimate mss, but most measurements fall in the range spanned by their clean water and slick parameterizations. The observed variability of mss is attributed to the wave damping effect of surface films, generated by increased biological production in the upwelling zones. The small footprint and high temporal resolution of the measurement allows for tracking abrupt changes in conditions caused by the often patchy structure of the surface films.

  3. Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2004-12-01

    Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.

  4. Flow Pathways of Snow and Ground Ice Melt Water During Initial Seasonal Thawing of the Active Layer on Continuous Permafrost

    NASA Astrophysics Data System (ADS)

    Sjoberg, Y.; Johansson, E.; Rydberg, J.

    2017-12-01

    In most arctic environments, the snowmelt is the main hydrologic event of the year as a large fraction of annual precipitation rapidly moves through the catchment. Flow can occur on top of the frozen ground surface or through the developing active layer, and flow pathways are critical determinants for biogeochemical transport. We study the linkages between micro topography, active layer thaw, and water partitioning on a hillslope in Greenland during late snowmelt season to explore how seasonal subsurface flow pathways develop. During snowmelt, a parallel surface drainage pattern appears across the slope, consisting of small streams, and water also collects in puddles across the slope. Thaw rates in the active layer were significantly higher (T-test p<0.01) on wet parts of the slope (0.8 cm/day), compared to drier parts of the slope (0.6 cm/day). Analyses of stable water isotopic composition show that snow had the lightest isotopic signatures, but with a large spread of values, while seasonally frozen ground and standing surface water (puddles) were heavier. The stream water became heavier over the two-week sampling period, suggesting an increasing fraction of melted soil water input over time. In contrast, standing surface water (puddles) isotopic composition did not change over time. In boreal catchments, seasonal frost has previously been found to not significantly influence flow pathways during most snowmelt events, and pre-event groundwater make out most of the stream water during snowmelt. Our results from a continuous permafrost environment show that both surface (overland) and subsurface flow pathways in the active layer are active, and that a large fraction of the water moving on the hillslope comes from melted ground ice rather than snow in the late snowmelt season. This suggests a possibility that flow pathways during snowmelt could shift to deeper subsurface flow following degradation of continuous permafrost.

  5. Soil roughness, slope and surface storage relationship for impervious areas

    NASA Astrophysics Data System (ADS)

    Borselli, Lorenzo; Torri, Dino

    2010-11-01

    SummaryThe study of the relationships between surface roughness, local slope gradient and maximum volume of water storage in surface depressions is a fundamental element in the development of hydrological models to be used in soil and water conservation strategies. Good estimates of the maximum volume of water storage are important for runoff assessment during rainfall events. Some attempts to link surface storage to parameters such as indices of surface roughness and, more rarely, local gradient have been proposed by several authors with empirical equations often conflicting between them and usually based on a narrow range of slope gradients. This suggests care in selecting any of the proposed equations or models and invites one to verify the existence of more realistic experimental relationships, based on physical models of the surfaces and valid for a larger range of gradients. The aim of this study is to develop such a relation for predicting/estimating the maximum volume of water that a soil surface, with given roughness characteristics and local slope gradient, can store. Experimental work has been carried out in order to reproduce reliable rough surfaces able to maintain the following properties during the experimental activity: (a) impervious surface to avoid biased storage determination; (b) stable, un-erodible surfaces to avoid changes of retention volume during tests; (c) absence of hydrophobic behaviour. To meet the conditions a-c we generate physical surfaces with various roughness magnitude using plasticine (emulsion of non-expansible clay and oil). The plasticine surface, reproducing surfaces of arable soils, was then wetted and dirtied with a very fine timber sawdust. This reduced the natural hydrophobic behaviour of the plasticine to an undetectable value. Storage experiments were conducted with plasticine rough surfaces on top of large rigid polystyrene plates inclined at different slope gradient: 2%, 5%, 10%, 20%, 30%. Roughness data collected on the generated plasticine surfaces were successfully compared with roughness data collected on real soil surfaces for similar conditions. A set of roughness indices was computed for each surface using roughness profiles measured with a laser profile meter. Roughness indices included quantiles of the Abbot-Firestone curve, which is used in surface metrology for industrial application to characterize surface roughness in a non-parametric approach ( Whitehouse, 1994). Storage data were fitted with an empirical equation (double negative exponential of roughness and slope). Several roughness indices resulted well related to storage. The better results were obtained using the Abbot-Firestone curve parameter P100. Beside this storage empirical model (SEM) a geometrical model was also developed, trying to give a more physical basis to the result obtained so far. Depression geometry was approximated with spherical cups. A general physical model was derived (storage cup model - SCM). The cup approximation identifies where roughness elevation comes in and how it relates to slope gradient in defining depression volume. Moreover, the exponential decay used for assessing slope effect on storage volume in the empirical model of Eqs. (8) and (9) emerges as consistent with distribution of cup sizes.

  6. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall.

    PubMed

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2018-02-22

    This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.

  7. Infinite slope stability under steady unsaturated seepage conditions

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  8. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    NASA Astrophysics Data System (ADS)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  9. The Upper 1000-m Slope Currents North of the South Shetland Islands and Elephant Island Based on Ship Cruise Observations

    NASA Astrophysics Data System (ADS)

    Du, Guangqian; Zhang, Zhaoru; Zhou, Meng; Zhu, Yiwu; Zhong, Yisen

    2018-04-01

    While the Antarctic Slope Current (ASC) has been intensively studied for the East Antarctica slope area and the Weddell Sea, its fate in the western Antarctic Peninsula (WAP) region remains much less known. Data from two cruises conducted near the South Shetland Islands (SSIs) and the Elephant Island (EI), one in austral summer of 2004 and one in austral winter of 2006, were analyzed to provide a broad picture of the circulation pattern over the continental slope of the surveyed area, and an insight into the dynamical balance of the circulation. The results indicate that southwestward currents are present over the upper slope in the study area, indicating the ASC in the WAP region. Near the Shackleton Gap (SG) north of the EI, the southwestward slope currents near the shelf break are characterized by a water mass colder and fresher than the ambient water, which produces cross-slope density gradients and then vertical shear of the along-slope (or along-isobath) velocity. The vertical shear is associated with a reversal of the along-slope current from northeastward at surface to southwestward in deeper layers, or a depth-intensification of the southwestward slope currents. The water mass with temperature and salinity characteristics similar to the observed cold and fresh water is also revealed on the southern slope of the Scotia Sea, suggesting that this cold and fresh water is originated from the Scotia Sea slope and flows southwestward through the SG. Over the shelf north of the SSIs, the cold and fresh water mass is also observed and originates mainly from the Bransfield Strait. In this area, vertical structure of the southwestward slope currents is associated with the onshore intrusion of the upper Circumpolar Deep Water that creates cross-slope density gradients.

  10. Recurring Slope Lineae (RSL) and Future Exploration of Mars and Europa

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.

    2014-11-01

    Recurring slope lineae (RSL) are narrow (<5 m), dark markings on steep (25°-40°) slopes that incrementally grow during warm seasons over low-albedo surfaces, fade when inactive, and recur over multiple Mars years. RSL often follow small gullies, but no topographic changes (with one exception) have been detected via 30 cm/pixel images from MRO/HiRISE. Mid-latitude RSL appear and lengthen in the late spring through summer favoring equator-facing slopes. RSL also occur in equatorial regions of Mars, especially in the deep canyons of Valles Marineris; some of these lineae are over 1 km long, again usually following pristine gullies. The fans on which many RSL terminate have distinctive color and spectral properties, but lack water absorption bands in MRO/CRISM. RSL are active at places with peak surface temperatures >250 K, but we do not know what time of day they are active. Laboratory experiments show that water or brines darken basaltic soils but produce weak water absorption bands after partial dehydration during the low-humidity middle afternoon conditions when MRO observes. The primary question is whether RSL are really due to water at or near the surface. All observations can be explained in this way, and no entirely dry model has been offered, but there is no direct detection of water. If they are due to water, where does the water come from and how is it replenished each year? Multiple hypotheses exist. RSL may be evidence for seepage of water today, and may mark the most promising sites to search for extraterrestrial life. There are 2 key unknowns: (1) Does the water originate from the subsurface where microbes would be protected from radiation, or does it have an atmospheric origin and is only skin deep? (2) Is the water too salty for life as we know it? RSL occur on steep, rocky slopes on which landing is dangerous, but several concepts for surface exploration of RSL were presented in http://www.lpi.usra.edu/meetings/marsconcepts2012/. Landing in RSL sites will require additional expenses for planetary protection. For these reasons, it is important to learn as much as possible about RSL from orbital observations.

  11. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  12. Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.

    2007-12-01

    These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.

  13. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    NASA Astrophysics Data System (ADS)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley slope asymmetry is most strongly predicted by asymmetries of insolation and drainage density, which generally supports a water-balance based conceptual model of valley asymmetry development. Surprisingly, vegetation asymmetries had relatively low predictive importance.

  14. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    USGS Publications Warehouse

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  15. Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem

    NASA Astrophysics Data System (ADS)

    Gaeuman, D.; Stewart, R. L.

    2017-12-01

    The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.

  16. Intrusions of Kuroshio and Shelf Waters on Northern Slope of South China Sea in Summer 2015

    NASA Astrophysics Data System (ADS)

    Li, Denghui; Zhou, Meng; Zhang, Zhaoru; Zhong, Yisen; Zhu, Yiwu; Yang, Chenghao; Xu, Mingquan; Xu, Dongfeng; Hu, Ziyuan

    2018-06-01

    The northern slope region of the South China Sea (SCS) is a biological hot spot characterized by high primary productivity and biomasses transported by cross-shelf currents, which support the spawning and growth of commercially and ecologically important fish species. To understand the physical and biogeochemical processes that promote the high primary production of this region, we conducted a cruise from June 10 and July 2, 2015. In this study, we used fuzzy cluster analysis and optimum multiparameter analysis methods to analyze the hydrographic data collected during the cruise to determine the compositions of the upper 55-m water masses on the SCS northern slope and thereby elucidate the cross-slope transport of shelf water (SHW) and the intrusions of Kuroshio water (KW). We also analyzed the geostrophic currents derived from acoustic Doppler current profiler measurements and satellite data. The results reveal the surface waters on the northern slope of the SCS to be primarily composed of waters originating from South China Sea water (SCSW), KW, and SHW. The SCSW dominated a majority of the study region at percentages ranging between 60% and 100%. We found a strong cross-slope current with speeds greater than 50 cm s-1 to have carried SHW into and through the surveyed slope area, and KW to have intruded onto the slope via mesoscale eddies, thereby dominating the southwestern section of the study area.

  17. Evaluation of an Infiltration Model with Microchannels

    NASA Astrophysics Data System (ADS)

    Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.

    2015-12-01

    This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.

  18. 9 CFR 590.550 - Washing and sanitizing room or area facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and walls shall have a surface of tile, enamel paint, or other water-resistant material. (c) Floors shall be adequately sloped for proper drainage, be free from cracks or rough surfaces where water and...

  19. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    NASA Astrophysics Data System (ADS)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  20. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  1. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less

  2. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.

  3. Assessment of radar altimetry correction slopes for marine gravity recovery: A case study of Jason-1 GM data

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Li, Jiancheng; Jin, Taoyong; Che, Defu

    2018-04-01

    Marine gravity anomaly derived from satellite altimetry can be computed using either sea surface height or sea surface slope measurements. Here we consider the slope method and evaluate the errors in the slope of the corrections supplied with the Jason-1 geodetic mission data. The slope corrections are divided into three groups based on whether they are small, comparable, or large with respect to the 1 microradian error in the current sea surface slope models. (1) The small and thus negligible corrections include dry tropospheric correction, inverted barometer correction, solid earth tide and geocentric pole tide. (2) The moderately important corrections include wet tropospheric correction, dual-frequency ionospheric correction and sea state bias. The radiometer measurements are more preferred than model values in the geophysical data records for constraining wet tropospheric effect owing to the highly variable water-vapor structure in atmosphere. The items of dual-frequency ionospheric correction and sea state bias should better not be directly added to range observations for obtaining sea surface slopes since their inherent errors may cause abnormal sea surface slopes and along-track smoothing with uniform distribution weight in certain width is an effective strategy for avoiding introducing extra noises. The slopes calculated from radiometer wet tropospheric corrections, and along-track smoothed dual-frequency ionospheric corrections, sea state bias are generally within ±0.5 microradians and no larger than 1 microradians. (3) Ocean tide has the largest influence on obtaining sea surface slopes while most of ocean tide slopes distribute within ±3 microradians. Larger ocean tide slopes mostly occur over marginal and island-surrounding seas, and extra tidal models with better precision or with extending process (e.g. Got-e) are strongly recommended for updating corrections in geophysical data records.

  4. Heat Content and Ice Draft Variability over the Slope of the Chukchi Sea from 2016-2017 Ocean Moorings

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Ryan, P. A.; Badiey, M.; Elmer, C.; Eickmeier, J.

    2017-12-01

    The shallow-water component of the Canada Basin Acoustic Propagation Experiment (CANAPE) will quantify how ocean properties vary at daily to seasonal time scales over the outer continental shelf of the Chukchi Sea. We here describe initial results related to a weak sound channel above warm Atlantic and below seasonally modulated surface waters. It coincides with the cold halocline layer that often slopes up- or downward at the edge of the continental shelf in response to surface forcing. Sloping topography supports isopycnal oscillations whose time scales vary from hours to months. These Kelvin or Rossby waves will become more pronounced in a increasingly dynamic, wind-forced Arctic Ocean with a diminished, thinner, and more mobile ice cover.

  5. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after observing a pond and river reemerge after apparently freezing during the 2016-17 melt season. Using the ponds/rivers endmember scheme helps us to constrain the role storage and transport play on stabilizing ice shelves. By extending this analysis to other ice tongues and shelves we can better understand their vulnerability to a warming world.

  6. Comparison of Numerical Approaches to a Steady-State Landscape Equation

    NASA Astrophysics Data System (ADS)

    Bachman, S.; Peckham, S.

    2008-12-01

    A mathematical model of an idealized fluvial landscape has been developed, in which a land surface will evolve to preserve dendritic channel networks as the surface is lowered. The physical basis for this model stems from the equations for conservation of mass for water and sediment. These equations relate the divergence of the 2D vector fields showing the unit-width discharge of water and sediment to the excess rainrate and tectonic uplift on the land surface. The 2D flow direction is taken to be opposite to the water- surface gradient vector. These notions are combined with a generalized Manning-type flow resistance formula and a generalized sediment transport law to give a closed mathematical system that can, in principle, be solved for all variables of interest: discharge of water and sediment, land surface height, vertically- averaged flow velocity, water depth, and shear stress. The hydraulic geometry equations (Leopold et. al, 1964, 1995) are used to incorporate width, depth, velocity, and slope of river channels as powers of the mean-annual river discharge. Combined, they give the unit- width discharge of the stream as a power, γ, of the water surface slope. The simplified steady-state model takes into account three components among those listed above: conservation of mass for water, flow opposite the gradient, and a slope-discharge exponent γ = -1 to reflect mature drainage networks. The mathematical representation of this model appears as a second-order hyperbolic partial differential equation (PDE) where the diffusivity is inversely proportional to the square of the local surface slope. The highly nonlinear nature of this PDE has made it very difficult to solve both analytically and numerically. We present simplistic analytic solutions to this equation which are used to test the validity of the numerical algorithms. We also present three such numerical approaches which have been used in solving the differential equation. The first is based on a nonlinear diffusion filtering technique (Welk et. al, 2007) that has been applied successfully in the context of image processing. The second uses a Ritz finite element approach to the Euler-Lagrange formulation of the PDE in which an eighth degree polynomial is solved whose coefficients are locally dependent on slope and elevation. Lastly, we show a variant to the diffusion filtering approach in which a single-stage Runge-Kutta method is used to iterate a time-derivative to steady- state. The relative merits and drawbacks of these approaches are discussed, as well as stability and consistency requirements.

  7. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    NASA Astrophysics Data System (ADS)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  8. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current amplitudes of 4-6 cm/s per unit wind stress over the middle shelf. Equatorward, alongshelf winds also caused water from 200-300 m over the slope to upwell onto the shelf as the surface water moved offshore.

  9. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  10. Spatial variability of hillslope water balance, wolf creek basin, subarctic yukon

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    2001-11-01

    A hydrological study was conducted between 1997 and 1999 in the subalpine open woodland of the Wolf Creek Basin, Yukon, to assess the interslope water balance variability. The water balance during the snowmelt and summer periods on four hillslopes revealed strong contrasts in process magnitudes and highlighted important factors including frost, vegetation, soils and microclimate that controlled vertical and lateral fluxes of water. Snow accounted for approximately half the annual water input, while differences in accumulation among hillslopes were related to interception properties of vegetation. Available energy at the snow surface controlled the melt sequence and the snow on some slopes disappeared up to two months earlier than others. Snowmelt runoff was confined to slopes with ice-rich substrates that inhibited deep percolation, with the runoff magnitude governed by the snow storage and the antecedent moisture of the desiccated organic soils prior to melt. During summer, evapotranspiration exceeded rainfall, largely sustained by water from the soil moisture reservoir recharged during the melt period. Differences in net radiation on slopes controlled the potential evapotranspiration, with the actual rates limited by the phenology of the deciduous forests and shrubs. Evapotranspiration was further suppressed on slopes where the organic soils became dry in late summer. Summer runoff was confined to slopes with porous organic layers overlying mineral soils to form a two-layer flow system: (1) quickflow in the surface organic layer and (2) slowflow in the mineral soil. Differences in the rates of flow were related to the position of the water table which may rise into the organic layer to activate quickflow. The presence of ice-rich frost and permafrost impeded vertical drainage and indirectly regulated the position of the water table. The location of the hillslope within a basin influenced recharge and discharge dynamics. Slope segments with large inflows sustained discharge throughout the summer to enhance basin runoff. In this way, the present study provides insight into basin hydrology.

  11. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some minor negative consequences of it can be successfully prevented.

  12. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-07-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100 mm, and suggest that a significant amount of near-surface water might be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  13. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  14. Role of slope on infiltration: A review

    NASA Astrophysics Data System (ADS)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  15. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characterizing the SWOT discharge error budget on the Sacramento River, CA

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.

  17. Surface water records of California, 1964; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1964 water year for gaging stations, partial-record stations, and miscellaneous sites within the State of California are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district engineer, Surface Water Branch.

  18. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    NASA Astrophysics Data System (ADS)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  19. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    PubMed

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow groundwater beneath a bahiagrass-based pasture and forage availability at four different landscape positions and soil depth (for soil samples only) in 2004, 2005, and 2006 were analyzed statistically following a two-way analysis of variance using the SAS PROC general linear models model. Where the F-test indicated a significant (p

  20. Polarized reflectance and transmittance properties of windblown sea surfaces.

    PubMed

    Mobley, Curtis D

    2015-05-20

    Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

  1. Modeling hydrological controls on vegetation distribution across topography in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Riley, W. J.; Grant, R. F.; Salmon, V. G.; Iversen, C. M.; Biraud, S.; Breen, A. L.

    2017-12-01

    Observed changes in vegetation affect carbon and nutrient cycles in diverse landscapes of northern ecosystems. These changes can be affected by topography and landscape hydrology. We applied a coupled transect version of the ecosystem model ecosys in a landscape underlain by impermeable permafrost at Kougarok, Alaska to examine hydrological controls on watershed-scale vegetation distributions. Our preliminary results indicate strong relationships between vegetation distribution and soil physical and hydraulic properties that control water, nutrients, and energy flows across the hillslope. Modeled differences in aboveground biomass across the Kougarok hillslope had a good agreement (R2 0.80) with preliminary biomass measurements from the NGEE-Arctic project in summer 2016. Low soil water content from shallower soil depth and lateral flow of water and nutrients in the upper slope position of the hillslope resulted in water stress and low N mineralization for plants with deeper roots. The middle slope position had intermediate soil moisture from deeper soil and higher N mineralization that favoured fast-growing and deep-rooted plants. The gentle slope and deeper soil in the lower slope position resulted in saturated soil, thus reduced O2 for microbes, hence favouring plants with higher root porosity. Earth system models that do not account for the underlying mechanisms of surface and sub-surface flows of water, nutrients, and energy may not predict these types of dynamics in Arctic ecosystems.

  2. Quantifying peak discharges for historical floods

    USGS Publications Warehouse

    Cook, J.L.

    1987-01-01

    It is usually advantageous to use information regarding historical floods, if available, to define the flood-frequency relation for a stream. Peak stages can sometimes be determined for outstanding floods that occurred many years ago before systematic gaging of streams began. In the United States, this information is usually not available for more than 100-200 years, but in countries with long cultural histories, such as China, historical flood data are available at some sites as far back as 2,000 years or more. It is important in flood studies to be able to assign a maximum discharge rate and an associated error range to the historical flood. This paper describes the significant characteristics and uncertainties of four commonly used methods for estimating the peak discharge of a flood. These methods are: (1) rating curve (stage-discharge relation) extension; (2) slope conveyance; (3) slope area; and (4) step backwater. Logarithmic extensions of rating curves are based on theoretical plotting techniques that results in straight line extensions provided that channel shape and roughness do not change significantly. The slope-conveyance and slope-area methods are based on the Manning equation, which requires specific data on channel size, shape and roughness, as well as the water-surface slope for one or more cross-sections in a relatively straight reach of channel. The slope-conveyance method is used primarily for shaping and extending rating curves, whereas the slope-area method is used for specific floods. The step-backwater method, also based on the Manning equation, requires more cross-section data than the slope-area ethod, but has a water-surface profile convergence characteristic that negates the need for known or estimated water-surface slope. Uncertainties in calculating peak discharge for historical floods may be quite large. Various investigations have shown that errors in calculating peak discharges by the slope-area method under ideal conditions for recent floods (i.e., when flood elevations, slope and channel characteristics are reasonably certain), may be on the order of 10-25%. Under less than ideal conditions, where streams are hydraulically steep and rough, errors may be much larger. The additional uncertainties for historical floods created by the passage of time may result in even larger errors of peak discharge. ?? 1987.

  3. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0.024 and the corresponding recalculated discharge of the 1921 slope-area measurement was 266,000 ft3/s. The n value determined using the steepest plausible slope was 0.032 and the corresponding recalculated discharge of the 1921 slope-area measurement was 215,000 ft3/s. The two recalculated discharges were 10.8 percent greater than (flattest slope) and 10.4 percent less than (steepest slope) the 1921 peak discharge of 240,000 ft3/s. The 1921 peak discharge was not revised because the average of the two recalculated discharges (240,500 ft3/s) is only 0.2 percent greater than the 1921 peak discharge.

  4. Thermal circulation patterns and turbulent fluxes along steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Nadeau, D. F.; Pardyjak, E.; Higgins, C. W.; Huwald, H.; Baerenbold, F.; Parlange, M. B.

    2010-12-01

    In hydrology, it is crucial to understand the atmospheric flow dynamics in mountainous terrain to predict turbulent exchanges of heat and moisture accurately at the regional scale. Under clear sky and weak synoptic conditions, these land-atmosphere interactions are driven by thermal circulations that take place over a strong diurnal cycle. During the day, winds travel up the mountain slopes and at night, they travel down toward to the bottom of the valley. Little is known about how the transition between these two regimes takes place over steep slopes. The Slope Experiment at La Fouly (SELF) in the Swiss Alps was designed to investigate these transition periods throughout summer 2010. In this paper, we will present the first results obtained from this field campaign. Data from a network of 16 wireless surface stations is used to define catchment wide micrometeorological processes such as slope and valley wind system development, while detailed measurements of the turbulent processes on a steep idealized slope (20 to 45 degrees) were also made. The slope was instrumented along a transect with four towers (including a surface energy budget station and 10 m tower with sonic anemometers), 13 surface temperature measurement stations and a tethered balloon system to capture the complex interplay between surface and atmosphere. Initial data presented will include basic circulation pattern development and measurements of the turbulent fluxes of water vapor, heat and momentum on the slope.

  5. Spatial variability in the response of surface-water extent to climate extremes across the Prairie Pothole Region and adjacent Northern Prairie, United States

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M.; Lane, C.; McManus, M.; Alexander, L. C.; Christensen, J.

    2017-12-01

    Surface-water extent, duration and movement will depend not only on climatic inputs but also the relative importance of different hydrologic pathways (e.g., surface storage, infiltration, evapotranspiration, stream outflows). We mapped surface-water extent from historic drought years to historic wet years spanning 1985 - 2015 across eleven Landsat path/rows representing the Prairie Pothole Region (PPR) and adjacent Northern Prairie of the United States. The PPR not only experienced a greater surface water extent under median conditions (2.6 times more) relative to the adjacent Northern Prairie, but showed a greater difference between drought and deluge conditions as well (range averaged 8.5 ha surface water km-2 relative to 2.5 ha surface water km-2 for the PPR and Northern Prairie, respectively). To explain the spatial variability in the amount of surface water expansion and contraction we used a two-stage modeling approach. First, surface-water extent was regressed on accumulated water availability (precipitation minus potential evapotranspiration). The slope of surface-water extent to climate inputs (per watershed) was our dependent variable in the second stage. That slope was regressed against independent variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). Stream-connected surface water can leave via stream flow, influencing the rate at which surface-water may leave a location, therefore stream-connected and disconnected surface water were analyzed separately. Stream-connected surface water responded more strongly to wetter climatic conditions (i.e., accumulated) in landscapes with more lakes and less artificial drainage (e.g., ditching, tile drainage). Disconnected surface water responded more strongly to wetter climatic conditions when landscapes contained greater wetland density, fewer streams and a lower predicted rate of infiltration. From these findings, we can expect that the relationship between upstream and downstream waters will require consideration of hydrology-related landscape characteristics, and that climate-change related shifts in precipitation and evaporative demand will have an uneven effect on surface water expansion and contraction across the landscape.

  6. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part II. Lipids

    NASA Technical Reports Server (NTRS)

    Venkatesan, M. I.; Ruth, E.; Steinberg, S.; Kaplan, I. R.

    1987-01-01

    Organic geochemical measurements of the lipid fraction, comparing saturated and aromatic hydrocarbons, fatty acids, alcohols and sterols, have been carried out on six sediments cores collected from the Atlantic shelf, slope and the rise areas to evaluate the cross-shelf transport of the organic carbon. The concentration of most of the organic compound classes studied is correlated with the total organic carbon, which decreases from the shelf through slope to the rise. Terrigenous carbon is recognizable even in the slope and rise sediments, but terrestrial influx decreases relative to marine generated lipids in the slope and rise organic matter. We estimate that approximately 50% of the shelf organic matter is exported to the slope. Data of sediment trap material collected at 1200 m from 1250 m water depth are discussed and compared with that of surface sediment from 1280 m water depth (slope). Fluxes for specific organic compound classes have been computed. The fluxes are of the same magnitude as for equatorial North Atlantic trap particulates at comparable water depth, studied by other investigations.

  7. Relations of surface-water quality to streamflow in the Atlantic Coastal, lower Delaware River, and Delaware Bay basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn; Buxton, Debra E.; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 28 surface-water-quality stations within the drainage area of the Atlantic Coastal, lower Delaware River, and Delaware Bay Basins for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall\\'s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) and constant (point sources and ground water) sources, respectively. High- and low-flow trends in concentrations were determined for some constituents at 26 of the 28 water-quality stations. Seasonal effects on the relations of concentration to streamflow are evident for 10 constituents at 14 or more stations. Dissolved oxygen shows seasonal dependency at all stations. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The magnitudes of the load slopes for five constituents increase in the downstream direction along the Great Egg Harbor River, indicating an increased relative importance of storm runoff for these constituents along the river. The magnitudes of the load slopes for 11 constituents decrease in the downstream direction along the Assunpink Creek and for 5 constituents along the Maurice River, indicating a decreased relative importance of storm runoff for these constituents along the rivers.

  8. The Water Content of Martian Recurring Slope Lineae: Insights from THEMIS Thermal Infrared Data

    NASA Astrophysics Data System (ADS)

    Edwards, C. S.; Piqueux, S.

    2016-12-01

    Observations of Recurring Slope Lineae (RSL) have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL.We examine a well characterized RSL-site in Valles Marineris on the walls of Garni crater, with extensive daytime and nighttime THEMIS coverage. In addition to having been characterized in detail with HiRISE data, this area is suitable for thermal analysis as it displays: 1) limited bedrock outcrops at the origination of the RSL, avoiding anisothermal behaviors with slope materials; 2) high density of RSL terrain versus dry slope material (typically 40% and up to 88% of a THEMIS pixel) maximizing RSL-bearing signal; 3) an extensive areal region, encompassing multiple THEMIS pixels; 4) seasonal THEMIS coverage. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5-3 wt%. In addition, distinct high thermal inertia regolith signatures expected with evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any), and/or low enough volumes to prevent their formation. Alternatively, the observed salts may be pre-existing in soils at low abundances (i.e. near or below detection limits) and largely immobile. These RSL-rich surfaces experience 100K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on timescales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis, or at least significantly limit the water content of martian RSL.

  9. Control of groundwater in surface mining

    NASA Astrophysics Data System (ADS)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  10. Hydrology and geochemistry of a surface coal mine in northwestern Colorado

    USGS Publications Warehouse

    Williams, R.S.; Clark, G.M.

    1994-01-01

    The hydrology and geochemistry of a reclaimed coal mine in northwestern Colorado were monitored during water years 1988 and 1989. Some data also were collected in water years 1987 and 1990. This report describes (1) the sources of hydrologic recharge to and discharge from reclaimed spoil, (2) the relative contributions of recharge to the reclaimed spoil aquifer from identified source waters and the rate of water movement from those sources to the reclaimed spoil, and (3) the geochemical reactions that control water quality in reclaimed spoil. The study area was at a dip-slope coal mine encompassing about 7 square miles with land slopes of varying aspect. The area was instrumented and monitored at five sites; two sites had unmined and reclaimed- spoil areas adjacent to each other and three sites were unmined. The mined areas had been reclaimed. Instrumentation at the study sites included 1 climate station, 3 rain gages, 19 soil-water access tubes, 2 lysimeters, 18 wells completed in bedrock, 7 wells completed in reclaimed spoil, and 2 surface- water gaging stations. The results of the study indicate that the reclaimed spoil is recharged from surface recharge and underburden aquifers. Discharge, as measured by lysimeters, was about 3 inches per year and occurred during and after snowmelt. Hydraulic-head measurements indicated a potential for ground-water movement from deeper to shallower aquifers. Water levels rose in the reclaimed-spoil aquifer and spring discharge at the toe of the spoil slopes increased rapidly in response to snowmelt. Water chemistry, stable isotopes, geochemical models, and mass-balance calculations indicate that surface recharge and the underburden aquifers each contribute about 50 percent of the water to the reclaimed-spoil aquifers. Geochemical information indicates that pyrite oxidation and dissolution of carbonate and efflorescent sulfate minerals control the water chemistry of the reclaimed-spoil aquifer.

  11. Response mechanism of post-earthquake slopes under heavy rainfall

    NASA Astrophysics Data System (ADS)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  12. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    PubMed

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  13. Accuracy and precision of stream reach water surface slopes estimated in the field and from maps

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.; Krueger, K.L.

    1999-01-01

    The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.

  14. Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders

    NASA Astrophysics Data System (ADS)

    Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry

    2015-04-01

    Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity water onto the shelf reducing the control of the shelf break salinity front, although it has not been ascertained whether this extends further onto the shelf than the shelf break region.

  15. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    USGS Publications Warehouse

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin M.; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-01-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100mm, and suggest that a significant amount of near-surface watermight be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  16. 40 CFR 421.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... outside slopes of the impoundment dam and the surface area between the outside edge of the impoundment dam... 30 percent of the water surface area within the impoundment dam at maximum capacity. (e) The term...

  17. 40 CFR 421.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... outside slopes of the impoundment dam and the surface area between the outside edge of the impoundment dam... 30 percent of the water surface area within the impoundment dam at maximum capacity. (e) The term...

  18. The 3D Visualization of Slope Terrain in Sun Moon Lake.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Gwo-shyn, S.; Pei-Kun, L.

    2015-12-01

    By doing topographical surveys in a reservoir, we can calculate siltation volume in the period of two measurements. It becomes basic requirement to provide more precise siltation value especially when the differential GPS positioning method and the multi-beams echo sounders have been prevailed; however, there are two problems making the result become challenging when doing the siltation-survey in reservoir. They are both relative with the difficulty in keeping survey accuracy to the area of side slope around the boundary of reservoir. Firstly, the efficiency or accuracy of horizontal positioning using the DGPS may decrease because of the satellite-blocking effect when the surveying ship nears the bank especially in the canyon type of reservoir. Secondly, measurement can only be acquired in the area covered by water using the echo sounder, such that the measuring data of side slope area above water surface are lack to decrease the accuracy or seriously affect the calculation of reservoir water volume. This research is to hold the terrain accuracy when measuring the reservoir side slope and the Sun Moon Lake Reservoir in central Taiwan is chosen as the experimental location. Sun Moon Lake is the most popular place for tourists in Taiwan and also the most important reservoir of the electricity facilities. Furthermore, it owns the biggest pumped-storage hydroelectricity in Asia. The water in the lake is self-contained, and its water supply has been input through two underground tunnels, such that a deposit fan is formed when the muds were settled down from the silty water of the Cho-Shui Shi. Three kinds of survey are conducted in this experiment. First, a close-range photogrammetry, around the border of the Sun Moon Lake is made, or it takes shoots along the bank using a camera linked with a computer running the software Pix4D. The result can provide the DTM data to the side slope above the water level. Second, the bathymetrical data can be obtained by sweeping the side-slope using the multi-beam sounder below the water surface. Finally, the image of the side-scan sonar is taken and merges with contour lines produced from underwater topographic DTM data. Combining those data, our purpose is by creating different 3D images to have good visualization checking the data of side-slope DTM surveys if they are in well qualified controlled.

  19. A Moving Tale

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) mathematicians have discovered how certain insects can climb what to them are steep, slippery slopes in the water's surface without moving their limbs, and do it at high speed. Welcome to the world of the tiny creatures that live on the surface of ponds, lakes, and other standing bodies of water. For the…

  20. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    NASA Astrophysics Data System (ADS)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable cations, but have no clear effect on the concentration of the two primarily applied nutrients in fertilizers (N, P).

  1. Submarine landslides along the eastern Mediterranean Israeli continental slope - a possible source for tsunami

    NASA Astrophysics Data System (ADS)

    Katz, O.; Reuven, E.; Aharonov, E.

    2013-12-01

    Numerous shallow submarine slope failures (scars and deposits) are observed in recent high resolution bathymetric grids of the continental slope off the Israeli eastern Mediterranean coast. The nature of these slope failures is currently not comprehensively understood as well as the question of whether the eastern Mediterranean continental slope is continuously or episodically unstable. This question is relevant to tsunami hazard along the densely populated eastern Mediterranean shores. We report here first steps towards understanding the present state of this submarine landslide system, which include mapping and analyzing the geology of the landslides and the hosting slopes. The continental slope extends from water depths of about 150 to more than 1000 meters with a slope of less than 5 degrees in general. Bathymetric grids with pixel resolution of 15 m till water depth of 700 m and 50 m till water depth of 1700 m were used. Analyzing the bathymetry revealed three main submarine surface features on the continental slope: (a) numerous shallow landslides, within the upper sequence of the post-Messenian sediments. Landslide widths range between hundreds to thousand of meters at the scar, with scar heights up to hundred meters. The toes of the landslides are not always mapable and lay up to a few kilometers down slope from the scar. Slope angles within the scars are 5 degrees to more than 15 degrees. In general landslides size decreases from south to north where their head scar depth turns to be shallower northwards. At least two types of landslides were detected: presumably young slides with sharp scars and presumably old slides with secondary slides and secondary drainage systems developed within the scar area; (b) a few kilometers long, north striking step-like lineaments. Step heights are up to 100 meters and the slopes are up to 20 degrees. The offset between parallel steps is less than a kilometer to a few kilometers. Analyzing seismic lines, the steps are interpreted as surface expressions of growth faults rooted at the Messinian evaporates up to 1.5 kilometers below surface; (c) a few north striking channels were also detected with steep walls of more than 15 degrees, up to two kilometers width and a few kilometers length. The nature of these channels is not clear yet although apparently they are also a surface expressions of the growth faults rooted at the Messinian evaporates. Field relations show that the landslides, both young and old, either emerge from the over-steepened steps, or are displaced by them, and hence submarine landslides and steps are apparently contemporaneous. In addition this suggests that salt dynamics at depth is a main drive for at least some of these shallow slides. The above preliminary results testify to the complicated and highly dynamic nature of the studied continental slope, yet to be revealed.

  2. Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew

    2008-10-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.

  3. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    NASA Astrophysics Data System (ADS)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds unique to ruminant faeces, were used to trace the transport of sediment-bound pollutants from the slurry which could be transported into water bodies via erosion processes. The results showed that contributions of potential pollutants from the surface and subsurface flow pathways and from the eroded sediment differ according to slope gradient and rainfall intensity. Therefore, as the contribution of each of these pathways changes in response to rainfall and slope gradient, the pollution risk also changes accordingly, as different organic compounds are mobilised at varying rates. Rapid hydrological response to rainfall results in erosion and surface transport of sediment-bound and dissolved pollutants, creating an immediate contamination threat. However, conditions resulting in a slower hydrological response and the predominance of flow percolation over surface runoff results in higher rates of dissolved pollutant transport through the soil layers which risks contamination of subsurface and deeper ground-water systems. These experiments provide insight into the pathways and timing of contaminant transport with potential implications for understanding contamination risk from the transfer of slurry from land to water bodies. Understanding this threat is critical at a time when pressure is on to develop land-management strategies to reduce pollution alongside maintaining food security.

  4. Assessing slope stability in unplanned settlements in developing countries.

    PubMed

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments.

  5. Relations of surface-water quality to streamflow in the Raritan River basin, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 21 surface-water stations within the drainage area of the Raritan River Basin for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow trends in concentrations were determined for some constituents at 13 of the 21 water-quality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of the dilution of instream concentrations by storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. The slopes of load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. The slopes of load-to-streamflow relations increase in the downstream direction for alkalinity at North Branch Raritan and Millstone Rivers, for some or all of the nutrient species at South Branch and North Branch Raritan Rivers, for hardness at South Branch Raritan River, for dissolved solids at North Branch Raritan River, for dissolved sodium at Lamington River, and for suspended sediment and dissolved oxygen at Millstone River. Likewise, the slopes of load-tostreamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The slopes of load-to-streamflow relations decrease in the downstream direction for dissolved solids at Raritan and Millstone Rivers; for dissolved sodium, dissolved chloride, total ammonia plus organic nitrogen, and total ammonia at South Branch Raritan, Raritan, and Millstone Rivers; for dissolved oxygen at North Branch Raritan and Lamington Rivers; for total nitrite at Lamington, Raritan, and Millstone Rivers; for total boron at South Branch Raritan and Millstone Rivers; for total organic carbon at North Branch Raritan River; for suspended sediment and total nitrogen at Raritan River; and for hardness, total phosphorus, and total lead at Millstone River.

  6. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry.

    PubMed

    Zibordi, Giuseppe

    2016-03-21

    Determination of the water-leaving radiance LW through above-water radiometry requires knowledge of accurate reflectance factors ρ of the sea surface. Publicly available ρ relevant to above-water radiometry include theoretical data sets generated: i. by assuming a sky radiance distribution accounting for aerosols and multiple scattering, but neglecting polarization, and quantifying sea surface effects through Cox-Munk wave slope statistics; or differently ii. accounting for polarization, but assuming an ideal Rayleigh sky radiance distribution, and quantifying sea surface effects through modeled wave elevation and slope variance spectra. The impact on above-water data products of differences between those factors ρ was quantified through comparison of LW from the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) with collocated LW from in-water radiometry. Results from the analysis of radiance measurements from the sea performed with 40 degrees viewing angle and 90 degrees azimuth offset with respect to the sun plane, indicated a slightly better agreement between above- and in-water LW determined for wind speeds tentatively lower than 4 m s-1 with ρ computed accounting for aerosols, multiple scattering and Cox-Munk surfaces. Nevertheless, analyses performed by partitioning the investigated data set also indicated that actual ρ values would exhibit dependence on sun zenith comprised between those characterizing the two sets of reflectance factors.

  7. Export of a Winter Shelf Phytoplankton Bloom at the Shelf Margin of Long Bay (South Atlantic Bight, USA)

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Seim, H.; Edwards, C. R.; Lockhart, S.; Moore, T.; Robertson, C. Y.; Amft, J.

    2016-02-01

    A winter 2012 field study off Long Bay (seaward of Myrtle Beach, South Carolina) investigated exchange processes along the shelf margin. Topics addressed included mechanisms of nutrient input (upper slope to outer shelf), phytoplankton blooms and community characteristics (mid-to-outer shelf), and possible export of shelf bloom material (transport to and across the shelf break to the upper slope). Observations utilized three moorings (mid-shelf, shelf break, upper slope), two gliders and ship operations (repeat cruises with profiling, water sampling and towed body surveys) along with satellite SST and ocean color imagery and near-by NOAA buoy records. Here we focus on the late January to early February period, when a mid-shelf bloom of Phaeocystis globosa (which forms large gelatinous colonies) was transported to the shelf break. The presence of Phaeocystis colonies resulted in strong spiking in chlorophyll (chl) fluorescence profiles. A partitioning approach was adapted to estimate chl in colonies (spikes) and small forms (baseline signal) and to account for an apparent difference in measured in vivo fluorescence per unit chl (lower in colonies). Up to 40-50% of chl in the bloom (surface to bottom on the mid-shelf) was estimated to be in the colonies. In late January, there a pronounced seaward slumping of relatively dense mid-shelf water along the bottom under warmer surface water derived from the inshore edge of a broad jet of Gulf Stream water flowing southwestward along the upper slope. We describe the evolution of this event and the conditions which set up this mechanism for episodic near-bed transport of fresh bloom material produced on the shelf to the upper slope off Long Bay. Down-slope transport may have been enhanced in this case by the high phytoplankton biomass in gelatinous colonies, which appeared to be settling in the water column on the shelf prior to the transport event.

  8. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  9. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  10. 24 CFR 3285.203 - Site Drainage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Purpose. Drainage must be provided to direct surface water away from the home to protect against erosion... home. (c) All drainage must be diverted away from the home and must slope a minimum of one-half inch per foot away from the foundation for the first ten feet. Where property lines, walls, slopes, or...

  11. Water masses transform at mid-depths over the Antarctic Continental Slope

    NASA Astrophysics Data System (ADS)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  12. Calving relation for tidewater glaciers based on detailed stress field analysis

    NASA Astrophysics Data System (ADS)

    Mercenier, Rémy; Lüthi, Martin P.; Vieli, Andreas

    2018-02-01

    Ocean-terminating glaciers in Arctic regions have undergone rapid dynamic changes in recent years, which have been related to a dramatic increase in calving rates. Iceberg calving is a dynamical process strongly influenced by the geometry at the terminus of tidewater glaciers. We investigate the effect of varying water level, calving front slope and basal sliding on the state of stress and flow regime for an idealized grounded ocean-terminating glacier and scale these results with ice thickness and velocity. Results show that water depth and calving front slope strongly affect the stress state while the effect from spatially uniform variations in basal sliding is much smaller. An increased relative water level or a reclining calving front slope strongly decrease the stresses and velocities in the vicinity of the terminus and hence have a stabilizing effect on the calving front. We find that surface stress magnitude and distribution for simple geometries are determined solely by the water depth relative to ice thickness. Based on this scaled relationship for the stress peak at the surface, and assuming a critical stress for damage initiation, we propose a simple and new parametrization for calving rates for grounded tidewater glaciers that is calibrated with observations.

  13. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Yang, Tianhong; Xu, Zenghe; Liu, Honglei; Shi, Wenhao; Yang, Xin

    2018-02-01

    Groundwater is an important factor of slope stability, and 90% of slope failures are related to the influence of groundwater. In the past, free surface calculations and the prediction of water inflow were based on Darcy's law. However, Darcy's law for steady fluid flow is a special case of non-Darcy flow, and many types of non-Darcy flows occur in practical engineering applications. In this paper, based on the experimental results of laboratory water seepage tests, the seepage state of each soil layer in the open-pit slope of the Yanshan Iron Mine, China, were determined, and the seepage parameters were obtained. The seepage behaviour in the silt layer, fine sand layer, silty clay layer and gravelly clay layer followed the traditional Darcy law, while the gravel layers showed clear nonlinear characteristics. The permeability increases exponentially and the non-Darcy coefficient decreases exponentially with an increase in porosity, and the relation among the permeability, the porosity and the non-Darcy coefficient is investigated. A coupled mathematical model is established for two flow fields, on the basis of Darcy flow in the low-permeability layers and Forchheimer flow in the high-permeability layers. In addition, the effect of the seepage in the slope on the transition from Darcy flow to Forchheimer flow was considered. Then, a numerical simulation was conducted by using finite-element software (FELAC 2.2). The results indicate that the free surface calculated by the Darcy-Forchheimer model is in good agreement with the in situ measurements; however, there is an evident deviation of the simulation results from the measured data when the Darcy model is used. Through a parameter sensitivity analysis of the gravel layers, it can be found that the height of the overflow point and the water inflow calculated by the Darcy-Forchheimer model are consistently less than those of the Darcy model, and the discrepancy between these two models increases as the permeability increases. The necessity of adopting the Darcy-Forchheimer model was explained. The Darcy-Forchheimer model would be applicable in slope engineering applications with highly permeable rock.

  14. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study.

    PubMed

    Yang, Bin; Yang, Tianhong; Xu, Zenghe; Liu, Honglei; Shi, Wenhao; Yang, Xin

    2018-02-01

    Groundwater is an important factor of slope stability, and 90% of slope failures are related to the influence of groundwater. In the past, free surface calculations and the prediction of water inflow were based on Darcy's law. However, Darcy's law for steady fluid flow is a special case of non-Darcy flow, and many types of non-Darcy flows occur in practical engineering applications. In this paper, based on the experimental results of laboratory water seepage tests, the seepage state of each soil layer in the open-pit slope of the Yanshan Iron Mine, China, were determined, and the seepage parameters were obtained. The seepage behaviour in the silt layer, fine sand layer, silty clay layer and gravelly clay layer followed the traditional Darcy law, while the gravel layers showed clear nonlinear characteristics. The permeability increases exponentially and the non-Darcy coefficient decreases exponentially with an increase in porosity, and the relation among the permeability, the porosity and the non-Darcy coefficient is investigated. A coupled mathematical model is established for two flow fields, on the basis of Darcy flow in the low-permeability layers and Forchheimer flow in the high-permeability layers. In addition, the effect of the seepage in the slope on the transition from Darcy flow to Forchheimer flow was considered. Then, a numerical simulation was conducted by using finite-element software (FELAC 2.2). The results indicate that the free surface calculated by the Darcy-Forchheimer model is in good agreement with the in situ measurements; however, there is an evident deviation of the simulation results from the measured data when the Darcy model is used. Through a parameter sensitivity analysis of the gravel layers, it can be found that the height of the overflow point and the water inflow calculated by the Darcy-Forchheimer model are consistently less than those of the Darcy model, and the discrepancy between these two models increases as the permeability increases. The necessity of adopting the Darcy-Forchheimer model was explained. The Darcy-Forchheimer model would be applicable in slope engineering applications with highly permeable rock.

  15. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study

    PubMed Central

    Yang, Bin; Xu, Zenghe; Liu, Honglei; Shi, Wenhao; Yang, Xin

    2018-01-01

    Groundwater is an important factor of slope stability, and 90% of slope failures are related to the influence of groundwater. In the past, free surface calculations and the prediction of water inflow were based on Darcy's law. However, Darcy's law for steady fluid flow is a special case of non-Darcy flow, and many types of non-Darcy flows occur in practical engineering applications. In this paper, based on the experimental results of laboratory water seepage tests, the seepage state of each soil layer in the open-pit slope of the Yanshan Iron Mine, China, were determined, and the seepage parameters were obtained. The seepage behaviour in the silt layer, fine sand layer, silty clay layer and gravelly clay layer followed the traditional Darcy law, while the gravel layers showed clear nonlinear characteristics. The permeability increases exponentially and the non-Darcy coefficient decreases exponentially with an increase in porosity, and the relation among the permeability, the porosity and the non-Darcy coefficient is investigated. A coupled mathematical model is established for two flow fields, on the basis of Darcy flow in the low-permeability layers and Forchheimer flow in the high-permeability layers. In addition, the effect of the seepage in the slope on the transition from Darcy flow to Forchheimer flow was considered. Then, a numerical simulation was conducted by using finite-element software (FELAC 2.2). The results indicate that the free surface calculated by the Darcy–Forchheimer model is in good agreement with the in situ measurements; however, there is an evident deviation of the simulation results from the measured data when the Darcy model is used. Through a parameter sensitivity analysis of the gravel layers, it can be found that the height of the overflow point and the water inflow calculated by the Darcy–Forchheimer model are consistently less than those of the Darcy model, and the discrepancy between these two models increases as the permeability increases. The necessity of adopting the Darcy–Forchheimer model was explained. The Darcy–Forchheimer model would be applicable in slope engineering applications with highly permeable rock. PMID:29515904

  16. Water Resources Data for California, 1967; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1968-01-01

    The surface-water records for the 1967 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  17. Water resources data for California, 1968; Part 1: Surface water records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  18. Water Resources Data for California, 1965; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1965-01-01

    The surface-water records for the 1965 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann, district chief, Menlo Park, Calif.

  19. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.

    PubMed

    Puente, Diana W Moran; Baur, Peter

    2011-07-01

    Leaf wettability considerably defines the degree of retention of water and agrochemical sprays on crop and non-target plant surfaces. Plant surface structure varies with development therefore the goal was to characterise the wettability of soybean leaf surfaces as a function of growth stage (GS). Adaxial surfaces of leaves developed at GS 16 (BBCH) were 10 times more wettable with water than leaves at the lower canopy (GS 13). By measuring contact angles of a liquid having an intermediate surface tension on different leaf patches, an illustrative wetting profile was elucidated, showing to what degree wetting varies (from > 120° to < 20°) depending on leaf patch and GS. While the critical surface tension of leaf surfaces at different GSs did not correlate with the observed changes, the slope of the Zisman plot accurately represented the increase in wettability of leaves at the upper canopy and lateral shoots (GSs 17 to 19, 21 and 24). The discrimination given by the slopes was even better than that by water contact angles. SEM observations revealed that the low wettability observed at early GSs is mainly due to a dense layer of epicuticular wax crystals. The Zisman plot slope does not represent the changes in leaf roughness (i.e. epicuticular wax deposition), but provides an insight into chemical and compositional surface characteristics at the droplet-leaf interface. The results with different wettability measurement methods demonstrated that wetting is a feature that characterises each developmental stage of soybean leaves. Positional wettability differences among leaves at the same plant and within the same leaf are relevant for performance, selectivity and plant compatibility of agrochemicals. Implications are discussed. Copyright © 2011 Society of Chemical Industry.

  20. Water budgets of martian recurring slope lineae

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.; Harrison, Keith P.; Stillman, David E.

    2014-05-01

    Flowing water, possibly brine, has been suggested to cause seasonally reappearing, incrementally growing, dark streaks on steep, warm slopes on Mars. We modeled these Recurring Slope Lineae (RSL) as isothermal water flows in thin surficial layers driven by gravity and capillary suction, with input from sources in the headwall and loss to evaporation. The principal observables are flow duration and length. At 40% porosity, we find that flow thicknesses reaching saturation can be just 50 mm or so and freshwater RSL seasonally require 2-10 m3 of H2O per m of source headwall. Modeled water budgets are larger for brines because they are active for a longer part of each day, but this could be partly offset by lower evaporation rates. Most of the discharged water is lost to evaporation even while RSL are actively lengthening. The derived water volumes, while small, exceed those that can be supplied by annual melting of near-surface ice (0.2-2 m3/m for a 200-mm melt depth over 1-10 m height). RSL either tap a liquid reservoir startlingly close to the surface, or the actual water budget is several times smaller. The latter is possible if water never fully saturates RSL along their length. Instead, they would advance like raindrops on a window, as intermittent slugs of water that overrun prior parts of the flow at residual saturation. Annual recharge by vapor cold trapping might then be supplied from the atmosphere or subsurface.

  1. Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation

    USGS Publications Warehouse

    Brooks, G.R.; Holmes, C.W.

    1990-01-01

    Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.

  2. Spatiotemporal response of the water cycle to land use conversions in a typical hilly-gully basin on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Qiu, Linjing; Wu, Yiping; Wang, Lijing; Lei, Xiaohui; Liao, Weihong; Hui, Ying; Meng, Xianyong

    2017-12-01

    The hydrological effects of the Grain for Green project (GFGP) on the Loess Plateau have been extensively debated due to the complexity of the water system and its multiple driving factors. The aim of this study was to investigate the response of the hydrological cycle to the GFGP measures based in a case study of the Yanhe Basin, a typical hilly-gully area on the Loess Plateau of China. First, we analyzed the land use and land cover (LULC) changes from 1990 to 2010. Then, we evaluated the effects of LULC changes and sloping land conversion on the main hydrological components in the basin using the Soil and Water Assessment Tool (SWAT). The results indicated that cropland exhibited a decreasing trend, declining from 40.2 % of the basin area in 1990 to 17.6 % in 2010, and that the woodland and grassland areas correspondingly increased. With the land use changes from 1990 to 2010, the water yield showed a decreasing trend which was mainly due to decrease in surface runoff. In contrast, evapotranspiration (ET) showed an increasing trend over the same period, resulting in a persistent decrease in soil water. The conversion of sloping cropland to grassland or woodland exerted negative effects on water yield and soil water. Compared with the land use condition in 2010, the negative effects were most evident where cropland with a slope ≥ 15° was converted to woodland, with decreases in surface runoff and soil water of 17.1 and 6.4 %, respectively. These results suggest that the expansive reforestation on sloping land in the loess hilly-gully region decreased water yield and increased ET, resulting in reduced soil water. The results of this study can be used to support sustainable land use planning and water resource management on the Loess Plateau in China.

  3. A method of measuring rainfall on windy slopes

    Treesearch

    G. L. Hayes

    1944-01-01

    The object of precipitation measurement, as stated by Brooks (1), is to obtain "a fair sample of the fall reaching the earth's surface over the area represented by the measurement." The area referred to is horizontal, or map area. Even when measured on a slope, precipitation is always expressed as depth of water on a horizontal area.

  4. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2010-11-01

    Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source of surface heating is needed. One possibility for additional heating is a change of atmospheric conditions due to a local dust storm. We conclude that if interfacial water is responsible for the formation of the hill-slope gullies, our results may explain why the hill gullies are rare.

  5. Design guidelines for horizontal drains used for slope stabilization.

    DOT National Transportation Integrated Search

    2013-03-01

    The presence of water is one of the most critical factors contributing to the instability of hillslopes. A common : solution to stabilize hillslopes is installation of horizontal drains to decrease the elevation of the water table : surface. Lowering...

  6. Impact of vegetation on stability of slopes subjected to rainfall - numerical aspect

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Tamagnini, Roberto; Sudan Acharya, Madhu; Wu, Wei

    2015-04-01

    Recent years brought a significant development of soil bioengineering methods, considered as an ecological and economically effective measure for slope stabilization. This work aims to show the advantages of the soil bioengineering solutions for a slope subjected to a heavy rainfall, with the help of a numerical model, which integrates most of the significant plant and slope features. There are basically two different ways in which vegetation can affect stability of a slope: root reinforcement (mechanical impact) and root water uptake (evapotranspiration). In the numerical model, the first factor is modelled using the Cam-Clay model extended for unsaturated conditions by Tamagnini (2004). The original formulation of a constitutive model is modified by introducing an additional constitutive parameter, which causes an expansion of the yield surface as a consequence of an increase in root mass in a representative soil element. The second factor is the root water uptake, which is defined as a volumetric sink term in the continuity equation of groundwater flow. Water removal from the soil mass causes an increase in suction in the vicinity of the root zone, which leads to an increase in the soil cohesion and provides additional strength to the soil-root composite. The developed numerical model takes into account the above mentioned effects of plants and thus considers the multi-phase nature of the soil-plant-water relationship. Using the developed method, stability of some vegetated and non-vegetated slopes subjected to rainfall are investigated. The performance of each slope is evaluated by the time at which slope failure occurs. Different slope geometries and soil mechanical and hydrological properties are considered. Comparison of the results obtained from the analyses of vegetated and non-vegetated slopes leads to the conclusion, that the use of soil bioengineering methods for slope stabilization can be effective and can significantly delay the occurrence of a rainfall induced landslide. On the contrary, vegetation removal can have serious consequences, especially on steep and forested slopes.

  7. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...

  8. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...

  9. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...

  10. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...

  11. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...

  12. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    USGS Publications Warehouse

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data, develops a plan-view plot, water-surface profile, cross-section plots, and develops the SAC input file. The SAC GUI also develops HEC-2 files that can be imported into HEC–RAS.

  13. Spectral Evidence for Hydrated Salts in Seasonal Brine Flows on Mars

    NASA Astrophysics Data System (ADS)

    Ojha, L.

    2015-12-01

    Recurring Slope Lineae (RSL) are narrow, low-reflectance features forming on present-day Mars that have been hypothesized to be due to the transient flow of liquid water. RSL extend incrementally downslope on steep, warm slopes, fade when inactive, and reappear annually over multiple Mars years as monitored by the HiRISE camera on board the Mars Reconnaissance Orbiter (MRO). In the southern mid-latitudes of Mars, RSL are observed to form most commonly on equator facing slopes, but in equatorial regions RSL often "follow the sun", forming and growing on slopes that receive the greatest insolation during a particular season. The temperature on slopes where RSL are active typically exceeds 250 K and often but not always exceeds 273 K, although sub-surface temperatures would be colder. These characteristics suggest a possible role of salts in lowering the freezing point of water, allowing briny solutions to flow. Confirmation of this wet origin hypothesis for RSL would require either (i) detection of liquid water absorptions on the surface, or (ii) detection of hydrated salts precipitated from that water. The mineralogical composition of RSL and their surroundings can be investigated using orbital data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) also on board MRO, which acquires spectral cubes with 544 spectral channels in the visible to near-infrared range of ~0.36 μm to 3.92 μm [13], within which both liquid water and hydrated salts have diagnostic absorption bands at ~1.4 μm, ~1.9 μm, ~3.0 μm. Additionally, hydrated salts may have combination of overtones at other wavelengths from 1.7 μm to 2.4 μm. We present results from examination of individual pixels containing RSL at four different sites that confirm the hypothesis that RSL are due to present-day activity of briny water.

  14. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs

    2017-07-01

    Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m-2.yr-1 may record a seasonal cycle at shallow depths.

  15. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    NASA Astrophysics Data System (ADS)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil together.

  16. The water content of recurring slope lineae on Mars

    USGS Publications Warehouse

    Edwards, Christopher S.; Piqueux, Sylvain

    2016-01-01

    Observations of recurring slope lineae (RSL) from the High-Resolution Imaging Science Experiment have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5–3 wt %. In addition, distinct high thermal inertia regolith signatures expected with crust-forming evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any) and/or low enough volumes to prevent their formation. Alternatively, observed salts may be preexisting in soils at low abundances (i.e., near or below detection limits) and largely immobile. These RSL-rich surfaces experience ~100 K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on time scales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis or at least significantly limit the water content of Martian RSL.

  17. Classification of regimes of internal solitary waves transformation over a shelf-slope topography

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae

    2015-04-01

    The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of depression may be converted to wave of elevation at the 'turning point' (h2 = h1) as they propagate from deep water onto a shallow shelf. Thus intersecting surfaces f1 and f2 divide three-dimensional diagram into four zones. Zone I located above two surfaces and corresponds to the non breaking regime. Zone II lies above 'breaking' surfaces but below the surface of changing polarity and corresponds to regime of changing polarity without breaking. Zone III lies above surface of changing polarity but below 'breaking' surfaces and corresponds to regime of wave breaking without changing polarity. Zone IV that located below two surfaces and corresponds to the regime of wave breaking with changing polarity. Regimes predicted by diagram agree with results of numerical modelling, laboratory and observation data. Based on the proposed diagram the regions in α, β, γ space with a high energy dissipation of ISW passed over the shelf-slope topography are distinguished. References Talipova T., Terletska K., Maderich V, Brovchenko I., Jung K.T., Pelinovsky E. and Grimshaw R. 2013. Internal solitary wave transformation over the bottom step: loss of energy. Phys. Fluids, 25, 032110 Vlasenko V., Hutter K. 2002. Numerical Experiments on the Breaking of Solitary Internal Waves over a Slope-Shelf Topography. J. Phys. Oceanogr., 32 (6), 1779-1793

  18. A rill erosion-vegetation modeling approach for the evaluation of slope reclamation success in water-limited environments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.

    2013-04-01

    Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.

  19. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  20. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  1. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  2. Potentiometric map of the Winona-Tallahatta Aquifer in northwestern Mississippi, fall 1979

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    The potentiometric map of the Winona-Tallahatta aquifer is one of a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources , Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Winona-Tallahatta aquifer the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer by streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by pumpage from wells in Leflore, Sunflower , and Bolivar Counties, Historically, water levels in or near the outcrop of the Winona-Tallahatta have shown little or no long-term changes, but the heavy withdrawals in the confined part of the aquifer have caused long-term water-level declines of 1 to 2 feet per year. (USGS)

  3. High performance miniature hygrometer and method thereof

    NASA Technical Reports Server (NTRS)

    VanZandt, Thomas R. (Inventor); Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Crisp, David (Inventor)

    1994-01-01

    An uncoated interdigitated transducer is cooled from a temperature above the dew point to a temperature below the dew point, while a parameter of a signal of the transducer is measured. The reduction in temperature causes a monotonic change in transducer signal because that signal is sensitive primarily to the water loading of the transducer surface as water forms on that surface due to the reduction in temperature. As the dew point is approached with temperature reduction, the slope of the curve of transducer signal with respect to temperature, remains relatively constant. However, as the dew point is reached the slope of that curve increases and because of changes in the structure of the water layer on the surface of the transducer, at the dew point the transducer responds with a clear shift in the rate at which the transducer signal changes. The temperature at which the second derivative of signal vs. temperature peaks can be readily used to identify with extreme accuracy, the precise dew point. The measurement technique employed by the present invention is relatively immune to surface contamination which remains significantly unchanged during the brief measurement period.

  4. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  5. Velocity profile, water-surface slope, and bed-material size for selected streams in Colorado

    USGS Publications Warehouse

    Marchand, J.P.; Jarrett, R.D.; Jones, L.L.

    1984-01-01

    Existing methods for determining the mean velocity in a vertical sampling section do not address the conditions present in high-gradient, shallow-depth streams common to mountainous regions such as Colorado. The report presents velocity-profile data that were collected for 11 streamflow-gaging stations in Colorado using both a standard Price type AA current meter and a prototype Price Model PAA current meter. Computational results are compiled that will enable mean velocities calculated from measurements by the two current meters to be compared with each other and with existing methods for determining mean velocity. Water-surface slope, bed-material size, and flow-characteristic data for the 11 sites studied also are presented. (USGS)

  6. Stability of ice on the Moon with rough topography

    NASA Astrophysics Data System (ADS)

    Rubanenko, Lior; Aharonson, Oded

    2017-11-01

    The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.

  7. Landscape evolution (A Review)

    PubMed Central

    Sharp, Robert P.

    1982-01-01

    Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images

  8. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  9. Water Resources Data for California, 1966; Part 1: Surface Water Records; Volume 1: Colorado River Basin, Southern Great Basin, and Pacific Slope Basins excluding Cenral Valley

    USGS Publications Warehouse

    1967-01-01

    The surface-water records for the 1966 water year for gaging stations, partial-record stations, and miscellaneous sites within California are given in this report. For convenience, also included are records for a few pertinent gaging stations in bordering States. The records were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Walter Hofmann and R. Stanley Lord, successive district chiefs, Menlo Park, Calif.

  10. Age-Orientation Relationships of Northern Hemisphere Martian Gullies and "Pasted-on" Mantling Unit: Implications for Near-Surface Water Migration in Mars' Recent History

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Lackner, C. N.

    2005-01-01

    The finding of abundant, apparently young, Martian gullies with morphologies indicative of formation by flowing fluid was surprising in that volumes of near-surface liquid water in sufficient quantities to modify the surface geology were not thought possible under current conditions. Original hypotheses on origin of gullies were mostly centered on groundwater seepage and surface runoff and melting of near-surface ground ice. More recently, melting of snow deposited in periods of higher obliquity has been proposed as a possible origin of the gullies. Tied to this hypothesis is the supposition that the "pasted-on" mantling unit observed in association with many gullies is composed of remnant snowpack. The mantling unit has distinct rounded edge on its upper boundary and exhibits features suggestive of flow noted that the uppermost part of the mantle marks where gullies begin, suggesting that the source of water for the gullies was within the mantle. The mantle is found preferentially on cold, pole-facing slopes and, where mantled and non-mantled slopes are found together, gullies are observed incised into the latter. In other cases, the mantling material lacks gullies.

  11. The Characteristics and triggering Factors of the October 2013 Obudu International Tourist Centre catastrophic Landslide South-East Nigeria

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Igwe, Ogbonnaya

    2015-04-01

    The October 2013 catastrophic landslides at the Obudu international tourist zone south-east Nigeria destroyed resources worth several millions of dollars and trapped international tourist who were later rescued by a helicopter. Intense rainfall caused several slope failures on the steep slopes of the hills. These landslides occurred after several days of heavy rain (> 600 mm) and were the first reported slope failures in this region. The failures were on a predominantly metamorphic terrain and only on slopes adjacent to the main road. They occurred as slides, not debris flow, but produced a wide range of casualties. The failures were of residual materials (about 1 m thick) obtained from weathering of schist. One of the landslides involved the movement of about 70,000 m3 debris for 8.6 m with depth of slip surface of 6 m. Another, which produced the most fatality initiated on a slope greater than 40o and displaced about 77, 000 m3. It had a runout length of 60 m, width of 98 m, depth to slip surface of 8 m and depositional area of about 2,500 m2. Had the opposite slope bounding the other side of the road not hindered the movement of debris, the runout distance could have been larger. The research found that all the landslides occurred on slope-portions composed of schist rather than gneiss or granite. Slip surfaces developed within the regolith and the shear zone was characterized by the presence of silty materials supported by clayey matrix. Field observations indicated that the failures generally developed as localized translational slides within the semi-consolidated, cohesive soil units (with high plasticity and low strength) within the upper to middle weathered zone of the schist. The increase in pore pressure arising from elevated water table during rainfall created instability by weakening the shear strength along the failure plane. However, differences in permeability favored the formation of perched water table which eventually triggered sliding.

  12. Bedload and river hydraulics - Inferences from the East Fork River, Wyoming

    USGS Publications Warehouse

    Leopold, Luna Bergere; Emmett, William W.

    1997-01-01

    During 1973-79, bedload data were collected in a sophisticated trap on a river of moderate size, the East Fork. The transport rate was measured most days through a full snowmelt season, and the rate was determined separately for eight zones across the channel width. The quantitative data are unique and unlikely to be repeated. Nor need they be, because as a result of this effort a practical bedload sampler was adequately tested against full river measurement.It was shown that bedload moves sporadically and randomly on the river bed. Therefore, transport rate is highly variable in short periods of time. There is also a wide variance from day to day. Yet, different rivers have transport rates, which are functions of discharge, depth, and sediment size, that are clearly distinct. Comparison of computed and measured transport rates indicates that a major problem remains: What grain size is representative of the bedload when there is a wide or heterogeneous particle-size distribution? Size of the bedload in motion may be very different from the size of bed material obtained from samples of the streambed.For general computation, the river channel slope may be averaged, and it may be assumed that water-surface slope does not change materially with changing discharge. Indeed, this generality is correct, in that, compared with depth, velocity, and width, slope is conservative at-a-station. However, in more detail, slope changes importantly with discharge in short reaches of channel, and those changes are very different in pool and riffle.These local changes in slope are not merely an aspect of a detailed longitudinal profile but involve cross-channel as well as down-channel components. The pool and riffle sequence involves not only undulation of bed elevation and bar formation on alternate sides of the channel, but alternation of the zone of superovulation of the water surface, and changing relation of watersurface slope to discharge. These details can be seen only in the full topography of the water surface. Riffles fill during high flow and scour at low flow. Changes in local water-surface slope illustrate this process. Pools are a storage zone for sediment in the low-flow season. Even though large volumes of sediment move, the distance moved is not large—in the East Fork River, sand of size 0.5-1 millimeter moved 650 meters during the 1979 snowmelt runoff season.Bedload transport is greatest over or near bars and not in the deepest part of the channel. Direct observation of the locus of sediment transport indicates that this locus moves from one side of the channel to the other in concert with the occurrence of alternate bars. Separately, data indicate that at constant stream power, transport rate increases as depth decreases.

  13. Relations of surface-water quality to streamflow in the Hackensack, Passaic, Elizabeth, and Rahway River basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1998-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 19 surface-water-quality stations within the drainage basins of the Hackensack, Passaic, Elizabeth, and Rahway Rivers in New Jersey for water years 1976-93. Surface-waterquality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows.Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes over time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow concentration trends were determined for some constituents at 11 of the 19 waterquality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff.The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values suggest larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. For most of the 18 constituents, load-to-streamflow relations at stations along a river reach remain constant or decrease in a downstream direction. The slopes increase in the downstream direction for some or all of the nutrient species at the Ramapo, lower Passaic, and Rahway Rivers; for dissolved solids, dissolved sodium, and dissolved chloride at the lower Passaic River; and for alkalinity and hardness at the Rahway River.

  14. Distribution of Surface pH and Total Alkalinity at the Sea of Okhotsk and the East Sea in October 2007

    NASA Astrophysics Data System (ADS)

    Shim, J.; Kang, D.; Jin, Y.; Obzhirov, A.

    2008-12-01

    Surface pH, total alkalinity, temperature and salinity were measured at the Sea of Okhotsk and the East Sea (along a track from Vladivostok to the northeastern slope of Sakhalin Island through Soya Strait: 42°N, 132°E - 55°N, 145°E) in October 2007. Continuous pH measurements were conducted using an underway potentiometric pH system modified from Tishchenko et al. (2002) and discrete total alkalinity measurements were made by direct titration with hydrochloric acid. Warm saline surface waters were observed in the East Sea (from Vladivostok to Soya Strait), and relatively cold less-saline waters were observed in the Sea of Okhotsk (at the eastern slopes of Sakhalin Island). In the East Sea and the Sea of Okhotsk, surface pH ranged from 8.063 to 8.158 and 8.047 to 8.226, and total alkalinity normalized to salinity 35 ranged from 2323 to 2344 μmol kg-1 and 2367 to 2422 μmol kg-1, respectively. Due to the freshwater input from rivers and geochemical activity in the water column and sediment, the Sea of Okhotsk generally showed much wider ranges of water properties and richer in carbonate parameters than those of the East Sea. Particularly, water properties changed dramatically at the eastern slopes of Sakhalin Island; surface salinity decreased southward by about 0.5-1 psu and pH and normalized total alkalinity increased southward by about 0.05-0.1 and 20-50 μmol kg-1, respectively. Thus, pCO2 concentration calculated from pH and total alkalinity, ranged from 350-375 μatm in the north to 280-300 μatm in the south of the Okhotsk Sea. The high pH and normalized total alkalinity, and low pCO2 and salinity in the south might be the result of surface water mixing with fresh water discharge from rivers and/or the results of massive primary production along the eastern coast of Sakhalin Island. In the most study area, surface pCO2 ranged from 280 to 370 μatm and was undersaturated relative to atmosphere. Therefore, the Sea of Okhotsk and the East Sea acted as effective CO2 sinks during the study period

  15. Method to identify wells that yield water that will be replaced by Colorado River water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    1994-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. A method was developed to identify wells outside the f1ood plain of the lower Colorado River that yield water that will be replaced by water from the river. The method provides a uniform criterion of identification for all users pumping water from wells. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the river. Wells that have a static water-level elevation above the accounting surface are presumed to yield water that will be replaced by water from precipitation and inflow from tributary valleys. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable, partly saturated sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain and reservoirs that would exist if the river were the only source of water to the river aquifer. Maps at a scale of 1:100,000 show the extent and elevation of the accounting surface from the area surrounding Lake Mead to Laguna Dam near Yuma, Arizona.

  16. Fine-scale planktonic habitat partitioning at a shelf-slope front revealed by a high-resolution imaging system

    NASA Astrophysics Data System (ADS)

    Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.

    2015-02-01

    Ocean fronts represent productive regions of the ocean, but predator-prey interactions within these features are poorly understood partially due to the coarse-scale and biases of net-based sampling methods. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to sample across a front near the Georges Bank shelf edge on two separate sampling days in August 2010. Salinity characterized the transition from shelf to slope water, with isopycnals sloping vertically, seaward, and shoaling at the thermocline. A frontal feature defined by the convergence of isopycnals and a surface temperature gradient was sampled inshore of the shallowest zone of the shelf-slope front. Zooplankton and larval fishes were abundant on the shelf side of the front and displayed taxon-dependent depth distributions but were rare in the slope waters. Supervised automated particle counting showed small particles with high solidity, verified to be zooplankton (copepods and appendicularians), aggregating near surface above the front. Salps were most abundant in zones of intermediate chlorophyll-a fluorescence, distinctly separate from high abundances of other grazers and found almost exclusively in colonial form (97.5%). Distributions of gelatinous zooplankton differed among taxa but tended to follow isopycnals. Fine-scale sampling revealed distinct habitat partitioning of various planktonic taxa, resulting from a balance of physical and biological drivers in relation to the front.

  17. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  18. Engineering geologic conditions at the sinkhole entrance to Logan Cave, Benton County, Arkansas

    USGS Publications Warehouse

    Schulz, William H.; McKenna, Jonathan P.

    2004-01-01

    Logan Cave, located in Benton County, Arkansas, is inhabited by several endangered and threatened species. The cave and surrounding area was designated a National Wildlife Refuge under the control of the U.S. Fish and Wildlife Service (USFWS) in 1989. Cave researchers access the cave through a steep-sided sinkhole entrance, which also is one of the two access points used by endangered bats. There is evidence of instability of one of the entrance slopes that has raised concerns that the entrance could close if slope failure was to occur. At the request of USFWS, we performed an engineering geologic investigation of the sinkhole to evaluate stability of this slope, which is comprised of soil, and other mechanisms of sediment transport into the cave entrance. The investigation included engineering geologic mapping, sampling and laboratory testing of subsurface geologic materials, and slope-stability analysis. We found that the sinkhole slope that extends into the entrance of the cave is comprised of sandy and gravelly soil to the depths explored (6.4 meters). This soil likely was deposited as alluvium within a previous, larger sinkhole. Based on properties of the alluvium, geometry of the slope, and results of finite-element slope-stability analyses, we conclude that the slope is marginally stable. Future failures of the slope probably would be relatively thin and small, thus several would be required to completely close the cave entrance. However, sediment is accumulating within the cave entrance due to foot traffic of those accessing the cave, surface-water erosion and transport, and shallow slope failures from the other sinkhole slopes. We conclude that the entrance will be closed by sediment in the future, similar to another entrance that we identified that completely closed in the past. Several measures could be taken to reduce the potential for closure of the cave entrance, including periodic sediment removal, installation of materials that reduce erosion by foot traffic and surface water, construction of a sediment-retention wall, and excavation of the soil slope. Any measures taken must be carefully planned and executed so that they have no impact on organisms within the cave.

  19. [Effects of strip planting and fallow rotation on the soil and water loss and water use efficiency of slope farmland].

    PubMed

    Hou, Xian-Qing; Li, Rong; Han, Qing-Fang; Jia, Zhi-Kuan; Wang, Wei; Yan, Bo; Yang, Bao-Ping

    2012-08-01

    In order to enhance the soil water-retaining capacity of slope farmland and reduce its soil and water loss, a field study was conducted in 2007-2010 to examine the effects of strip planting and fallow rotation on the soil water regime, soil and water loss characteristics, and water use efficiency of a 10 degrees-15 degrees slope farmland in the arid area of southern Ningxia, Northwest China. Compared with the traditional no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer significantly, with an increment of 4.9% -7.0%. Strip planting and fallow rotation pattern could also effectively conserve the soil water in rain season, and obviously improve the soil water regime at crops early growth stages. As compared to no-strip planting, strip planting and fallow rotation increased the soil water content in 0-200 cm layer by 5.4%-8.5%, decreased the surface runoff by 0.7-3.2 m3 x hm(-2), sediment runoff by 0.2-1.9 t x hm(-2), and soil total N loss by 42.1% -73.3%, while improved the crop water use efficiency by 6.1% -24.9% and the precipitation use efficiency by 6.3% -15.3%.

  20. Detailed scour measurements around a debris accumulation

    USGS Publications Warehouse

    Mueller, David S.; Parola, Arthur C.

    1998-01-01

    Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.

  1. The concept of hydrologic landscapes

    USGS Publications Warehouse

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  2. Geology and ground-water hydrology of the Angostura irrigation project, South Dakota, with a section on the mineral quality of the waters

    USGS Publications Warehouse

    Littleton, Robert T.; Swenson, Herbert A.

    1949-01-01

    The lands to be irrigated from water stored in the Angostura Reservoir are situated on the lover of two terraces along the southeast side of the Cheyenne River in northeastern Fall River County and on the terrace known as Harrison Plat in southeastern Custer County, S. Dak. The terrace deposits are composed of relatively permeable sands and gravels that rest on a shale bedrock platform. The terrace surfaces are mantled in part by slope wash derived from higher shale slopes and by wind-blown sand. Ground water occurs under water-table conditions in the river alluvium and in terraces above the river. Although the zone of saturation in the terrace deposits is 6enerally thin, it is essentially continuous in the area southeast of the river, and the water issues as springs in the terrace faces along the inner valley of the river and along the valleys of tributary streams cuttin6 back into the terraces. A zone of saturation is present only in part of the Harrison Plat area, and it extends to the terrace face only along Cottonwood Creek. Wells in the unconsolidated mantle rock supply water for domestic and stock purposes, but yields are small. Abundant supplies of artesian water are available at depths ranging up to 3,000 feet but are not now utilized except at the extreme western end of the area where the bedrock aquifer is close below the surface. The effect of applying irrigation water on the terrace lands will depend on the character of the underlying material and on the measures taken to forestall waterlogging and other undesirable effects. Terrace areas that are mantled by slope wash will be especially susceptible to waterlogging, as will valley-bottom areas mantled by colluvium that are adjacent to irrigated terracea. Periodic measurements of water levels in observation wells will give warning of potential waterlogging in time to permit taking preventive measures. Analyses of samples of both ground water and surface water indicate a high mineral content. In general, samples from the Cheyenne River are higher in total dissolved solids and lower in percent sodium than the ground water.

  3. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  4. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  5. Clouds in the Northern Tempe Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 2 May 2002) The Science This THEMIS visible image shows a region in northern Tempe Terra near 48o N, 75o W (285o E). Patchy water-ice clouds cover portions of the low-lying canyon at the top (north) of this image. Further south the atmosphere is clear and the knobby or 'scabby' plains that are typical of many mid-latitude regions on Mars can be seen. These plains appear to mantle and modify a pre-existing surface, burying the older cratered terrain. This mantling layer has itself been modified to produce a pitted, knobby surface. The large mesa seen in this image has unusual deposits of material that occur preferentially on the cold, north-facing slopes. These deposits are seen frequently at mid-northern and southern latitudes, and have a distinct, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. The south-facing slopes lack this mantling material, and show clear evidence for layering in the rock units that form the mesa. The Story This deep and murky-looking depression is in an area called 'Tempe Terra,' a lilting, alliterative name that seems almost a little too merry for this kind of terrain. If the top of the image looks a little smudgy, that's because patchy water-ice clouds hang over the low lying canyon. Further south, where the air is clear, you can see some 'scabby' plains (particularly in the high-res image, where the knobby patches of raised surface areas sort of do look like crusted-over dirt wounds). These plains cover a more ancient, cratered surface, but have been eroded away enough to form these scabby-seeming features. The large mesa in this image has some odd deposits of material on its cold, north-facing slopes. Could these deposits have been all over the surface of Mars long ago, but then were subsequently eroded away in most places on the planet? Did water ice on the colder surfaces preserve the last vestiges of these deposits so that scientists have the advantage of studying them today? While those answers won't be clear for a while, the south-facing slopes don't have this piled on material. That makes it easier to see the rock layers in the mesa. Layers are important to study, because they tell what has happened to the planet geologically over its history. The bottom layers are usually the oldest (unless some geologic force has pushed them up), so looking at each layer can give an idea of what happened first and last . . . and maybe even how long each period of time lasted.

  6. Soil erosion in humid regions: a review

    Treesearch

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  7. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    PubMed

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  8. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  9. Radiocesium distribution along the slope in the Iput river basin as a tracer of the contaminant secondary migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey; Beriozkin, Victor; Dogadkin, Nikolay

    2016-04-01

    The main goal of the study performed in 2014-2015 at the test site located in the abandoned zone of the Iput river basin was to study detailed patterns of Cs-137 redistribution along the terrace slope and the adjacent floodplain depression almost 30 years after the Chernobyl accident. Cs-137 surface activity was measured with the help of modified field gamma-spectrometer Violinist III (USA) in a grid 2 m x 2 m within the test plot sized 10 m x 24 m. Gamma-spectrometry was accompanied by topographical survey. Cs-137 depth distribution was studied by soil core sampling in increments of 2 cm and 5 cm down to 40 cm depth. Cs-137 activity in soil samples was measured in laboratory conditions by Nokia gamma-spectrometer. The results showed distinct natural dissimilarity of Cs-137 surface activity within the undisturbed soil of slope. Cs-137 depth migration in successive soil cores marked different patterns correlated with the position in relief. In particular cores Cs-137 depth variation correlated with water regime that shows that the processes of secondary distribution of Cs-137 along the slope obviously depend upon water migration. The finding is important for understanding of regularities in patterns of radiocesium spatial distribution.

  10. The lunar thermal ice pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schorghofer, Norbert; Aharonson, Oded, E-mail: norbert@hawaii.edu

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature ismore » below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.« less

  11. Ceres: predictions for near-surface water ice stability and implications for plume generating processes

    USGS Publications Warehouse

    Titus, Timothy N.

    2015-01-01

    This paper will constrain the possible sources and processes for the formation of recently observed H2O vapor plumes above the surface of the dwarf planet Ceres. Two hypotheses have been proposed: (1) cryovolcanism where the water source is the mantle and the heating source is still unknown or (2) comet-like sublimation where near-surface water ice is vaporized by seasonally increasing solar insolation. We test hypothesis #2, comet-like near-surface sublimation, by using a thermal model to examine the stability of water-ice in the near surface. For a reasonable range of physical parameters (thermal inertia, surface roughness, slopes), we find that water ice is only stable at latitudes higher than ~40-60 degrees. These results indicate that either (a) the physical properties of Ceres are unlike our expectations or (b) an alternative to comet-like sublimation, such as the cryovolcanism hypothesis, must be invoked.

  12. Hues in a Crater Slope

    NASA Image and Video Library

    2017-01-02

    Impact craters expose the subsurface materials on steep slopes. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust. The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events. http://photojournal.jpl.nasa.gov/catalog/PIA14454

  13. A 2.7 Myr record of sedimentary processes on a high-latitude continental slope: 3D seismic evidence from the mid-Norwegian margin

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2017-12-01

    An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.

  14. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  15. Analysis of water surface and flow distribution for the design flood at a proposed highway crossing of the Sabine River near Tatum, Texas

    USGS Publications Warehouse

    Gilbert, J.J.; Myers, D.R.

    1989-01-01

    The simulations of the proposed and alternate designs indicate a lateral component of the water-surface slope at the embankment. Redistribution of flow across the floodplain also is indicated in both simulations. Some of the differences in the response between the two designs are affected by geometric features of the floodplain other than the embankment-opening geometry.

  16. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport

    USGS Publications Warehouse

    Stieglitz, M.; Shaman, J.; McNamara, J.; Engel, V.; Shanley, J.; Kling, G.W.

    2003-01-01

    Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic "connectivity" potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which disparate regions on the hillslope are linked via subsurface water flow. We present simulations that suggest that for much of the year, water draining through a catchment is spatially isolated. Only rarely, during storm and snowmelt events when antecedent soil moisture is high, do our simulations suggest that mid-slope saturation (or near saturation) occurs and that a catchment connects from ridge to valley. Observations during snowmelt at a small headwater catchment in Idaho are consistent with these model simulations. During early season discharge episodes, in which the mid-slope soil column is not saturated, the electrical conductivity in the stream remains low, reflecting a restricted, local (lower slope) source of stream water and the continued isolation of upper and mid-slope soil water and nutrients from the stream system. Increased streamflow and higher stream water electrical conductivity, presumably reflecting the release of water from the upper reaches of the catchment, are simultaneously observed when the mid-slope becomes sufficiently wet. This study provides preliminary evidence that the seasonal timing of hydrologic connectivity may affect a range of ecological processes, including downslope nutrient transport, C/N cycling, and biological productivity along the toposequence. A better elucidation of hydrologic connectivity will be necessary for understanding local processes as well as material export from land to water at regional and global scales. Copyright 2003 by the American Geophysical Union.

  17. Estimating Discharge, Depth and Bottom Friction in Sand Bed Rivers Using Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Czapiga, M. J.; Holland, K. T.

    2017-12-01

    We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.

  18. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower angle than the slope. Wetlands plants are often found where these layers are truncated by the slope suggesting seepage of unconfined aquifer and a new wetland boundary.

  19. Method to identify wells that yield water that will be replaced by water from the Colorado River downstream from Laguna Dam in Arizona and California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.

    2000-01-01

    Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.

  20. Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration

    USGS Publications Warehouse

    Mullins, H.T.; Cook, H.E.

    1986-01-01

    Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.

  1. 24 CFR 203.12 - Mortgage insurance on proposed or new construction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conditions (i.e., rock formations, unstable soils or slopes, high ground water levels, inadequate surface... of the improvements. The Builder's Certification must be provided to the appraiser for reference...

  2. 24 CFR 203.12 - Mortgage insurance on proposed or new construction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions (i.e., rock formations, unstable soils or slopes, high ground water levels, inadequate surface... of the improvements. The Builder's Certification must be provided to the appraiser for reference...

  3. Hydrogeochemical Investigations of Historic Mining Districts, Central Western Slope of Colorado, Including Influence on Surface-Water Quality

    USGS Publications Warehouse

    Nash, J. Thomas

    2002-01-01

    This report describes reconnaissance hydrogeochemical investigations of 22 mining districts on the Western Slope of Colorado in the Gunnison and Uncompahgre National Forests and adjacent public lands administered by the Bureau of Land Management. Sources and fates of contaminants from historic mines, mine waste, and mill tailings are interpreted from chemical analyses for 190 samples of surface waters; 185 samples of mined rocks, mill tailings, and altered rocks; and passive leach analyses of 116 samples of those mineralized materials. Short reaches of several headwater streams show relatively low level effects of historic mining; the headwaters of the Uncompahgre River are highly contaminated by mines and unmined altered rocks in the Red Mountain district. There is encouraging evidence that natural processes attenuate mine-related contamination in most districts.

  4. Re-analysis of martian gully orientation and slope for comparison with climate model predictions of freeze-thaw and dry-ice sublimation.

    NASA Astrophysics Data System (ADS)

    Conway, Susan; Harrison, Tanya; Lewis, Stephen; Balme, Matthew; Soare, Richard; Britton, Andrew

    2016-04-01

    Gullies on Mars are kilometre-scale landforms, comprising an erosional alcove and channel and a terminal debris apron/fan. These landforms are similar to features on Earth carved by the flow of liquid water, or by the action of water rich debris flows. The majority gullies on Mars are believed to be (at most) ˜5 Ma old and both erosion and deposition within these features have been observed within the last 10 years of orbital observations. At present liquid water is not thermodynamically stable at the martian surface and many of the recent changes in surface morphology occur during winter and early spring, when temperatures are too low for even metastable liquid water to be produced. Therefore, researchers have proposed an alternative mechanism for gully-formation - the sublimation of solid CO2, which is deposited on the maritan surface every winter. Previous studies have revealed that gully-density and orientation varies systematically with latitude - a fact that led to the development of many climate-based hypotheses for their formation. Here, we use the global database of martian gullies and extract the orientation and slope-angle of gully-hosting-slopes. We find that gully-orientation is more even strongly controlled by latitude than previous studies, where more sparse data were used. From ˜30-40° latitude in both hemispheres, gullies are almost never found on equator-facing slopes, and polewards of 40° gullies have a tendency to be located on equator-facing slopes. We use a 1D version of the LMD Mars climate model physics to simulate surface temperature on slopes up to 35° , oriented to face north or south, for all latitudes (5° spacing), and for orbital obliquities of 5-55° . We otherwise use current orbital conditions (ellipticity, date of perihelion) and we use a constant thermal inertia of the substrate of 1000 Jm-2K-1s-1/2and a bare soil albedo of 0.2. We extracted two pieces of information from a complete annual cycle: (i) The number of hours during which the surface temperature was below the CO2 condensation point of 149K. We use these data as a proxy for where CO2sublimation processes can be active. (ii) The number of sols for which the daily minimum is below 273K and the daily maximum is above 273K. We use these data as a proxy for where ice could be stable and then melt during freeze-thaw cycles. Our results reveal that neither of these simple modelling cases exactly fits the observational data, therefore we conclude that it is likely that a mixture of CO2 and water related processes are responsible for forming martian gullies. We aim to perform a number of tests to assess both the applicability of these simple proxies and to test a wider range of substrate properties (buried ice) and orbital parameters (perihelion and increased atmospheric pressure at high obliquity) to see if they give better fits to our observations.

  5. Pulsed Discharge Through Wetland Vegetation as a Control on Bed Shear Stress and Sediment Transport Affecting Everglades Restoration

    NASA Astrophysics Data System (ADS)

    Larsen, L. E.; Harvey, J. W.; Crimaldi, J. P.

    2007-12-01

    The ridge and slough landscape is a patterned peatland within the Florida Everglades in which elevated ridges of emergent vegetation are regularly interspersed among open-water sloughs with floating and submerged vegetation. Landscape features are aligned parallel to the historic flow direction. Degradation of patterning over the past 100 years coincides with diminished flow resulting from drainage and construction of levees and canals. A goal of restoration is to increase flow velocities and redistribution of particles and solutes in attempt to preserve remnant patterning and restore degraded portions of the ridge and slough landscape. To explore different management strategies that could induce sediment redistribution in the ridge and slough landscape, we simulated velocity profiles and bed shear stresses for different combinations of surface water stage, water surface slope, and vegetation community structure, based on field measurements and laboratory experiments. A mixing length approach, in which the minimum of stem spacing and distance from a solid boundary determined eddy scale, was used to simulate velocity profiles and bed shear stress in vegetated arrays. Simplified velocity profiles based only on vegetation frontal area above the bed and the Karman-Prandtl logarithmic law near the bed closely were used to approximate solutions of the one-dimensional Navier-Stokes equations for large-scale simulation. Estimates of bed shear stress were most sensitive to bed roughness, vegetation community structure, and energy slope. Importantly, our simulations illustrate that velocity and bed shear stress cannot be increased substantially in the Everglades simply by increasing surface-water stage. This result comes directly from the dependence of velocity and shear stress on vegetation frontal area and the fact that emergent vegetation stems protrude through the water column even during times of relatively deep water in the Everglades. Since merely increasing water depth is not likely to increase water velocity and entrainment, it is necessary instead that restoration focus on increasing energy slope as a means to entrain sediment within sloughs and redistribute it to ridges. Surface-water gravity waves caused by hurricanes or pulsed releases of water from impounded areas may be the most effective mechanism for achieving sediment redistribution in the Everglades and other wetland and riparian environments with abundant emergent vegetation.

  6. A new vision of carbonate slopes: the Little Bahama Bank

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Hanquiez, Vincent; Reijmer, John J.; Tournadour, Elsa; Chabaud, Ludivine; Principaud, Mélanie; Schnyder, Jara; Borgomano, Jean

    2015-04-01

    Recent data collected in November 2014 (RV Walton Smith) on the upper slope of the Little Bahama Bank (LBB) between 30 and 400 m water depth allowed to characterize the uppermost slope (Rankey et al., 2012) over a surface of 170 km2. The new data set includes multibeam bathymetry and acoustic imagery, 3.5 kHz very-high resolution (VHR) seismic reflection lines, 21 gravity cores and 11 Van Veen grabs. The upper slope of the LBB does not show a steep submarine cliff as known from western Great Bahama Bank. The carbonate bank progressively deepens towards the basin through a slighty inclined plateau. The slope value is < 6° down to a water depth of about 70 m. The plateau is incised by decameter-wide gullies that covered with indurated sediment. Some of the gullies like Roberts Cuts show a larger size and may play an important role in sediment transfer from the shallow-water carbonate bank down to the canyon heads at 400-500 m water depth (Mulder et al., 2012). In the gully area, the actual reef rests on paleo-reefs that outcrop at a water depth of about 40 m. These paleo-reef structures could represent reefs that established themselves during past periods of sea-level stagnation. Below this water depth, the slope steepens up to 30° to form the marginal escarpment (Rankey et al., 2012), which is succeeded by the open margin realm (Rankey et al., 2012). The slope inclination value decreases at about 180-200 m water depth. Between 20 and 200 m of water depth, the VHR seismic shows no seafloor sub-bottom reflector. Between 180 and 320 m water depth, the seafloor smoothens. The VHR seismic shows an onlapping sediment wedge, which starts in this water depth and shows a blind or very crudely stratified echo facies. The sediment thickness of this Holocene unit may exceed 20 m. It fills small depressions in the substratum and thickens in front of gullies that cut the carbonate platform edge. Sediment samples show the abundancy of carbonate mud on the present Bahamian seafloor. In gullies, coarser sediment can be found. In some case, soft sediments are absent suggesting by-passing. At water depth between 40 and 100 m, the present-day seafloor is covered with bioclastic sediments. The main carbonate producer seems to be the alga genus Halimeda. Sediments collected in the deeper part of the basin (water depth = 1080 m) on the distal lobe consist of massive fine to medium well-sorted aragonitic sand. This suggests that carbonate slope systems are able to sort sediment despite the relative short slope distance. Sorting could either be due to flow spilling above the terraces identified in the canyon heads (Mulder et al., 2012) or could result from bottom currents. In this area, flow velocity profiles in the water column show the presence of two superposed water masses with a pycnocline at about 600-700 m water depth. Mulder, T., Ducassou, E., Gillet, H., Hanquiez, V., Tournadour, E., Combes, J., Eberli, G.P, Kindler, P., Gonthier, E., Conesa, G., Robin, C., Sianipar, R., Reijmer, J.J.G., and François A. Canyon morphology on a modern carbonate slope of the Bahamas: Evidence of regional tectonic tilting. Geology, 40(9), 771-774. Rankey, E.C, and Doolittle, D.F. (2012). Geomorphology of carbonate platform-marginal uppermost slopes: Insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sedimentology, 59, 2146-2171.

  7. Distribution and features of landslides induced by the 2008 Wengchuan Earthquake, Sichuan, China

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Xiyong, W.; Inokuchi, T.; Gonghui, W.

    2009-04-01

    2008 Sichuan earthquake with a magnitude of Mw 7.9 induced numerous mass movements around the fault surface ruptures of which maximum separations we observed were 3.6 m vertical and 1.5 m horizontal (right lateral). The affected area was mountainous areas with elevations from 1000 m to 4500 m on the west of the Sichuan Basin. The NE-trending Longmenshan fault zone runs along the boundary between the mountains on the west and the Sichuan basin (He and Tsukuda, 2003), of which Yinghsiuwan-Beichuan fault was the main fault that generated the 2008 earthquake (Xu, 2008). The basement rocks of the mountainous areas range from Precambrian to Cretaceous in age. They are basaltic rocks, granite, phyllite, dolostone, limestone, alternating beds of sandstone and shale, etc. There were several types of landslides ranging from small, shallow rockslide, rockfall, debris slide, deep rockslide, and debris flows. Shallow rockslide, rock fall, and debris slide were most common and occurred on convex slopes or ridge tops. When we approached the epicentral area, first appearing landslides were of this type and the most conspicuous was a failure of isolated ridge-tops, where earthquake shaking would be amplified. As for rock types, slopes of granitic rocks, hornfels, and carbonate rocks failed in wide areas to the most. They are generally hard and their fragments apparently collided and repelled to each other and detached from the slopes. Alternating beds of sandstone and mudstone failed on many slopes near the fault ruptures, including Yinghsiuwan near the epicenter. Many rockfalls occurred on cliffs, which had taluses on their feet. The fallen rocks tumbled down and mostly stopped within the talus surfaces, which is quite reasonable because taluses generally develop by this kind of processes. Many rockslides occurred on slopes of carbonate rocks, in which dolostone or dolomitic limestone prevails. Deep-seated rockslide occurred on outfacing slopes and shallow rockslide and rockfall occurred on infacing slopes. Infacing slopes generally are steeper than outfacing slopes and hence surface rocks on infacing slopes tend to be loosened by gravity. Detachment surfaces of carbonate rocks are generally not smooth surfaces but are rough surfaces with dimple-like depressions, which are made by dissolution of these rocks. This feature is one of the most important causes to induce landslide in carbonate rocks. Many gravitational deformations were observed on phyllite slopes. Landslides on the west of Beichuan city is probably of weathered phyllite, which had been preceded by gravitational deformation beforehand. Taochishan landslide in Beichuan occurred on probable outfacing slope of phyllite. The Formosat II images on Google earth indicated that this landslide was also preceded by gravitational deformation, which appeared as spur-crossing depressions with upslope-convex traces on plan. Satellite images indicated that some landslides had long lobate forms, suggesting that they were flow. One of them was Shechadientsu landslide 34 km northeast of Dujiangyan, occurring across the probable earthquake fault rupture. It was 1.5 km long with a maximum width of 250 m and an apparent friction angle of 22°. The top of this landslide area was a steep cliff of Precambrian granite, which failed to go down a small valley. The volume of the slope failure was estimated much less than the volume of the deposit. The small valley had sporadic patches of bedrock consisting of alternating beds of sandstone and mudstone of Triassic in age. The bedrock was covered by bluish grey, clayey, water-saturated debris, which was not disturbed and in turn covered by water-saturated brownish debris with rubbles. The landslide deposits had wrinkles on the surface and streaks of same color rock fragments. In addition, cross section near the distal part had clearly defined reverse grading, in which larger rubbles with a maximum diameter of 5 m concentrated at the surface part. These characteristics strongly suggest that valley-fill sediments mobilized by the earthquake and flowed down the valley, getting higher at the outer side of the valley bent. The largest landslide with an estimated volume of 1 billion m3 occurred on an outfacing carbonate rock slope, which had been preceded by gravitational deformation appearing as a ridge-top depression. The second largest one occurred on a smooth outfacing slope that had been undercut.

  8. Gully formation on Mars: Two recent phases of formation suggested by links between morphology, slope orientation and insolation history

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Head, James W.; Forget, François; Madeleine, Jean-Baptiste; Spiga, Aymeric

    2010-08-01

    The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.

  9. The effects of ecological restoration on CO2 fluxes from a climatically marginal upland blanket bog

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Qassim, Suzane; Rowson, James; Worrall, Fred; Evans, Martin

    2013-04-01

    A legacy of gully incision, deposition of industrially-derived aerial pollutants, inappropriate management and wildfire has left large expanses of the topographic Bleaklow Plateau (Peak District National Park, England, UK) bare of vegetation and susceptible to massive erosion of the peat soils. The consequence of such degradation has been to decrease the capacity of the peatland on the plateau to provide important ecosystem services including; loss of net C sink function, discolouration of surface waters, mobilisation to surface waters of stored heavy metals and infilling of upland reservoirs with peat-derived sediment. In response to on-going and worsening degradation a programme of ecological restoration has been undertaken. Restoration methods include: seeding with a lawn grass mix; liming; fertilisation; slope stabilisation; and gully blocking. This talk will present data from a five-year, observational-study of CO2 fluxes from eight sites, with four sites sampling different restoration treatments and four sampling bare and least disturbed areas. The results of the analysis reveal that sites with revegetation alongside slope stabilisation were most productive and were the largest net (daylight hours) sinks of CO2. Unrestored, bare sites, while having relatively low gross fluxes of CO2 were the largest net sources of CO2. Revegetation without slope stabilisation took longer (~18 months) to show an impact on CO2 flux in comparison to the sites with slope stabilisation. Binary logistic regression indicated that a ten centimetre increase in water table depth decreases the odds of observing a net CO2 sink, on a given site, by up to 30%. Sites with slope stabilisation were between 5-8x more likely to be net CO2 sinks than the bare sites. Sites without slope stabilisation were only 2-2.3x more likely to be net CO2 sinks compared to the bare sites. The most important conclusion of this research is that revegetation appears to be effective at increasing the likelihood of net CO2 behaviour on degraded, climatically marginal blanket peat, with revegetation alongside slope stabilisation having the greatest impact.

  10. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  11. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    NASA Astrophysics Data System (ADS)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms and structural highs). Therefore, tectonism constitutes a long-term controlling factor, whereas the climate, sediment supply and bottom currents play key roles in the recent short-term architecture and dynamics. Moreover, the recent predominant along-slope sedimentary processes observed in the studied northwestern Iberian Margin represent snapshots of the progressive stages and mixed deep-water system developments of the marginal platforms on passive margins and may provide information for a predictive model of the evolution of other similar margins.

  12. Contribution of topographically generated submesoscale turbulence to Southern Ocean overturning

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaozhou; Thompson, Andrew F.; Flexas, Mar M.; Sprintall, Janet

    2017-11-01

    The ocean's global overturning circulation regulates the transport and storage of heat, carbon and nutrients. Upwelling across the Southern Ocean's Antarctic Circumpolar Current and into the mixed layer, coupled to water mass modification by surface buoyancy forcing, has been highlighted as a key process in the closure of the overturning circulation. Here, using twelve high-resolution hydrographic sections in southern Drake Passage, collected with autonomous ocean gliders, we show that Circumpolar Deep Water originating from the North Atlantic, known as Lower Circumpolar Deep Water, intersects sloping topography in narrow and strong boundary currents. Observations of strong lateral buoyancy gradients, enhanced bottom turbulence, thick bottom mixed layers and modified water masses are consistent with growing evidence that topographically generated submesoscale flows over continental slopes enhance near-bottom mixing, and that cross-density upwelling occurs preferentially over sloping topography. Interactions between narrow frontal currents and topography occur elsewhere along the path of the Antarctic Circumpolar Current, which leads us to propose that such interactions contribute significantly to the closure of the overturning in the Southern Ocean.

  13. Source-to-mainstem: hydrochemical changes of the evolving surface drainage in the valley Brøggerdalen, NW Spitsbergen

    NASA Astrophysics Data System (ADS)

    Zwolinski, Zbigniew; Mazurek, Malgorzata; Gudowicz, Joanna; Niedzielski, Przemyslaw

    2017-04-01

    Present-day paraglacial areas arising in the High Arctic during the Holocene are evidence of large changes in relief and deposits of polar regions. Geosuccession, thus the change of the morphogenetic domain from subglacial to subaerial one implies changes of morphogenetic factors and processes in areas recently exposed to the ice covers. The effect of changes in the morphogenetic domain is the constitution of a new set of landforms. Among the dominant processes that transform contemporary areas freed from the glaciers are slope and fluvial processes expanded in periglacial conditions. During the summer campaign of the project "Late-glacial and present landscape evolution following deglaciation in a climate-sensitive High-Arctic region" we made two field mapping, namely geomorphological and hydrogeochemical in the area left by the retreating glacier Brøgger in the valley Brøggerdalen west of Ny-Ålesund on Brøggerhaløvya (NW Spitsbergen). Intensive glacier recession since the Little Ice Age has created a new set of landforms, for which we examined the chemical properties of sediments and water flowing down the slopes of the valley to the valley floor, i.e. main stem of Brøggerelva. Hydrochemical transformations of fresh waters flowing in paraglacial watercourses on the background of the geochemical properties of the surface sediment covers became the main objective of the study. On the poster we present the results of field studies, the spatial distribution of hydrochemical properties of surface water, alternating directions hydrochemical these waters and pointed out the nature of the water transition from the slope system to a fluvial one. It was found that despite the major relief changes in the valley of the Brøggerbreen contemporary hydrochemical transformations of fresh waters do not stand up now too great diversity.

  14. Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet

    NASA Astrophysics Data System (ADS)

    Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.

    2012-10-01

    Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.

  15. First-order Probabilistic Analysis of the Effects of Heterogeneity on Pore-water Pressure in a Hillslope

    NASA Astrophysics Data System (ADS)

    Cai, J.; Yan, E.; Yeh, T. C. J.

    2015-12-01

    Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.

  16. Optical Polarization in the Nearshore

    NASA Astrophysics Data System (ADS)

    Holman, R.

    2008-12-01

    A recent addition to the suite of optical remote sensing methods that have been used to study nearshore processes is the use of imaging polarimetric cameras. Both the degree of polarization and the azimuth of polarized light contain information about the imaged surfaces from which light has been reflected or scattered. In 2007, a polarimetric Argus camera was installed atop the tower at Duck, NC. This talk will examine the various polarization signatures that can be exploited, including the potential for measuring the sea surface slope spectrum of nearshore surf zone waves, the slope of the foreshore beach, water content of foreshore sediments and bubble signatures of dissipating waves.

  17. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  18. A Laboratory Study of Slope Flows Dynamics

    NASA Astrophysics Data System (ADS)

    Capriati, Andrea; Cenedese, Antonio; Monti, Paolo

    2003-11-01

    Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.

  19. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting

    NASA Astrophysics Data System (ADS)

    Millar, David J.; Cooper, David J.; Ronayne, Michael J.

    2018-06-01

    Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.

  20. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface.

    PubMed

    Tan, Huanshu; Diddens, Christian; Versluis, Michel; Butt, Hans-Jürgen; Lohse, Detlef; Zhang, Xuehua

    2017-04-12

    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.

  1. Implication of Groundwater Resources Utilization in Mountainous Region for Slopeland Disaster Prevention

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chao; Hsu, Shih-Meng; Lo, Hung-Chieh

    2016-04-01

    In recent years, groundwater resources from mountainous regions have been considered as an alternative water resource in Taiwan. According to previous research outcomes (Hsu, 2011), such a groundwater resource is capable of providing stable and high quality water resources. Additionally, another advantage of using the water resources is attributed to the contribution of slopeland disaster prevention. While pumping groundwater as water resources in hilly areas (e.g., at landslide-prone sites), pore-water pressures can be dropped, which can result in stabilizing landslide-prone slopes. However, the benefit to slope stability by using groundwater resources needs to be quantified. The purpose of this study is to investigate groundwater potential of a deep-seated landslide site first, and then to evaluate variations of slope stability by changing well pumping rate conditions. In this paper, the Baolong landslide site located at the Jiasian district of Kaohsiung city in Southern Taiwan has been selected as a case study. Hydrogeological investigation for the landslide site was conducted to clarify the complexity of field characteristics and to establish a precise conceptual model for simulation. The investigation content includes surficial geology investigation, borehole drilling (6 drilling boreholes and 350 meters drilling length in total), 45 m pumping well construction, borehole hydrogeological tests (borehole televiewer, caliper, borehole electrical logging, sonic logging, flowmeter measurement, pumping test, and double packer test), and laboratory tests from rock core samples (physical properties test of soil and rocks, triaxial permeability test of soil, porosity determination test using helium, and gas permeability test). Based on the aforementioned investigation results, a hydrogeological conceptual model for the Baolong landslide site was constructed, and a 2D slope stability model coupled with transient seepage flow model was used for numerical simulation to determine changes of slope stability by means of different well pumping rate conditions. The simulation results show that a positive relationship between the pumping rate and drawdown of well exists. In addition, the positive relationship was found between the pumping rate and the increase of safety factor for both shallow and deep sliding surfaces. If the constant pumping rate reached up to 180 L/min with the decline of groundwater level by 10.6 m, the safety factors of shallow and deep sliding surfaces are raised up to 11.87% and 15.72%, respectively. The amount of pumped water can provide daily water demand for approximately 997 people. This demonstrates the groundwater resource at this area is productive. Meanwhile, the benefit to slope stabilization by pumping groundwater is proved. Therefore, this study can provide the solution for ensuring both the safety of slopeland environment and the supply of water resources in mountainous areas. Such a win-win idea is a good mitigation measure for meeting the aim of territorial and resource sustainability.

  2. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Duan, Liangxia; Huang, Mingbin; Zhang, Luodan

    2016-06-01

    Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.

  3. BAM: Bayesian AMHG-Manning Inference of Discharge Using Remotely Sensed Stream Width, Slope, and Height

    NASA Astrophysics Data System (ADS)

    Hagemann, M. W.; Gleason, C. J.; Durand, M. T.

    2017-11-01

    The forthcoming Surface Water and Ocean Topography (SWOT) NASA satellite mission will measure water surface width, height, and slope of major rivers worldwide. The resulting data could provide an unprecedented account of river discharge at continental scales, but reliable methods need to be identified prior to launch. Here we present a novel algorithm for discharge estimation from only remotely sensed stream width, slope, and height at multiple locations along a mass-conserved river segment. The algorithm, termed the Bayesian AMHG-Manning (BAM) algorithm, implements a Bayesian formulation of streamflow uncertainty using a combination of Manning's equation and at-many-stations hydraulic geometry (AMHG). Bayesian methods provide a statistically defensible approach to generating discharge estimates in a physically underconstrained system but rely on prior distributions that quantify the a priori uncertainty of unknown quantities including discharge and hydraulic equation parameters. These were obtained from literature-reported values and from a USGS data set of acoustic Doppler current profiler (ADCP) measurements at USGS stream gauges. A data set of simulated widths, slopes, and heights from 19 rivers was used to evaluate the algorithms using a set of performance metrics. Results across the 19 rivers indicate an improvement in performance of BAM over previously tested methods and highlight a path forward in solving discharge estimation using solely satellite remote sensing.

  4. Seasonal Flows in Palikir Crater

    NASA Image and Video Library

    2013-05-15

    Seasonal flows on warm Martian slopes may be caused by the flow of salty water on Mars, active today when the surface is warm above the freezing point of the solution. This observation is from NASA Mars Reconnaissance Orbiter.

  5. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    PubMed

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  6. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  7. Hydraulic characterization of the middle reach of the Congo River

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Trigg, M. A.; Schumann, G. J.-P.; Bates, P. D.

    2013-08-01

    The middle reach of the Congo remains one of the most difficult places to access, with ongoing conflicts and a lack of infrastructure. This has resulted in the Congo being perhaps the least understood large river hydraulically, particularly compared to the Amazon, Nile, or Mississippi. Globally the Congo River is important; it is the largest river in Africa and the basin contains some of the largest areas of tropical forests and wetlands in the world, which are important to both the global carbon and methane cycles. This study produced the first detailed hydraulic characterization of the middle reach, utilizing mostly remotely sensed data sets. Using Landsat imagery, a 30 m resolution water-mask was created for the middle reach, from which effective river widths and the number of channels and islands were determined. Water surface slopes were determined using ICESat observations for three different periods during the annual flood pulse, and while the overall slope calculated was similar to previous estimates, greater spatial variability was identified. We find that the water surface slope varies markedly in space but relatively little in time and that this appears to contrast with the Amazon where previous studies indicate that time and spatial variations are of equal magnitude. Five key hydraulic constraints were also identified, which play an important role in the overall dynamics of the Congo. Finally, backwater lengths were approximated for four of these constraints, with the results showing that at high water, over a third of the middle reach is affected by backwater effects.

  8. Estimation of precipitable water at different locations using surface dew-point

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, M.; Sharif, T. A.

    1995-09-01

    The Reitan (1963) regression equation of the form ln w = a + bT d has been examined and tested to estimate precipitable water vapor content from the surface dew point temperature at different locations. The results of this study indicate that the slope b of the above equation has a constant value of 0.0681, while the intercept a changes rapidly with latitude. The use of the variable intercept technique can improve the estimated result by about 2%.

  9. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed layer, which is useful for predicting integral biomass and primary production.

  10. Soil-water dynamics and unsaturated storage during snowmelt following wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Hinckley, E.S.; Martin, Deborah

    2012-01-01

    Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.

  11. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Hydroecological factors governing surface water flow on a low-gradient floodplain

    USGS Publications Warehouse

    Harvey, J.W.; Schaffranek, R.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; O'Connor, B.L.

    2009-01-01

    Interrelationships between hydrology and aquatic ecosystems are better understood in streams and rivers compared to their surrounding floodplains. Our goal was to characterize the hydrology of the Everglades ridge and slough floodplain ecosystem, which is valued for the comparatively high biodiversity and connectivity of its parallel-drainage features but which has been degraded over the past century in response to flow reductions associated with flood control. We measured flow velocity, water depth, and wind velocity continuously for 3 years in an area of the Everglades with well-preserved parallel-drainage features (i.e., 200-m wide sloughs interspersed with slightly higher elevation and more densely vegetated ridges). Mean daily flow velocity averaged 0.32 cm s-1 and ranged between 0.02 and 0.79 cm s-1. Highest sustained velocities were associated with flow pulses caused by water releases from upstream hydraulic control structures that increased flow velocity by a factor of 2-3 on the floodplain for weeks at a time. The highest instantaneous measurements of flow velocity were associated with the passage of Hurricane Wilma in 2005 when the inverse barometric pressure effect increased flow velocity up to 5 cm s-1 for several hours. Time-averaged flow velocities were 29% greater in sloughs compared to ridges because of marginally higher vegetative drag in ridges compared to sloughs, which contributed modestly (relative to greater water depth and flow duration in sloughs compared to ridges) to the predominant fraction (86%) of total discharge through the landscape occurring in sloughs. Univariate scaling relationships developed from theory of flow through vegetation, and our field data indicated that flow velocity increases with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportion with increasing frontal area of vegetation, and is unrelated to water depth except for the influence that water depth has in controlling the submergence height of vegetation that varies vertically in its architectural characteristics. In the Everglades the result of interactions among controlling variables was that flow velocity was dominantly controlled by water surface slope variations responding to flow pulses more than spatial variation in vegetation characteristics or fluctuating water depth. Our findings indicate that floodplain managers could, in addition to managing water depth, manipulate the frequency and duration of inflow pulses to manage water surface slope, which would add further control over flow velocities, water residence times, sediment settling, biogeochemical transformations, and other processes that are important to floodplain function. ?? 2009 by American Geophysical Union.

  13. Natural hazards in the Alps triggered by ski slope engineering and artificial snow production

    NASA Astrophysics Data System (ADS)

    de Jong, C.

    2012-04-01

    In the Alps there is increasing concern of man-made triggering of natural hazards in association with ski slope engineering and pressures from climate change. However literature on the topic is rare. Ski run development has been intensified in the past decade to accommodate a higher density of skiers. In order to absorb the increased flux of skiers promoted by continually increasing lift capacity, ski runs are subject to more and more enlargement, straightening and leveling. This has required large-scale re-leveling of slopes with the removal of soil and protective vegetation using heavy machinery during the summer season. Slope-ward incision on steep slopes, creation of artificial embankments by leeward deposition and development of straight ski runs perpendicular to steep slopes have resulted in both shallow and deep erosion, gullying, triggering of small landslides and even bedload transport in marginal channels. Other natural hazards have been triggered directly or indirectly due to intensification of artificial snow production. This has increased exponentially in the last decade in order to secure the skiing season under increasingly warm temperatures and erratic snowfall and decreasing snow depth and snow duration in association with climate change. The consequences are multiple. Firstly, in order to economize both costs and quantity of artificial snow production, ski runs are leveled as far as possible in order to avoid topographical irregularities, protruding vegetation or rocks. The combination of topsoil removal and prolonged duration of artificial snow cover results in a decreased vegetation cover and period as well as species alteration. Together with greatly decreased permeability of the underground, snowmelt and intensive summer precipitation trigger surface runoff, erosion and even small landslides. After more than a decade of intensive cover by artificial snow, most such steep ski runs at altitudes above 1400 m are reduced into highly erosive, vegetation-poor scree slopes in summertime. Secondly, the production of artificial snow requires increasingly large quantities of water during low flow periods and causes an exponential increase in the construction of water reservoirs and pipelines. Such reservoirs are often constructed in depressions occupied by wetlands but also on slopes, hilltops and in proglacial locations at high altitudes up to 3000m. Reservoir construction removes vegetation, soil and regolith over surface areas of up to 150 000 m2 and depths of more than 20 m. During their construction, the temporary or permanent storage of large quantities of sediment on steep slopes has lead in several cases to the production of debris flows. Each reservoir requires road construction and vehicle parking areas for heavy weight vehicle access. These are frequently subject to erosion, gullying, and small landslides. Some reservoirs are vulnerable to catastrophic drainage triggered by earthquakes, avalanches and other natural hazards typical for mountain environments since they are only sealed with plastic membranes. Thirdly, the melt of artificial snow introduced by water transfers from other catchments can cause a relatively large local surplus of water which in turn increases spring and summer flood peaks as well as sediment transport. Most steep ski runs have introduced artificial drainage canals across the ski runs to avoid concentration of surface flow and to prevent erosion. Slopes are also covered with organic soils and re-vegetated where possible. However, given the present trends of intensification of use and precipitation extremes, it is unlikely that erosion and mass movements can be prevented in the next few decades for the duration of the amortization of investments.

  14. Evidence for debris flow gully formation initiated by shallow subsurface water on Mars

    USGS Publications Warehouse

    Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.

    2010-01-01

    The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.

  15. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    NASA Astrophysics Data System (ADS)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  16. Overpressure, Low Effective Stress, and Slope Failure in the Ursa Region, Deep-Water Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sawyer, D. E.; Flemings, P. B.

    2004-12-01

    Slope failures are associated with overpressured pore fluids and low effective stresses in the Quaternary strata of the Ursa Region, deep-water Gulf of Mexico. At Ursa, a permeable turbidite sandstone (the Blue Unit) is overlain by a low-permeability mudstone. Overpressure in the mudstone, measured with a pore pressure penetrometer (piezoprobe), begin within a few meters of the seafloor and extend 250-450 meters down to the Blue Unit. The overpressure ratio (λ *=(Pp-Phydrostatic)\\ (Sv-Phydrostatic), where Sv is the overburden stress, Pp is pore pressure, and Phydrostatic is the hydrostatic pressure) ranges from 0.8 where the overburden is thin to 0.4 where the overburden is thick. Detachment surfaces, mapped with high resolution 3D seismic data, are associated with zones where effective stresses are low. Four subsurface slumps were mapped and are oriented generally northwest-southeast. Slump surface areas are less than 250 km2 and maximum scarp-wall height on the largest slide is ˜120 meters. We interpret that asymmetric loading of the Blue Unit by low-permeable mudstone has driven fluids to where overburden is thin, decreased effective stress, and generated slope instability.

  17. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    NASA Astrophysics Data System (ADS)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  18. Investigating the Formation of Mars Recurring Slope Lineae through Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Cantillo, D. C.; Hibbitts, C.; Wing, B. R.; Mushkin, A.; Stockstill-Cahill, K.; Viviano-Beck, C. E.

    2017-12-01

    The presence of low-albedo streaks on crater slopes, Recurring Slope Lineae (RSLs), may be evidence for present-day intermittent and repeated flow of water or brine on the surface of Mars. RSLs grow, fade, and can grow again seasonally as surface temperatures change [e.g. 1,2]. Although distinguishable by being darker than the surrounding terrain, they have no diagnostic absorption features [3] with the exception of a ferric feature that may be related to grain size [4] and the notable discovery of hydrated perchlorates at the base of one set of RSLs [5]. To explore liquid-based hypotheses for the formation of RSLs, we have constructed an environmental chamber that can simulate Martian surface conditions. The development of this chamber follows upon the successful completion of preliminary tests under a terrestrial atmosphere [6] to prove the optical design and subsequently under Mars pressure to verify the technical approach [7]. The Mars Analog Reflectance Spectroscopy (MARS) chamber is capable of exposing soils to brines from underneath, simulating possible subsurface wetting that could result in RSL formation. While maintaining Mars pressure and similar oxygen fugacity, the chamber will also allow the collection of spectra from 0.4 to 2.4 microns. Various brine compositions can be investigated, including solutions of iron chlorides. These unique salts can lower the soil albedo without inducing a spectral absorption feature, whereas other salts brighten the surface after drying or retain significant water [8]. Another possible darkening mechanism is also being explored within the MARS chamber. Experiments have shown that evaporation of liquid from palagonitic soils under Mars pressure create ubiquitous grain scale cavities within the surface [7]. This micro-roughness increases shadowing and darkens the surface, indicating it may be a process of darkening that is independent of brine composition.

  19. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...

  20. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...

  1. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...

  2. 30 CFR 716.2 - Steep-slope mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...

  3. Atlantic water flow through the Faroese Channels

    NASA Astrophysics Data System (ADS)

    Hansen, Bogi; Poulsen, Turið; Margretha Húsgarð Larsen, Karin; Hátún, Hjálmar; Østerhus, Svein; Darelius, Elin; Berx, Barbara; Quadfasel, Detlef; Jochumsen, Kerstin

    2017-11-01

    Through the Faroese Channels - the collective name for a system of channels linking the Faroe-Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel - there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe-Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe-Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe-Shetland Channel is totally recirculated within the combined area of the Faroe-Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv = 106 m3 s-1). Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe-Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect potential impacts from offshore activities in the region and they imply that recently published observational estimates of the transport of warm water towards the Arctic obtained by different methods are incompatible.

  4. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    PubMed

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  5. Unsteady seepage flow over sloping beds in response to multiple localized recharge

    NASA Astrophysics Data System (ADS)

    Bansal, Rajeev K.

    2017-05-01

    New generalized solutions of linearized Boussinesq equation are derived to approximate the dynamic behavior of subsurface seepage flow induced by multiple localized time-varying recharges over sloping ditch-drain aquifer system. The mathematical model is based on extended Dupuit-Forchheimer assumption and treats the spatial location of recharge basins as additional parameter. Closed form analytic expressions for spatio-temporal variations in water head distribution and discharge rate into the drains are obtained by solving the governing flow equation using eigenvalue-eigenfunction method. Downward and zero-sloping aquifers are treated as special cases of main results. A numerical example is used for illustration of combined effects of various parameters such as spatial coordinates of the recharge basin, aquifer's bed slope, and recharge rate on the dynamic profiles of phreatic surface.

  6. Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Headwater Slope Wetlands on the South Carolina Coastal Plain

    DTIC Science & Technology

    2011-09-01

    movement of the groundwater that sustains Headwater Slope wetlands are not regulated and continue to affect their distribution, character, and functions...permeability and soil porosity, thereby affecting the subsurface movement and storage of water in the soil. Soil permeability will affect the rate at...discharge time to the adjacent stream occurs over a longer period. Soil porosity will affect the volume of space available below the ground surface

  7. Analysis of rainfall-induced slope instability using a field of local factor of safety

    USGS Publications Warehouse

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  8. Groundwater phosphorus in forage-based landscape with cow-calf operation.

    PubMed

    Sigua, Gilbert C; Chase, Chad C

    2014-02-01

    Forage-based cow-calf operations may have detrimental impacts on the chemical status of groundwater and streams and consequently on the ecological and environmental status of surrounding ecosystems. Assessing and controlling phosphorus (P) inputs are, thus, considered the key to reducing eutrophication and managing ecological integrity. In this paper, we monitored and evaluated P concentrations of groundwater (GW) compared to the concentration of surface water (SW) P in forage-based landscape with managed cow-calf operations for 3 years (2007-2009). Groundwater samples were collected from three landscape locations along the slope gradient (GW1 10-30% slope, GW2 5-10% slope, and GW3 0-5% slope). Surface water samples were collected from the seepage area (SW 0% slope) located at the bottom of the landscape. Of the total P collected (averaged across year) in the landscape, 62.64% was observed from the seepage area or SW compared with 37.36% from GW (GW1 = 8.01%; GW2 = 10.92%; GW3 = 18.43%). Phosphorus in GW ranged from 0.02 to 0.20 mg L(-1) while P concentration in SW ranged from 0.25 to 0.71 mg L(-1). The 3-year average of P in GW of 0.09 mg L(-1) was lower than the recommended goal or the Florida's numeric nutrients standards (NNS) of 0.12 mg P L(-1). The 3-year average of P concentration in SW of 0.45 mg L(-1) was about fourfold higher than the Florida's NNS value. Results suggest that cow-calf operation in pasture-based landscape would contribute more P to SW than in the GW. The risk of GW contamination by P from animal agriculture production system is limited, while the solid forms of P subject to loss via soil erosion could be the major water quality risk from P.

  9. Inorganic geochemistry of surface sediments of the Ebro shelf and slope, northwestern Mediterranean

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Alonso, B.

    1990-01-01

    Distributions of major, minor, and trace elements in surface sediment of the continental shelf and upper slope of the northeastern Spanish continental margin reflect the influences of discharge from the Ebro River and changes in eustatic sea levels. Multivariate factor analysis of sediment geochemistry was used to identify five groupings of samples (factors) on the shelf and slope. The first factor is an aluminosilicate factor that represents detrital clastic material. The second factor is a highly variable amount of excess SiO2 and probably represents a quartz residuum originating from winnowing of relict detrital sediments. A carbonate factor (Factor 3) has no positive correlation with other geochemical parameters but is associated with the sand-size fraction. The carbonate in these sediments consists of a mixture of biogenic calcite and angular to subangular detrital grains. Organic carbon is associated with the aluminosilicate factor (Factor 1) but also factors out by itself (Factor 4); this suggests that there may be two sources of organic matter, terrestrial and marine. The fifth factor comprises upper slope sediments that contain high concentrations of manganese. The most likely explanation for these high manganese concentrations is precipitation of Mn oxyhydroxides at the interface between Mn-rich, oxygen-deficient, intermediate waters and oxygenated surface waters. During eustatic low sea levels of the glacial Pleistocene, the Ebro Delta built across the outer continental shelf and deposited sediment with fairly high contents of organic carbon and continental components. The period of marine transgression from eustatic low (glacial) to eustatic high (interglacial) sea levels was characterized by erosion of the outer shelf delta and surficial shelf sediments and the transport of sediment across the slope within numerous canyons. Once eustatic high sea level was reached, delta progradation resumed on the inner shelf. Today, coarse-grained sediment (silt and sand) is transported to the continental shelf by Ebro River and is distributed along the inner shelf by currents generated by dominant northeasterly winds. Clay-size material is deposited on the mid- and outer-shelf. However, erosion and delta progradation during the last glacial period, and fine-grained Holocene sedimentation, have probably produced a distribution of sediment on a diachronous surface. ?? 1990.

  10. Factors of the Development of Water Erosion in the Zone of Recreation Activity in the Ol'khon Region

    NASA Astrophysics Data System (ADS)

    Znamenskaya, T. I.; Vanteeva, J. V.; Solodyankina, S. V.

    2018-02-01

    Specific features of water erosion of thin soils under conditions of nonpercolative water regime and intense recreational loads were studied in the Ol'khon region (Irkutsk oblast). An experiment on the transfer of terrigenous particles under the impact of rainfall simulation was performed. A thorough description of landscape characteristics affecting water erosion development was made. As a result, a multiple regression equation linking the transported matter with the slope steepness, projective cover of vegetation, the degree of vegetation degradation, and the fine sand content in the upper soil horizon was developed; the multiple correlation coefficient R reached 0.86. On this basis, the map of water erosion assessment for the study area was compiled with the use of landscape and topographic maps. The maximum intensity of water erosion is typical of the anthropogenically transformed landscapes on steep slopes with the low vegetative cover on the mountainous noncalcareous steppe soils and on thin loamy sandy surface-gravelly chestnut-like soils.

  11. Biophysical Factors Affecting the Distribution of Demersal Fish around the Head of a Submarine Canyon Off the Bonney Coast, South Australia

    PubMed Central

    Currie, David R.; McClatchie, Sam; Middleton, John F.; Nayar, Sasi

    2012-01-01

    We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth). PMID:22253907

  12. Transient Slope Lineae Formation in a Well-Preserved Crater

    NASA Image and Video Library

    2017-11-20

    This enhanced color image from NASA's Mars Reconnaissance Orbiter (MRO) shows what are called "recurring slope lineae"s in Tivat Crater. The narrow, dark flows descend downhill (towards the upper left). Analysis shows that the flows all end at approximately the same slope, which is similar to the angle of repose for sand. RSL are mostly found on steep rocky slopes in dark regions of Mars, such as the southern mid-latitudes, Valles Marineris near the equator, and in Acidalia Planitia on the northern plains. The appearance and growth of these features resemble seeping liquid water, but how they form remains unclear, and this research demonstrated that the RSL flows seen by HiRISE are likely moving granular material like sand and dust. These findings indicate that present-day Mars may not have a significant volume of liquid water. The water-restricted conditions that exist on Mars would make it difficult for Earth-like life to exist near the surface of the planet. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.6 centimeters (10.8 inches) per pixel (with 1 x 1 binning); objects on the order of 77 centimeters (30.3 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22114

  13. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  14. Water Flowing on Mars Today on This Week @NASA – October 2, 2015

    NASA Image and Video Library

    2015-10-02

    A major scientific discovery was announced by NASA at a Sept. 28 news conference. From its vantage point high above the Martian surface, NASA’s Mars Reconnaissance Orbiter (MRO) spacecraft has found the strongest evidence yet, that under certain circumstances, liquid water has been found on Mars. Researchers say an imaging spectrometer on MRO detected signatures of hydrated minerals on slopes where downhill streaks, known as Recurring Slope Lineae (RSL) are seen. In the past, RSL flows have been described as possibly related to liquid water. But the new findings of hydrated minerals is key evidence. Hydrated salts can lower the freezing point of liquid brine – and produce liquid water. Also, Life beyond Earth in the next decade?, “The Martian” screening event, Cargo ship departs space station, New cargo ship delivers to space station, Rare double celestial treat and Espacio a Tierra!

  15. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  16. Hydrologic behavior of model slopes with synthetic water repellent soils

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  17. Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream

    NASA Astrophysics Data System (ADS)

    Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.

    1990-08-01

    An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.

  18. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Kawamura, N.; Kawamura, K.; Ishikawa, N.

    2008-03-01

    Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

  19. A study on a instability slope in Taiwan subjected to rainfalls

    NASA Astrophysics Data System (ADS)

    Hsiao, D. H.; Hsieh, C. S.; Yeh, L. C.; Lin, D. Y.; T-A Phan, V.

    2018-04-01

    After the long-term monitoring on the Chaishan area in Taiwan from 2005 to 2012 by Kaohsiung City Government, the obtained results showed that annual lateral displacements in the region are about 7-8cm to the Taiwan Strait. The geological surface profiles of Chaishan area are in sequence weathered limestone, clay layer, limestone and mudstone layer, respectively. Thus the frictional resistance between weathered soils and rock layer could decrease after infiltration of rainwater due to impervious to water of the lowest mudstone layer. Typhoon invades often Taiwan each year, resulting in rainfall infiltration and rising groundwater level, as well as increased pore water pressure within the soil mass, causing the earth movements in some parts of Chaishan, especially in the Temple A (Shan Hai Temple) accompanied with cracking phenomenon. In this paper, limit equilibrium (LE) and finite element method (FEM) are used for slope analysis, in which the slope is considered as unsaturated soil. Results showed groundwater amounts are easy to accumulate and increasing pore water pressure give resulting in decreased safety factor. Both of groundwater level and rain durations were also considered in this study.

  20. Oil Slick Observation at Low Incidence Angles in Ku-Band

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  1. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  2. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    PubMed

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0.925 Pa, respectively.

  3. On the parameters influencing air-water gas exchange

    NASA Astrophysics Data System (ADS)

    JäHne, Bernd; Münnich, Karl Otto; BöSinger, Rainer; Dutzi, Alfred; Huber, Werner; Libner, Peter

    1987-02-01

    Detailed gas exchange measurements from two circular and one linear wind/wave tunnels are presented. Heat, He, CH4, CO2, Kr, and Xe have been used as tracers. The experiments show the central importance of waves for the water-side transfer process. With the onset of waves the Schmidt number dependence of the transfer velocity k changes from k ∝ Sc-⅔ to k ∝ Sc-½indicating a change in the boundary conditions at the surface. Moreover, energy put into the wave field by wind is transferred to near-surface turbulence enhancing gas transfer. The data show that the mean square slope of the waves is the best parameter to characterize the free wavy surface with respect to water-side transfer processes.

  4. The indication of Martian gully formation processes by slope-area analysis

    USGS Publications Warehouse

    Conway, S.J.; Balme, M.R.; Murray, J.B.; Towner, M.C.; Okubo, C.H.; Grindrod, P.M.

    2011-01-01

    The formation process of recent gullies on Mars is currently under debate. This study aims to discriminate between the proposed formation processes - pure water flow, debris flow and dry mass wasting - through the application of geomorphological indices commonly used in terrestrial geomorphology. High-resolution digital elevation models (DEMs) of Earth and Mars were used to evaluate the drainage characteristics of small slope sections. Data from Earth were used to validate the hillslope, debris-flow and alluvial process domains previously found for large fluvial catchments on Earth, and these domains were applied to gullied and ungullied slopes on Mars. In accordance with other studies, our results indicate that debris flow is one of the main processes forming the Martian gullies that were being examined. The source of the water is predominantly distributed surface melting, not an underground aquifer. Evidence is also presented indicating that other processes may have shaped Martian crater slopes, such as ice-assisted creep and solifluction, in agreement with the proposed recent Martian glacial and periglacial climate. Our results suggest that, within impact craters, different processes are acting on differently oriented slopes, but further work is needed to investigate the potential link between these observations and changes in Martian climate. ?? The Geological Society of London 2011.

  5. Occurrence of selected herbicides and herbicide degradation products in Iowa's Ground Water, 1995

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.; Goolsby, D.A.; Sneck-Fahrer, D. A.; Thurman, E.M.

    1997-01-01

    The occurrence of herbicide compounds had a significant, inverse relation to well depth and a significant, positive relation to dissolved-oxygen concentration. It is felt that both well depth and dissolved oxygen are acting as rough surrogates to ground-water age, with younger ground water being more likely to contain herbicide compounds. The occurrence of herbicide compounds was substantially different among the major aquifer types across Iowa, being detected in 82.5% of the alluvial, 81.8% of the bedrock/ karst region, 40.0% of the glacial-drift, and 25.0% of the bedrock/nonkarst region aquifers. The observed distribution was partially attributed to variations in general ground-water age among these aquifer types. A significant, inverse relation was determined between total herbicide compound concentrations in ground water and the average soil slope within a 2-km radius of sampled wells. Steeper soil slopes may increase the likelihood of surface runoff occurring rather than ground-water infiltration–decreasing the transport of herbicide compounds to ground water. As expected, a significant positive relation was determined between intensity of herbicide use and herbicide concentrations in ground water.

  6. Coloured Dissolved Organic Matter (CDOM) dynamics in small surface reservoirs in semiarid Brazil

    NASA Astrophysics Data System (ADS)

    Coelho, Christine; Foerster, Saskia; Heim, Birgit; de Araujo, Jose Carlos

    2016-04-01

    Coloured Dissolved Organic Matter (CDOM) is one of the major light absorbing constituents in freshwaters. Supplied from degradation of components of the aquatic environment, it consists mainly of humic substances and its concentration is strongly related to primary production, often associated to macrophytes. It plays a central role in several biological and chemical processes affecting the bioavailability of nutrients in aquatic ecosystems. Therefore CDOM can be regarded as a water quality indicator. We used the spectral absorption and spectral slope for understanding CDOM dynamics in surface reservoirs in the Brazilian semiarid region. The analysis was based on water samples collected in three reservoirs in a total of ten sampling locations in the period June 2014 to November 2015 with monthly to bi-monthly intervals totaling 120 samples. The collected water samples were filtered through cellulose acetate membrane filters. Subsequently, spectral absorbance was measured in a Lambda 950 UV-VIS spectrometer in the spectral range 250 to 800 nm using a quartz cuvette with 5 cm optical path. From the absorbance measurement, we obtained CDOM content using the specific absorption coefficient at 440nm as well as spectral slope. The average slope for the entire period for all reservoirs is 0,018, but we found a considerable increase in spectral slope values after the wet period (between February 2014 and June 2014) for the reservoirs São Nicolau and Paus Branco while Marengo reservoir showed only slight variations during this period, but exhibited an increase only in the dry period. Regarding aCDOM(440), the average was equal to 2,55 for Marengo, 5,70 for São Nicolau, and 3,53 for Paus Branco reservoir indicating different characteristics of these reservoirs. We noticed a decrease in the absorption coefficient for São Nicolau and Paus Branco reservoirs at the end of the wet period whereas for Marengo reservoir this value showed a different behavior. Spectral slope and spectral absorption seem consistent and, among other possible factors, its dynamics were affected by high evaporation and low precipitation, typical conditions for semiarid regions in the tropics. The results show also evidence of the hysteresis phenomenon related to humic substance properties. However, it is important to consider also other water quality parameters in order to assess the whole interaction occurring in the reservoirs under eutrophic conditions. This is a first study of the application of spectral absorption and spectral slope of CDOM for small reservoirs in semiarid Brazil providing additional information to the traditional water quality measurements. In the future, we plan to relate the in-situ measurements to satellite imagery to study spatio-temporal water quality dynamics and relate them to land use changes.

  7. Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer

    NASA Astrophysics Data System (ADS)

    Casanova, Manuel; Messing, Ingmar; Joel, Abraham

    2000-01-01

    A tension infiltrometer technique was used to characterize differences in hydraulic conductivity (K) in two rain-fed hillsides (north-facing and south-facing) in central Chile. For the north-facing locations, smaller values of K (at a range of supply water pressure heads ) compared with south-facing locations were found, with accentuated differences close to saturation (zero pressure head). The differences were attributed to differences in texture and organic matter contents observed for the two sites. Furthermore, K() had a tendency to increase with increasing slope gradient. This tendency was to an extent explained by the deviation from requirements of measurements on level ground. The differences found in K() between different slope gradients were explained by the differences in the vertical and lateral hydraulic conductivity and by the occurrence of surface sealing in low slope plots.

  8. Developing a Global Network of River Reaches in Preparation of SWOT

    NASA Astrophysics Data System (ADS)

    Lion, C.; Pavelsky, T.; Allen, G. H.; Beighley, E.; Schumann, G.; Durand, M. T.

    2016-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water surfaces, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope will be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcseconds spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus 2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our results for the globe.

  9. The impact of hydrologic segmentation on the Critical Zone water fluxes of headwater catchments

    NASA Astrophysics Data System (ADS)

    Gutierrez-Jurado, H. A.; Dominguez, M.; Guan, H.

    2017-12-01

    Headwater catchments are usually located on areas with complex terrain, where variability in aspect and microclimate give rise to contrasting vegetation cover and soil properties. This fine-scale variability in land surface conditions within a catchment is usually overlooked in hydrologic models, and the resulting differences in hydrologic dynamics across the slopes neglected. In this work we evaluate the impact of the differential hydrologic response, or as we define it here, "hydrologic segmentation" on the partition of water fluxes of contrasting slopes within a series of headwater catchments across a latitudinal gradient. Our aim is to investigate the effect of hydrologically segmenting the slopes of headwater catchments as a function of their unique aspect-vegetation-soils associations, on the water fluxes of the catchments and their potential consequences on the water balance at a regional scale. Using a distributed hydrologic model and data from a series of catchments with varying land cover and climatic conditions, we run a set of simulations with and without hydrologic segmentation to assess the effect of changing the architecture of the top part of the critical zone on the evaporation, transpiration, infiltration and runoff fluxes of each catchment slope. We calibrate and compare the simulation results with observations from a network of hydrologic sensors and independent field estimates of the various water fluxes. Our results suggest that hydrologic segmentation will significantly affect both the timing and partition of evapotranspiration fluxes with direct impacts on soil moisture residence times and the potential for deep infiltration and aquifer recharge.

  10. Hydrological monitoring of a natural slope covered with loose granular pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2010-05-01

    Mountainous areas of Northern Campania, Southern Italy, are characterised by steep slopes covered with loose volcanic ashes, with very high porosity (ranging between 0.70 and 0.75), laying above a calcareous bedrock. Slope inclination is often larger than internal friction angle of such ashes (around 38°), thus equilibrium is assured by the contribution of apparent cohesion due to soil suction in unsaturated conditions. That is why, during intense and persistent rainfall events, when soil approaches saturation and consequently suction decreases, shallow landslides are frequently triggered. The physical characteristics of involved soils are such that landslides often evolve in form of debris flows, which cause huge damages to buildings and infrastructures and, in some cases, even casualties. Field hydrological monitoring is essential to develop reliable models of slope response to rainfall infiltration, allowing to define triggering conditions of landslides. An automatic monitoring station has been recently installed at the slope of Cervinara, 30 km East of Naples, where a catastrophic landslide occurred in December 1999. The station consists of a tipping bucket rain gauge, with a sensitivity to rainfall height of 0.2mm; four jet fill tensiometers, for the measurement of soil suction at the depths of 10cm, 40cm, 120cm and 160cm below ground surface; four time domain reflectometry probes of various lengths, connected through a multiplexer to a reflectometer, for the measurement of water content profile from ground surface up to a depth of 160cm. All the sensors are connected to a datalogger for the automatic acquisition at hourly frequency of experimental data. Acquired data are then stored into a magnetic memory which is periodically downloaded into a PC. The entire station is operated by a lithium battery connected to a solar panel. The first collected experimental data confirm the usefulness of simultaneous monitoring, at high temporal resolution, of rainfall height, soil suction and soil water content for a better understanding of slope infiltration processes.

  11. Seasonal and interannual variability in along-slope oceanic properties off the US West Coast: Inferences from a high-resolution regional model

    NASA Astrophysics Data System (ADS)

    Kurapov, A. L.; Pelland, N. A.; Rudnick, D. L.

    2017-07-01

    A 6 year, 2009-2014 simulation using a 2 km horizontal resolution ocean circulation model of the Northeast Pacific coast is analyzed with focus on seasonal and interannual variability in along-slope subsurface oceanic properties. Specifically, the fields are sampled on the isopycnal surface σ=26.5 kg m-3 that is found between depths of 150 and 300 m below the ocean surface over the continental slope. The fields analyzed include the depth z26.5, temperature T26.5, along-slope current v26.5, and the average potential vorticity PV between σ = 26.5 and 26.25 kg m-3. Each field is averaged in the cross-shore direction over the continental slope and presented as a function of the alongshore coordinate and time. The seasonal cycle in z26.5 shows a coherent upwelling-downwelling pattern from Mexico to Canada propagating to the north with a speed of 0.5 m s-1. The anomalously deep (-20 m) z26.5 displacement in spring-summer 2014 is forced by the southern boundary condition at 24°N as a manifestation of an emerging strong El Niño. The seasonal cycle in T26.5 is most pronounced between 36°N and 53°N indicating that subarctic waters are replaced by warmer Californian waters in summer with the speed close 0.15 m s-1, which is consistent with earlier estimates of the undercurrent speed and also present v26.5 analyses. The seasonal patterns and anomalies in z26.5 and T26.5 find confirmation in available long-term glider and shipborne observations. The PV seasonality over the slope is qualitatively different to the south and north of the southern edge of Heceta Bank (43.9°N).

  12. The role of topography and surface cover upon soil formation along hillslopes in arid climates

    NASA Astrophysics Data System (ADS)

    Yair, Aaron

    1990-09-01

    Two north-facing soil toposequences were selected from within the northern Negev desert, Israel, where average annual rainfall ranges from 70 to 200 mm. Both slopes are composed of an upper rocky and a lower colluvial section. Similar trends were found along both slopes. A high salt content was characteristic of soils at the top of the slope; salinity decreased downslope within the rocky slope section. The opposite occurred along the colluvial slopes, with salinity increasing sharply downslope. At any location along the slopes the northernmost soil toposequence site (160 mm average annual rainfall) represents, from a pedological point of view, an environment which is far more arid than its climatologically drier, more southern counterpart. The explanation provided for the variation of soil proporties at the scale of single hillslopes and at the regional scale is the same. It is contended that water input into the soil, and therefore leaching intensity, is positively related to the ratio of bedrock/soil cover. Rocky areas have limited infiltration, thus yielding high runoff rates into adjoining soil-covered areas, and contribute to water concentration, deeper infiltration and leaching intensity. Soil or sediment-covered areas having relatively high absorption capacities will experience reduced runoff, shallow infiltration and decreased water availability for leaching. This leads over time to salt accumulation at a shallow depth. The decrease in rock/soil ratio downslope within the colluvium is therefore held responsible for the corresponding increase in salinity. Similarly, the greater salinity of the soils in the northern site is explained by the fact that its rock/soil ratio is lower than in the southern area. The theoretical and practical implications regarding the relationship between climatic change and landscape evolution in arid areas are briefly discussed.

  13. HYDRAULICS OF THE ATCHAFALAYA BASIN MAIN CHANNEL SYSTEM: CONSIDERATIONS FROM A MULTIUSE MANAGEMENT STANDPOINT

    EPA Science Inventory

    The report examines the relationships among hydraulic elements in the Atchafalaya Basin floodway system in terms of discharge regime, sediment load, channel form and size, flood control, water surface slope, bank elevation, overbank capacity, dredging requirements, and spoil disp...

  14. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense.

    PubMed

    Townsend, D W; McGillicuddy, D J; Thomas, M A; Rebuck, N R

    2014-05-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense . Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms.

  15. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense

    PubMed Central

    Townsend, D.W.; McGillicuddy, D.J.; Thomas, M.A.; Rebuck, N.R.

    2015-01-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms. PMID:26028824

  16. Fill and spill drives runoff connectivity over frozen ground

    NASA Astrophysics Data System (ADS)

    Coles, A. E.; McDonnell, J. J.

    2018-03-01

    Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is especially true for hillslopes on the northern Great Plains of North America where long periods of snow-covered frozen ground with very shallow slopes mask any spatial patterns and process controls on connectivity and hillslope runoff generation. This study examines a 4.66 ha (46,600 m2) hillslope on the northern Great Plains during the 2014 spring snowmelt season to explore hillslope runoff processes. Specifically, we explore the spatial patterns of runoff production source areas and examine how surface topography and patterns of snow cover, snow water equivalent, soil water content, and thawed layer depth - which we measured on a 10 m grid across our 46,600 m2 hillslope - affect melt water partitioning and runoff connectivity. A key question was whether or not the controls on connectivity are consistent with the fill and spill mechanism found in rain-dominated and unfrozen soil domains. The contrast between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery to the soil surface resulted in water accumulation in small depressions under the snowpack. Consequently, infiltration was minimal over the 12 day melt period. Instead, nested filling of micro- and meso-depressions was followed by macro-scale, whole-slope spilling. This spilling occurred when large patches of ponded water exceeded the storage capacity behind downslope micro barriers in the surface topography, and flows from them coalesced to drive a rapid increase in runoff at the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface topography is relatively unimportant under unfrozen conditions at our site because of low relief and high infiltrability, surface topography shows episodically critical importance for connectivity and runoff generation when the ground is frozen.

  17. Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2002-12-01

    Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This flushing mechanism conforms with conceptual models of runoff generation in discontinuous permafrost catchments whereby water tables within permafrost-underlain slopes rise into porous organic-layers, whereupon DOC is leached into the water and rapidly conveyed to the stream.

  18. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and tectonic information in the long-profile, but a mechanistic theory for downfan deposition rate will be needed.

  19. Change Analysis of Laser Scans of Laboratory Rock Slopes Subject to Wave Attack Testing

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Lindenbergh, R.; Hofland, B.; Kramer, R.

    2017-09-01

    For better understanding how coastal structures with gentle slopes behave during high energy events, a wave attack experiment representing a storm of 3000 waves was performed in a flume facility. Two setups with different steepness of slope were compared under the same conditions. In order to quantify changes in the rock slopes after the wave attack, a terrestrial laser scanner was used to obtain 3D coordinates of the rock surface before and after each experiment. Next, through a series of processing steps, the point clouds were converted to a suitable 2D raster for change analysis. This allowed to estimate detailed and quantitative change information. The results indicate that the area around the artificial coast line, defined as the intersection between sloped surface and wave surface, is most strongly affected by wave attacks. As the distances from the sloped surface to the waves are shorter, changes for the mildly sloped surface, slope 1 (1 : 10), are distributed over a larger area compared to the changes for the more steeply sloped surface, slope 2 (1 : 5). The results of this experiment show that terrestrial laser scanning is an effective and feasible method for change analysis of rock slopes in a laboratory setting. Most striking results from a process point of view is that the transport direction of the rocks change between the two different slopes: from seaward transport for the steeper slope to landward transport for the milder slope.

  20. Physical basis for river segmentation from water surface observables

    NASA Astrophysics Data System (ADS)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  1. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    PubMed

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (<27%) to reduce risk of P losses. Thus, the risk of application sludge to sloping fields in acid soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Effectiveness of narrow grass hedges in reducing atrazine runoff under different slope gradient conditions.

    PubMed

    Wang, Qinghai; Li, Cui; Chen, Chao; Chen, Jie; Zheng, Ruilun; Que, Xiaoe

    2018-03-01

    Atrazine is frequently detected in surface runoff and poses a potential threat to the environment. Grass hedges may minimize runoff loss of atrazine from crop fields. Therefore, the effectiveness of two grass hedges (Melilotus albus and Pennisetum alopecuroides) in controlling atrazine runoff was investigated using simulated rainfall on lands at different slope gradients (15 and 20%) in northern China. Results showed that a storm (40 mm in 1 h), occurring 4 h after atrazine application, caused a loss of 3% of the applied amount. Atrazine loss under 20% slope was significantly greater than that under 15% slope in control plots. Atrazine exports associated with the water fraction accounted for the majority of total loss. Pennisetum hedges were more efficient in controlling atrazine loss with runoff compared to Melilotus hedges. No significant difference in the capacity of grass hedges to reduce atrazine exports was observed between 15 and 20% slopes. These findings suggest grass hedges are effective in minimizing atrazine runoff in northern China, and Pennisetum hedges should be preferentially used on sloping croplands in similar climatic regions.

  3. An Intercomparison of Vegetation Products from Satellite-based Observations used for Soil Moisture Retrievals

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter

    2013-04-01

    Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid areas, where the microwave signals mostly stem from the soil surface and deeper soil layers, they are negatively correlated. A second comparison of monthly values of both vegetation parameters to modelled NPP data shows that particularly over dry areas the VOD corresponds better to the NPP, with r=0.79 for VOD-NPP and r=-0.09 for slope-NPP. 1. Wagner, W., et al., A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(2): p. 938-948. 2. Owe, M., R. de Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(8): p. 1643-1654. 3. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results, 2001, Sustainable Minerals Institute, CSIRO Land and Water. 4. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosporus in Australian Landscapes: (2) Model Formulation and Testing, 2001, Sustainable Minerals Institute, CSIRO Land and Water. * These products are the joint property of INRA, CNES and VITO under copyright of Geoland2. They are generated from the SPOT VEGETATION data under copyright CNES and distribution by VITO.

  4. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  5. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    USGS Publications Warehouse

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  6. A breeze-driven current on sloped littoral waters

    NASA Astrophysics Data System (ADS)

    Tohidi, A.; Jamali, M.

    2017-12-01

    Various natural phenomena, e. g. uniform/non-uniform solar radiation and diurnal cycles, affect water circulation patterns through aquatic canopies, that is (usually shallow) shorelines of the rivers, lakes, and lagoons. Amongst these factors is vegetation that, plays a crucial role in conserving and dispersing the nutrients, oxygen, temperature, and generally regulating the life and interactions of organisms with each other (ecology) in aquatic canopies. So far, however, very little attention has been paid to the effects of very low, breeze-like, winds over the water surface in these vegetated regions. In this exploratory study, the evolution of a breeze-driven gravity current traveling up the slope towards the shorelines is shown, experimentally. The flow is characterized using Particle Image Velocimetry (PIV) technique. In addition, a detailed dimensional analysis of the parameter space of the phenomenon is conducted. The results strongly corroborate the experimental observations.

  7. Field data describing the movement and storage of sediment in the East Fork River, Wyoming; Part I, River hydraulics and sediment transport, 1979

    USGS Publications Warehouse

    Emmett, William W.; Myrick, Robert M.; Meade, Robert H.

    1980-01-01

    Bed-material gradation and water-surface slope were determined for a 3.3-kilometer reach of East Fork River, Wyo. During peak snowmelt runoff, frequent measurements of water discharge and sediment-transport rate provided data describing the inflow and outflow of water and sediment. In spring 1979, bankfull stage was exceeded on 8 days. Maximum discharge was about 32 cubic meters per second, which has a recurrence interval of about 2 years. The median particle size of bed material is 1.28 millimeters; the 35 and 65 percentiles are represented by diameters of 0.50 and 2.88 millimeters, respectively. The average water-surface slope in the reach is 0.0007 and varies little with river stage. Bedload-transport rates ranged from a little less than 0.001 to a little more than 0.1 kilograms per meter of channel width per second. Median bedload grain size, with several exceptions, ranged from 0.4 to 1.5 millimeters. Gravel-size particles generally constituted 10 to 40% of the bedload. Suspended-sediment concentrations ranged from 6 to 95 milligrams per liter. Suspended sediment smaller than sand constited about half the measured suspended sediment, ranging from 17 to 81%. (USGS)

  8. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period

    NASA Astrophysics Data System (ADS)

    Rella, Stephan F.; Tada, Ryuji; Nagashima, Kana; Ikehara, Minoru; Itaki, Takuya; Ohkushi, Ken'ichi; Sakamoto, Tatsuhiko; Harada, Naomi; Uchida, Masao

    2012-09-01

    Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (δ18Obf and δ13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive δ18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the δ18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such δ18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.

  9. Assessment of long-term erosion in a mountain vineyard, Aosta Valley (NW Italy)

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Zecca, Odoardo; Barmaz, Andrea; Godone, Franco; Cavallo, Eugenio

    2015-04-01

    Tillage and chemical weeding are common soil management techniques adopted in mountain vineyards, with high slope gradient, to maintain bare soil. Both techniques exposes the soil to degradation, favoring runoff and soil losses, that may cause relevant on-site and off-site damage. Steep mountain slopes makes optimum conditions for grape-growing. In the mountain region of Aosta Valley, NW Italy, the vineyards were, in the past, traditionally grown on terraces supported by dry stone walls. Since the 1960s the plantation of vines in the direction of the slope became more and more widespread, also on very steep slopes. Generally, no particular measure to channel and control surface water is adopted in this area due to the low rainfall (560 mm/year). Nevertheless in steep mountain slope rainfall events can cause important runoff erosion. In order to evaluate the long-term effect of vineyard management techniques on soil erosion, a study was carried out on a mountain slope vineyard located near Aosta, at about 900 m above the sea level. The vineyard was planted at the end of 1960s and is managed by the Institut Agricole Régional. The rows are accommodated oriented along the slope, which is about 45%. The inter-rows' soil management of the vineyard included chemical weeding and, in first year after plantation, the adoption of irrigation (by fixed overhead sprinklers) and hilling-up/taking-out the soil around the vine plants, to protect them from cold weather. The long-term soil erosion rate was determined adopting the technique of botanical benchmark (Casalí et al.,2009). The grafting callus was used as a marker to identify the paleo-surface at the time of planting. A detailed topographic survey was carried out to determine the present surface of the vineyard while the current position of the grafting callus was recorded for a number of plants. The original position of the callus was estimated by data obtained by farmers and by a survey on reference vineyards. Two digital elevation models (DEMs) were generated: the first depicting, the present vineyard surface and the second representing the topography of the vineyard at time of vineyard plantation, based on the height of the grafting callus above the soil. The difference between the DEMs represents the local soil loss/gain over the vineyard surface from the plantation to today. According to this calculation the estimated total soil lost across 46 years was about 800 Mg, with average annual soil loss of 58.6 Mg ha-1year -1. The long-term erosion rate estimated by the study is consistent with values reported for vineyards by other studies considering shorter periods of time. The estimated erosion rate dramatically exceeds the upper limit of the tolerable soil erosion rates (1.4 Mg ha-1 year-1) proposed for Europe by Verheijen et al. (2009). It is likely that the water and soil management practices adopted in the vineyard, besides the high slope gradient, have played a relevant role in determining the high erosion rate.

  10. Water resources of the Redwood River watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Jerabek, L.A.; Novitzki, R.P.

    1970-01-01

    The land surface slopes gently northeastward and eastward from altitudes greater than 1900 feet at the southwestern edge to less than 850 feet at the mouth of the Redwood River in the east. The area has slight local relief shaped by continental glaciation. The Redwood River and its tributaries, many of which are ephemeral, and ponds and lakes in the area provide water for local use and habitat for wildlife. The glacial drift and sedimentary rocks yield generally adequate water supplies for municipalities, households, and farms.

  11. Linear shoaling of free-surface waves in multi-layer non-hydrostatic models

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Cheung, Kwok Fai

    2018-01-01

    The capability to describe shoaling over sloping bottom is fundamental to modeling of coastal wave transformation. The linear shoaling gradient provides a metric to measure this property in non-hydrostatic models with layer-integrated formulations. The governing equations in Boussinesq form facilitate derivation of the linear shoaling gradient, which is in the form of a [ 2 P + 2 , 2 P ] expansion of the water depth parameter kd with P equal to 1 for a one-layer model and (4 N - 4) for an N-layer model. The expansion reproduces the analytical solution from Airy wave theory at the shallow water limit and maintains a reasonable approximation up to kd = 1.2 and 2 for the one and two-layer models. Additional layers provide rapid and monotonic convergence of the shoaling gradient into deep water. Numerical experiments of wave propagation over a plane slope illustrate manifestation of the shoaling errors through the transformation processes from deep to shallow water. Even though outside the zone of active wave transformation, shoaling errors from deep to intermediate water are cumulative to produce appreciable impact to the wave amplitude in shallow water.

  12. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).

  13. Raindrop and flow interactions for interrill erosion with wind-driven rain

    USDA-ARS?s Scientific Manuscript database

    Wind-driven rain (WDR) experiments were conducted to evaluate interrill component of the Water Erosion Prediction Project (WEPP) model with two-dimensional experimental set-up in wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7, 15...

  14. Effect of unstable layer depth on the pore pressure distribution, case study of the Slano Blato landslide (Slovenia)

    NASA Astrophysics Data System (ADS)

    Askarinejad, Amin; Secchi, Bandar; Macek, Matej; Petkovsek, Ana; Springman, Sarah

    2013-04-01

    The Slano Blato landslide is one of the largest landslides in Slovenia with a volume of more than 1 mio m3 of moving debris. The landslide is located at the border of Triassic limestone and Eocene flysch formations. Flysch is composed of layers of marls and sandstones. The sliding mass consists mainly of clay and clayey gravel of highly weathered and deteriorated flysch, while a minor part represents grains and blocks of limestones. (Petkovšek et al., 2009). The first documentation of an instability event dates back to 1789 and the landslide was reactivated during a heavy rain period in November 2000. Since then, the ground surface level above the unstable material on the upper zones of the landslide is significantly decreasing so that the current slope surface is now more than 10 m below the terrain surveyed in 1998. The new landslide topography results in different pore pressure distributions in the slope, which were anticipated to have a detrimental effect on the stability and movement regime of the slope. The main goal of this work is to investigate the effect of the overlying debris depth on the pore water pressure distribution during a predefined precipitation scenario. The behaviour of the unsaturated soil and the effects of fissures in the bedrock are also considered in the analysis. Hydro-mechanical simulations were performed using 2D finite element software (PLAXIS) and numerical results are compared with results from analytical models, which use a 1D steady state formulation for the hydraulic part and a 2D limit equilibrium approach to calculate the safety factors. The numerical studies show significant change in the pore water pressure distribution in the landslide body with variation of the debris depth. An increase in the debris depth leads to higher suction due to the deeper location of the water table. Higher suction increases landslide stability due to: i) increase of the effective stress and hence the shear strength of the material and ii) decrease of the unsaturated hydraulic conductivity. Accordingly, a longer rainfall event with a similar intensity is required to destabilize the slope. The calculated suction profile for the current slope surface was compared to the in situ measurements, and the results show partial agreement. The slight discrepancy might be attributed to several factors such as: i) possible difference in the height of the water table in the model and reality, ii) differences in location between observation points in numerical model and in-situ observations, as there are no tensiometers in the upper part of the slope, iii) modelling the underlying flysch layer as a homogenous and isotropic material in PLAXIS, which is not the case in reality. Reference: Petkovsek, A., Macek, M., Kocevar, M., Benko, I., Majes, B., 2009. Soil matric suction as an indicator of the mud flow occurrence. 17th International Conference of Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, 1855 - 1860.

  15. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Linville, Jenifer K.; Keller, Jason M.

    2005-01-03

    In FY 2004, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance. Monitored water-balance components included precipitation, runoff, storage, drainage, and deep percolation. Precipitation in FY 2004 was 26 percent less than in FY 2003 but was still higher than normal. The seasonal distribution in precipitation was also different from the previous year with a 43 percent reduction in spring precipitation and a 46 percent increase in summer precipitation. The cumulative amount of water received from October 1994, through September 2004, was 2,559.58more » mm on the northern half of the barrier, which is the formerly irrigated treatment, and 1,886.71 mm on the southern non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of about 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. Total drainage from the soil-covered plots range from 2.9E-4 mm to 0.22 mm or 0.003 6 0.004 percent of precipitation. Side-slope drainage was much higher at 20.9 6 2.3 percent of precipitation from the gravel and 18.6 6 5.1 percent from the riprap. There was no runoff from the barrier, but runoff from the BY tank farm following a thunderstorm in May eroded a 45-inch-deep channel into the structural fill at the toe of the riprap slope. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys were conducted on the barrier surface, including the two settlement gauges and 12 creep gauges on the riprap slope using aerial photogrammetry (AP) and a global positioning system (GPS). Comparing the aerial photogrammetry (AP) and global positioning system (GPS) surveys with the traditional survey shows the barrier and side slopes to be stable. Both AP and GPS show potential for considerable cost savings without any loss in accuracy. A relatively high coverage of native plants still persists after the initial revegetation in 1994. The formerly irrigated treatments continue to show greater cover of grasses and litter than the non-irrigated treatments. On the formerly irrigated treatments, the mean cover class was 25 to 50 percent for both grasses and shrubs. On the non-irrigated treatments, the mean cover class was 5 to 25 percent from grasses and 25 to 50 percent for shrubs. Species diversity of the vegetative community appears to have stabilized over the past several years. In addition to 12 of 17 species present in 2003 being present in 2004, two additional species were encountered. Sagebrush continues to flourish with shrubs along the perimeter showing higher biomass yield than the interior shrubs. There is evidence of sagebrush seedlings recruitment but not of rabbitbrush; the presence of gray rabbitbrush appears is declining as the barrier surface continues to stabilize. Use of the barrier surface by insects and small mammals is also evident. Small mammal burrowing on the barrier surface has become more prevalent in recent years, suggesting that the restored barrier surface is beginning to function as a recovering ecosystem. Small-mammal burrowing on the top and sides of the barrier is most prevalent on the finer-grained and disturbed soils while active ant mounds were observed on the northern and western slopes.« less

  16. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  17. Structure of the shelf and slope waters of the Antarctic Seas

    NASA Astrophysics Data System (ADS)

    Artamonova, Ksenia; Antipov, Nikolay; Gangnus, Ivan; Maslennikov, Vyacheslav

    2015-04-01

    The main objective of present work is to consider characteristics of shelf and slope waters in the Commonwealth, Ross, Amundson and Bellingshausen Seas. Data of Russian surveys led during the Antarctic summer of 2006 - 2014 on RV "Academic Fedorov"and "Academic Treshnikov"was analyzed. Distribution of temperature, salinity, dissolved oxygen, silicate, phosphates and nitrates in the water masses of the Commonwealth and Amundsen seas was shown. Significant differences in the structures of the shelf and slope waters of the seas were observed. A water structure at the oceanological sections of the Commonwealth Sea was constituted by the Antarctic Surface Water (AASW) with enough high concentration of silicate, nitrate nitrogen and phosphates compare with other areas of the World Ocean; the Upper Circumpolar Deep Water (UCDW) characterized by a minimum of the oxygen content, and a maximum of nutrient concentrations; The Lower Circumpolar Deep Water (LCDW) primary characterized by a salinity maximum and a minimum of nutritive salts as well; and the Antarctic Bottom water (AABW). It was shown that the local cold, salt and dense Antarctic Shelf water (ASW) formed in the shelf area of the Commonwealth Sea. The characteristics of ASW were defined. The ASW mixed with the CDW and their mixture (The Bottom Water of the Prydz Bay (BWPB)) moved down along the slope, and reached the bottom.The characteristics of the BWPB were analyzed. The BWPB was defined by higher content of dissolved oxygen (more 5.5 ml/l) and lower contents of biogenic elements (silicon - low 120 µМ, phosphates - low 2.35 µМ and nitrates - low 29 µМ) in the bottom layer at the slope compared with the Circumpolar Deep Water (CDW) characteristics. Interannual variability of characteristics of the water masses was observed on the repeated oceanological section along 70° E in the Commonwealth Sea. It was shown that characteristics and structure of the BWPB undergo appreciable changes year by year. The coldest (-1,5°С) and less salted (34,54‰) BWPB was observed in 2005, and in 2006 the temperature and salinity of this water were increased (-0,6°С; 34,60‰ - 34,63‰), and the thickness of a layer was much less. In 2007 as capacity of the BWPB layer, and its thermohaline characteristics (-1,2°C, 34,56 ‰) have shown again active moving down near to a bottom of the Antarctic continental slope. A water structure at the oceanological sections in the eastern Ross, Amundson and Bellingshausen Seas was constituted by the two basic water masses - the AASW and the CDW. The CDW was presented by the UCDW and LCDW. The characteristics of the UCDW and the LCDW were defined. A significant difference of the structures of these seas from the Commonwealth Sea is a free entrance to the shelf area of the CDW therefore formation of the Antarctic Shelf Water here was represented impossible.

  18. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.

  19. Equilibrium Conditions of Sediment Suspending Flows on Earth, Mars and Titan

    NASA Astrophysics Data System (ADS)

    Amy, L. A.; Dorrell, R. M.

    2016-12-01

    Sediment entrainment, erosion and deposition by liquid water on Earth is one of the key processes controlling planetary surface evolution. Similar modification of planetary surfaces by liquids associated with a volatile cycle are also inferred to have occurred on other planets (e.g., water on Mars and methane-ethane on Titan). Here we explore conditions for equilibrium flow - the threshold between net sediment erosion and deposition - on different planets. We use a new theoretical model for particle erosion-suspension-deposition: this model shows a better fit to empirical data than comparative suspension criterions (e.g., Rouse Number) since it takes into account both flow competence and capacity, and particle size distribution effects. Shear stresses required to initially entrain sediment and maintain equilibrium flow vary significantly, being several times lower on Mars and more than ten times lower on Titan resulting principally from lower gravities. On all planets it is harder to maintain equilibrium flow as sediment mixtures become poorer sorted (higher shear stresses are needed as standard deviation increases). In comparison to large differences in critical shear stresses, critical slopes for equilibrium flow are similar for planets. Compared to Earth, equilibrium slopes on Mars should be slightly lower whilst those on Titan will be higher or lower for organic and ice particle systems, respectively. Particle size distribution has a similar, order of magnitude effect, on equilibrium slope on each planet. The results highlight that whilst reduced gravity on Titan and Mars significantly decreases the bed shear stress required for particle transport, it also proportionally effects the bed shear stress of moving fluid, such that similar slope gradients are required for equilibrium flow; minor variations in equilibrium slopes are related to differences in the particle-fluid density contrasts as well as fluid viscosities. These results help explain why planetary surfaces share striking similarities in their present or past landscapes and shows that particle size distribution is critical to sediment transport dynamics. Interestingly, particle distribution may vary between planets depending on the particle compositions and weathering regimes, imposing differences in equilibrium conditions.

  20. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.

  1. Potentiometric map of the Coffee Sand Aquifer in northeastern Mississippi, October and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Coffee Sand aquifer in northeastern Mississippi is the fourth in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop areas the potentiometric surface is strongly affected by recharge from precipitation, topography, and drainage of the aquifer by streams. The potentiometric surface slopes generally to the west away from the area of outcrop and is mildly affected by moderate ground-water withdrawals by wells in Tippah and Union County. Historically, water levels in or near the outcrop of the Coffee Sand have shown little or no long-term changes as shown by a hydrograph of one well in Alcorn County. In the downdip part of the aquifer water-level declines of 2 feet per year are common. (USGS)

  2. Potentiometric map of the Sparta aquifer system in Mississippi, fall, 1980

    USGS Publications Warehouse

    Wasson, B.E.

    1980-01-01

    This potentiometric map of the Sparta aquifer system is the tenth in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. In the outcrop area of the Sparta, the potentiometric surface is strongly affected by recharge from precipitation, by topography, and by drainage of the aquifer into streams. The potentiometric surface slopes downward generally to the west away from the area of outcrop and is strongly affected by large ground-water withdrawals in the Jackson, Yazoo City, Cleveland, Clarksdale, and Memphis areas. Historically, water levels in or near the outcrop of the Sparta have shown little or no long-term changes, but during the past 20 years, in much of the confined part of the aquifer, water levels have declined from 1 to 3 feet per year. (USGS)

  3. Direct observations of the Antarctic Slope Current transport at 113°E

    NASA Astrophysics Data System (ADS)

    Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.

    2016-10-01

    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.

  4. Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.

    2014-06-01

    The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a cold pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components one, two and five) and two protein-like (a tyrosine-like component three, and a tryptophan-like component four) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355, m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.185 ± 0.05 m-1, 79.24 ± 18.01 μM) shelves, respectively. DOC concentrations, however were not significantly different, suggesting CDOM sources and sinks to be uncoupled from DOC. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components one, two, and five were most elevated in the inner shelf most likely from riverine inputs. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Water, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier meltwaters during the summer. The spectral slope S vs. ag355 relationship revealed terrestrial and oceanic end members along with intermediate water masses that were modeled using nonlinear regression equations that could allow water mass differentiation based on CDOM optical properties. Spectral slope S was negatively correlated (r2 = 0.79) with apparent oxygen utilization (AOU) for waters extending from the middle shelf into the deep Bering Sea indicating increasing microbial alteration of CDOM with depth. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.

  5. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    NASA Astrophysics Data System (ADS)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  6. AirSWOT: A New Airborne Instrument for Hydrology

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Behar, A.; Carswell, J.; Chu, V.; Farquharson, G.; Gleason, C. J.; Hensley, S.; Minear, J. T.; Moller, D.; Pavelsky, T.; Perkovic-Martin, D.; Pitcher, L. H.; Sanchez-Barmetty, M.; Smith, L. C.; Wu, X.

    2013-12-01

    The proposed NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) Mission would provide the first global inventory of storage change in fresh water bodies and river discharge. The SWOT mission would produce elevation maps and imagery of all surface water bodies using Ka-band SAR interferometry. From these data, estimates of surface water extent, stage and slope could be derived, and, in theory, from their temporal variability, river bathymetry and Manning's roughness coefficient can also be estimated, enabling estimates of river discharge. Although significant modeling work and some empirical measurements have been used to validate the feasibility of turning SWOT observables into hydrologic measurements of storage change and discharge, no data have been collected using SWOT-like measurements. To overcome this limitation, a new airborne interferometric system, called AirSWOT, has been developed by Remote Sensing Solutions and integrated, tested, and deployed on the NASA Dryden King Air B200 by the Jet Propulsion Laboratory. As part of the validation of AirSWOT, four data collections were devoted to hydrology targets. The first hydrology target consisted of a large reach of the Sacramento River north of Sacramento, CA. The reach was imaged on consecutive days, coincident with a 1,000 cubic-feet/second release from a dam. Ground data were obtained from HOBO water level loggers and gauges deployed by the USGS. An innovative GPS drifter capable of providing centimeter-level elevation measurements and river slopes was developed by UCLA/JPL and deployed along a significant fraction of the reach. The second target was the Sacramento-San Joaquin Delta region, imaged at low and high tides during the same day. For both targets, APL-UW deployed an airborne instrument suite consisting of an along-track interferometer to measure water surface velocities, a thermal infrared camera to validate measurements of river width, and an experimental lidar system. Finally, a team from UCLA, UNC, and JPL collected in situ phenology and pressure transducer data for both sites. In this work, we use the in situ data to validate AirSWOT's ability to measure hydrology parameters. The ability to identify water bodies and estimate river width will be assessed via comparisons with the optical imagery, as well as point measurements. Elevation measurements are validated against the HOBO's, pressure transducers, and the GPS drifter. The GPS drifter also provides a unique resource for validating AirSWOT's ability to measure river slope and its changes. Finally, we use AirSWOT data to validate assumptions made by the SWOT mission regarding the radar brightness of water and land, the ability to resolve water from land, and the ability to form high-resolution images of rivers. These assumptions, which to date have only a limited empirical basis, are key for assessing SWOT's ability to meet its science goals.

  7. Spectral Study of Water Tracks as an Analog for Recurring Slope Lineae

    NASA Technical Reports Server (NTRS)

    Ojha, L.; Wilhelm, M. B.; Wray, J. J.

    2013-01-01

    Liquid water is a key requirement for life on Earth, and serves as an important constraint on present day habitability on Mars. Recurring Slope Lineae (RSL) are a unique phenomenon on Mars that may be formed by brine seeps. Their morphological, seasonal and temporal characteristics support this hypothesis; however, spectral evidence has been lacking. Ojha et al., 2013 recently analyzed CRISM images from all confirmed RSL in the southern mid-latitudes and equatorial regions and found no spectro-scopic evidence for water. Instead, enhanced abun-dances or distinct grain sizes of both ferric and ferrous minerals are observed at most sites. The strength of these spectral signatures changes as a function of sea-son, possibly indicating removal of a fine-grained sur-face component during RSL flow, precipitation of fer-ric oxides, and/or wetting of the substrate. Water tracks (WT) have been suggested as a terrestrial analog for RSL by Levy et al., 2011. WT are defined as dark surface features that extend downslope in a linear or branching fashion, usually oriented along the steepest local gradient, in the Dry Valleys of Antarctica. They can be 1-3 m in width and can have lengths up to 2 km. They share many morphological and seasonal characteristics with RSL including active growth during summer seasons and fading during winter. Snowmelt, ground ice melt and deliquescence by hygroscopic salts have been suggested as possible formation mechanisms for water tracks. No spectral work to date has been reported for water tracks.

  8. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  9. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  10. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    NASA Astrophysics Data System (ADS)

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna

    2017-12-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  11. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses; Byrne, Shane; McElwaine, Jim; Urso, Anna

    2017-01-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  12. Geological Characteristics of Active Methane Expulsion In Accretionary Prism Kaoping Slope Off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chien, C.; Yang, T. F.; Lin, S.

    2005-12-01

    The Kaoping Slope off SW Taiwan represents the syn-collision accretionary prism characterized by active NW-trending folding - thrusting structures and high sedimentation rate favoring the formation of gas hydrate. For an assessment of gas hydrate potential in the Kaoping Slope off SW Taiwan, sedimentology, paleontology and geochemistry in box cores and piston cores were studied. BSRs are commonly found in seismic profiles in 400-600 m below seafloor of water depth 2500-1000 m. Active expulsions of methane were found along active thrust faults where sulfate/methane interface could be as shallow as 30 cm and the methane concentration of dissolved gases in bottom water and in pore-space of drilled core samples could be three-four order higher than the normal marine environments. Occurrences of authigenic carbonate and elongated pyrite tubes are correlated with shallow SMI depth and high methane content in bottom water and pore-space of sediment cores. Authigenic carbonates were found in seafloor surface and in 20-25 meters below seafloor. The authigenic carbonate nodules are characterized by irregular shape, whitish color, no visible microfossil, containing native sulfur, pyrites, gypsum, small open spaces, and very depleted carbon isotope (-54 ~ -43 per mil PDB). Tiny native sulfur and gypsum crystals were commonly found either on surface of foraminiferal tests and elongated pyrite tubes or in the authigenic carbonate nodules. Morphological measurements of elongated pyrite tubes show that they could represent pseudomorphs after three types of Pogonophora tube worm. Foraminifers are commonly filled by rhomboidal pyrites or cemented by pyrite crystals. Normal marine benthic foraminifers predominated by calcareous tests of slope fauna are associated with authigenic carbonate nodules in the study area, suggesting no major geochemistry effect on distribution of benthic foraminifers. Integrating sedimentology, paleontology and geochemistry characters, there could be high potential to have gas hydrate in the accretionary prism off SW Taiwan.

  13. Changes in optical characteristics of surface microlayers in the Peruvian upwelling region hint to photochemically and microbially-mediated DOM turnover

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2016-02-01

    The coastal upwelling system off Peru is characterized by high biological activity and associated subsurface oxygen minimum zone, leading to an enhanced emission of atmospheric trace gases. High biological productivity in the water column may promote the establishment of enriched organic surface films, key environments for processes regulating gas fluxes across the water-air interface. During M91 cruise to the Peruvian upwelling, we focused our attention on the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples in 38 stations determining DOC concentrations, amino acids composition, marine gels, CDOM and bacterial abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slopes (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources. Profound changes in spectral slope properties were observed suggesting smaller MW CDOM in the SML compared to underlying water. Microbial and photochemical degradation are likely the main drivers for organic matter cycling in the top layer of the ocean. Consequences on the formation of inorganic and organic species highly relevant for air-sea gas exchange and for climate dynamics will be discussed.

  14. Influence of urban surface properties and rainfall characteristics on surface water flood outputs - insights from a physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2017-04-01

    Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.

  15. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    PubMed

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An analysis of river bank slope and unsaturated flow effects on bank storage.

    PubMed

    Doble, Rebecca; Brunner, Philip; McCallum, James; Cook, Peter G

    2012-01-01

    Recognizing the underlying mechanisms of bank storage and return flow is important for understanding streamflow hydrographs. Analytical models have been widely used to estimate the impacts of bank storage, but are often based on assumptions of conditions that are rarely found in the field, such as vertical river banks and saturated flow. Numerical simulations of bank storage and return flow in river-aquifer cross sections with vertical and sloping banks were undertaken using a fully-coupled, surface-subsurface flow model. Sloping river banks were found to increase the bank infiltration rates by 98% and storage volume by 40% for a bank slope of 3.4° from horizontal, and for a slope of 8.5°, delay bank return flow by more than four times compared with vertical river banks and saturated flow. The results suggested that conventional analytical approximations cannot adequately be used to quantify bank storage when bank slope is less than 60° from horizontal. Additionally, in the unconfined aquifers modeled, the analytical solutions did not accurately model bank storage and return flow even in rivers with vertical banks due to a violation of the dupuit assumption. Bank storage and return flow were also modeled for more realistic cross sections and river hydrograph from the Fitzroy River, Western Australia, to indicate the importance of accurately modeling sloping river banks at a field scale. Following a single wet season flood event of 12 m, results showed that it may take over 3.5 years for 50% of the bank storage volume to return to the river. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  17. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.

  18. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  19. [Effects of slopes on nitrogen transport along with runoff from sloping plots on a lateritic red soil amended with sewage sludge].

    PubMed

    Chen, Yan-Hui; Chen, Ming-Hua; Wang, Guo; Chen, Wen-Xiang; Yang, Shun-Cheng; Chai, Peng

    2010-10-01

    The effects of different slopes on nitrogen transport along with runoff from sloping plots amended with sewage sludge on a lateritic red soil were studied under simulated rainfall conditions. When the sludge was broadcasted and mixed with surface soils (BM), the MTN (total nitrogen of mixing sample), STN (total nitrogen of settled sample), TPN (total particulate nitrogen), TSN (total suspended nitrogen), TDN (total dissolved nitrogen) and NH4(+) -N concentrations and nitrogen loss amounts in runoff of all treatments were highest at 1 day or 18 days after application. The highest concentrations and the loss amounts of MTN and STN in the slope runoff for the BM treatment increased with slope degree, showing increasing pollution risks to the surface waters. The STN concentration and loss amounts from the 25 degrees plots were 126.1 mg x L(-1) and 1788.6 mg x m(-2), respectively, being 4.6 times and 5.8 times of the corresponding values from the 10 degrees plots, respectively. Then the concentrations and the loss amounts of nitrogen (except NO3(-) -N) from the BM plots diminished rapidly first and then tended to be stable with dwindling differences between the slopes. The loss of MTN and STN in early runoff (1 day and 18 days) accounted for 68.6% -73.4% and 62.3% -66.7% of the cumulative loss amounts during the experimental period for all the broadcasted treatments. Runoff loss coefficients of MTN increased in the order of 20 degrees > 25 degrees > 15 degrees > 10 degrees. Nitrogen was largely lost in dissolved species while large portion of NH4(+) -N was lost with particulates.

  20. The Shoreline Management Tool - an ArcMap tool for analyzing water depth, inundated area, volume, and selected habitats, with an example for the lower Wood River Valley, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius

    2013-01-01

    The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is highly transferable, using easily generated or readily available data. The capabilities of the tool are demonstrated using data from the lower Wood River Valley adjacent to Upper Klamath and Agency Lakes in southern Oregon.

  1. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the distributions of nutrients. Results from the five transects and two time-series stations, where vertical profiles were made at hourly intervals, showed that vertical mixing processes above the slope increased the vertical transport of nutrients significantly and mixing above the slope can explain the hydrographic features and the distribution of the DCM in the area.

  2. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    NASA Technical Reports Server (NTRS)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time.

  3. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    PubMed

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  4. Regional hydrology and simulation of deep ground-water flow in the Southeastern Coastal Plain aquifer system in Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Barker, R.A.; Pernik, Maribeth

    1994-01-01

    The Southeastern Coastal Plain aquifer system is a coastward-sloping, wedge-shaped sand and gravel reservoir exposed in outcrop to a humid climate and drained by an extensive surface-water network. Ground-water pumpage has increased to about 765 cubic feet per second since 1900, causing water-level declines of more than 150 feet in places, while base flow to major streams has decreased about 350 cubic feet per second. The water-level declines and adjustments in recharge and discharge are not expected to seriously restrict future ground-water development.

  5. North-south comparison of springtime dark slope structures on Mars, and the possibility of liquid water

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Berczi, Sz.; Horvath, A.; Ganti, T.; Kuti, A.; Pocs, T.; Sik, A.; Szathmary, E.

    2008-09-01

    Introduction Various polar seasonal surface albedo structures were analyzed by several authors in the past [1, 2, 3, 4, 5, 6, 7, 8, 8, 9], partly in connection with the possibility of liquid water. In our previous work [10] we identified two groups of slope streaks emanating form Dark Dune Spots of polar dunes, which grow in size and number during spring with the advancement of the season. The diffuse shaped group appears earlier and formed probably by CO2 geysers [8]. The confine shaped group appears in a later seasonal phase, when the temperature is higher. They are probably connected with exposed water-ice on the surface, and may formed by the seepage of undercooled interfacial water on microscopic scale [11]. Methods For the analysis of northern slope structures we used MGS MOC, MRO HiRISE images, and MRG TES data [12] using the "vanilla" software. Temperature data show annual trend, and were derived for daytime. Note that the surface temperature values have spatial resolution around 3 km, and they can be taken only as a rough approach of the surface temperature of the whole dune complex, and not different parts of it. Discussion The target area of the analysis was (84N 233E) in the northern circumpolar sand sea, with 300-500 m diameter overlapping dunes. We searched for springtime confined and elongated dark slope streaks, similar to those, which we observed at south. Basic similarities between northern and southern structures are: 1. streaks always emanate from Dark Dune Spots in downward direction, 2. streaks are present in local spring, when the temperature is above the CO2 buffered level, suggesting there are parts of the surface without CO2 ice, where possibly H2O ice is exposed (Fig. 1.), 4. the streaks show branching pattern (Fig. 2.). Basic differences between the northern and southern structures: 1. at north there is a dark annulus around the Dark Dune Spots, which is absent at south, 2. there are fewer and fainter diffuse streaks of gas jet activity at north, 3. there are fewer pond-like accumulated structures at the streaks' end at north. Conclusion The branching dark pattern suggests the movement of liquid-like material, while the temperature data suggest these dark features are formed possibly in connection with H2O ice. The moving material may be composed of dry or adsorbed water [13] lubricated grains also. Based on the probably presence of waterice, and the model of adsorbed water, northern DDSslope structures may be the result of seepage by interfacial water around solar heated dune grains, as well as the southern ones. This situation may have astrobiological consequences [14] too. Acknowledgment This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation. References [1] Kieffer H. et al. (2000) 2nd Conf. Mars Pol. Sci. 93., [2] Ness & Orme JBIS (2002) 55, 85-109. [3] Piqueux S. et al. (2003) JGR 108, 5084. [4] Christensen et al. (2005) AGU, Fall Meeting #P23C- 04. [5] Malin M.C. et al., (1998) Science 279, 1681-1685. [6] Malin M.C. and Edgett K.S. (2000) XXXIth LPSC #1056. [7] Zuber T.M. (2003) Science 302, 1694-1695. [8] Kieffer H.H. et al.

  6. Centrifuge Modeling of Rainfall Induced Slope Failure

    NASA Astrophysics Data System (ADS)

    Ling, H.; Wu, M.

    2006-12-01

    Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.

  7. [Characteristics of soil moisture variation in different land use types in the hilly region of the Loess Plateau, China].

    PubMed

    Tang, Min; Zhao, Xi Ning; Gao, Xiao Dong; Zhang, Chao; Wu, Pu Te

    2018-03-01

    Soil water availability is a key factor restricting the ecological construction and sustainable land use in the loess hilly region. It is of great theoretical and practical significance to understand the soil moisture status of different land use types for the vegetation restoration and the effective utilization of land resources in this area. In this study, EC-5 soil moisture sensors were used to continuously monitor the soil moisture content in the 0-160 cm soil profile in the slope cropland, terraced fields, jujube orchard, and grassland during the growing season (from May to October) in the Yuanzegou catchment on the Loess Plateau, to investigate soil moisture dynamics in these four typical land use types. The results showed that there were differences in seasonal variation, water storage characteristics, and vertical distribution of soil moisture under different land use types in both the normal precipitation (2014) and dry (2015) years. The terraced fields showed good water retention capacity in the dry year, with the average soil moisture content of 0-60 cm soil layer in the growing season being 2.6%, 4.2%, and 1.8% higher than that of the slope cropland, jujube orchard, and grassland (all P<0.05). The water storage of 0-160 cm soil profile was 43.90, 32.08, and 18.69 mm higher than that of slope cropland, jujube orchard, and grassland, respectively. In the normal precipitation year, the average soil moisture content of 0-60 cm soil layer in jujube orchard in the growing season was 2.9%, 3.8%, and 4.5% lower than that of slope cropland, terraced fields, and grassland, respectively (all P<0.05). In the dry year, the effective soil water storage of 0-160 cm soil profile in the jujube orchard accounted for 35.0% of the total soil water storage. The grey relational grade between the soil moisture in the surface layer (0-20 cm) and soil moisture in the middle layer (20-100 cm) under different land use types was large, and the trend for the similarity degree of soil moisture variation followed terraced fields > grassland > slope cropland > jujube orchard. The slope cropland in this area could be transformed into terraced fields to improve the utilization of precipitation and promote the construction of ecological agriculture. Aiming at resolving the severe water shortage in the rain-fed jujube orchard for the sustainable development of jujube orchard in the loess hilly region, appropriate water management measures should be taken to reduce the water consumption of jujube trees and other inefficient water consumption.

  8. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea.

    PubMed

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area.

  9. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea

    PubMed Central

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C.; Daniels, Chris J.; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to shelf break and oceanic stations in the study area. PMID:27736920

  10. Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events

    PubMed Central

    Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.

    2004-01-01

    The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600

  11. Drainage hydraulics of permeable friction courses

    NASA Astrophysics Data System (ADS)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  12. The spatial and interannual dynamics of the surface water carbonate system and air-sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.

    2017-11-01

    The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air-sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.

  13. Performance of the Bowen ratio systems on a 22 deg slope

    NASA Technical Reports Server (NTRS)

    Nie, D.; Flitcroft, I.; Kanemasu, E. T.

    1990-01-01

    The Bowen ratio energy balance technique was used to assess the energy fluxes on inclined surfaces during the First ISLSCP Field Experiment (FIFE). Since air flow over sloping surface may differ from that over flat terrain, it is important to examine whether Bowen ratio measurements taken on sloping surfaces are valid. In this study, the suitability of using the Bowen ratio technique on sloping surfaces was tested by examining the assumptions that the technique requires for valid measurements. This was accomplished by studying the variation of Bowen ratio measurements along a selected slope at the FIFE site. In September 1988, four Bowen ratio systems were set up in a line along the 22 degree north-facing slope with northerly air flow (wind went up the slope). In July of 1989, six Bowen ratio systems were similarly installed with southerly air flow (the wind went down slope). Results indicated that, at distances between 10 to 40 meters from the top of the slope, no temperature or vapor pressure gradient parallel to the slope was detected. Uniform Bowen ratio values were obtained on the slope, and thus the sensible or latent heat flux should be similar along the slope. This indicates that the assumptions for valid flux measurements are reasonably met at the slope. The Bowen ratio technique should give the best estimates of the energy fluxes on slopes similar to that in this study.

  14. Discharge rating equation and hydraulic characteristics of standard Denil fishways

    USGS Publications Warehouse

    Odeh, M.

    2003-01-01

    This paper introduces a new equation to predict discharge capacity in the commonly used Denil fishway using water surface elevation in the upstream reservoir and fishway width and slope as the independent variables. A dimensionless discharge coefficient based only on the physical slope of the fishway is introduced. The discharge equation is based on flow physics, dimensional analysis, and experiments with three full-scale fishways of different sizes. Hydraulic characteristics of flow inside these fishways are discussed. Water velocities decreased by more than 50% and remained relatively unchanged in the fully developed flow downstream of the vena contracta region, near the upstream baffle where fish exit the fishway. Engineers and biologists need to be aware of this fact and ensure that fish can negotiate the vena contracta velocities rather than velocities within the developed flow region only. Discharge capacity was directly proportional to the fishway width and slope. The new equation is a design tool for engineers and field biologists, especially when designing a fishway based on flow availability in conjunction with the swimming capabilities of target fish species.

  15. Absorption and fluorescence properties of the eastern Bering Sea in the summer with special reference to the influence of a Cold Pool

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.

    2013-12-01

    The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a Cold Pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components 1, 2 and 5) and two protein-like (a tyrosine-like component 3, and a tryptophan-like component 4) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355 m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.176 ± 0.05 m-1, 80.73 ± 18.11 μM) shelves, respectively. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components 1, 2, and 5 were most elevated in the inner shelf most likely from riverine inputs. Measurements at depth in slope waters (> 250 m) revealed low values of ag355 (0.155 ± 0.03 m-1) and S (15.45 ± 1.78 μm-1) indicative of microbial degradation of CDOM in deep waters. DOC concentrations, however were not significantly different suggesting CDOM sources and sinks to be uncoupled from DOC. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Waters, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier melt waters during the summer. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.

  16. Surface current observatons--Beaufort Sea, 1972

    USGS Publications Warehouse

    Barnes, Peter; Garlow, Richard

    1975-01-01

    Sediment transport via water and ice in the Beaufort Sea off northern Alaska is related to the movement of the surficial waters. As development proceeds along the north slope of alaska, a knowledge of the potential drift trajectories of water, ice, sediment and pollutants will be needed. In an attempt to better define the probable paths and rates of transport, 4200 surface drift cards were dropped during the U.S. Coast Guard WEBSEC cruise of August and September, 1972. The results of this release are the subject of this report. Because the data presented here will be used primarily by those interested in solving problems of transport, the emphasis has been placed on data presentation rather than a detailed analysis of the circulation. (Sinha-OEIS)

  17. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    NASA Astrophysics Data System (ADS)

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  18. Florida Current surface temperature and salinity variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Curry, William

    2006-06-01

    The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (˜1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (˜0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4-1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.

  19. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    PubMed

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  20. Vulnerability of ground water to contamination, northern Bexar County, Texas

    USGS Publications Warehouse

    Clark, Amy R.

    2003-01-01

    The Trinity aquifer, composed of Lower Cretaceous carbonate rocks, largely controls the ground-water hydrology in the study area of northern Bexar County, Texas. Discharge from the Trinity aquifer recharges the downgradient, hydraulically connected Edwards aquifer one of the most permeable and productive aquifers in the Nation and the sole source of water for more than a million people in south-central Texas. The unconfined, karstic outcrop of the Edwards aquifer makes it particularly vulnerable to contamination resulting from urbanization that is spreading rapidly northward across an "environmentally sensitive" recharge zone of the Edwards aquifer and its upgradient "catchment area," composed mostly of the less permeable Trinity aquifer.A better understanding of the Trinity aquifer is needed to evaluate water-management decisions affecting the quality of water in both the Trinity and Edwards aquifers. A study was made, therefore, in cooperation with the San Antonio Water System to assess northern Bexar County's vulnerability to ground-water contamination. The vulnerability of ground water to contamination in this area varies with the effects of five categories of natural features (hydrogeologic units, faults, caves and (or) sinkholes, slopes, and soils) that occur on the outcrop and in the shallow subcrop of the Glen Rose Limestone.Where faults affect the rates of recharge or discharge or the patterns of ground-water flow in the Glen Rose Limestone, they likewise affect the risk of water-quality degradation. Caves and sinkholes generally increase the vulnerability of ground water to contamination, especially where their occurrences are concentrated. The slope of land surface can affect the vulnerability of ground water by controlling where and how long a potential contaminant remains on the surface. Disregarding the exception of steep slopes which are assumed to have no soil cover the greater the slope, the less the risk of ground-water contamination. Because most soils in the study area are uniformly thin, they have only minimal effect on the vulnerability of ground water to contamination.The results of hydrogeologic mapping during the present study divide the outcrop of the Glen Rose Limestone into five mappable intervals, labeled (youngest to oldest) A through E. Of these intervals, only the middle (C) and the lowermost (E) generally provide appreciable permeability.The vulnerability assessment provided herein was determined by combining the presumed effects of selected natural features (with individual vulnerability ratings ranging from 0 through 35) using a grid-based, multilayer system of digital datasets and geographic information system analysis. The resulting vulnerability map comprises composite vulnerability ratings that range from 26 through 104. The relatively less vulnerable areas those containing no faults, sinkholes, or caves occupy about 92 percent of the study area. The most vulnerable areas are those containing both a fault and one or more caves. The distribution of the most vulnerable areas which trend from southwest to northeast, roughly parallel to the Balcones fault zone occur mainly where faults intersect caves.

  1. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations

    USGS Publications Warehouse

    Iverson, R.M.; Major, J.J.

    1987-01-01

    We present data on rainfall, ground-water flow, and repetitive seasonal motion that occurred from 1982 to 1985 at Minor Creek landslide in northwestern Californa, and we interpret these data in the context of physically based theories. We find that landslide motion is closely regulated by the direction and magnitude of near-surface hydraulic gradients and by waves of pore pressure caused by intermittent rainfall. Hummocky topography that results from slope instability may cause ground-water flow that perpetuates instability. -from Authors

  2. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  3. Geomorphologic Analysis of Drainage Basins in Damavand Volcano Cone, Iran

    NASA Astrophysics Data System (ADS)

    Zareinejad, M.

    2011-12-01

    Damavand volcanic cone is located in the center of the Alborz chain, in the southern Caspian Sea in Iran. Damavand is a dormant volcano in Iran. It is not only the country's highest peak but also the highest mountain on the Middle East; its elevation is 5619 m. The main purpose of this paper is recognition and appraisement of drainage basins in Damavand cone from geomorphic point of view. Water causes erosion in nature in different forms and creates diverse forms on the earth surface depending on the manner of its appearance in nature. Although water is itself a former factor, it flows under morphological effect of earth surface. The difference of earth surface topography and as a result water movement on it, cause the formation of sub-basins. Identification of region drainage basins is considered as one of the requirements for Damavand cone morphometric. Thereupon, five drainage basins were identified in this research by relying on main criteria including topographic contours with 10 m intervals, drainage system, DEM map, slope map, aspect map and satellite images. (Fig 1) Area, perimeter, height classification for classifying morphological landforms in different levels, hypsometric calculations, drainage density, etc. were then calculated by using ArcGIS software. (Table 1) Damavand cone, with a height more than 5,000 meters from the sea surface, has very hard pass slopes and our purpose in this paper is to identify the effect of drainage basins conditions in the region on erosion and the formation of morphological landforms by using SPOT, ASTER, satellite images as well as papering of data in GIS environment.

  4. Fens, seasonal wetlands, and the unconfined pumice aquifer east of the Cascade Range, south-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.

    2013-12-01

    Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in pumice below the peat confining layer is up to 24 cm above the surface. Electrical conductivity in groundwater from the unconfined pumice aquifer ranged between 20 and 45 μS/cm. Rarely, electrical conductivity greater than 250 μS/cm is measured. Hydrochemistry indicates these waters are distinctly different (Ca-bicarbonate, [Fe] up to 22 mg/l) from water commonly encountered in the unconfined pumice aquifer (Na-bicarbonate, [Fe] less than 0.07 mg/l). Seasonally elevated water tables are present where pre-eruption topography allows snowmelt to accumulate in the unconfined pumice aquifer in valley bottoms and upland surfaces. Differential hardness of volcanic bedrock units control distribution in valley bottoms; emplacement processes and weathering of flow tops control distribution in upland settings. In both settings the lower pumice unit is saturated, but the upper pumice unit may be absent or thin. Alluvium commonly overlies pumice in valley bottoms. The water table may fluctuate up to 1.5 m from the spring snowmelt to late summer. Electrical conductivity in the pumice aquifer ranges between 19 and 250 μS/cm and commonly increases at single sites as the dry season progresses.

  5. The Barents Sea Polar Front in summer

    NASA Astrophysics Data System (ADS)

    Parsons, A. Rost; Bourke, Robert H.; Muench, Robin D.; Chiu, Ching-Sang; Lynch, James F.; Miller, James H.; Plueddemann, Albert J.; Pawlowicz, Richard

    1996-06-01

    In August 1992 a combined physical oceanography and acoustic tomography experiment was conducted to describe the Barents Sea Polar Front (BSPF) and investigate its impact on the regional oceanography. The study area was an 80 × 70 km grid east of Bear Island where the front exhibits topographic trapping along the northern slope of the Bear Island Trough. Conductivity-temperature-depth, current meter, and acoustic Doppler current profiler (ADCP) data, combined with tomographic cross sections, presented a highly resolved picture of the front in August. All hydrographic measurements were dominated by tidal signals, with the strongest signatures associated with the M2 and S2 semidiurnal species. Mean currents in the warm saline water to the south of the front, derived from a current meter mooring and ADCP data, were directed to the southwest and may be associated with a barotropic recirculation of Norwegian Atlantic Water (NAW) within the Bear Island Trough. The geostrophic component of the velocity was well correlated with the measured southwestward mean surface layer flow north of the front. The frontal structure was retrograde, as the frontal isopleths sloped opposite to the bathymetry. The surface signature of the front was dominated by salinity gradients associated with the confluence of Atlantic and Arctic water masses, both warmed by insolation to a depth of about 20 m. The surface manifestation of the front varied laterally on the order of 10 km associated with tidal oscillations. Below the mixed layer, temperature and salinity variations were compensating, defining a nearly barotropic front. The horizontal scale of the front in this region was ˜3 km or less. At middepth beneath the frontal interface, tomographic cross sections indicated a high-frequency (˜16 cpd) upslope motion of filaments of NAW origin. The summertime BSPF was confirmed to have many of the general characteristics of a shelf-slope frontal system [Mooers et al., 1978] as well as a topographic-circulatory front [Federov, 1983].

  6. Can hydraulic-modelled rating curves reduce uncertainty in high flow data?

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida; Lam, Norris; Lyon, Steve W.

    2017-04-01

    Flood risk assessments rely on accurate discharge data records. Establishing a reliable rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. In this study we compared the uncertainty in discharge data that resulted from these two rating curve modelling approaches. We applied both methods to a Swedish catchment, accounting for uncertainties in the stage-discharge gauging and water-surface slope data for the hydraulic model and in the stage-discharge gauging data and rating-curve parameters for the traditional method. We focused our analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken. First results show that the hydraulically-modelled rating curves were more sensitive to uncertainties in the calibration measurements of discharge than water surface slope. The uncertainty of the hydraulically-modelled rating curves were lowest within the range of the three calibration stage-discharge gaugings (i.e. between median and two-times median flow) whereas uncertainties were higher outside of this range. For instance, at the highest observed stage of the 24-year stage record, the 90% uncertainty band was -15% to +40% of the official rating curve. Additional gaugings at high flows (i.e. four to five times median flow) would likely substantially reduce those uncertainties. These first results show the potential of the hydraulically-modelled curves, particularly where the calibration gaugings are of high quality and cover a wide range of flow conditions.

  7. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.

    2009-01-01

    Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

  8. The Hydromechanics of Vegetation for Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  9. A national scale monitoring network for nutrients in agriculture dominated headwaters in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Rozemeijer, J.; Klein, J.

    2012-04-01

    Although specific monitoring networks exist in the Netherlands which assess the leaching of nutrients to surface waters and groundwater, none of them was capable to quantify the effects of nutrient reduction schemes to agriculture dominated headwaters. Thus, an important link was missing which relates the nutrient concentrations measured in shallow groundwater at farm scale to nutrient concentrations measured at the scale of Water Framework Directive water bodies. A new network was composed using existing monitoring locations and water quality time series owned by the 24 water boards in the Netherlands. Only monitoring locations were selected where no other pollution sources , such as water sewage treatment plants were influencing water quality. Eventually, 168 monitoring locations were selected to assess compliance to environmental standards and 80 for trend analysis. Compliance was tested applying environmental quality standards (EQS) based on summer averaged concentrations, which are set by the water boards and which are water type and location dependent. Compliance was strongly weather dependent, and only 24% of the locations complied for N and P under all weather conditions. Trends were assessed using a combination of seasonal Mann-Kendall tests and Theil-Sen robust lines for individual time series, and aggregating those trends to acquire median and average trend slopes for the sand, clay and peat regions in the Netherlands. Significant downward trends were demonstrated for N and P over the whole period (slopes between -0,55 mgN/l and -0.015 and 0.02 mg P/l per 10 year). Slopes were even more pronounced for winter concentrations of N (-0.89 mg N/l per 10 year). The slopes were relevant and environmentally significant in relation to the height of the EQS and were attributed to the effective reduction of nutrient leaching as the result of adapted farming practices. The presentation will highlight and evaluate choices in the design of the newly composed network, including the use of existing monitoring data and its probable effect on the outcomes of the network.

  10. Dissolution rates of subsoil limestone in a doline on the Akiyoshi-dai Plateau, Japan: An approach from a weathering experiment, hydrological observations, and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Akiyama, Sanae; Hattanji, Tsuyoshi; Matsushi, Yuki; Matsukura, Yukinori

    2015-10-01

    This study aims at estimating the controlling factors for the denudation rates of limestone, which often forms solution dolines on karst tablelands. Our approaches include (1) electrical resistivity tomography (ERT) to reveal shallow subsurface structures and hydrological settings, (2) automated monitoring of volumetric water content in soil profiles and manual measurements of subsurface CO2 concentrations and soil water chemistry, and (3) a field weathering experiment using limestone tablets with the micro-weight loss technique for determining current denudation rates. The field experiment and monitoring were carried out over 768 days from 2009-2011 at four sites with varying topographic and hydrological conditions along the sideslope of a doline on the Akiyoshi-dai karst plateau in SW-Japan. The installation depths of the limestone tablets were 15 cm or 50 cm below the slope surface. The soil moisture conditions varied site by site. Water-saturated conditions continued for 40-50% of the whole experimental period at 50-cm depth of upper and middle sites, while only 0-10% of the experimental period was water-saturated at the other sites. Chemical analysis revealed that the soil water was chemically unsaturated with calcite for all the sites. Spatial differences in concentrations of CO2 in soil pore air were statistically less significant. The denudation rates of the buried limestone tablets were 17.7-21.9 mg cm- 2 a- 1 at the upper and middle slopes, where the soil was water-saturated for a long time after precipitation. The lowest denudation of 3.9 mg cm- 2 a- 1 was observed on lower slopes where soil was not capable of maintaining water at a near saturation level even after precipitation. Statistical analysis revealed that the denudation rates of the tablets were strongly controlled by the duration for which soil pores were saturated by water (the conditions defined here are degrees of water saturation greater than 97%). Electrical resistivity tomography indicated that areas with high soil moisture conditions were located at the deeper zone on the lower slopes and the bottom of the doline, where denudation would be faster.

  11. Non-uniform overland flow-infiltration model for roadside swales

    NASA Astrophysics Data System (ADS)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-09-01

    There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.

  12. Marine redox stratification during the early Cambrian (ca. 529-509 Ma) and its control on the development of organic-rich shales in Yangtze Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Yuying; He, Zhiliang; Jiang, Shu; Gao, Bo; Liu, Zhongbao; Han, Bo; Wang, Hu

    2017-06-01

    High resolution geochemical data from nine sections representing shelf to basinal environments in the Yangtze Platform were analyzed to reconstruct the marine redox environment during early Cambrian. Based on Fe species and Mo/TOC ratios, we have supplemented marine redox stratification during Stage 4 (late Canglangpuian-Longwangmiaoan, ˜514-509 Ma) on basis of the previously studied Stage 2-Stage 3 (Meishucunian-Qiongzhusian, ˜529-514 Ma). A new proposed marine stratified redox model indicates that the middepth "euxinic wedge" developed at the base of slope during ˜514-509 Ma in contrast to that the "euxinic wedge" prevailed at the shelf margin during ˜529-514 Ma, even though these middepth euxinic waters both occurred between the oxic surface waters and ferruginous deep waters. This marine redox stratification resulted in high production and good preservation of organic matter during early Cambrian. TOC values in euxinic waters in the middle are generally higher than in ferruginous waters due to upwelling in slope. Therefore, the lower Cambrian organic-rich shales in the Yangtze Platform are inferred to be deposited under the anoxic-ferruginous and euxinic bottom waters with moderate-strong restriction.

  13. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  14. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (<5 wt%) of dolomite are present in most samples. Petrographically, Mg-calcite peloidal matrix and acicular to botryoidal aragonitic void-filling cements are the most frequent associations. The carbon isotopic compositions of the carbonates range from -60.8 to 14.0‰ PDB, indicating complex carbon sources that include 13C-depleted biogenic and thermogenic methane, biodegraded crude oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope of the GOM do not appear to be substantially different from those found on the upper slope (<1000-m water depth). The highly variable fluids and gases that leave their geochemical imprints on seep carbonate of the middle and lower continental slope are similar to their outer shelf and upper slope counterparts.

  15. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  16. Slope streaks on Mars: A new “wet” mechanism

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2009-06-01

    Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This "wet" mechanism has a number of appealing advantages in comparison to the widely accepted "dry" granular flow mechanism. Potential tests for the "wet" mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.

  17. Infiltration and soil erosion modelling on Lausatian post mine sites

    NASA Astrophysics Data System (ADS)

    Kunth, Franziska; Schmidt, Jürgen

    2013-04-01

    Land management of reclaimed lignite mine sites requires long-term and safe structuring of recultivation areas. Erosion by water leads to explicit soil losses, especially on heavily endangered water repellent and non-vegetated soil surfaces. Beyond that, weathering of pyrite-containing lignite burden dumps causes sulfuric acid-formation, and hence the acidification of groundwater, seepage water and surface waters. Pyrite containing sediment is detached by precipitation and transported into worked-out open cuts by draining runoff. In addition to ground water influence, erosion processes are therefore involved in acidification of surface waters. A model-based approach for the conservation of man-made slopes of post mining sites is the objective of this ongoing study. The study shall be completed by modeling of the effectiveness of different mine site recultivation scenarios. Erosion risks on man-made slopes in recultivation areas should be determined by applying the physical, raster- and event based computer model EROSION 2D/3D (Schmidt, 1991, 1992; v. Werner, 1995). The widely used erosion model is able to predict runoff as well as detachment, transport and deposition of sediments. Lignite burden dumps contain hydrophobic substances that cover soil particles. Consequently, these soils show strong water repellency, which influences the processes of infiltration and soil erosion on non-vegetated, coal containing dump soils. The influence of water repellency had to be implemented into EROSION 2D/3D. Required input data for soil erosion modelling (e.g. physical soil parameters, infiltration rates, calibration factors, etc.) were gained by soil sampling and rainfall experiments on non-vegetated as well as recultivated reclaimed mine sites in the Lusatia lignite mining region (southeast of Berlin, Germany). The measured infiltration rates on the non-vegetated water repellent sites were extremely low. Therefore, a newly developed water repellency-factor was applied to depict infiltration and erosion processes on water repellent dump soils. For infiltration modelling with EROSION 2D calibration factors (e.g. water repellency factor, skin-factor, etc.) were determined in different steps by calibrating computer modelled infiltration, respectively volume rate of flow to the measured data.

  18. Sloping fan travertine, Belen, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Cook, Megan; Chafetz, Henry S.

    2017-05-01

    Pliocene to Quaternary age travertines are very well-exposed in quarries near Belen, New Mexico, U.S.A., on the western edge of the Rio Grande Rift system. A series of hillside springs produced travertine tongues tens of meters thick and hundreds of meters long. The accumulations represent deposits from individual springs as well as the amalgamation of deposits. The overall architecture is predominantly composed of sloping fans with a smaller component of terrace mounds. The sloping fan deposits commonly have a dip of < 10°, however, they range from horizontal to near vertical. Individual strata display significant changes in depositional dip, beds pinch and swell, and some are completely truncated. Centimeter to meter scale terrace mounds exhibit the common stair-step morphology. As a consequence of vertical accretion in the pools, terrace mounds morphed into sloping fans. The travertine is composed of a variety of commonly reported constituents, i.e., centimeter thick laminae of bacterial shrubs and oncoids, foam rock, sheets and rafts, and finely crystalline crusts that occur throughout the sloping fan and terrace mound accumulations. Sheets and rafts formed as precipitates in pools on the surfaces of the fans and terraces as well as spelean deposits on the water surfaces of pools within cavities in the overall accumulation. Thus, the spelean rafts provide valuable indicators of original horizontality in the sloping fan strata. In addition, intraformational breccias, composed of locally torn-up travertine intraclastic boulders and deposited in with other travertine, and extraformational breccias, composed of torn-up travertine intraclasts mixed with siliciclastic fines and sand and Paleozoic limestone clasts transported downslope from higher on the hillside, are a common constituent in the sloping fan accumulation. The Belen travertines provide a very well-exposed example of sloping fan travertines and may provide relevant data with regard to the subsurface Aptian Pre-Salt deposits, offshore Brazil.

  19. Large-scale Mass Transport Deposits in the Valencia Basin (Western Mediterranean): slope instability induced by rapid sea-level drawdown?

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Urgeles, Roger; Llopart, Jaume

    2014-05-01

    The Messinian Salinity Crisis (MSC) strongly affected the physiography of the Mediterranean margins at the end of the Miocene. The sharp sea-level fall gave a new configuration to the Mediterranean basin and created dramatic morphological and sedimentological changes: margins have been largely eroded whereas the deep basins accumulated thick evaporitic and detrital units. Amongst these detrital units, there are evidences on seismic reflection data for major large-scale slope failure of the Mediterranean continental margins. About 2700 km of seismic reflection profiles in the southwestern part of the Valencia Basin (Western Mediterranean) have enabled us the detailed mapping of distinctive Messinian erosional surfaces, evaporites and deep detrital deposits. The detrital deposits occur in a distinct unit that is made of chaotic, roughly-bedded or transparent seismic bodies, which have been mainly mapped in the basin domain. Locally, the seismic unit shows discontinuous high-amplitude reflections and/or an imbricate internal structure. This unit is interpreted to be formed by a series of Mass Transport Deposits (MTDs). Rapid drawdown has long been recognized as one of the most severe loadings conditions that a slope can be subjected to. Several large historical slope failures have been documented to occur due to rapid drawdown in dams, riverbanks and slopes. During drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore-water pressures within the slope may remain high. The dissipation of these pore pressures in the slope is controlled by the permeability and the storage characteristics of the slope sediments. We hypothesize that the MTDs observed in our data formed under similar conditions and represent a large-scale equivalent of this phenomenon. Therefore, these MTDs can be used to put some constraints on the duration of the drawdown phase of the MSC. We have performed a series of slope stability analysis under rapid Messinian sea-level drawdown using slope geotechnical properties and pre-conditioning factors related to the geological setting of the Valencia Basin. Using several sea-level fall ratios, the variation of the safety factor with respect to successive positions of the sea-level during drawdown has been evaluated.

  20. Estimating River Bathymetry, Roughness, and Discharge from Remote Sensing Measurements of River Height on the River Severn, U.K.

    NASA Astrophysics Data System (ADS)

    Durand, Michael; Neal, Jeff; Rodriguez, Ernesto

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) satellite is a swath-mapping radar interferometer that will provide water elevations over inland water bodies and over the ocean. Here we present a Bayesian algorithm that calculates a best estimate of river bathymetry, roughness coefficient, and discharge based on measurements of river height and slope. On the River Severn, UK, we use gage estimates of height and slope during an in-bank flow event to illustrate algorithm functionality. We validate our estimates of river bathymetry and discharge using in situ measurements. We first assumed that the lateral inflows from smaller tributaries were known. In this case, an accurate inverse to bathymetry and roughness was obtained giving a discharge RMSE of 10 %. We then allowed the lateral inflows to be unknown; accuracy in the bathymetry estimates dropped in this case, giving a discharge RMSE of 36 %. Finally, we explored the case where bathymetry in one reach was known; in this case, discharge RMSE was 15.6 %.

  1. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake and implications for Mars

    PubMed Central

    Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R.

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from “warm/wet” to “cold/dry” climates. PMID:23378901

  2. Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape

    NASA Technical Reports Server (NTRS)

    Staub, B.; Rosenzweig, C.; Rind, D.

    1987-01-01

    The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in.

  3. Don Juan Pond, Antarctica: near-surface CaCl(2)-brine feeding Earth's most saline lake and implications for Mars.

    PubMed

    Dickson, James L; Head, James W; Levy, Joseph S; Marchant, David R

    2013-01-01

    The discovery on Mars of recurring slope lineae (RSL), thought to represent seasonal brines, has sparked interest in analogous environments on Earth. We report on new studies of Don Juan Pond (DJP), which exists at the upper limit of ephemeral water in the McMurdo Dry Valleys (MDV) of Antarctica, and is adjacent to several steep-sloped water tracks, the closest analog for RSL. The source of DJP has been interpreted to be deep groundwater. We present time-lapse data and meteorological measurements that confirm deliquescence within the DJP watershed and show that this, together with small amounts of meltwater, are capable of generating brines that control summertime water levels. Groundwater input was not observed. In addition to providing an analog for RSL formation, CaCl(2) brines and chloride deposits in basins may provide clues to the origin of ancient chloride deposits on Mars dating from the transition period from "warm/wet" to "cold/dry" climates.

  4. Recurring Slope Lineae (RSL) Observations Suggest Widespread Occurrence and Complex Behavior

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.; Wagstaff, K.; Bue, B. D.; Michaels, T. I.

    2017-12-01

    RSL are described as narrow dark features that incrementally lengthen down steep slopes during warm seasons, fade in cold seasons, and recur annually. HiRISE observations from 5+ Mars years have allowed us to confirm 100 RSL sites and identify more than 600 candidate RSL sites. Detailed analysis of a few RSL sites has been performed using computer assisted analysis. RSL occur in low-albedo (dust-poor) regions with a latitude range of 42.2°N - 53.1°S. They are densely clustered throughout Valles Marineris (VM), in the light-toned layered deposits of Margaritifer and SW Arabia Terrae, Cerberus Fossae, and well-preserved impact craters in Chryse and Acidalia Planitae (CAP). RSL sites are also found at lower densities throughout the low-albedo highland terrains. RSL incrementally lengthen when their slopes are warm, thus the season at which RSL lengthen is dependent on latitude and slope orientation. While RSL occur on all slope orientation there is a large bias to W-facing and equatorial facing slopes. During the RSL activity season, RSL lengthening does not appear to be constant: (1) CAP RSL initially quickly lengthen and slow their lengthening rate by about an order of magnitude as temperatures increase, (2) many VM RSL sites possess RSL that fade at the same time that neighboring RSL on the same slope incrementally lengthen, and (3) some RSL sites in the southern mid-latitudes show at least two pulses of RSL activity - during the southern fall and summer RSL incrementally lengthen, fade, and then start incrementally lengthening again followed by fading as temperatures cool. The correlation of RSL activity to surface temperature, spectrally-derived hydrated salts, and quick fading all point to a wet formation mechanism. However, water sources remain problematic as water budgets suggest a much greater amount of water than could be trapped from the atmosphere. Additionally, some RSL occur in locations where subsurface discharge via an aquifer would be challenging. Thus, our presentation will exhibit the complex behaviors of RSL and compare these behaviors to wet, dry, and hybrid formation mechanisms. Overall, a formation mechanism that is consistent with all the observations remains elusive.

  5. Potentiometric map of the Gordo Aquifer in northeastern Mississippi, September, October, and November 1978

    USGS Publications Warehouse

    Wasson, B.E.

    1979-01-01

    This potentiometric map of the Gordo aquifer in northeastern Mississippi is the second in a series of maps, prepared by the U.S. Geological Survey in cooperation with the Mississippi Department of Natural Resources, Bureau of Land and Water Resources, delineating the potentiometric surfaces of the major aquifers in Mississippi. The potentiometric surface of the Gordo aquifer slopes generally to the west away from the outcrop area and it is depressed generally by large ground-water withdrawals in the Tupelo and Columbus areas. Historically, water levels in or near the outcrop of the Gordo aquifer have shown little or no long-term changes. Heavy withdrawals from the downdip area have caused long-term water-level declines of 1 to 2 feet per year in much of the confined part of the aquifer. Water-level decline in one observation well in Tupelo has averaged about 5 feet per year since 1966. (USGS)

  6. The role of soil processes in determining mechanisms of slope failure and hillslope development in a humid-tropical forest eastern Puerto Rico

    USGS Publications Warehouse

    Simon, A.; Larsen, M.C.; Hupp, C.R.

    1990-01-01

    Translational failures, with associated downslope earthflow components and shallow slides, appear to be the primary mechanism of hillslope denudation in the humid tropical forests of the mountains of eastern Puerto Rico. In-situ weathering of quartz diorite and marine-deposited volcaniclastics produces residual soil (saprolite; up to 21 m deep) / weathered rock profiles. Discontinuous zones of contrasting density and permeability particularly in quartz-diorite slopes at 0.5 m, and between 3 and 7 m, create both pathways and impedances for water that can result in excess pore pressures and, ultimately, aid in determining the location of failure planes and magnitudes of slope failures. In combination with relict fractures which create planes of weakness within the saprolite, and the potential significance of tensile stresses in the upper zone of saprolite (hypothesized to be caused by subsurface soil creep), shear failure can then occur during or after periods of heavy rainfall. Results of in-situ shear-strength testing show negative y-intercepts on the derived Mohr-Coulomb failure envelopes (approximately 50% of all tests) that are interpreted as apparent tensile stresses. Observation of tension cracks 1-2 m deep support the test data. Subsurface soil creep can cause extension of the soil and the development of tensile stresses along upper-slope segments. Shear-strength data support this hypothesis for both geologic types. Apparent values of maximum and mean tensile stress are greatest along upper slopes (16.5 and 6.29 kPa). Previously documented maximum rates of downslope movement coincided with local minima of shear strength, and the shear-strength minimum for all tests was located near 0.5 m below land surface, the shallow zone of contrasting permeabilities. These results indicate that subsurface soil creep, a slow semi-continuous process, may exert a profound influence on rapid, shallow slope failures in saprolitic soils. Data indicate that cove slopes in quartz diorite tend to be the most unstable when saturation levels reach 75%. Deep failures (7 m deep) appear the most critical but not the most frequent because pore pressure build-up will occur more rapidly in the upper perched zone of translocated clays before reaching the lower zone between 3 and 7 m. Frequent shallow failures could reduce the probability of deeper failures by removing overburden and reducing shear stress at depth. Deep failures are more likely to result from storm events of great duration and intensity. Sixty-six 'naturally occurring' and more than 100 'road-related' landslides were mapped. Forest elevations exceed 1000 m, but the majority of these failures were found between 600 and 800 m in elevation. This appears to be the area where there is sufficient concentration of subsurface water to result in excess pore pressures. The high percentage of slope failures in the 600-800-m range, relative to the percentage at higher elevations, suggests that differences in soil-water processes are responsible for the form of these mountain slopes. Steep linear segments are maintained at higher elevations. Slope angles are reduced in the 600-800-m range by frequent shallow slides, creating a largely concave surface. In combination, slope segments above 800 m, and those between 600 and 800 m, produce the characteristic form of the mountains of eastern Puerto Rico. ?? 1990.

  7. Predicting the Spatial Variability of Fuel Moisture Content in Mountainous Eucalyptus Forests

    NASA Astrophysics Data System (ADS)

    Sheridan, G. J.; Nyman, P.; Lane, P. N. J.; Metzen, D.

    2014-12-01

    In steep mountainous landscapes, topographic aspect can play a significant role in small-scale (ie. scales in the order of 10's ha) variability in surface fuel moisture. Experimental sites for monitoring microclimate variables and moisture content in litter and in near-surface soils were established at a control site and on four contrasting aspects (north, south, east and west) in southeast Australia. At each of the four microclimate sites sensors are arranged to measure the soil moisture (2 replicates), surface fuel moisture at 2.5cm depth (12 replicates), precipitation throughfall (3 replicates), radiation (3 replicates), and screen level relative humidity, air temperature, leaf wetness, and wind speed (1 replicate of each). Temperature and relative humidity are also measured within the dead fine surface fuel using Ibutton's (4 replicates). All measurements are logged continuously at 15 min intervals. The moisture content of the surface fuel is estimated using a novel method involving high-replication of low-cost continuous soil moisture sensors placed at the centre of a 5cm deep sample of fine dead surface fuel, referred to here as "litter-packs". The litter-packs were constructed from fuels collected from the area surrounding the microclimate site. The initial results show the moisture regime on the forest floor was highly sensitive to the incoming shortwave radiation, which was up to 6 times higher in the north-facing (equatorial) slopes due to slope orientation and the sparse vegetation compared to vegetation on the south-facing (polar facing) slopes. Differences in shortwave radiation resulted in peak temperatures within the litter that were up to 2 times higher on the equatorial-facing site than those on the polar-facing site. For instance, on a day in November 2013 with maximum open air temperature of 35o C, the temperatures within the litter layer at the north-facing and south-facing sites were 54o C and 32o C, respectively, despite air temperature at the two sites differing by less than 2o C. The minimum gravimetric water content in the litter layer on the same day was 21% on the equatorial-facing slope and 85% on the polar-facing slope. The experimental data has been used to calibrate a topographic downscaling algorithm, yielding estimates of surface fuel moisture at 20m resolution.

  8. Application of Geographical Information System Arc/info Grid-Based Surface Hyrologic Modeling to the Eastern Hellas Region, Mars

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Harbert, W.; Crown, D. A.

    2001-05-01

    Geographical Information System GRID-based raster modeling of surface water runoff in the eastern Hellas region of Mars has been completed. We utilized the 0.0625 by 0.0625 degree topographic map of Mars collected by the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA) instrument to model watershed and surface runoff drainage systems. Scientific interpretation of these models with respect to ongoing geological mapping is presented in Mest et al., (2001). After importing a region of approximately 77,000,000 square kilometers into Arc/Info 8.0.2 we reprojected this digital elevation model (DEM) from a Mars sphere into a Mars ellipsoid. Using a simple cylindrical geographic projection and horizontal spatial units of decimal degrees and then an Albers projection with horizontal spatial units of meters, we completed basic hydrological modeling. Analysis of the raw DEM to determine slope, aspect, flow direction, watershed and flow accumulation grids demonstrated the need for correction of single pixel sink anomalies. After analysis of zonal elevation statistics associated with single pixel sinks, which identified 0.8 percent of the DEM points as having undefined surface water flow directions, we filled single pixel sink values of 89 meters or less. This correction is comparable with terrestrial DEMs that contain 0.9 percent to 4.7 percent of cells, which are sinks (Tarboton et al., 1991). The fill-corrected DEM was then used to determine slope, aspect, surface water flow direction and surface water flow accumulation. Within the region of interest 8,776 watersheds were identified. Using Arc/Info GRID flow direction and flow accumulation tools, regions of potential surface water flow accumulation were identified. These networks were then converted to a Strahler ordered stream network. Surface modeling produced Strahler orders one through six. As presented in Mest et al., (2001) comparisons of mapped features may prove compatible with drainage networks and watersheds derived using this methodology. Mest, Scott C., Crown, David A., and Harbert, William, 2001, Highland drainage basins and valley networks in the eastern Hellas Region of Mars, Abstract 1419, Lunar and Planetary Science XXXII Meeting Houston (CDROM). Tarboton D. G., Bras, R. L., and Rodriguez-Iturbe, 1991, On the Extraction of Channel Networks from Digital Elevation Data, Hydrological Processes, v. 5, 81-100. http://viking.eps.pitt.edu

  9. Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1994

    USGS Publications Warehouse

    Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.

    1995-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 85 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 60 feet below sea level in the Waldorf area, more than 45 feet below sea level at Chalk Point, and almost 15 feet below sea level near Annapolis.

  10. Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 1995

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.

    1996-01-01

    A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 92 wells. The potentiometric surface was highest near the northwestern boundaryand outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward towards the southeast and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centeredaround well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 63 feet below sea level in the Waldorf area, more than 50 feet below sea level at Chalk Point, and almost 20 feet below sea level near Annapolis.

  11. Experimental study of overland flow resistance coefficient model of grassland based on BP neural network

    NASA Astrophysics Data System (ADS)

    Jiao, Peng; Yang, Er; Ni, Yong Xin

    2018-06-01

    The overland flow resistance on grassland slope of 20° was studied by using simulated rainfall experiments. Model of overland flow resistance coefficient was established based on BP neural network. The input variations of model were rainfall intensity, flow velocity, water depth, and roughness of slope surface, and the output variations was overland flow resistance coefficient. Model was optimized by Genetic Algorithm. The results show that the model can be used to calculate overland flow resistance coefficient, and has high simulation accuracy. The average prediction error of the optimized model of test set is 8.02%, and the maximum prediction error was 18.34%.

  12. Developing a new global network of river reaches from merged satellite-derived datasets

    NASA Astrophysics Data System (ADS)

    Lion, C.; Allen, G. H.; Beighley, E.; Pavelsky, T.

    2015-12-01

    In 2020, the Surface Water and Ocean Topography satellite (SWOT), a joint mission of NASA/CNES/CSA/UK will be launched. One of its major products will be the measurements of continental water extent, including the width, height, and slope of rivers and the surface area and elevations of lakes. The mission will improve the monitoring of continental water and also our understanding of the interactions between different hydrologic reservoirs. For rivers, SWOT measurements of slope must be carried out over predefined river reaches. As such, an a priori dataset for rivers is needed in order to facilitate analysis of the raw SWOT data. The information required to produce this dataset includes measurements of river width, elevation, slope, planform, river network topology, and flow accumulation. To produce this product, we have linked two existing global datasets: the Global River Widths from Landsat (GRWL) database, which contains river centerline locations, widths, and a braiding index derived from Landsat imagery, and a modified version of the HydroSHEDS hydrologically corrected digital elevation product, which contains heights and flow accumulation measurements for streams at 3 arcsecond spatial resolution. Merging these two datasets requires considerable care. The difficulties, among others, lie in the difference of resolution: 30m versus 3 arseconds, and the age of the datasets: 2000 versus ~2010 (some rivers have moved, the braided sections are different). As such, we have developed custom software to merge the two datasets, taking into account the spatial proximity of river channels in the two datasets and ensuring that flow accumulation in the final dataset always increases downstream. Here, we present our preliminary results for a portion of South America and demonstrate the strengths and weaknesses of the method.

  13. Evidence for Recent Liquid Water on Mars: Basic Features of Martian Gullies

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Water is the chief agent of weathering and erosion on Earth. Mars is a much drier, colder planet on which liquid water cannot exist very long at the surface because it will immediately begin to boil, evaporate, and freeze--all at the same time. However, new pictures from the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) have provided an astonishing observation which suggests that liquid water may have played a role in shaping some recent gully-like features found on the slopes of various craters, troughs, and other depressions on the red planet.

    These pictures introduce the basic features of a martian gully. The figure on the left is an example from Mars, the figure on the right is a gully on Earth. In the Earth picture, rain water flowing under and seeping along the base of a recently-deposited volcanic ash layer has created the gully. For Mars, water is not actually seen but is inferred from the landforms and their similarity to examples on Earth.

    The landforms both on Earth and Mars are divided into three parts: the alcove, the channel, and the apron. Water seeps from between layers of rock on the wall of a cliff, crater, or other type of depression. The alcove forms above the site of seepage as water comes out of the ground and undermines the material from which it is seeping. The erosion of material at the site of seepage causes rock and debris on the slope above this area to collapse and slide downhill, creating the alcove.

    The channel forms from water and debris running down the slope from the seepage area. The point where the top of the channel meets the bottom of the alcove is, in many cases, the site where seepage is occurring. Channels are probably flushed-clean of debris from time to time by large flash floods of water released from behind an ice barrier that might form at the site of seepage during more quiescent times.

    The aprons are the down-slope deposits of ice and debris that were moved down the slope and through the channel. Whether any water--likely in the form of ice--persists in these deposits is unknown. The fact that the aprons do not go very far out onto the floors of craters and troughs (e.g., the foreground of the figure on the left) indicates that there is a limit as to how much water actually makes it to the bottom of the slope in liquid form. Most of the water by the time it reaches the bottom of the slope has probably either evaporated or frozen.

    The MOC image on the left was acquired July 3, 1999, and is located on the south-facing wall of an impact crater near 54.8oS, 342.5oW. The MOC image is illuminated from the upper left; north is toward the upper right. The MOC image covers an area 1.3 km (0.8 mi) wide by 2 km (1.2 mi) long. The pictures from the flank of the Mount St. Helens volcano in Washington (right; large image and inset) were taken by MGSMOC Principal Investigator, Michael C. Malin, in the 1980s after the eruptions of May 1980. They are illuminated from the left; note footprints on left side of the picture for scale, also note the colored bar, which is 30 cm (11.8 in) long.

  14. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    USGS Publications Warehouse

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  15. Analysis of heterogeneous hydrological properties of a mountainous hillslope using intensive water flow measurements

    NASA Astrophysics Data System (ADS)

    Masaoka, Naoya; Kosugi, Ken'ichirou; Yamakawa, Yosuke; Mizuyama, Takahisa; Tsutsumi, Daizo

    2013-04-01

    Heterogeneous hydrological properties in a foot slope area of mountainous hillslopes should be assessed to understand hydrological phenomena and their effects on discharge and sediment transport. In this study, we analyzed the high-resolution and three-dimensional water movement data to clarify the hydrological process, including heterogeneous phenomena, in detail. We continuously monitored the soil matric pressure head, psi, using 111 tensiometers installed at grid intervals of approximately 1 meter within the soil mantle at the study hillslope. Under a no-rainfall condition, the existence of perennial groundwater seepage flow was detected by exfiltration flux and temporal psi waveforms, which showed delayed responses, only to heavy storm events, and gradual recession limbs. The seepage water spread in the downslope direction and supplied water constantly to the lower section of the slope. At some points in the center of the slope, a perched saturated area was detected in the middle of soil layer, while psi exhibited negative values above the bedrock surface. These phenomena could be inferred partly from the bedrock topography and the distribution of soil hydraulic conductivity assumed from the result of penetration test. At the peak of a rainfall event, on the other hand, continuous high pressure zones (i.e., psi > 50 cmH2O) were generated in the right and left sections of the slope. Both of these high pressure zones converged at the lower region, showing a sharp psi spike up to 100 cmH2O. Along the high pressure zones, flux vectors showed large values and water exfiltration, indicating the occurrence of preferential flow. Moreover, the preferential flow occurred within the area beneath the perched water, indicating the existence of a weathered bedrock layer. This layer had low permeability, which prevented the vertical infiltration of water in the upper part of the layer, but had high permeability as a result of the fractures distributed heterogeneously inside the layer. These fractures acted as a preferential flow channel and flushed the water derived from lateral flow accumulated from the upslope area during the rainfall event. These phenomena occurring at the peak of rainfall event could not be inferred from the parameters derived from the penetration test.

  16. Monitoring Atmospheric Deposition of Nitrogen in Alpine Environments in Rocky Mountain and Yosemite National Parks, USA

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Clow, D. W.; Mills, J.; Fenn, M. E.

    2011-12-01

    Recent increases in atmospheric deposition of nitrogen (N) in the western U.S. have adversely impacted surface water quality and changed the composition of aquatic biota in high-elevation lakes. Existing N deposition data are generally not spatially diverse; representation of remote wilderness areas and high-elevation watersheds is often lacking, making it difficult to assess the importance of variations in N deposition on water quality impacts. This study aims to better understand N deposition in remote environments, particularly in alpine environments, where both the quantity and environmental impact of atmospheric N deposition are poorly understood. Understanding the impacts of N deposition on these environments is important for National Park resource and water-quality managers. Using ion-exchange resin (IER) collectors, seasonal through-fall of nitrogen was measured at 29 sites in the Rocky Mountains and 21 sites in the Sierra Nevada from 2006-2011. The IER collectors, deployed in pairs, represent geographically diverse transects aimed to quantify the spatial distribution of nitrogen deposition. Placed on talus slopes or in areas of exposed bedrock, the IER collectors were installed immediately following snowmelt (June/July) and replaced with new collectors prior to the first snowfall (September). Following spring melt, the collectors deployed over the winter were exchanged with new collectors. These seasonal swaps capture winter/spring and summer/fall deposition. A majority of the sites were paired with seasonal surface-water quality samples, allowing for comparison with nitrate levels in surface waters. In the lab, N compounds are eluted from the resins, then diluted and analyzed on an ion- chromatograph. Preliminary data from 2006, representing 16 sites with uncontaminated samples in Rocky Mountain National Park, suggest higher nitrogen deposition on the east side of the park. Average summer N deposition for an 85-day exposure period at the eastern slope sites was 0.85 ± 0.21 kg/ha, and west-slope sites averaged 0.69 ± 0.12 kg/ha. Greater N deposition on the eastern slope may be related to seasonal upslope (easterly) winds, common during the spring and summer, which transport urban and agricultural pollutants into the mountains. However, an ANOVA analysis indicated that the difference in mean N deposition of the east- and west-sides were not statistically different at p < 0.05. Due to a small sample size, more data are currently being analyzed to determine if these results are representative. Ongoing analysis of samples collected from 2007-2011, in both Rocky Mountain and Yosemite National Parks, will help to place these preliminary results in context and build a more robust database from which the impacts of N deposition on high-elevation watersheds can be quantitatively determined.

  17. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    PubMed

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. SINMAP Modeling of an active landslide area in the Swabian Alb

    NASA Astrophysics Data System (ADS)

    Terhorst, Birgit; Jaeger, Daniel

    2015-04-01

    Landslides are a common hazard in German low mountain areas such as the Swabian Alb. As areas of former landslides are highly prone to secondary movements, this study aims to assess the susceptibility for landslide hazard around Mössingen-Öschingen, a region consistently affected by landslides during the last decades. Based on the history and development of mass movements and a detailed geomorphological map, slope stability was calculated using SINMAP (Stability Index Mapping). SINMAP (Pack et al., 1998; Tarboton, 1997) is based on the "infinite slope stability model" by Hammond et al. (1992) and Montgomery and Dietrich (1994) describing the ratio of slope stabilizing factors (e.g. cohesion) and slope destabilizing factors (e.g. gravitation) on a slip surface parallel to the slope. Most input parameters are determined by the relief and therefore, can be calculated from a digital terrain model (DTM, resolution 5 m). Based on the local morphology and geology, a total of 10 'calibration regions', each with similar hydrogeological characteristics, were defined. Further input parameters were: Shear strength via friction angle (Phi), cohesion (C) and hydraulic conductivity (T/R). The data was obtained from soil mechanical assessments and field/laboratory analyses. As a result, a specific stability index is calculated, describing the susceptibility of a slope movement. In a first step, the 'topographic wetness index' (derived from catchment area, slope gradient and hydraulic conductivity) was calculated. Results show several preferred (natural) drainage channels with generally higher water saturations in morphological depressions. Several of them can be linked to the location of damaged houses in the settlement area on the lower slope. The SINMAP calculation clearly revealed the impermeable Callovian clay layers as most prone to slope movements. A comparison of the susceptibility map with slide masses which were mapped during a field survey showed generally good agreements. This was in particular true for the slopes of the "Landhaussiedlung", a small settlement area east of Mössingen-Öschingen. In the uphill areas, a large landslide was triggered on June 3rd, 2013, mainly caused by heavy rainfalls during the days before. The scarp/slip surface was situated in the Callovian clay layers and in an area which was shown as susceptible for slope movements by the SINMAP model earlier Terhorst and Kreja (2009). The movement processes reactivated an old slide mass, which reached the outermost parts of the settlement area and damaged the densely built-up underground of the Landhaussiedlung. Although no house was destroyed completely by the slide mass, the induced pressure caused severe damages, rendering the buildings uninhabitable and leading to the evacuation of the Landhaussiedlung. The results show, that the modeling provided a solid identification of the vulnerable slope areas. The recent landslide area is almost completely situated in a region modeled as vulnerable for slope movements. Therefore, the landslide event of 2013 practically validated the susceptibility map. On the base of solid data and under consideration of detailed and differentiated information, SINMAP is a powerful tool for the assessment of susceptibilities for translational slides. Hammond, C., Hall, D., Miller, S., Swetik, P., 1992. Level I Stability Analysis (LISA) documentation for version 2.0. General Technical Report, INT-285. U.S. Deptartment of Agriculture, Forest Service, Intermountain Research Station, Ogden. Montgomery, D.R., Dietrich, W.E., 1994. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research, 30(4), 1153-1171. Pack, R.T., Tarboton, D.G., Goodwin, C.N., 1998. The SINMAP approach to terrain stability mapping, 8th Congress of the International Association of Engineering Geology, Vancouver, Canada, pp. 8. Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309-319. Terhorst, B., Kreja, R., 2009. Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides, 6(4), 309-319.

  19. Gas Hydrate and Acoustically Laminated Sediments: Potential Environmental Cause of Anomalously Low Acoustic Bottom Loss in Deep-Ocean Sediments

    DTIC Science & Technology

    1990-02-09

    temperatures at which hydrates are stable, gas produced in deep-ocean, near -surface sediment or rising into it from below, will be transformed into gas...seafloor. When water becomes heated naturally at ridge plumes and elsewhere, it rises and is further replaced by polar-water inflow. In the North Atlantic...Bottom of HSZ1200 N j Permafrost [ / Methane hydrate-stability zone Fig. 8 - Cross section through 10 near -shore wells from the north slope of Alaska

  20. Environmental Assessment for Travis AFB C-17 Use of Instrument Routes 264, 275, 280, 281 , and 282 in Central Nevada

    DTIC Science & Technology

    2013-09-01

    alteration of surface water flows that would change existing downstream flows . Although wetlands occur within central Nevada, none of the activities...Range Ecoregion is internally drained by rivers flowing off the east slopes of the Sierra Nevada and by the Humboldt River, one of the longest...Valley and near Humboldt Lake are at the terminus of rivers; they receive return flow from flood-irrigated fields which, in turn, degrades water

  1. Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model

    PubMed Central

    Hofmann, Marco; Lux, Robert; Schultz, Hans R.

    2014-01-01

    Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively, green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over 2 years. The results showed good agreement of modeled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity (SWC) and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in SWC. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes. PMID:25540646

  2. Determination of the Wave Parameters from the Statistical Characteristics of the Image of a Linear Test Object

    NASA Astrophysics Data System (ADS)

    Weber, V. L.

    2018-03-01

    We statistically analyze the images of the objects of the "light-line" and "half-plane" types which are observed through a randomly irregular air-water interface. The expressions for the correlation function of fluctuations of the image of an object given in the form of a luminous half-plane are found. The possibility of determining the spatial and temporal correlation functions of the slopes of a rough water surface from these relationships is shown. The problem of the probability of intersection of a small arbitrarily oriented line segment by the contour image of a luminous straight line is solved. Using the results of solving this problem, we show the possibility of determining the values of the curvature variances of a rough water surface. A practical method for obtaining an image of a rectilinear luminous object in the light rays reflected from the rough surface is proposed. It is theoretically shown that such an object can be synthesized by temporal accumulation of the image of a point source of light rapidly moving in the horizontal plane with respect to the water surface.

  3. Wave trapping by dual porous barriers near a wall in the presence of bottom undulation

    NASA Astrophysics Data System (ADS)

    Kaligatla, R. B.; Manisha; Sahoo, T.

    2017-09-01

    Trapping of oblique surface gravity waves by dual porous barriers near a wall is studied in the presence of step type varying bottom bed that is connected on both sides by water of uniform depths. The porous barriers are assumed to be fixed at a certain distance in front of a vertical rigid wall. Using linear water wave theory and Darcy's law for flow past porous structure, the physical problem is converted into a boundary value problem. Using eigenfunction expansion in the uniform bottom bed region and modified mild-slope equation in the varying bottom bed region, the mathematical problem is handled for solution. Moreover, certain jump conditions are used to account for mass conservation at slope discontinuities in the bottom bed profile. To understand the effect of dual porous barriers in creating tranquility zone and minimum load on the sea wall, reflection coefficient, wave forces acting on the barrier and the wall, and surface wave elevation are computed and analyzed for different values of depth ratio, porous-effect parameter, incident wave angle, gap between the barriers and wall and slope length of undulated bottom. The study reveals that with moderate porosity and suitable gap between barriers and sea wall, using dual barriers an effective wave trapping system can be developed which will exert less wave force on the barriers and the rigid wall. The proposed wave trapping system is likely to be of immense help for protecting various facilities/ infrastructures in coastal environment.

  4. Monitoring and Assessment of Water Retention Measures in Agricultural Land

    NASA Astrophysics Data System (ADS)

    Výleta, Roman; Danáčová, Michaela; Škrinár, Andrej; Fencík, Róbert; Hlavčová, Kamila

    2017-12-01

    One of the most interesting events, from the environmental impact point of view, is the huge storm rainfall at which soil degradation processes occur. In Slovakia, agricultural areas with a higher slope have been recently increasingly denudated by water erosion processes. Areas having regular problems with muddy floods and denudation of soil particles have been currently identified. This phenomenon has long-term adverse consequences in the agricultural landscape, especially the decline in soil fertility, the influence on soil type and the reduction of depth of the soil profile. In the case of storm rainfall or long-term precipitation, soil particles are being transported and deposited at the foot of the slope, but in many cases the large amounts of sediment are transported by water in the form of muddy floods, while putting settlements and industrial zones at risk, along with contamination and clogging of watercourses and water reservoirs. These unfavourable phenomena may be prevented by appropriate management and application of technical measures, such as water level ditches, erosion-control weirs, terraces and others. The study deals with determination of the soil loss and denudation of soil particles caused by water erosion, as well as with determination of the volume of the surface runoff created by the regional torrential rains in the area of the village of Sobotište. The research is based on the analysis of flood and erosion-control measures implemented in this area. Monitoring of these level ditches for protection against muddy floods has been carried out since 2015 using UAV technology and terrestrial laser scanning. Monitoring is aimed on determination of the volume of the ditch, changes in its capacity and shape in each year. The study evaluates both the effectiveness of these measures to reduce the surface runoff as well as the amount of eroded soil particles depending on climatological conditions. The results of the research point to the good efficiency of these measures; however, in conjunction with belt crops cultivation they could form a comprehensive flood and erosion-control protection to eliminate the muddy floods and protect the settlements from surrounding slopes.

  5. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    NASA Astrophysics Data System (ADS)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.

  6. 30 CFR 77.1900 - Slopes and shafts; approval of plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1900 Slopes and shafts; approval of plans. (a) Each operator of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Slopes and shafts; approval of plans. 77.1900...

  7. “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise and its surface waste water purification

    NASA Astrophysics Data System (ADS)

    Strelkov, Alexander; Teplykh, Svetlana; Gorshkalev, Pavel; Bystranova, Anastasia

    2017-10-01

    Surface water disposal is one of the most relevant problems for Nizhniy Novgorod railway service enterprises. Waste water must be quickly removed with special drainage devices and water drainage facilities (culverts, slope drains, pipes, ditches, etc.). During “Sapsan”-carriages defrosting watse water is aggregated on railroad tracks. It leads to track bed structure sagging, roadbed washaway and damages to point switches. In this paper the authors describe a concrete system of waste water disposal from railway service enterprises. This system is realized through culverts readjusted at the foot of ballast section. Thereafter, the collected water is pumped into a water collector and to local sewage waste-disposal plants. For railway stations with three or more tracks surface runoff diversion scheme depends on topography, railway tracks types, flow discharge and is compiled individually for each object. This paper examines “Sapsan”-carriages defrosting station of Nizhniy Novgorod railway service enterprise. It presents a technology scheme and equipment consisting of Sand catcher LOS-P, Oil catcher LOS-N, pressure-tight flotation unit; drain feed pump; solution-consuming tank of the coagulant, the solution-consuming tank of flocculant. The proposed technology has been introduced into the project practice.

  8. Identifiability of altimetry-based rating curve parameters in function of river morphological parameters

    NASA Astrophysics Data System (ADS)

    Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme

    2016-04-01

    Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed elevation Z0is systematically well identified with relative errors on the order of a few %. Eventually, these altimetry-based rating curves provide morphological parameters of river reaches that can be used as inputs into hydraulic models and a priori information that could be useful for SWOT inversion algorithms.

  9. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  10. Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91

    USGS Publications Warehouse

    Ham, L.K.; Hatzell, H.H.

    1996-01-01

    During the early phase of the Georgia-Florida National Water Quality Assessment study, existing information on nutrients was compiled and analyzed in order to evaluate the nutrient concentrations within the 61,545 square mile study unit. Evaluation of the nutrient concentrations collected at surface- water sites between October 1, 1970, and September 30,1991, utilized the environmental characteristics of land resource provinces, land use, and nonpoint and point-source discharges within the study unit. Long-term trends were investigated to determine the temporal distribution of nutrient concentrations. In order to determine a level of concern for nutrient concentrations, the U.S. Environmental Protection Agency (USEPA) guidelines were used-(1) for nitrate concentrations, the maximum contaminant level in public-drinking water supplies (10 mg/L); (2) for ammonia concentrations, the chronic exposure of aquatic organisms to un-ionized ammonia (2.1 mg/L); (3) for total-phosphorus concentrations, the recommended concentration in flowing water to discourage excessive growth of aquatic plants (0.1 mg/L); and (4) for kjeldahl concentrations, however, no guidelines were available. For sites within the 10 major river basins, median nutrient concentrations were generally below USEPA guidelines, except for total-phosphorus concentrations where 45 percent of the medians exceeded the guideline. The only median ammonia concentration that exceeded the guideline occurred at the Swift Creek site (3.4 mg/L), in the Suwannee River basin, perhaps due to wastewater discharges. For all sites within the Withlacoochee, Aucilla, and St. Marys River basins, median concentrations of nitrate, ammonia, and total phosphorus were below the USEPA guidelines. Nutrient data at each monitoring site within each major basin were aggregated for comparisons of median nutrient concentrations among major basins. The Ochlockonee and Hillsborough River basins had the highest median nutrient concentrations, the Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with

  11. Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload

    NASA Astrophysics Data System (ADS)

    Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris

    2017-01-01

    When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.

  12. Static friction between rigid fractal surfaces

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  13. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.

  14. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    NASA Astrophysics Data System (ADS)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  15. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  16. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry (Idaho) using in situ and remote sensing measurements of surface currents and water surface elevation obtained during a 2010 field experiment.

  17. 200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.

    2008-02-01

    A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus inmore » funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists after the initial revegetation in 1994 although species diversity on the soil cover continues to decrease, from 35 in 1997 to 12 in 2007. The formerly irrigated treatments continue to show greater cover of grasses and litter than the non-irrigated treatments. On the formerly irrigated treatments, the mean cover class was 25 to 50 percent for both grasses and shrubs. On the non-irrigated treatments, the mean cover class was 5 to 25 percent from grasses and 25 to 50 percent for shrubs. The western and northern side slopes of the barrier show less plant cover than the soil surface, but show higher species diversity. This may be due to the influence of windblown soil and seeds from adjacent land, or the lack of shrubs competing for resources. Insects and small mammals continue to use the barrier surface and several holes and mounds were observed during the last year. This suggests that the restored barrier surface is beginning to function like a recovering ecosystem. Small-mammal burrowing on the top and sides of the barrier is most prevalent on the finer-grained and disturbed soils while active ant mounds were observed on the northern and western slopes.« less

  18. Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Cartes, J. E.; Papiol, V.; López-Pérez, C.

    2013-08-01

    The influence of mesoscale physical and trophic variables on deep-sea megafauna, a scale of variation often neglected in deep-sea studies, is crucial for understanding their role in the ecosystem. Drivers of megafaunal assemblage composition and biomass distribution have been investigated in two contrasting areas of the Balearic basin in the NW Mediterranean: on the mainland slope (Catalonian coasts) and on the insular slope (North of Mallorca, Balearic Islands). An experimental bottom trawl survey was carried out during summer 2010, at stations in both sub-areas located between 450 and 2200 m water depth. Environmental data were collected simultaneously: near-bottom physical parameters, and the elemental and isotopic composition of sediments. Initially, data were analysed along the whole depth gradient, and then assemblages from the two areas were compared. Analysis of the trawls showed the existence of one group associated with the upper slope (US=450-690 m), another with the middle slope (MS=1000-1300 m) and a third with the lower slope (LS=1400-2200 m). Also, significant differences in the assemblage composition were found between mainland and insular slopes at MS. Dominance by different species was evident when the two areas were compared by SIMPER analysis. The greatest fish biomass was recorded in both areas at 1000-1300 m, a zone linked to minimum temperature and maximum O2 concentration on the bottom. Near the mainland, fish assemblages were best explained (43% of total variance, DISTLM analysis) by prey availability (gelatinous zooplankton biomass). On the insular slope, trophic webs seemed less complex and were based on vertical input of surface primary production. Decapods, which reached their highest biomass values on the upper slope, were correlated with salinity and temperature in both the areas. However, while hydrographic conditions (temperature and salinity) seemed to be the most important variables over the insular slope, resource availability (gelatinous zooplankton and Calocaris macandreae) predominated and explained 59% of decapod assemblage variation over the mainland slope. Both fish and decapods were linked to net primary production recorded over the mainland 3 months before sampling, while the delay between the input of food from the surface and fish abundance was only 1 month on the insular slope. Our results suggest that trophic relationships over insular slopes probably involve a shorter food chain than over mainland slopes and one that is likely more efficient in terms of energy transfer.

  19. Rain, winds and haze during the Huygens probe's descent to Titan's surface

    USGS Publications Warehouse

    Tomasko, M.G.; Archinal, B.; Becker, T.; Bezard, B.; Bushroe, M.; Combes, M.; Cook, D.; Coustenis, A.; De Bergh, C.; Dafoe, L.E.; Doose, L.; Doute, S.; Eibl, A.; Engel, S.; Gliem, F.; Grieger, B.; Holso, K.; Howington-Kraus, E.; Karkoschka, E.; Keller, H.U.; Kirk, R.; Kramm, R.; Kuppers, M.; Lanagan, P.; Lellouch, E.; Lemmon, M.; Lunine, J.; McFarlane, E.; Moores, J.; Prout, G.M.; Rizk, B.; Rosiek, M.; Rueffer, P.; Schroder, S.E.; Schmitt, B.; See, C.; Smith, P.; Soderblom, L.; Thomas, N.; West, R.

    2005-01-01

    The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent. ?? 2005 Nature Publishing Group.

  20. Increased Water Storage at Ice-stream Onsets: A Critical Mechanism?

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Choi, Hyeungu

    2007-01-01

    The interdependence of rapid ice flow, surface topography and the spatial distribution of subglacial water are examined by linking existing theories. The motivation is to investigate whether the acceleration of an ice-stream tributary contains a positive feedback that encourages the retention of subglacial water that leads to faster flow. Periodically varying surface and bed topographies are related through a linear ice-flow perturbation theory for various values of mean surface slope, perturbation amplitude and basal sliding speeds. The topographic variations lead to a periodic variation in hydraulic potential that is used to infer the tendency for subglacial water to be retained in local hydraulic potential minima. If water retention leads to enhanced basal sliding, a positive feedback loop is closed that could explain the transition from slower tributary flow to faster-streaming flow and the sustained downstream acceleration along the tributary-ice-stream system. A sensitivity study illustrates that the same range of topographic wavelengths most effectively transmitted from the bed to the surface also strongly influences the behavior of subglacial water. A lubrication index is defined to qualitatively measure the heterogeneity of the subglacial hydrologic system. Application of this index to field data shows that the transition from tributary to ice stream closely agrees with the location where subglacial water may be first stored.

  1. Surface Water Records of California, 1961; Volume 1: Colorado River Basin, Southern Great Basin and Pacific Slope Basins excluding Central Valley

    USGS Publications Warehouse

    1961-01-01

    Beginning with the 1961 water year, streamflow records and related data will be released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these basicdata reports will be limited and primarily for local needs. The records later will be published in Geological Survey water-supply papers at 5-year intervals. These 5-year water-supply papers will show daily discharge and will be compiled on the same geographical areas previously used for the annual series; however, some of the 14 parts of conterminous United States will be further subdivided.

  2. Seepage phenomena on Mars at subzero temperature

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  3. Response of Moist Convection to Multi-scale Surface Flux Heterogeneity

    NASA Astrophysics Data System (ADS)

    Kang, S. L.; Ryu, J. H.

    2015-12-01

    We investigate response of moist convection to multi-scale feature of the spatial variation of surface sensible heat fluxes (SHF) in the afternoon evolution of the convective boundary layer (CBL), utilizing a mesoscale-domain large eddy simulation (LES) model. The multi-scale surface heterogeneity feature is analytically created as a function of the spectral slope in the wavelength range from a few tens of km to a few hundreds of m in the spectrum of surface SHF on a log-log scale. The response of moist convection to the κ-3 - slope (where κ is wavenumber) surface SHF field is compared with that to the κ-2 - slope surface, which has a relatively weak mesoscale feature, and the homogeneous κ0 - slope surface. Given the surface energy balance with a spatially uniform available energy, the prescribed SHF has a 180° phase lag with the latent heat flux (LHF) in a horizontal domain of (several tens of km)2. Thus, warmer (cooler) surface is relatively dry (moist). For all the cases, the same observation-based sounding is prescribed for the initial condition. For all the κ-3 - slope surface heterogeneity cases, early non-precipitating shallow clouds further develop into precipitating deep thunderstorms. But for all the κ-2 - slope cases, only shallow clouds develop. We compare the vertical profiles of domain-averaged fluxes and variances, and the contribution of the mesoscale and turbulence contributions to the fluxes and variances, between the κ-3 versus κ-2 slope cases. Also the cross-scale processes are investigated.

  4. Solution algorithm of dwell time in slope-based figuring model

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  5. Applying the Manning equation to determine the critical distance in non-point source pollution using remotely sensed data and cartographic modelling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe

    2013-10-01

    Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.

  6. Rippled Surfaces on a Slope in Coloe Fossae

    NASA Image and Video Library

    2014-01-09

    This observation from NASA Mars Reconnaissance Orbiter shows a set of landforms that appears to form a nested chevron pattern on a slope in Coloe Fossae. Interestingly, nearby surfaces on the same slope are all parallel.

  7. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    PubMed

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  8. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides

    PubMed Central

    Puzrin, Alexander M.; Gray, Thomas E.; Hill, Andrew J.

    2015-01-01

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach—determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope. PMID:25792958

  9. Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.

    2014-04-01

    In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.

  10. Effect of vegetation construction on runoff and sediment yield and runoff erosion ability on slope surface

    NASA Astrophysics Data System (ADS)

    Yang, Chun Xia; Xiao, PeiQing; Li, Li; Jiao, Peng

    2018-06-01

    Land consolidation measures affected the underlying surface erosion environment during the early stage of vegetation construction, and then had an impact on rainfall infiltration, erosion and sediment yield. This paper adopted the field simulated rainfall experiments to analyze the function that pockets site preparation measures affected on rainfall infiltration, runoff sediment yield and runoff erosion ability. The results showed that, the measures can delay the rainfall runoff formation time of the slope by 3'17" and 1'04" respectively. Compared with the same condition of the bare land and natural grassland. The rainfall infiltration coefficient each increased by 76.47% and 14.49%, and infiltration rate increased by 0.26 mm/min and 0.11mm/min respectively; The amount of runoff and sediment yield were reduced because of the pockets site preparation. The amount of runoff reducing rate were 33.51% and 30.49%, and sediment reduction rate were 81.35% and 65.66%, The sediment concentration was decreased by 71.99% and 50.58%; Runoff velocity of bare slope and natural grassland slope decreased by 38.12% and 34.59% respectively after pockets site preparation . The runoff erosion rate decreased by 67.92% and 79.68% respectively. The results will have a great significance for recognizing the effect of water and sediment reduction about vegetation and the existence of its plowing measures at the early period of restoration.

  11. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.

    2014-02-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ≤ 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.

  12. Condensation on slippery asymmetric bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be applied to a wide range of water-harvesting and phase-change heat-transfer applications.

  13. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    NASA Astrophysics Data System (ADS)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  14. Do Europa's Mountains Have Roots? Erosion of Topography at the Ice-Water Interface via the "Ice Pump"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.

  15. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case of a slope angle 70° for lower stages, FS = 1.26, which is not enough to provide slope stability. Another series of calculations were therefore performed taking water table lowering into consideration, which increases the global safety factor. It was finally evaluated, that for a water table level of 72 m the factor of safety equals 1.3, which is enough to assure global open-pit stability.

  16. Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire

    USGS Publications Warehouse

    Ebel, Brian A.

    2013-01-01

    Wildfire can change how soils take in, store, and release water. This study examined differences in how burned and unburned plots on north versus south-facing slope aspects respond to rainfall. The largest wildfire impacts were litter/duff combustion on burned north-facing slopes versus soil-water retention reduction on burned south-facing slopes.Wildfire is one of the most significant disturbances in mountainous landscapes, affecting water supply and ecologic function and setting the stage for natural hazards such as flash floods. The impacts of wildfire can affect the entire hydrologic cycle. Measurements of soil-water content and matric potential in the near surface (top 30 cm) captured the hydrologic state in both burned and unburned hillslopes during the first spring through fall period (1 June–1 Oct. 2011) after the 2010 Fourmile Canyon Fire near Boulder, CO. This time span included different hydrologic periods characterized by cyclonic frontal storms (low-intensity, long duration), convective storms (high-intensity, short duration), and dry periods. In mountainous environments, aspect can also control hydrologic states, so north- vs. south-facing slopes were compared. Wildfire tended to homogenize soil-water contents across aspects and with depth in the soil, yet it also may have introduced an aspect control on matric potential that was not observed in unburned soils. Post-wildfire changes in hydrologic state were observed in south-facing soils, probably reflecting decreased soil-water retention after wildfire. North-facing soils were impacted the most, in terms of hydrologic state, by the loss of water storage in the combusted litter–duff layer and forest canopy, which had provided a large “hydrologic buffering” capacity when unburned. Unsaturated zone measurements showed increased variability in hydrologic states and more rapid state transitions in wildfire-impacted soils. A simple, qualitative analysis suggested that the range of unsaturated-zone processes along the gravity–capillarity–adsorption continuum was expanded by wildfire for a given soil. The small number of experimental plots in this study suggests that further work is needed before these conclusions can be generalized to other geographic areas.

  17. Experimental study on waves propagation over a coarse-grained sloping beach

    NASA Astrophysics Data System (ADS)

    Hsu, Tai-Wen; Lai, Jian-Wu

    2013-04-01

    This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave height H0 = 3.86 cm or 7.75 cm and wave period T = 1.0 s. The illumination source of the PIV system is a dual-head frequency-doubled Nd:YAG laser, which has a maximum energy output of 120 mJ per pulse at two wavelengths of 523nm and 266nm. A synchronizer controls the emission time of a pulse laser beam as well as the camera exposure and shutter time. Linear wave theory (LWT) of wave propagation over a constant water depth was tested to validate the DIP/PIV algorithm. The comparison of velocity profiles in X and Z directions are in good agreement with those of LWT. Waves propagating over a coarse-grained sloping beach were investigated using PIV/DIP techniques. Detailed analysis of experimental results show that the flow field, turbulent intensity and vorticity are primarily located above the wave trough. A detailed description is provided in terms of free surface, velocity field, and turbulent energy transport. References 1. Abdel-Aziz, Karara.1971, Direct linear transformation into object space coordinates in closerange photogrametry. In Proc. Symp. Close-Range Photogrametry, 1-18. 2. Flow-3D (2008) user manual, version 9.3. 3. Otsu N. 1978. A threshold selection method from gray level histogram, IEEE Trans. on System, Man, and Cybernetics, 8, 62-66.

  18. Distributed optical fibre sensing for early detection of shallow landslides triggering.

    PubMed

    Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo

    2017-10-31

    A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.

  19. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  20. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  1. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g., analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity, air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass. ?? 2006 Estuarine Research Federation.

  2. The effect of multiple stressors on salt marsh end-of-season biomass

    USGS Publications Warehouse

    Visser, J.M.; Sasser, C.E.; Cade, B.S.

    2006-01-01

    It is becoming more apparent that commonly used statistical methods (e.g. analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation in Spartina alterniflora biomass.

  3. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    NASA Astrophysics Data System (ADS)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.

  4. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    USDA-ARS?s Scientific Manuscript database

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  5. A Physical Model for Shallow Groundwater Studies and the Simulation of Land Drain Performance.

    ERIC Educational Resources Information Center

    Parkinson, Robert; Reid, Ian

    1987-01-01

    Describes a two-dimensional sand-tank model that illustrates the influence of ground slope on tile drain discharge and the movement of groundwater in general. The model can be used to demonstrate the effect of topography on sub-surface water movement in agricultural catchments, thus it is a useful hydrological teaching aid. (Author/BSR)

  6. Multiple factors affect aspen regeneration on the Uncompahgre Plateau, west-central Colorado

    Treesearch

    Barry C. Johnston

    2001-01-01

    In 1996, I inventoried over 90 aspen stands in 12 timber sales that had been clearcut >3 years previously. Units that regenerated adequately were larger, had higher slope angles, and had soils with a thick Mollic surface layer. Units that regenerated inadequately often had plant species that indicated high water tables. The factors associated with inadequate...

  7. Environmental setting of the San Joaquin-Tulare basins, California

    USGS Publications Warehouse

    Gronberg, JoAnn A.; Dubrovsky, Neil M.; Kratzer, Charles R.; Domagalski, Joseph L.; Brown, Larry R.; Burow, Karen R.

    1998-01-01

    The National Water-Quality Assessment Program for the San Joaquin- Tulare Basins began in 1991 to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology. The San Joaquin-Tulare Basins study unit, which covers approximately 31,200 square miles in central California, is made up of the San Joaquin Valley, the eastern slope of the Coast Ranges to the west, and the western slope of the Sierra Nevada to the east. The sediments of the San Joaquin Valley can be divided into alluvial fans and basin deposits. The San Joaquin River receives water from tributaries draining the Sierra Nevada and Coast Ranges, and except for streams discharging directly to the Sacramento-San Joaquin Delta, is the only surface- water outlet from the study unit. The surface-water hydrology of the San Joaquin-Tulare Basins study unit has been significantly modified by development of water resources. Almost every major river entering the valley from the Sierra Nevada has one or more reservoirs. Almost every tributary and drainage into the San Joaquin River has been altered by a network of canals, drains, and wasteways. The Sierra Nevada is predominantly forested, and the Coast Ranges and the foothills of the Sierra Nevada are predominately rangeland. The San Joaquin Valley is dominated by agriculture, which utilized approximately 14.7 million acre-feet of water and 597 million pounds active ingredient of nitrogen and phosphorus fertilizers in 1990, and 88 million pounds active ingredient of pesticides in 1991. In addition, the livestock industry contributed 318 million pounds active ingredient of nitrogen and phosphorus from manure in 1987. This report provides the background information to assess the influence of these and other factors on water quality and to provide the foundation for the design and interpretation of all spatial data. These characterizations provide a basis for comparing the influences of human activities among basins and specific land use settings, as well as within and among study units at the national level.

  8. Gulf of Mexico Loop Current Interactions with the West Florida Shelf and its Influence on Harmful Algae Blooms

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.

    2016-02-01

    Interactions of the Loop Current (LC) system with the West Florida Shelf (WFS) are examined using 20+ years (1993 - 2015) of Ssalto/Duacs multi-mission altimetry data in the eastern Gulf of Mexico. Characteristic patterns of LC system sea surface height and surface geostrophic currents are extracted by an unsupervised neural network, Self-Organizing Map, along with their frequencies of occurrence. These current patterns suggest linkages with harmful algae bloom occurrences as recorded by in situ K. brevis cell counts. It is argued that LC system interactions with the shelf slope play an important role in WFS ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly important when the LC impinges on the southwest corner of the WFS slope, thereby impacting shallow water isobaths and setting the entire shelf circulation into motion. If such conditions persist, then deeper ocean waters with elevated nutrient content may broach the shelf and be transported landward. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology.

  9. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  10. Transient Infiltration Analysis for Infinite Slopes using the Modified Function of Unsaturated Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Oh, Seboong; Achmad Zaky, Fauzi; Mog Park, Young

    2016-04-01

    The hydraulic behaviors in the soil layer are crucial to the transient infiltration analysis into natural slopes, in which unsaturated hydraulic conductivity (HC) can be evaluated theoretically from soil water retention curves (SWRC) by Mualem's equation. In the nonlinear infiltration analysis, the solution by some of smooth SWRCs is not converge for heavy rainfall condition, since the gradient of HCs is extremely steep near saturation. The van Genuchten's SWRC model has been modified near saturation and subsequently an analytical HC function was proposed to improve the van Genuchten-Mualem HC. Using the examples on 1-D infiltration analysis by the modified HC model, it is validated that any solutions can be converged for various rainfall conditions to keep numerical stability. Stability analysis based on unsaturated effective stress could simulate the infinite slope failure by the proposed HC model. The pore water pressure and the ratio of saturation increased from the surface to shallow depth (˜1m) and the factor of safety decreased gradually due to infiltration. Acknowledgements This research is supported by grants from Korean NRF (2012M3A2A1050974 and 2015R1A2A2A01), which are greatly appreciated.

  11. Derivation of martian surface slope characteristics from directional thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Edwards, Christopher S.

    2008-01-01

    Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.

  12. Determining wave direction using curvature parameters.

    PubMed

    de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista

    2016-01-01

    The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.

  13. Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment

    NASA Astrophysics Data System (ADS)

    Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip

    2014-05-01

    Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.

  14. Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2014-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  15. The Influence of topography on formation characteristics of hygroscopic and condensate water in Shapotou

    NASA Astrophysics Data System (ADS)

    Pan, Yanxia; Li, Xinrong; Hui, Rong; Zhao, Yang

    2016-04-01

    The formation characteristics of hygroscopic and condensate water for different topographic positions were observed using the PVC pipes manual weighing and CPM method in the typical mobile dunes fixed by straw checkerboard barriers in Shapotou. The results indicated that the formation amounts and duration of hygroscopic and condensate water show moderate spatial heterogeneity at the influence of topography. The formation amounts of hygroscopic and condensate water at different aspects conform to the classical convection model, in which the hygroscopic and condensate water amounts are highest at hollow, and windward aspect gets more water than leeward aspect, the hygroscopic and condensate water amounts at different aspects are expressed as: hollow>Western-faced aspect>Northern-faced aspect>hilltop>Southern-faced aspect>Eastern-faced aspect. The hygroscopic and condensate water amounts at different slope positions for every aspect are as follows: the foot of slope>middle slope>hilltop. A negatively linear correlation is got between slope angles and hygroscopic and condensate water amounts, hygroscopic and condensate water amounts decrease gradually along with the increase of slope angles, the amounts of hygroscopic and condensate water at the vertical aspect are only half of horizontal aspect, which indicated topography were important influence factors for the formation of the hygroscopic and condensate water in arid area.

  16. Hydraulic Properties and Water Level Changes in the Missouri Coteau near Minot N.D

    NASA Astrophysics Data System (ADS)

    Kilroy, K. C.; Nissen, J. A.

    2012-12-01

    The city of Minot, N.D. is experiencing rapid population growth due to expansion of petroleum extraction from oil shale in the Williston Basin. Minot is located on the edge of the Missouri Escarpment, which separates the Missouri Coteau upland (site of Prairie Potholes) to the southwest and the Mouse (Souris) River Basin to the northeast (lowland Drift Prairie). The Missouri Coteau is underlain by horizontally bedded Fort Union Formation (Tertiary sand, silt, and clay) and covered with Quaternary glacial till, as much as 130-feet thick. Surface water on the crest of the Missouri Coteau is deranged and the high areas do not flow coherently out of the area, but lower elevation slopes do have integrated dendritic drainage. Despite deranged surface-water flow in the Missouri Coteau upland area, ground water slopes more or less coherently to the North East towards the Mouse River. The North East slope of the Missouri Coteau has primarily agricultural land use, mostly dry-land farming. There is little irrigated farming here. Water is used for livestock and domestic purposes. Ground water levels were compiled for the region in and around Minot in 1968, and more-recently-drilled wells are documented in the web site of the N.D. State Water Commission. About 20-years ago, the North Prairie Rural Water District (NPRWD) expanded into the Missouri Coteau (near Minot). The North Prairie Rural water is softer than local well water; it is much preferred by residents; and as a result the water district has undergone expansion. This has led to disuse, neglect, and abandonment of rural wells. In addition, the current time frame appears to be the beginning of a sustained period of urban growth and much more rapid ground water use in the Minot area. We hypothesize that water levels have fallen since the 1960's, particularly in and near the Minot City well field. We also hypothesize that more detailed study of hydraulic properties, horizontal extent of local geologic materials, and glacial features, may yield a better understanding of local conditions at the end of the Pleistocene Epoch. Water levels were canvased in 30 wells along a line running N 45o E (at a right angle to the trend of Missouri Escarpment) from the crest of the Missouri Coteau near Rice Lake, through the Minot city well field near the Mouse (Souris) River, a horizontal distance of 20 miles, during the summer of 2012. Water levels have dropped as much as 23-feet in wells dug into Mouse River Alluvium, but little water level drop has occurred in the Missouri Coteau uplands. There are flowing wells on the lower slopes of the Missouri Coteau. Most flowing wells appear to be associated with deeply incised Mouse River tributaries, locally called: "coulees", and wells deep enough to penetrate through glacial till into underlying Ft. Union Formation. Glacial till appears to form a confining layer over the deeper Fort Union Formation allowing the accumulation of water pressure leading to artesian and flowing conditions. There is little evidence of water level decline in the area of flowing wells. There is however, an interesting correlation of flowing wells with polygonally patterned ground, which look suspiciously like relicts of peri-glacial pingoes. Water levels higher on the Missouri Coteau (furthest from Minot) show little change.

  17. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    PubMed

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  18. The response of the SSM/I to the marine environment. Part 2: A parameterization of the effect of the sea surface slope distribution on emission and reflection

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1994-01-01

    Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.

  19. The dependence of sea surface slope on atmospheric stability and swell conditions

    NASA Technical Reports Server (NTRS)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  20. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain

    USGS Publications Warehouse

    Hans, Nelson C.; Baraza, J.; Maldonado, A.

    1993-01-01

    The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.

  1. Remote sensing in marine environment - acquiring, processing, and interpreting GLORIA sidescan sonor images of deep sea floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, D.W.

    1989-03-01

    The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less

  2. Derivation of scaled surface reflectances from AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Heidebrecht, Kathleen B.; Goetz, Alexander F. H.

    1993-01-01

    A method for retrieving 'scaled surface reflectances' assuming horizontal surfaces having Lambertian reflectances from spectral data collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is presented here. In this method, the integrated water vapor amount on a pixel by pixel basis is derived from the 0.94 micron and 1.14 micron water vapor absorption features. The transmission spectra of H2O, CO2, O3, N2O, CO, CH4, and O2 in the 0.4-2.5 micron region are simulated. The scattering effect due to atmospheric molecules and aerosols is modeled with the 5S computer code. The AVIRIS radiances are divided by solar irradiances above the atmosphere to obtain the apparent reflectances. The scaled surface reflectances are derived from the apparent reflectances using the simulated atmospheric gaseous transmittances and the simulated molecular and aerosol scattering data. The scaled surface reflectances differ from the real surface reflectances by a multiplicative factor. In order to convert the scaled surface reflectances into real surface reflectances, the slopes and aspects of the surfaces must be known.

  3. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    PubMed

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  4. New figuring model based on surface slope profile for grazing-incidence reflective optics

    DOE PAGES

    Zhou, Lin; Huang, Lei; Bouet, Nathalie; ...

    2016-08-09

    Surface slope profile is widely used in the metrology of grazing-incidence reflective optics instead of surface height profile. Nevertheless, the theoretical and experimental model currently used in deterministic optical figuring processes is based on surface height, not on surface slope. This means that the raw slope profile data from metrology need to be converted to height profile to perform the current height-based figuring processes. The inevitable measurement noise in the raw slope data will introduce significant cumulative error in the resultant height profiles. As a consequence, this conversion will degrade the determinism of the figuring processes, and will have anmore » impact on the ultimate surface figuring results. To overcome this problem, an innovative figuring model is proposed, which directly uses the raw slope profile data instead of the usual height data as input for the deterministic process. In this article, first the influence of the measurement noise on the resultant height profile is analyzed, and then a new model is presented; finally a demonstration experiment is carried out using a one-dimensional ion beam figuring process to demonstrate the validity of our approach.« less

  5. Numerical Computation of Homogeneous Slope Stability

    PubMed Central

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927

  6. Numerical computation of homogeneous slope stability.

    PubMed

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  7. Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples

    USGS Publications Warehouse

    Schraer, S.M.; Shaw, D.R.; Boyette, M.; Coupe, R.H.; Thurman, E.M.

    2000-01-01

    Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-l,3,5-triazin-2-yl]amino]-2-methylpropanenitrile ) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.

  8. Geochemical evidence for enhanced preservation of organic matter in the oxygen minimum zone of the continental margin of northern California during the Late Pleistocene

    USGS Publications Warehouse

    Dean, Walter E.; Gardner, James V.; Anderson, Roger Y.

    1994-01-01

    The present upper water mass of the northeastern Pacific Ocean off California has a well-developed oxygen minimum zone between 600 and 1200 m wherein concentrations of dissolved oxygen are less than 0.5 mL/L. Even at such low concentrations of dissolved oxygen, benthic burrowing organisms are abundant enough to thoroughly bioturbate the surface and near-surface sediments. These macro organisms, together with micro organisms, also consume large quantities of organic carbon produced by large seasonal stocks of plankton in the overlying surface waters, which are supported by high concentrations of nutrients within the California Current upwelling system. In contrast to modern conditions of bioturbation, laminated sediments are preserved in upper Pleistocene sections of cores collected on the continental slope at water depths within the present oxygen minimum zone from at least as far north as the California-Oregon border and as far south as Point Conception. Comparison of sediment components in the laminae with those delivered to sediment traps as pelagic marine “snow” demonstrates that the dark-light lamination couplets are indeed annual (varves). These upper Pleistocene varved sediments contain more abundant lipid-rich “sapropelic” (type II) organic matter than the overlying bioturbated, oxidized Holocene sediments. The baseline of stable carbon isotopic composition of the organic matter in these slope cores does not change with time, indicating that the higher concentrations of type II organic matter in the varved sediments represent better preservation of organic matter rather than any change in the source of organic matter.

  9. Shelf-Basin Exchange over the Continental Slope of the Chukchi Sea 2003/04 vs. 2016/17

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Elmer, C.; Badiey, M.; Eickmeier, J.; Ryan, P.

    2017-12-01

    The US Navy faces the "New Arctic" as a challenge to predict acoustic propagation from deep to shallow waters, because a less ice-covered Arctic Ocean is more dynamic and creates new and more complex sound channels. We here present context and preliminary results from the Canada Basin Acoustic Propagation Experiment (CANAPE) and focus on the Chukchi Sea between 100-m and 800-m isobaths. We explore temperature and density fields using ocean survey and mooring data that we collected in 2016 and 2017. We compare these "new" data to observations from prior decades.Remote sensing (SSMI and Sentinel-1) of sea ice, winds, and ocean hydrography all document change in large scale ocean forcing in our study area about 150 km west of Barrow, Alaska. The "new" surface forcing impacts both ocean dynamics and sound propagation over the Chukchi Slope. More specifically, we find warm water intrusions at 80-m depth near the 1026 kg/m3 density surface at 160 W longitude. Spatial extend and structure of this water varies both along and across the continental with eddy trains dispersing offshore. Temperature and sound speed signals exceed 1 C and 5 m/s, respectively, and have not been observed before. We note, that our study area is generally ice-covered in November, but was free of ice in 2016.

  10. Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)

    NASA Astrophysics Data System (ADS)

    Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson

    2017-11-01

    In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.

  11. Assessing the performance of wave breaking parameterizations in shallow waters in spectral wave models

    NASA Astrophysics Data System (ADS)

    Lin, Shangfei; Sheng, Jinyu

    2017-12-01

    Depth-induced wave breaking is the primary dissipation mechanism for ocean surface waves in shallow waters. Different parametrizations were developed for parameterizing depth-induced wave breaking process in ocean surface wave models. The performance of six commonly-used parameterizations in simulating significant wave heights (SWHs) is assessed in this study. The main differences between these six parameterizations are representations of the breaker index and the fraction of breaking waves. Laboratory and field observations consisting of 882 cases from 14 sources of published observational data are used in the assessment. We demonstrate that the six parameterizations have reasonable performance in parameterizing depth-induced wave breaking in shallow waters, but with their own limitations and drawbacks. The widely-used parameterization suggested by Battjes and Janssen (1978, BJ78) has a drawback of underpredicting the SWHs in the locally-generated wave conditions and overpredicting in the remotely-generated wave conditions over flat bottoms. The drawback of BJ78 was addressed by a parameterization suggested by Salmon et al. (2015, SA15). But SA15 had relatively larger errors in SWHs over sloping bottoms than BJ78. We follow SA15 and propose a new parameterization with a dependence of the breaker index on the normalized water depth in deep waters similar to SA15. In shallow waters, the breaker index of the new parameterization has a nonlinear dependence on the local bottom slope rather than the linear dependence used in SA15. Overall, this new parameterization has the best performance with an average scatter index of ∼8.2% in comparison with the three best performing existing parameterizations with the average scatter index between 9.2% and 13.6%.

  12. Numerical study of dam-break induced tsunami-like bore with a hump of different slopes

    NASA Astrophysics Data System (ADS)

    Cheng, Du; Zhao, Xi-zeng; Zhang, Da-ke; Chen, Yong

    2017-12-01

    Numerical simulation of dam-break wave, as an imitation of tsunami hydraulic bore, with a hump of different slopes is performed in this paper using an in-house code, named a Constrained Interpolation Profile (CIP)-based model. The model is built on a Cartesian grid system with the Navier Stokes equations using a CIP method for the flow solver, and employs an immersed boundary method (IBM) for the treatment of solid body boundary. A more accurate interface capturing scheme, the Tangent of hyperbola for interface capturing/Slope weighting (THINC/SW) scheme, is adopted as the interface capturing method. Then, the CIP-based model is applied to simulate the dam break flow problem in a bumpy channel. Considerable attention is paid to the spilling type reflected bore, the following spilling type wave breaking, free surface profiles and water level variations over time. Computations are compared with available experimental data and other numerical results quantitatively and qualitatively. Further investigation is conducted to analyze the influence of variable slopes on the flow features of the tsunami-like bore.

  13. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    PubMed

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles

    NASA Astrophysics Data System (ADS)

    Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.

    2018-07-01

    A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.

  15. An assessment of The Effects of Elevation and Aspect on Deposition of Airborne Pollution and Water Quality in an Alpine Critical Zone: San Juan Mountains, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Price, A.; Giardino, J. R.; Marcantonio, F.

    2015-12-01

    The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric pollution deposition. It is suggested that degradation of water quality in the San Juan Mountains is affected by atmospheric deposition along with the damage sustained from local mining activities. These results facilitate a better understanding of this high-elevation critical-zone system.

  16. Granular flow behavior at sharp changes in slope

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni; De Blasio, Fabio; Locatelli, Michele

    2015-04-01

    This study extends some recent experiments and analyses performed by the authors to examine the behavior of granular flows along path characterised by sharp changes in slope. In particular, various series of experiments along a bi-linear broken slope (an inclined initial sector followed by a horizontal one) have been completed using a uniform (Hostun, 0.32 mm) sand and a uniform fine gravel (2 mm grains). 60 new have been performed by releasing different volumes (1.5, 2.1 and 5.1 L) on surfaces characterized by different slope angles (35-60°), type of materials (wood and plexiglass), with or without an erodible layer (sand), or in presence of a shallow water pond (0.5 cm). These geometrical features are typical of many large rock and snow avalanches, rock falls and of chalk flows. The latter are usually typical of coastal cliffs where a shallow water environment is typical. The evolution of the flow has been monitored through a laser profilometer at 120 Hz sampling frequency and high speed camera, and in this way it has been possible to follow the evolution of the flow and deposition, and to analyse the change in deposition mode at varying the slope angle, the material and the basal friction. This is an extremely interesting development in the study of the evolution of the deposition and of the final morphology typical of such phenomena, and can support the testing of numerical models. Propagation and deposition occur forward or backward accordingly to the slope angle and the basal friction. Forward movement and deposition occur at high slope angles and with low basal friction. The opposite is true for the backward deposition. The internal "layering" within the deposit is also strongly controlled by the combination of such parameters. The time evolution of the flow allowed to determine the velocity of flow and the mode of deposition through the analysis of the change in thickness, position of the front and of the flow tail. Presence of water reduces the runout of the sand on the horizontal sector of the path, whereas the opposite seems true for the gravel. In these cases, as already shown by the authors (Crosta et al., submitted), a partial reflection of the flow occurs and the same holds true when a shallow water reservoir exists. Furthermore, a sort of hydroplaning phenomenon occurs which controls the initial part of the expansion along the subhorizontal sector of the path. Results of the experimental campaign have been compared against those from simple analytical models which assume the energy loss at the slope break and numerical simulations performed by a FEM-ALE (2D and fully 3D) modeling.

  17. Inference of effective river properties from remotely sensed observations of water surface

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre-André; Monnier, Jérôme

    2015-05-01

    The future SWOT mission (Surface Water and Ocean Topography) will provide cartographic measurements of inland water surfaces (elevation, widths and slope) at an unprecedented spatial and temporal resolution. Given synthetic SWOT like data, forward flow models of hierarchical-complexity are revisited and few inverse formulations are derived and assessed for retrieving the river low flow bathymetry, roughness and discharge (A0, K, Q) . The concept of an effective low flow bathymetry A0 (the real one being never observed) and roughness K , hence an effective river dynamics description, is introduced. The few inverse models elaborated for inferring (A0, K, Q) are analyzed in two contexts: (1) only remotely sensed observations of the water surface (surface elevation, width and slope) are available; (2) one additional water depth measurement (or estimate) is available. The inverse models elaborated are independent of data acquisition dynamics; they are assessed on 91 synthetic test cases sampling a wide range of steady-state river flows (the Froude number varying between 0.05 and 0.5 for 1 km reaches) and in the case of a flood on the Garonne River (France) characterized by large spatio-temporal variabilities. It is demonstrated that the most complete shallow-water like model allowing to separate the roughness and bathymetry terms is the so-called low Froude model. In Case (1), the resulting RMSE on infered discharges are on the order of 15% for first guess errors larger than 50%. An important feature of the present inverse methods is the fairly good accuracy of the discharge Q obtained, while the identified roughness coefficient K includes the measurement errors and the misfit of physics between the real flow and the hypothesis on which the inverse models rely; the later neglecting the unobserved temporal variations of the flow and the inertia effects. A compensation phenomena between the indentifiedvalues of K and the unobserved bathymetry A0 is highlighted, while the present inverse models lead to an effective river dynamics model that is accurate in the range of the discharge variability observed. In Case (2), the effective bathymetry profile for 80 km of the Garonne River is retrieved with 1% relative error only. Next, accurate effective topography-friction pairs and also discharge can be inferred. Finally, defining river reaches from the observation grid tends to average the river properties in each reach, hence tends to smooth the hydraulic variability.

  18. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    NASA Astrophysics Data System (ADS)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    Tufas are widely scattered in northern England, being concentrated in areas of limestone (Carboniferous and Permian), where there are springs, seepages, streams and waterfalls with waters supersatured in respect of calcite. Some deposits are clearly related to faults. Tufas have been examined in Gordale and Malham (SW Yorkshire), Teesdale and Weardale (Co. Durham), Sunderland (Tyne & Wear) and Great Asby Fell (Cumbria). A variety of tufa types are developed: spring-related pisoids and moss tufa, fluviatile barrage and waterfall tufa, and seepage and spring tufa with microbial oncoids in a paludal setting. We present preliminary data and observations on tufa in the Teesdale area, which forms along the valley-side adjacent to the River Tees. Locally here, a tiny stream draining agricultural land runs over a sandstone outcrop at the top of a 30 metre high slope; water descends the 30-60 degrees slope, creating tiny waterfalls and pools across an area reaching 10 metres wide, on the way down towards the river. Three main facies are recognizable in the tufa deposits: carbonate crusts, moss tufa and pisoids. In the upper part of the slope tufa occurs as sub-vertical 0.5-5 cm thick carbonate crusts forming "sheets" with a bulbous external surface covered by a green biofilm, with some insect larvae. Encrustations form upon surfaces of rock exposures and pebbles, and coat plant fragments (leaves, twigs, pine cones). Tufa precipitation, particularly on mosses, liverworts and leaves (moss tufa), creates a series of rimmed pools, a few decimetres across and centimetres deep. Apart from the presence of moss, which gives the tufa has a vacuolar texture, the main constituents are cyanobacteria and diatoms. The moss tufa deposit may reach a metre or more in height and several metres in width, notably towards the base of the slope, adjacent to the river. Within the small pools on the slope, pisoids and partially calcified plant remains accumulate. They also occur abundantly in the soil hereabouts, and are gradually being washed down slope. Pisoids vary in size and shape, ranging from rods to sub-spherical forms, up to several cm long or a cm or more in diameter. The external surface is a smooth dull surface of a pale grey-buff colour; the nucleus may be a plant fragment, tufa intraclast or rock fragment. Microfacies Teesdale tufa is characterized by three microfacies all contributing to a basic stromatolitic or laminated microfabric: dendrolite, dense micrite and palisades of sparite. Laminae consist of an irregular alternation of the three microfacies, which vary in abundance within the main depositional facies. Dendrolitic layers are characterized of mineralized, upward-branching cyanobacterial filaments, forming bush-like fans. Coarse sparitic layers consist of palisades of bladed calcite spar characterized by rhombohedral terminations. Micritic layers consist of dark-brown dense laminae with some clotted fabric, composed of dark micritic crystals. In thin-section molds of moss stems are often preserved by a sparitic layer that formed a coating before decay of the moss organic tissues. Cavities are abundant in moss tufa and crusts. They are often empty or in some case filled by detrital particles. Pisoids under the microscope show a cortex characterized by a concentric structure consisting mainly dense micritic layers alternating with sporadic sparitic and/or dendrolitic layers. Calcified cyanobacterial filaments or their molds are very evident in the dendrolitic laminae, but also occur in the other microfacies, being incorporated in both the sparite macro-crystals and the micritic layers. Nanofacies of minerals The mineral composition of the autochthonous carbonate forming tufa is calcite with a few mole% Mg. Sub-hedral crystals of calcite, several tens of microns in size, form sparite crystals. Sub-polygonal micro-crystals and elongate fibres a few microns in size compose dense micrite and calcified filaments. Under extra-high SEM magnifications, all crystal forms seem be made of sub-spherical to rod-like nano-crystals, ranging in size from 100 to 300 nm. Other than cyanobacteria, calcified organic components like diatoms, plant tissues, and extra-cellular polymeric substances (EPS) are mineralized with the same crystal nano-elements. Conclusions Tufa formation seems strongly influenced by the inclination of the slope, water energy, the biota, including the biofilm, and the organic matter substrate (mainly EPS); super-saturation of water with respect to calcite is a pre-requisite for precipitation. The inclination of the slope determines the water energy and so the degassing of CO2 which leads to precipitation of carbonate. Photosynthesis by macrophytes, microphytes and cyanobacteria could also contribute to CO2 degassing. EPS degradation processes, particularly those involving heterotrophic micro-organisms which can induce an increase in alkalinity, could be a further mechanism of biomineralization in these tufa carbonates.

  19. Relationship between body condition of American alligators and water depth in the Everglades, Florida

    USGS Publications Warehouse

    Fujisaki, Ikuko; Rice, Kenneth G.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2009-01-01

    Feeding opportunities of American alligators (Alligator mississippiensis) in freshwater wetlands in south Florida are closely linked to hydrologic conditions. In the Everglades, seasonally and annually fluctuating surface water levels affect populations of aquatic organisms that alligators consume. Since prey becomes more concentrated when water depth decreases, we hypothesized an inverse relationship between body condition and water depth in the Everglades. On average, condition of adult alligators in the dry season was significantly higher than in the wet season, but this was not the case for juveniles/subadults. The correlation between body condition and measured water depth at capture locations was weak; however, there was a significant negative correlation between the condition and predicted water depth prior to capture for all animals except for spring juveniles/subadults which had a weak positive condition-water depth relationship. Overall, a relatively strong inverse correlation occurred at 10-49 days prior to the capture day, suggesting that current body condition of alligators may depend on feeding opportunities during that period. Fitted regression of body condition on water depth (mean depth of 10 days when condition-water depth correlation was greatest) resulted in a significantly negative slope, except for spring adult females and spring juveniles/subadults for which slopes were not significantly different from zero. Our results imply that water management practices may be critical for alligators in the Everglades since water depth can affect animal condition in a relatively short period of time.

  20. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  1. In Situ Surface Characterization

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Leger, Patrick C.; Yanovsky, Igor

    2011-01-01

    Operation of in situ space assets, such as rovers and landers, requires operators to acquire a thorough understanding of the environment surrounding the spacecraft. The following programs help with that understanding by providing higher-level information characterizing the surface, which is not immediately obvious by just looking at the XYZ terrain data. This software suite covers three primary programs: marsuvw, marsrough, and marsslope, and two secondary programs, which together use XYZ data derived from in situ stereo imagery to characterize the surface by determining surface normal, surface roughness, and various aspects of local slope, respectively. These programs all use the Planetary Image Geometry (PIG) library to read mission-specific data files. The programs themselves are completely multimission; all mission dependencies are handled by PIG. The input data consists of images containing XYZ locations as derived by, e.g., marsxyz. The marsuvw program determines surface normals from XYZ data by gathering XYZ points from an area around each pixel and fitting a plane to those points. Outliers are rejected, and various consistency checks are applied. The result shows the orientation of the local surface at each point as a unit vector. The program can be run in two modes: standard, which is typically used for in situ arm work, and slope, which is typically used for rover mobility. The difference is primarily due to optimizations necessary for the larger patch sizes in the slope case. The marsrough program determines surface roughness in a small area around each pixel, which is defined as the maximum peak-to-peak deviation from the plane perpendicular to the surface normal at that pixel. The marsslope program takes a surface normal file as input and derives one of several slope-like outputs from it. The outputs include slope, slope rover direction (a measure of slope radially away from the rover), slope heading, slope magnitude, northerly tilt, and solar energy (compares the slope with the Sun s location at local noon). The marsuvwproj program projects a surface normal onto an arbitrary plane in space, resulting in a normalized 3D vector, which is constrained to lie in the plane. The marsuvwrot program rotates the vectors in a surface normal file, generating a new surface normal file. It also can change coordinate systems for an existing surface normal file. While the algorithms behind this suite are not particularly unique, what makes the programs useful is their integration into the larger in situ image processing system via the PIG library. They work directly with space in situ data, understanding the appropriate image metadata fields and updating them properly. The secondary programs (marsuvwproj, marsuvwrot) were originally developed to deal with anomalous situations on Opportunity and Spirit, respectively, but may have more general applicability.

  2. Linking interannual variability in shelf bottom water properties to the California Undercurrent and local processes in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.

    2016-02-01

    The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.

  3. Coupled Hydro-Mechanical Constitutive Model for Vegetated Soils: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Veenhof, Rick; Wu, Wei; Askarinejad, Amin

    2016-04-01

    It is well known, that presence of vegetation influences stability of the slope. However, the quantitative assessment of this contribution remains challenging. It is essential to develop a numerical model, which combines mechanical root reinforcement and root water uptake, and allows modelling rainfall induced landslides of vegetated slopes. Therefore a novel constitutive formulation is proposed, which is based on the modified Cam-clay model for unsaturated soils. Mechanical root reinforcement is modelled introducing a new constitutive parameter, which governs the evolution of the Cam-clay failure surface with the degree of root reinforcement. Evapotranspiration is modelled in terms of the root water uptake, defined as a sink term in the water flow continuity equation. The original concept is extended for different shapes of the root architecture in three dimensions, and combined with the mechanical model. The model is implemented in the research finite element code Comes-Geo, and in the commercial software Abaqus. The formulation is tested, performing a series of numerical examples, which allow validation of the concept. The direct shear test and the triaxial test are modelled in order to test the performance of the mechanical part of the model. In order to validate the hydrological part of the constitutive formulation, evapotranspiration from the vegetated box is simulated and compared with the experimental results. Obtained numerical results exhibit a good agreement with the experimental data. The implemented model is capable of reproducing results of basic geotechnical laboratory tests. Moreover, the constitutive formulation can be used to model rainfall induced landslides of vegetated slopes, taking into account the most important factors influencing the slope stability (root reinforcement and evapotranspiration).

  4. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska

    USGS Publications Warehouse

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.

    2010-01-01

    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  5. Internal Progressive Failure in Deep-Seated Landslides

    NASA Astrophysics Data System (ADS)

    Yerro, Alba; Pinyol, Núria M.; Alonso, Eduardo E.

    2016-06-01

    Except for simple sliding motions, the stability of a slope does not depend only on the resistance of the basal failure surface. It is affected by the internal distortion of the moving mass, which plays an important role on the stability and post-failure behaviour of a landslide. The paper examines the stability conditions and the post-failure behaviour of a compound landslide whose geometry is inspired by one of the representative cross-sections of Vajont landslide. The brittleness of the mobilized rock mass was described by a strain-softening Mohr-Coulomb model, whose parameters were derived from previous contributions. The analysis was performed by means of a MPM computer code, which is capable of modelling the whole instability procedure in a unified calculation. The gravity action has been applied to initialize the stress state. This step mobilizes part of the strength along a shearing band located just above the kink of the basal surface, leading to the formation a kinematically admissible mechanism. The overall instability is triggered by an increase of water level. The increase of pore water pressures reduces the effective stresses within the slope and it leads to a progressive failure mechanism developing along an internal shearing band which controls the stability of the compound slope. The effect of the basal shearing resistance has been analysed during the post-failure stage. If no shearing strength is considered (as predicted by a thermal pressurization analysis), the model predicts a response similar to actual observations, namely a maximum sliding velocity of 25 m/s and a run-out close to 500 m.

  6. Side-sloped surfaces substantially affect lower limb running kinematics.

    PubMed

    Damavandi, Mohsen; Eslami, Mansour; Pearsall, David J

    2017-03-01

    Running on side-sloped surfaces is a common obstacle in the environment; however, how and to what extent the lower extremity kinematics adapt is not well known. The purpose of this study was to determine the effects of side-sloped surfaces on three-dimensional kinematics of hip, knee, and ankle during stance phase of running. Ten healthy adult males ran barefoot along an inclinable runway in level (0°) and side-sloped (10° up-slope and down-slope inclinations, respectively) configurations. Right hip, knee, and ankle angles along with their time of occurrence were analysed using repeated measures MANOVA. Up-slope hip was more adducted (p = 0.015) and internally rotated (p = 0.030). Knee had greater external rotations during side-sloped running at heel-strike (p = 0.005), while at toe-off, it rotated externally and internally during up-slope and down-slope running, respectively (p = 0.001). Down-slope ankle had greatest plantar flexion (p = 0.001). Up-slope ankle had greatest eversion compared with down-slope (p = 0.043), while it was more externally rotated (p = 0.030). These motion patterns are necessary to adjust the lower extremity length during side-sloped running. Timing differences in the kinematic events of hip adduction and external rotation, and ankle eversion were observed (p = 0.006). Knowledge on these alterations is a valuable tool in adopting strategies to enhance performance while preventing injury.

  7. Description of the physical environment an coal-mining history of West-Central Indiana, with emphasis on six small watersheds

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.

    1990-01-01

    Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined, agricultural land. Soils are very well-drained shaly silty loams that have formed or' steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation.

  8. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations

    NASA Astrophysics Data System (ADS)

    Xia, Xilin; Liang, Qiuhua; Ming, Xiaodong; Hou, Jingming

    2017-05-01

    Numerical models solving the full 2-D shallow water equations (SWEs) have been increasingly used to simulate overland flows and better understand the transient flow dynamics of flash floods in a catchment. However, there still exist key challenges that have not yet been resolved for the development of fully dynamic overland flow models, related to (1) the difficulty of maintaining numerical stability and accuracy in the limit of disappearing water depth and (2) inaccurate estimation of velocities and discharges on slopes as a result of strong nonlinearity of friction terms. This paper aims to tackle these key research challenges and present a new numerical scheme for accurately and efficiently modeling large-scale transient overland flows over complex terrains. The proposed scheme features a novel surface reconstruction method (SRM) to correctly compute slope source terms and maintain numerical stability at small water depth, and a new implicit discretization method to handle the highly nonlinear friction terms. The resulting shallow water overland flow model is first validated against analytical and experimental test cases and then applied to simulate a hypothetic rainfall event in the 42 km2 Haltwhistle Burn, UK.

  9. Effect of Metamorphic Foliation on Regolith Thickness, Catalina Critical Zone Observatory, Arizona

    NASA Astrophysics Data System (ADS)

    Leone, J. D.; Holbrook, W. S.; Chorover, J.; Carr, B.

    2016-12-01

    Terrestrial life is sustained by nutrients and water held in soil and weathered rock, which are components of the Earth's critical zone, referred to as regolith. The thickness of regolith in the near-surface is thought to be influenced by factors such as climate, topographic stress, erosion and lithology. Our study has two aims: to determine the effect of metamorphic foliation on regolith thickness and to test an environmental model, Effective Energy Mass Transfer (EEMT), within a zero-order basin (ZOB) in the Santa Catalina Mountains. Seismic refraction and electrical resistivity data show a stark contrast in physical properties, and inferred regolith thickness, on north- versus south-facing slopes: north-facing slopes are characterized by higher seismic velocities and higher resistivities, consistent with thin regolith, while south-facing slopes show lower resistivities and velocities, indicative of deeper and more extensive weathering. This contrast is exactly the opposite of that expected from most climatic models, including the EEMT model, which predicts deeper regolith on north-facing slopes. Instead, regolith thickness appears to be controlled by metamorphic foliation: we observed a general, positive correlation between interpreted regolith thickness and foliation dip within heavily foliated lithologies and no correlation in weakly foliated lithologies. We hypothesize that hydraulic conductivity controls weathering here: where foliation is parallel to the surface topography, regolith is thin, but where foliation pierces the surface topography at a substantial angle, regolith is thick. The effect of foliation is much larger than that expected from environmental models: regolith thickness varies by a factor of 4 (2.5 m vs. 10 m). These results suggest that metamorphic foliation, and perhaps by extension sedimentary layering, plays a key role in determining regolith thickness and must be accounted for in models of critical zone development.

  10. Cometary science. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta.

    PubMed

    Capaccioni, F; Coradini, A; Filacchione, G; Erard, S; Arnold, G; Drossart, P; De Sanctis, M C; Bockelee-Morvan, D; Capria, M T; Tosi, F; Leyrat, C; Schmitt, B; Quirico, E; Cerroni, P; Mennella, V; Raponi, A; Ciarniello, M; McCord, T; Moroz, L; Palomba, E; Ammannito, E; Barucci, M A; Bellucci, G; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Jaumann, R; Kuehrt, E; Langevin, Y; Magni, G; Mottola, S; Orofino, V; Palumbo, P; Piccioni, G; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M; Longobardo, A; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Stephan, K; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Noschese, R; Peter, G; Politi, R; Reess, J M; Semery, A

    2015-01-23

    The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun. Copyright © 2015, American Association for the Advancement of Science.

  11. Experimental study of temporal evolution of waves under transient wind conditions

    NASA Astrophysics Data System (ADS)

    Zavadsky, Andrey; Shemer, Lev

    2016-11-01

    Temporal variation of the waves excited by nearly sudden wind forcing over an initially still water surface is studied in a small wind-wave flume at Tel Aviv University for variety of fetches and wind velocities. Simultaneous measurements of the surface elevation using a conventional capacitance wave-gauge and of the surface slope in along-wind and cross-wind directions by a laser slope gauge were performed. Variation with time of two components of instantaneous surface velocity was measured by particle tracking velocimetry. The size of the experimental facility and thus relatively short characteristic time scales of the phenomena under investigation, as well as an automated experimental procedure controlling the experiments made it possible to record a large amount of independent realizations for each wind-fetch condition. Sufficient data were accumulated to compute reliable ensemble averaged temporal variation of governing wave parameters. The essentially three-dimensional structure of wind-waves at all stages of evolution is demonstrated. The results obtained at each wind-fetch condition allowed to characterize the major stages of the evolution of the wind-wave field and to suggest a plausible scenario for the initial growth of the wind-waves.

  12. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  13. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  14. Soil management and green water in sloping rainfed vineyards

    NASA Astrophysics Data System (ADS)

    José Marqués Pérez, María; Ruíz-Colmenero, Marta; García-Díaz, Andrés; Bienes Allas, Ramón

    2017-04-01

    Improved crop production in areas with restricted water availability is of particular interest. Farmers need to maximize the water use efficiency when the possibilities of further extension of irrigation are limited and water is becoming scarce and expensive. Water in rainfed crops depends on rainfall depth and soil characteristics such as texture and structure, water holding capacity, previous moisture, infiltration, soil surface conditions, steepness and slope length. Land management practices can be used to maximise water availability. In previous studies the unwillingness of farmers to change their practices towards more sustainable use was mainly due to the worry about water competition. This work is aimed at understanding the influence of management practices in the water partitioning of this land use. This study was conducted in a sloping vineyard in the centre of Spain. A rain gauge recorded rainfall depth and intensity in the area. Three different soil management practices were considered: 1) traditional tillage, 2) permanent cover and 3) mowed cover of cereals, both sown in the strips between vines. Two moisture sensors were buried at 10 and 35 cm depths. Three replicates per management practice were performed. It is expected that the lack of tillage increase the potential for litter to protect the soil surface against raindrop impact and to contribute to increasing soil organic carbon, and the corresponding increase in infiltration and water holding capacity. The analysis of two years of daily records of rainfall, runoff and soil moisture are intended to establish any influence of management practices on the partitioning of water. Particularly, the so-called "green water" was estimated, i.e. the fraction of rainfall that infiltrates into the soil and will be further available to plants. Soil characteristics such as texture, structure, moisture, infiltration were established. In addition simulated rainfalls carried out in summer and winter over bounded plots having different management practices allowed the record of runoff per minute and further influence in soil moisture. After rainfalls soils were at field capacity and progressively dried in undisturbed conditions. Particle size analysis shows that this soil has 58 % sand, 18% silt and 24% clay, corresponding to a Sandy Clay Loam texture. Total porosity in the topsoil ranges from 49 to 51%, although according to previous studies only the 28% is effective to stock water in their micro and mesopores. In the upper 35 cm these soils are able to store from 0.05 to 0.25 m3 of water per m3 of soil depending on the seasons. At the same time, variations of runoff / infiltration were also noticed depending on the seasons and treatments.

  15. Chemical spring water measurements coupled with 2d u.d.e.c hydromechanical modelling as an investigation methodology of water infiltration influence on large moving rock mass stability : application to the "la clapière" landslide (france, 06).

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; Soukatchoff, V. M.; Mudry, J.; Bertrand, C.; Charmoille, A.

    2003-04-01

    We present an investigation method of water infiltration influence on Large Moving Rock Mass (LMRM) stability. In the case of huge unstable mountainous slopes, it has been clearly shown that the main driving of instability is gravity and that the major triggering and increasing factor is water located in interstices and fractures of rocks (Noverraz &al., 1998). More particularly, groundwater originates from a localized hydro-mechanical deformation inside fractures that can induce a generalized destabilization of large rock masses (Guglielmi, 1999). However, the understanding of groundwater mechanical effects on landslides and their neighbouring environment is rendered more complex given the large anisotropy of the rock mass as well as the difficulties to apply classic hydrogeological investigation methods in a moving environment. For these reasons, we developped an indirect investigation method based on chemical groundwater measurements coupled with a two-dimensional hydro-mechanical modelling with the Universal Distinct Element Code (UDEC) numerical program, taking the example of the La Clapière landslide (Alpes-Maritimes, France). The methodology we develop firstly establishes a hydro-mechanical conceptual scheme through the analysis of geological, hydrogeological, hydrogeochemistry and landslide velocity measurements. Then, a two-dimensional numerical modelling with UDEC was performed to test the influence of the locations and the intensities of water infiltrations on the hydro-mechanical behaviour of La Clapière’s slope. A geological and hydrogeological analysis reveals a perched saturated zone connected by large conducting-flow fractures to a basal aquifer. The correlations of spring water chemistry data and meteorological events on the slope highlight a large variability of groundwater transits in the slope in time (transit durations of 1 to 21 days) and in space. Infiltration transients correlate with landslide accelerations. Infiltration yields range between 0.4 and 0.8 l.s-1. The most intensive hydro-mechanical response of the landslide is linked to snowmelt in a stable area in the upper part of the slope located between 1800 and a 2500 m high. On the one hand modeling hydro-mechanical effects with UDEC considers a model corresponding to a slope without any unstable zone, and on the other hand, a model including a failure surface in order to simulate the current instability. In the two numerical tests, calculations show that the most unstabilizing water infiltration corresponds to water infiltrations located in the middle part of the slope for weak flow rates of 0.75 l.s-1. This is due to the water infiltration influence on the spatial distribution of strain fields. This result fits with field measurements. This methodology can easily be applied to the monitoring of landslide movements. As it gives relevant information on the spatial and temporal effects of various meteoric infiltrations, it can be applied to improve remedial protocols. This work was partly funded by the French National Program on Natural Hazards (PNRN) and Retina European Program. Guglielmi Y., 1999. Apport de la mesure des couplages hydromécaniques à la connaissance hydrogéologique des réservoirs fissurés. Habilitation à diriger des recherches, Université de Franche-Comté, E.A. 2642 Géosciences : Déformation, Écoulement, Transfert. 187 p. Noverraz F., BonnardC., Dupraz H., and Huguenin L., 1998. Grands glissements de versants et climat. Rapport final PNR 31, vdf hochschulverlag AG an der ETH Zürich, 314 p.

  16. Runoff processes in catchments with a small scale topography

    NASA Astrophysics Data System (ADS)

    Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.

    1996-05-01

    How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.

  17. Analytical solution of groundwater flow in a sloping aquifer with stream-aquifer interaction.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhan, H.

    2017-12-01

    This poster presents a new analytical solution to study water exchange, hydraulic head distribution and water flow in a stream-unconfined aquifer interaction system with a sloping bed and stream of varying heads in presence of two thin vertical sedimentary layers. The formation of a clogging bed of fine-grained sediments allows the interfaces among a sloping aquifer and two rivers as the third kind and Cauchy boundary conditions. The numerical solution of the corresponding nonlinear Boussinesq equation is also developed to compare the performance of the analytical solution. The effects of precipitation recharge, bed slope and stage variation rate of two rivers for water flow in the sloping aquifer are discussed in the results.

  18. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal purposes is pumped from wells on the flood plain, on adjacent alluvial slopes, and in tributary valleys. River water also is delivered to Mexico in accordance with an international treaty.

  19. A soil water budget model for precipitation-induced shallow landslides

    NASA Astrophysics Data System (ADS)

    Yeh, Hsin-Fu; Lee, Cheng-Haw

    2013-04-01

    Precipitation infiltration influences both the quantity and quality of slope systems. Knowledge of the mechanisms leading to precipitation-induced slope failures is of great importance to the management of landslide hazard. In this study, a soil water balance model is developed to estimate soil water flux during the process of infiltration from rainfall data, with consideration of storm periods and non-storm periods. Two important assumptions in this study are given: (1) instantaneous uniform distribution of the degree of effective saturation and (2) a linear relationship between evapotranspiration and the related degree of saturation degree. For storm periods, the Brooks and Corey model estimates both the soil water retention curve (SWRC) and soil water parameters. The infiltration partition is employed by an infinite-series solution of Philip in conjunction with the time compression approximation (TCA). For none-storm periods, evapotranspiration can be derived for the moisture depletion of soil water. This study presents a procedure for calculating the safety factor for an unsaturated slope suffering from precipitation infiltration. The process of infiltration into a slope due to rainfall and its effect on soil slope behavior are examined using modified Mohr-Coulomb failure criterion in conjunction with a soil water balance model. The results indicate that the matric suction, which is closely related to slope stability, is affected by the effective degree of saturation controlled by rainfall events.

  20. Slope Streaks or RSL?

    NASA Image and Video Library

    2016-12-14

    The image shows a region we see many slope streaks, typically dark features on slopes in the equatorial regions on Mars. They may extend for tens of meters in length and gradually fade away with time as new ones form. The most common hypothesis is that they are generated by dust avalanches that regularly occur on steep slopes exposing fresh dark materials from underneath the brighter dust. There are many types of slope streaks but one of the most recent and significant findings using HiRISE was the discovery of a new type called "recurring slope lineae," or RSL for short. Recent studies suggest that RSL may form through the flow of briny (extremely salty) liquid water that can be stable on the surface of Mars even under current climatic conditions for a limited time in summer when it is relatively warm. How can we distinguish between conventional slope streaks like the ones we see here and RSL? There are many criteria. For instance, RSL are usually smaller in size than regular slope streaks. However, one of the most important conditions is seasonal behavior, since RSL appear to be active only in summer while regular slope streaks can be active anytime of the year. This site is monitored regularly by HiRISE scientists because of the high density of slope streaks and their different sizes and orientations. If we look at a time-lapse sequence, we will see that a new slope streak has indeed formed in the period since April 2016 (and we can note how dark it is in comparison to the others indicating its freshness). However, this period corresponds mainly to the autumn season in this part of Mars, whereas we do not see any major changes in the summer season. This suggests that the feature that developed is a regular slope streak just like all the others in the area. http://photojournal.jpl.nasa.gov/catalog/PIA21272

  1. Landslide investigations, southern Cianjur Regency, West Java Province, Indonesia; a progress report

    USGS Publications Warehouse

    Ege, John R.

    1983-01-01

    Two landslide-monitoring sites have been established for a minimum 2-year investigation near the villages of Pasirpari and Cibacang in southern Cianjur Regency, West Java, Indonesia. Surveyed-in lines will measure amounts of surface movement and tilt, borings that produced exploratory cores now serve as slip-surface detectors and open-pipe piezometers, and rain gages will record rainfall at both sites. Exploratory cores and field observations located upper slip surfaces ranging in depth between 4 and 14 m. Rises of borehole-water levels of as much as 63 cm during drilling suggest that pore pressures exist at the inferred-slip surfaces. Sliding along slip surfaces and slope failures occurred during the rainy season between November 1980 and April 1981.

  2. Water and energy and hydrological limitations of whole-plant conductance along a subalpine forested hillslope

    NASA Astrophysics Data System (ADS)

    Beverly, D.; Speckman, H. N.; Klatt, A. L.; Ewers, B. E.

    2016-12-01

    Whole-plant hydraulic conductance is now used in many processed-based ecohydrological models running at the plot to regional scales. Many models, such as Dynamic Global Vegetation Model (DGVM), predict entire ecosystem evapotranspiration (ET) based on a single unvarying plant conductance parameter that assumes no variation in plant traits. However, whole-plant conductance varies in space, time, and with topography. Understanding this variation increases model predictive power for stand and ecosystem level estimates of ET, ultimately reducing uncertainty in predictions of the water balance. We hypothesize that whole-plant conductance (Kw) is water limited in the up-slope stands due to water flow paths and energy limited in down-slope stands due to shading. To test this hypothesis in two adjacent stands in the Medicine Bow Mountains of southern Wyoming. Both mixed conifer stands were south-facing, with the upper stand being 300 m above the down-slope stand. Whole-plant conductance was quantified measuring sapflow (Js) and leaf water potential (WPL) throughout the growing season. To quantify Js, each stand was instrumented with 30 Granier-type sapflow sensors. Leaf-water potentials were measured in monthly 48-hour campaigns sampling every 3 hours. The upper slope stand exhibited significantly lower Kw (approximately 35% lower in spruce and pine) and decreased throughout the growing season, driven by drying soils resulting in lower predawn WPL. In contrast, the down-slope stand Kw peaked in July before decreasing for rest of the summer. Down-slope predawn WPL maintained a consistent predawn WPL until October reflecting consistent water input from the upper slopes and ground water. Including this topographical variation in whole-plant conductance will increase the predictive power of models simulating evapotranspiration at the watershed scale.

  3. A modified integrated NDVI for improving estimates of terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1990-01-01

    Logic is presented for a time-integrated NDVI that is modified by an AVHRR derived surface evaporation resistance factor sigma, and truncated by temperatures that cause plant dormancy, to improve environmental sensitivity. With this approach, NDVI observed during subfreezing temperatures is not integrated. Water stress-related impairment in plant activity is incorporated by reducing the effective NDVI at each integration with sigma, which is derived from the slope of the surface temperature to NDVI ratio for climatically similar zones of the scene. A comparison of surface resistance before and after an extended drought period for a 1200 sq km region of coniferous forest in Montana is presented.

  4. NASA's LRO Discovers Lunar Hydrogen More Abundant on Moon's Pole-Facing Slopes

    NASA Image and Video Library

    2015-02-04

    Space travel is difficult and expensive – it would cost thousands of dollars to launch a bottle of water to the moon. The recent discovery of hydrogen-bearing molecules, possibly including water, on the moon has explorers excited because these deposits could be mined if they are sufficiently abundant, sparing the considerable expense of bringing water from Earth. Lunar water could be used for drinking or its components – hydrogen and oxygen – could be used to manufacture important products on the surface that future visitors to the moon will need, like rocket fuel and breathable air. Recent observations by NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft indicate these deposits may be slightly more abundant on crater slopes in the southern hemisphere that face the lunar South Pole. "There’s an average of about 23 parts-per-million-by-weight (ppmw) more hydrogen on Pole-Facing Slopes (PFS) than on Equator-Facing Slopes (EFS)," said Timothy McClanahan of NASA's Goddard Space Flight Center in Greenbelt, Maryland. This is the first time a widespread geochemical difference in hydrogen abundance between PFS and EFS on the moon has been detected. It is equal to a one-percent difference in the neutron signal detected by LRO's Lunar Exploration Neutron Detector (LEND) instrument. McClanahan is lead author of a paper about this research published online October 19 in the journal Icarus. Read more: 1.usa.gov/1uaa8s2 Photo caption: LRO image of the moon's Hayn Crater, located just northeast of Mare Humboldtianum, dramatically illuminated by the low Sun casting long shadows across the crater floor. Image Credit: NASA/GSFC/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Impacts of river segmentation strategies on reach-averaged product uncertainties for the upcoming Surface Water and Ocean Topography (SWOT) mission

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.

    2016-12-01

    Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all methods had comparable performance. Our results suggest that river segmentation strategies that take into consideration the hydraulic characteristics of rivers may lead to more meaningful reach boundaries and to better products especially for narrower and more complex rivers.

  6. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  7. Observational study of surface wind along a sloping surface over mountainous terrain during winter

    NASA Astrophysics Data System (ADS)

    Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk

    2018-03-01

    The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.

  8. Strait of Gibraltar as seen from STS-58

    NASA Image and Video Library

    1993-10-20

    STS058-73-009 (18 Oct-1 Nov 1993) --- Atlantic water flowing with the tide through the Strait of Gibraltar into the Mediterranean generates internal waves as depicted in this photo. The incoming cool, less dense Atlantic water flows over the warm, more saline Mediterranean water. As the tide moves into the Strait of Gibraltar it encounters the Camarinal Sill, which is like a cliff under water, south of Camarinal Point, Spain. Internal waves are generated at the Sill and travel along the density boundary between the Atlantic water and the Mediterranean water. Internal waves have very little effect on the sea surface, except for gentle slopes and slight differences in roughness. We can see them in the Space Shuttle photos because of sunglint which reflects off the water. Internal waves smooth out some of the capillary waves at the surface in bands. The sun reflects more brightly from these smooth areas showing us the pattern of the underwater waves. The Bay of Cadiz on the southwest coast of Spain, the Rock of Gibraltar, and the Moroccan coast are also visible in this photo.

  9. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study.

    PubMed

    Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H

    2013-08-01

    The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

  10. Fluctuating Helical Asymmetry and Morphology of Snails (Gastropoda) in Divergent Microhabitats at ‘Evolution Canyons I and II,’ Israel

    PubMed Central

    Raz, Shmuel; Schwartz, Nathan P.; Mienis, Hendrik K.; Nevo, Eviatar; Graham, John H.

    2012-01-01

    Background Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic) spiral. We studied six species of gastropods at ‘Evolution Canyons I and II’ in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, ‘African’ slopes and the mesic, north-facing, ‘European’ slopes have dramatically different microclimates and plant communities. Moreover, ‘Evolution Canyon II’ receives more rainfall than ‘Evolution Canyon I.’ Methodology/Principal Findings We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two ‘Evolution Canyons.’ The xeric ‘African’ slope should be more stressful to land snails than the ‘European’ slope, and ‘Evolution Canyon I’ should be more stressful than ‘Evolution Canyon II.’ Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the ‘European’ slope. Shells of Levantina spiriplana caesareana at ‘Evolution Canyon I,’ were smaller and more asymmetric than those at ‘Evolution Canyon II.’ Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons. Conclusions/Significance Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the ‘African’ slope, for increasing surface area and thermoregulation, while Eopolita was larger on the ‘African’ slope, for reducing water evaporation. In addition, ‘Evolution Canyon I’ was more stressful than Evolution Canyon II’ for Levantina. PMID:22848631

  11. Mesoscale resolution capability of altimetry: Present and future

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves

    2016-07-01

    Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.

  12. The morphology and nature of the East Arctic ocean acoustic basement

    NASA Astrophysics Data System (ADS)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  13. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and the new conceptual model fit the field observations and may explain the high variability of salt accumulation along slopes as observed in the field.

  14. Coupling limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Iovine, G. G. R.; Lollino, P.; Gariano, S. L.; Terranova, O. G.

    2010-11-01

    On 28 January 2009, a large debris slide was triggered by prolonged rainfalls at the southern suburbs of San Benedetto Ullano (Northern Calabria). The slope movement affected fractured and weathered migmatitic gneiss and biotitic schist, and included a pre-existing landslide. A detailed geomorphologic field survey, carried out during the whole phase of mobilization, allowed to recognize the evolution of the phenomenon. A set of datum points was located along the borders of the landslide and frequent hand-made measurements of surface displacements were performed. Since 11 February, a basic real-time monitoring system of meteoric parameters and of surface displacements, measured by means of high-precision extensometers, was also implemented. Based on the data gained through the monitoring system, and on field surveying, a basic support system for emergency management could be defined since the first phases of activation of the phenomenon. The evolution of the landslide was monitored during the following months: as a consequence, evidence of retrogressive distribution could be recognized, with initial activation in the middle sector of the slope, where new temporary springs were observed. During early May, the activity reduced to displacements of a few millimetres per month and the geo-hydrological crisis seemed to be concluded. Afterwards, the geological scheme of the slope was refined based on the data collected through a set of explorative boreholes, equipped with inclinometers and piezometers: according to the stratigraphic and inclinometric data, the depth of the mobilized body resulted in varying between 15 and 35 m along a longitudinal section. A parametric limit equilibrium analysis was carried out to explore the stability conditions of the slope affected by the landslide as well as to quantify the role of the water table in destabilizing the slope. The interpretation of the process based on field observations was confirmed by the limit equilibrium analysis: the first activation of the landslide was, in fact, to be expected in the middle portion of the slope, provided that the groundwater levels approximate the ground surface in the same sector. On 1 February 2010, another remarkable phase of landslide mobilization began, following a new period of exceptional and prolonged rainfalls. On 11 February, an abrupt stage of slope acceleration was observed, after further extraordinary rainfalls. The slope movement essentially replicated the phases of mobilization observed on 28 January 2009, thus confirming the results of the limit equilibrium analysis. Based on the outcomes of the parametric analysis, the support system for emergency management could then be tentatively refined on a more physical basis.

  15. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    USGS Publications Warehouse

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to be underlain by similar deposits. Delineation of the zones was based on depositional history of the area and the distri- bution of sediments shown on a surficial geologic map. Water levels in wells were measured twice in 1990: during late winter when ground-water with- drawals were the least and water levels the highest, and again in late summer, when ground- water withdrawals were the greatest and water levels the lowest. These water levels were used to construct potentiometric-contour maps and subsequently to determine the variability of the slope in the potentiometric surface in the area. Values for the three properties, derived from the described sources of information, were used to produce a map showing the general distribution of average linear velocity of ground water moving through the principal aquifer of the study area. Velocity derived ranged from 0.06 to 144 feet per day with a median of about 3 feet per day. Values were slightly faster for late summer 1990 than for late winter 1990, mainly because increased with- drawal of water during the summer created slightly steeper hydraulic-head gradients between the recharge area near the mountain front and the well fields farther to the west. The fastest average linear-velocity values were located at the mouth of Little Cottonwood Canyon and south of Dry Creek near the mountain front, where the hydraulic con- ductivity was estimated to be the largest because the drillers described the sediments to be pre- dominantly clean and coarse grained. Both of these areas also had steep slopes in the potentiometric surface. Other areas where average linear velocity was fast included small areas near pumping wells where the slope in the potentiometric surface was locally steepened. No apparent relation between average linear velocity and porosity could be seen in the mapped distributions of these two properties. Calculation of travel time along a flow line to a well in the southwestern part of the study area during the sum

  16. Shallow structure and stratigraphy of the carbonate West Florida continental slope and their implications to sedimentation and geohazards

    USGS Publications Warehouse

    Doyle, Larry J.

    1983-01-01

    An 1800-joule sparker survey of the West Florida continental slope between about 26?N and 29?15?N showed a top bed of Pleistocene age forming an irregular drape over a surface that is probably Pliocene. The contact between the top two layers is unconformable in the south and, in some places, shows karst collapse and solution features. Karst topography grades into a more hummocky erosional surface to the north, which in turn smoothes out; the contact become conformable still further north. A period of folding, which is widespread over the outer portion of the study area and which may be related to large scale mass wasting, occurred at about the same time represented by the unconformity. Significant subsidence has occurred as late as Pleistocene. The surface layer thins to a minimum (0 in the south) at about 525-meters water depth and then thickens again dramatically to the west, downslope. This thinning is interpreted to be due to the Loop Current, which flows from north to south in the area and which acts to block deposition and scour the bottom. Despite the fact that the margin is dominated by carbonates, usually associated with low sedimentation rates, there is widespread evidence of mass wasting affecting ancient and surficial deposits on the outer part of the upper slope. Three potential groups of geohazards identified are: 1. Potential bottom failure in areas where a thin top layer overlies the karst surface. 2. Potential for sliding and slumping. 3. Scour due to currents which could also affect drilling and engineering activities.

  17. Newly discovered abundant fluid seep indicators off southern Costa Rica, imaged from overlapping multibeam swaths and 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Gibson, J. C.; Bangs, N. L.; McIntosh, K.; von Huene, R.; Orange, D.; Ranero, C. R.

    2012-12-01

    Offshore southern Costa Rica we have identified 161 potential fluid seepage sites on the shelf and slope regions within an 11 x 55 km strip where no fluid indicators had been reported previously using conventional deep-water mutlibeam bathymetry (100 m grid cell size) and deep towed side scan sonar. Evidence includes large and small pockmarks, mounds, ridges, and slope failure features with localized anomalous high-amplitude backscatter strength. The majority of seepage indicators are associated with shallow sub-bottom reversed polarity bright spots and flat spots imaged within the CRISP 3D seismic grid. Data were collected ~50 km west of Osa Peninsula, Costa Rica onboard the R/V Marcus G. Langseth during the spring of 2011. We obtained EM122 multibeam data using fixed, closely spaced receiver beams and 9-10 times swath overlap, which greatly improved the signal-to-noise ratio and sounding density and allowed for very small grid and mosaic cell sizes (2-10 m). A gas plume in the water column, seen on a 3.5 kHz profile, is located along a fault trace and above surface and subsurface seep indicators. Fluid indicators on the outer shelf occur largely on a dense array of faults, some of which cut through the reflective basement. Seismic flat spots commonly underlie axes of large anticlines on the shelf and slope. Pockmarks are also located at the foot of mid-slope canyons, very near to the upper end of the BSR. These pockmarks appear to be associated with canyon abandonment and folded beds that channel fluids upward, causing hydrate instability. Our findings suggest that significant amounts of methane are venting into ocean and potentially into the atmosphere across the heavily deformed shelf and slope of Costa Rica.

  18. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    USGS Publications Warehouse

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  19. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that instability never occurs if less than 60% of the soil depth is saturated. In addition, a variation of 10% in the cohesion and friction angle of soil leads to changes in critical acceleration (factor of safety) of 4% and 5%, respectively. On the other hand, a variation of 10% in wall cohesion and friction angle leads to changes in the critical acceleration of around 4% and 1.5%, respectively. The use of a soil depth map with slightly different depths caused a different distribution in the number and location of instabilities. This underlines how this parameter, which is difficult to determine at high resolution, plays a central role in controlling location and volume of potential unstable masses. The model was finally evaluated on historical events and it demonstrated to be a good and reliable instrument to reproduce water levels and localise the most critical area for the triggering of superficial landslides on terraced slopes. In detail, field-measured water levels are modelled with a normalized RMSE of about 10%. Regarding stability, the triggering areas of the two superficial landslides occurred in May 1983 were well reproduced both temporally and spatially.

  20. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-04-19

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less

  1. Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios

    NASA Astrophysics Data System (ADS)

    McFall, Brian C.; Fritz, Hermann M.

    2014-05-01

    Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1

  2. Physical Modeling of Tsunamis Generated By 3D Deformable Landslides in Various Scenarios From Fjords to Conical Islands

    NASA Astrophysics Data System (ADS)

    McFall, B. C.; Fritz, H. M.

    2013-12-01

    Tsunamis generated by landslides and volcano flank collapse can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. Two different materials are used to simulate landslides to study the granulometry effects: naturally rounded river gravel and cobble mixtures. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1

  3. Surface runoff and retention of transported pollutants in strips of riparian vegetation with and without trees

    NASA Astrophysics Data System (ADS)

    Giaccio, Gustavo; Laterra, Pedro; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    In this study, some aspects related to the effect of the crack willow (Salix fragilis L.) invasion on the reduction of runoff and sediment retention, glyphosate, nitrogen and phosphorus in riparian environments with herbaceous vegetation of the Austral Pampa of Argentina were analysed. In order to evaluate the influence of the willows on the filtering mechanisms, surface runoff simulation experiments were carried out in plots of 1.5 m x 2.5 m in environments characterized by the presence vs. the absence of willows. In spite of the small length of the experimental plots, glyphosate retention in the tree-less plots reached 73.6%, a higher value than that recorded in tree stands (43.8%). However, sediment, nitrogen and phosphorus retention did not vary significantly between treatments. On the other hand, the reduction of the volume of runoff in the sites with trees reached 63%, a superior value to the one registered in strips without trees (31%). The presence of trees only significantly modified the biophysical properties of hydraulic conductivity, surface roughness, aerial biomass and soil moisture, compared to areas with no trees. Partial correlation analysis for both tree and no-tree environments showed that the reduction in runoff volume increased significantly with hydraulic conductivity, soil sand content and depth at the water table, and decreased with apparent density, soil moisture and the slope of the riverbank. However, sediment retention increased significantly with aerial, mulch and root biomass and decreased with the slope of the riparian strip. Glyphosate retention increased significantly with sediment retention and decreased with the slope of the riparian strip and the mulch biomass. Nitrogen retention increased with the reduction of runoff flow, soil hydraulic conductivity and depth to the water table and decreased with slope and sediment retention. While, phosphorus retention increased with sediment retention and decreased with slope and soil content of soils. However, the mechanisms involved in the differential effect of the vegetation with or without trees could not be explained. This work emphasizes the importance of the ecosystem function of glyphosate filtration of riparian environments covered by herbaceous vegetation in front of the increasing intensification of agriculture. On the other hand, in the context of agro ecosystems and agricultural landscapes the presence of trees contributes to the reduction of the flow of runoff, although these sub compensate in relation to the sites without trees, considering the balance between flow and concentration.

  4. Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios

    NASA Astrophysics Data System (ADS)

    Penuela Fernandez, A.; Javaux, M.; Bielders, C.

    2013-12-01

    Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.

  5. Simulation of laser beam reflection at the sea surface

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  6. Monitoring electrical properties for improving the lithological and hydrological characterization of landslides

    NASA Astrophysics Data System (ADS)

    Malet, J. P.; Gance, J.; Lajaunie, M.; Gallistl, J.; Denchik, N.; Flores Orozco, A.; Ottowitz, D.; Supper, R.; Sailhac, P.; Gautier, S.; Schmutz, M.

    2017-12-01

    Imaging water flows in landslides is of critical importance as the distribution of pore-fluid pressures controls the dynamics (acceleration, deceleration) of the material. Detecting and imaging water is a difficult task, not only because of the complex topography and the small dimensions of the geological structures, but also because the landslide material consists of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. Further, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the sub-surface hydrological properties. In order to image water in landslide bodies, we propose to combine multi-frequency electrical and electromagnetic measurements using campaigns or permanent instruments, and surface/boreole investigations, installed on several unstable slopes in France. To evaluate the information gained from electrical properties for different geological conditions, we discuss electrical and electro-magnetic imaging results for data collected at four different landslides located in France (Super-Sauze and La Valette in the South East Alps, Lodève lin the southern border of the Massif Central Massif, and Séchilienne in the North French Alps). Time-lapse electrical DC resistivity observations, complex electrical conductivity (conduction and polarization/chargeability) measured by IP imaging methods, and controlled-source electromagnetic (CS-AMT) methods are discussed. Imaging results demonstrate an improved lithological characterization of the landslide structures (delineation of the sliding planes, identification of the fractures, discrimination of clay lenses with enhanced resolution); further, water infiltration within the soil matrix and/or the fractures is discriminated allowing better modelling of the hydrological regime of the landslides at the slope scale. This research is conducted in the frame of the project HYDROSLIDE - Hydrogeophysical Monitoring of Clay-Rich Landslides funded by the Austrian Science Fund (FWF) and the French Research Agency (ANR).

  7. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  8. Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean.

    PubMed

    Kim, Hyunji; Soerensen, Anne L; Hur, Jin; Heimbürger, Lars-Eric; Hahm, Doshik; Rhee, Tae Siek; Noh, Seam; Han, Seunghee

    2017-02-07

    Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m -2  yr -1 ). A higher upward diffusion in the North Pacific (12 nmol m -2  yr -1 ) than in the Equatorial Pacific (1.8-5.7 nmol m -2  yr -1 ) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.

  9. From lakes to sand seas: a record of early Mars climate change explored in northern Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Banham, S.; Rubin, D. M.; Watkins, J. A.; Edgett, K. S.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Edgar, L. A.; Stack, K.; Day, M.; Lapôtre, M. G. A.; Bell, J. F., III; Ewing, R. C.; Stein, N.; Rivera-Hernandez, F.; Vasavada, A. R.

    2017-12-01

    While traversing the northern flank of Aeolis Mons, Gale crater, Mars Science Laboratory rover Curiosity encountered a decametre-thick sandstone unit unconformably overlying the lacustrine Murray formation. This sandstone contains cross-bed sets on the order of 1 m thick, composed of uniform mm-thick laminations of uniform thickness, and lacks silt- or mud-grade sediments. Cross sets are separated by sub-horizontal bounding surfaces which extend for tens of metres across outcrops. Dip-azimuths of cross-laminations are predominantly toward the north-east, which is oblique to the north-west slope of the unconformity on which the sandstone accumulated. This sandstone was designated the Stimson formation after Mt. Stimson, where it was delineated from the Murray formation. Textural analysis of this sandstone revealed a bi-modal sorting with well-rounded grains, typical of particles transported by aeolian processes. Stacked cross-bedded sets, representing the migration of aeolian dune-scale bedforms, combined with the absence of finer-grained facies characteristic of interdune deposits, suggest that the Stimson accumulated by aerodynamic processes and that the depositional surface was devoid of moisture which could have attracted dust to form interdune deposits. Reconstruction of this "dry" dune-field based on architectural measurements suggest that cross sets were emplaced by the migration of dunes with minimum heights of 10m, that were spaced 160 m apart. The dune field covered an area of 30-45 km2, and was confined to the break-in-slope at the base of Aeolis Mons. Cross-set dips suggest that the palaeowind drove these dunes toward the north east, oblique to the slope of the unconformity on which these sandstones accumulated. Construction of a dry dune field in Gale crater required an environment of extreme aridity with absence of water at the surface and within the shallow sub-surface. This is in stark contrast to the lacustrine environment in which the underlying Murray formation accumulated. The contrast in depositional environments between these units suggest that the prevailing climate in Gale crater changed, at least temporarily, from a humid environment with surface water that had potential for sustaining life, to a barren desert with reduced potential for habitability at the surface.

  10. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    A trait is defined as a distinct, quantitative property of organisms, usually measured at the individual level and used comparatively across species. Plant quantitative traits are extremely important for understanding the local ecology of any site. Plant height, architecture, root depth, wood density, leaf size and leaf nitrogen concentration control ecosystem processes and define habitat for other taxa. An engineer conjecturing as to how plant traits may directly influence physical processes occurring on sloping land just needs to consider how e.g. canopy architecture and litter properties influence the partitioning of rainfall among interception loss, infiltration and runoff. Plant traits not only influence abiotic processes occurring at a site, but also the habitat for animals and invertebrates. Depending on the goal of the landslide engineer, the immediate and long-term effects of plant traits in an environment must be considered if a site is to remain viable and ecologically successful. When vegetation is considered in models of slope stability, usually the only root parameters taken into consideration are tensile strength and root area ratio. Root system spatial structure is not considered, although the length, orientation and diameter of roots are recognized as being of importance. Thick roots act like soil nails on slopes, reinforcing soil in the same way that concrete is reinforced with steel rods. The spatial position of these thick roots also has an indirect effect on soil fixation in that the location of thin and fine roots will depend on the arrangement of thick roots. Thin and fine roots act in tension during failure on slopes and if they cross the slip surface, are largely responsible for reinforcing soil on slopes. Therefore, the most important trait to consider initially is rooting depth. To stabilize a slope against a shallow landslide, roots must cross the shear surface. The number and thickness of roots in this zone will therefore largely determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  11. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    NASA Astrophysics Data System (ADS)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes have a surface inferior to 10 ha (0.1 km2). Temporal analyses, over the year 2010, show that only five lakes offer a strong surface dynamic (from 21% to 125% of evolution). The weak signal observed over all the other lakes are due to the banks of lakes (steep slope). The long term analyses, from 2003 to middle of 2011, show alternation of wet and dry years due to rainfalls variations. Annual cycle are also well marked showing filling and emptying phases respectively occurring in spring and at the end of summer. Filling phase is both attributed to runoff contributions over the watershed and to pumping effects. Irrigation and evaporation are the main factors during emptying phases. Two examples of water storages estimates are presented over one specific watershed. To conclude, high spatial resolution images appear suitable for mapping water bodies at fine scale. Limitations come from the form of the edge of the lake (steep or slight slope) and only 3% of lakes can be monitored over the studied area. In the following, interferometric approaches will be evaluated to estimate the height of water bodies, improving the estimate of water storage.

  12. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with an average slope (in ° from vertical) in the two downshear quadrants of 36.5° and an average slope of 16.3° in the two upshear quadrants (p < 0.05). This result is consistent with a case-study analysis by Rogers and Uhlhorn (2008) of changes in RMW slope in the lower levels of Hurricane Rita. In addition, the slope of an angular momentum surface shows a similar pattern to the RMW. The slope of the 20 dBZ surface does not show as well-defined a signal. However, by separating the cases into TCs that were strengthening or weakening/steady, we found that the difference between dBZ slope and M slope is important in distinguishing between the sets. The 20 dBZ surface tended to be more upright than an M surface in the azimuthal mean and in two of the four quadrants for intensifying cases, and less upright than the M surface for weakening/steady-state cases (p < 0.05). This result is consistent with a conceptual model for intensifying vs. steady-state TCs described in Rogers et al. (2013). Further analysis will continue to explore methods to quantify the effects of vertical shear on the TC secondary circulation using the metric of eyewall slope.

  13. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  14. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Liu, Xiaoli; Hu, Senying; Li, Pujian

    2016-06-01

    The unstable rock slope in the Laxiwa reservoir area of the Yellow River upstream, China, shows the signs of gravitational and water-impounding induced large deformations over an area of 1.15 × 105 m2. Slope movements have been measured daily at more than 560 observation points since 2009, when the reservoir was first impounded. At two of these points, an average daily movement of around 60-80 mm has ever been observed since the beginning of the impounding. Based on the observed deformations and the geology of the site, a fluid-solid coupling model was then adopted to investigate the existing rockslide activity to better understand the mechanism underlying the large deformations. The results from the field observation, kinematic analysis and numerical modeling indicate that the slope instability is dominated by the strong structurally controlled unstable rock mass. Based on an integrated overview of these analyses, a new toppling mode, i.e. the so-called `conjugate block' mode, is proposed to explain the large deformation mechanism of the slope. The conjugate block is formed by a `dumping block' and toppling blocks. The large deformation of the slope is dominated by (1) a toppling component and (2) a subsiding bilinear wedge induced by planar sliding along the deep-seated faults. Following a thorough numerical analysis, it is concluded that small collapses of rock blocks along the slope will be more frequent with the impounding process continuing and the water level fluctuating during the subsequent operation period. Based on a shear strength reduction method and field monitoring, four controlling faults are identified and the instability of the loose structure in the surface layer is analyzed and discussed. The factor of safety against the sliding failure along the deep seated fractures in the slope is 1.72, which reveals that (1) the collapse of the free-standing fractured blocks cannot be ruled out and the volume of the unstable blocks may be greater than 100,000 m3; (2) the collapse of the whole slope, i.e. with the volume being greater than 92 million m3, or a very large collapse involving several million m3, is considered to be of very low likelihood, unless there are extreme conditions, such as earthquakes and exceptionally heavy rain.

  15. Comparison of the magnitude and phase of the reflection coefficient from a smooth water/sand interface with elastic and poroelastic models

    NASA Astrophysics Data System (ADS)

    Isakson, Marcia; Camin, H. John; Canepa, Gaetano

    2005-04-01

    The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.

  16. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  17. Deep-Water Resedimented Carbonate Exploration Play Types: Controls and Models

    NASA Astrophysics Data System (ADS)

    Minzoni, M.; Janson, X.; Kerans, C.; Playton, T.; Winefield, P.; Burgess, P. M.

    2016-12-01

    Deepwater resedimented deposits have been described in both modern and ancient carbonate sequences, many with good reservoir potential, for example the giant Cretaceous Poza Rica field in Mexico ( 40 MMBoe), the Mississippian Tangiz field in Kazakhstan, and several fields in the U.S. Permian basin (several Tcf gas). Nevertheless, carbonate slope and basin systems remain poorly understood when compared to their siliciclastic counterparts. Legacy published and unpublished work, combined with a global database of surface and sub-surface examples of resedimented carbonates, has highlighted that downslope resedimentation of carbonate material is in large part controlled by the evolution of the parent platform margin, which in turn is best characterized in terms of various controlling processes such as the carbonate factory type, tectonic setting, eustatic variations, and prevailing wind direction and ocean current patterns. Two generic play types emerge: (i) attached carbonate slope play -developed immediately adjacent to the parent carbonate platform and dominated by rock fall and platform collapse deposits or in situ boundstone; and (ii) detached carbonate slope play - deposited further from the platform margin via channelized turbidity currents and other mass-flow processes. High-rising, steep, bypass platform margins with collapse scars and grain-dominated factories have the highest potential to generate channelized and detached deep-water reservoirs with high initial porosity and permeability. Best reservoirs are aragonitic grainstones transported from the platform into the adjacent basin, and undergoing dissolution in submarine undersaturated water with early formation of secondary porosity to further enhance reservoir properties. Any exploration model aiming at identifying potential resedimented carbonate plays should be based on carbonate platform configurations and factory types favorable for re-sedimentation of large sedimentary bodies and preservation or enhancement of high original porosity. Using these proposed conceptual models in combination with global paleogeographic and paleotectonic maps, the explorer may be able to develop better predictions for the likely age and location of resedimented carbonate plays with the greatest potential for further evaluation.

  18. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low mountains were redefined as not gently sloping and 151 m 400 m. The final application of the MoRAP methodology was implemented using the USGS 30-meter National Elevation Dataset and an existing USGS slope dataset that had been derived by calculating the slope from the NED in Universal Transverse Mercator (UTM) coordinates in each UTM zone, and then combining all of the zones into a national dataset. This map shows a smoothed image of the nine land surface form classes based on MoRAP's methodology. Additional information about this map and any data developed for the ecosystems modeling of the conterminous United States is available online at http://rmgsc.cr.usgs.gov/ecosystems/.

  19. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.

  20. Assessment of sediment yield in a sloping Mediterranean watershed in Cyprus

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado

    2014-05-01

    In the Mediterranean region, water catchment sediment yield as a result of erosion is higher than in many other regions in Europe due to the climatic conditions, topography, lithology and land-use. Modelling sediment transport is difficult due to intermittent stream flow and highly irregular rainfall conditions in this region. The objective of this study is to quantify sediment yield of a highly sloping Mediterranean environment. This study is conducted in the Peristerona Watershed in Cyprus, which has ephemeral water flow. In the downstream area a series of check dams have been placed across the stream to slow the flow and increase groundwater recharge. The surface area of the watershed, upstream of the check dams, is 103 km2 with elevation changing between 1540 m and 280 m and a mean local slope higher than 40% for the mountainous part and lower than 8% for the plain. The long-term average annual precipitation ranges from 755 mm in the upstream area to 276 mm in the plain. The surface extent of the sediment that was deposited at the most upstream check dam during two seasons was measured with a Differential Global Positioning System. The depth of the sediment was measured with utility poles and bulk density samples from the sediment profile were collected. The sediment had a surface area of 12600 m2 and an average depth of 0.23 m. The mean of the sediment dry bulk density samples was 1.05 t m-3 with a standard deviation of 0.11. Based on these values, area specific sediment yield was computed as 1 t ha-1 per year for the entire catchment area upstream of the check dam, assuming a check dam sediment trap efficiency of 15%. Erosion in the watershed is currently modeled with PESERA using detailed watershed data.

Top