Sample records for water system components

  1. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  2. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  3. In-situ continuous water monitoring system

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  4. In-situ continuous water monitoring system

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  5. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  6. Nambe Pueblo Water Budget and Forecasting model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Watermore » Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.« less

  7. iSAW: Integrating Structure, Actors, and Water to study socio-hydro-ecological systems

    NASA Astrophysics Data System (ADS)

    Hale, Rebecca L.; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.; Jackson-Smith, Douglas; Jones, Amber S.; Licon, Carlos; Null, Sarah E.; Odame, Augustina; Pataki, Diane E.; Rosenberg, David; Runburg, Madlyn; Stoker, Philip; Strong, Courtenay

    2015-03-01

    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary framework for water resources research that could address management challenges across scales (e.g., plot to region) and domains (e.g., water supply and quality, transitioning, and urban landscapes). The framework was designed to be generalizable across all human-environment systems, yet with sufficient detail and flexibility to be customized to specific cases. iSAW includes three major components: structure (natural, built, and social), actors (individual and organizational), and water (quality and quantity). Key linkages among these components include: (1) ecological/hydrologic processes, (2) ecosystem/geomorphic feedbacks, (3) planning, design, and policy, (4) perceptions, information, and experience, (5) resource access and risk, and (6) operational water use and management. We illustrate the flexibility and utility of the iSAW framework by applying it to two research and management problems: understanding urban water supply and demand in a changing climate and expanding use of green storm water infrastructure in a semi-arid environment. The applications demonstrate that a generalized conceptual model can identify important components and linkages in complex and diverse water systems and facilitate communication about those systems among researchers from diverse disciplines.

  8. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Testing requirements for ballast water management system (BWMS) components. 162.060-30 Section 162.060-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Ballast Water Management Systems § 162.060...

  9. Patterns, structures and regulations of domestic water cycle systems in China

    NASA Astrophysics Data System (ADS)

    Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong

    2010-05-01

    Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system management efforts typically fail in China, because the approach is generally narrowly-focused and fragmented. This paper put forward a total-process control framework following the water and pollutants (or nutrients) flows along the dualistic domestic water cycle process. Five key objectives of domestic water cycle system regulation are identified including water use safety, water use equity, water saving, wastewater reduction and nutrient recycling. Comprehensive regulatory framework regarding administrative, economic, technical and social measures is recommended to promote sustainable domestic water usage and demand management. Considering the relatively low affordability in rural area, economic measures should be mainly applied in urban domestic water systems and metropolitan domestic water systems. Engineering or technological measures which are suitable to the three domestic water cycle systems are discussed respectively.

  10. Simplifying and upscaling water resources systems models that combine natural and engineered components

    NASA Astrophysics Data System (ADS)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  11. Enhanced communication and coordination in the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System.

    PubMed

    Dangel, Chrissy; Allgeier, Steven C; Gibbons, Darcy; Haas, Adam; Simon, Katie

    2012-03-01

    Effective communication and coordination are critical when investigating a possible drinking water contamination incident. A contamination warning system is designed to detect water contamination by initiating a coordinated, effective response to mitigate significant public health and economic consequences. This article describes historical communication barriers during water contamination incidents and discusses how these barriers were overcome through the public health surveillance component of the Cincinnati Drinking Water Contamination Warning System, referred to as the "Cincinnati Pilot." By enhancing partnerships in the public health surveillance component of the Cincinnati Pilot, information silos that existed in each organization were replaced with interagency information depots that facilitated effective decision making.

  12. Water reuse systems: A review of the principal components

    USGS Publications Warehouse

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    Principal components of water reuse systems include ammonia removal, disease control, temperature control, aeration, and particulate filtration. Effective ammonia removal techniques include air stripping, ion exchange, and biofiltration. Selection of a particular technique largely depends on site-specific requirements (e.g., space, existing water quality, and fish densities). Disease control, although often overlooked, is a major problem in reuse systems. Pathogens can be controlled most effectively with ultraviolet radiation, ozone, or chlorine. Simple and inexpensive methods are available to increase oxygen concentration and eliminate gas supersaturation, these include commercial aerators, air injectors, and packed columns. Temperature control is a major advantage of reuse systems, but the equipment required can be expensive, particularly if water temperature must be rigidly controlled and ambient air temperature fluctuates. Filtration can be readily accomplished with a hydrocyclone or sand filter that increases overall system efficiency. Based on criteria of adaptability, efficiency, and reasonable cost, we recommend components for a small water reuse system.

  13. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  15. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  16. Integrating Water, Actors, and Structure to Study Socio-Hydro-Ecological Systems

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Armstrong, A.; Baker, M. A.; Bedingfield, S.; Betts, D.; Buahin, C. A.; Buchert, M.; Crowl, T.; Dupont, R.; Endter-Wada, J.; Flint, C.; Grant, J.; Hinners, S.; Horns, D.; Horsburgh, J. S.; Jackson-Smith, D.; Jones, A. S.; Licon, C.; Null, S. E.; Odame, A.; Pataki, D. E.; Rosenberg, D. E.; Runburg, M.; Stoker, P.; Strong, C.

    2014-12-01

    Urbanization, climate uncertainty, and ecosystem change represent major challenges for managing water resources. Water systems and the forces acting upon them are complex, and there is a need to understand and generically represent the most important system components and linkages. We developed a framework to facilitate understanding of water systems including potential vulnerabilities and opportunities for sustainability. Our goal was to produce an interdisciplinary framework for water resources research to address water issues across scales (e.g., city to region) and domains (e.g., water supply and quality, urban and transitioning landscapes). An interdisciplinary project (iUTAH - innovative Urban Transitions and Aridregion Hydro-sustainability) with a large (N=~100), diverse team having expertise spanning the hydrologic, biological, ecological, engineering, social, planning, and policy sciences motivated the development of this framework. The framework was developed through review of the literature, meetings with individual researchers, and workshops with participants. The Structure-Water-Actor Framework (SWAF) includes three main components: water (quality and quantity), structure (natural, built, and social), and actors (individual and organizational). Key linkages include: 1) ecological and hydrological processes, 2) ecosystem and geomorphic change, 3) planning, design, and policy, 4) perceptions, information, and experience, 5) resource access, and 6) operational water use and management. Our expansive view of structure includes natural, built, and social components, allowing us to examine a broad set of tools and levers for water managers and decision-makers to affect system sustainability and understand system outcomes. We validate the SWAF and illustrate its flexibility to generate insights for three research and management problems: green stormwater infrastructure in an arid environment, regional water supply and demand, and urban river restoration. These applications show that the framework can help identify key components and linkages across diverse water systems.

  17. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, Paul

    1998-01-01

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  18. Optical monitor for water vapor concentration

    DOEpatents

    Kebabian, P.

    1998-06-02

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma. 5 figs.

  19. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  20. Development of a Water Recovery System Resource Tracking Model

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael

    2014-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.

  1. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    NASA Technical Reports Server (NTRS)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  2. In-situ continuous water analyzing module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  3. A coupled human-water system from a systems dynamics perspective

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Blöschl, Günter; Carr, Gemma

    2013-04-01

    Traditionally, models used in hydrological studies have frequently assumed stationarity. Moreover, human-induced water resources management activities are often included as external forcings in water cycle dynamics. However, considering humans' current impact on the water cycle in terms of a growing population, river basins increasingly being managed and a climate considerably changing, it has recently been questioned whether this is still correct. Furthermore, research directed at the evolution of water resources and society has shown that the components constituting the human-water system are changing interdependently. Goal of this study is therefore to approach water cycle dynamics from an integrated perspective in which humans are considered as endogenous forces to the system. The method used to model a coupled, urban human-water system is system dynamics. In system dynamics, particular emphasis is placed on feedback loops resulting in dynamic behavior. Time delays and non-linearity can relatively easily be included, making the method appropriate for studying complex systems that change over time. The approach of this study is as follows. First, a conceptual model is created incorporating the key components of the urban human-water system. Subsequently, only those components are selected that are both relevant and show causal loop behavior. Lastly, the causal narratives are translated into mathematical relationships. The outcome will be a simple model that shows only those characteristics with which we are able to explore the two-way coupling between the societal behavior and the water system we depend on.

  4. Full Scale Drinking Water System Decontamination at the Water Security Test Bed.

    PubMed

    Szabo, Jeffrey; Hall, John; Reese, Steve; Goodrich, Jim; Panguluri, Sri; Meiners, Greg; Ernst, Hiba

    2018-03-20

    The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.

  5. Evaluation of earthquake and tsunami on JSFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikazawa, Y.; Enuma, Y.; Kisohara, N.

    2012-07-01

    Evaluation of earthquake and tsunami on JSFR has been analyzed. For seismic design, safety components are confirmed to maintain their functions even against recent strong earthquakes. As for Tsunami, some parts of reactor building might be submerged including component cooling water system whose final heat sink is sea water. However, in the JSFR design, safety grade components are independent from component cooling water system (CCWS). The JSFR emergency power supply adopts a gas turbine system with air cooling, since JSFR does not basically require quick start-up of the emergency power supply thanks to the natural convection DHRS. Even in casemore » of long station blackout, the DHRS could be activated by emergency batteries or manually and be operated continuously by natural convection. (authors)« less

  6. An ontology for component-based models of water resource systems

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  7. Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review.

    PubMed

    Yang, Liyang; Hur, Jin; Zhuang, Wane

    2015-05-01

    Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.

  8. Evaluation of water resources system vulnerability based on co-operative co-evolutionary genetic algorithm and projection pursuit model under the DPSIR framework

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Su, X. H.; Wang, M. H.; Li, Z. Y.; Li, E. K.; Xu, X.

    2017-08-01

    Water resources vulnerability control management is essential because it is related to the benign evolution of socio-economic, environmental and water resources system. Research on water resources system vulnerability is helpful to realization of water resources sustainable utilization. In this study, the DPSIR framework of driving forces-pressure-state-impact-response was adopted to construct the evaluation index system of water resources system vulnerability. Then the co-evolutionary genetic algorithm and projection pursuit were used to establish evaluation model of water resources system vulnerability. Tengzhou City in Shandong Province was selected as a study area. The system vulnerability was analyzed in terms of driving forces, pressure, state, impact and response on the basis of the projection value calculated by the model. The results show that the five components all belong to vulnerability Grade II, the vulnerability degree of impact and state were higher than other components due to the fierce imbalance in supply-demand and the unsatisfied condition of water resources utilization. It is indicated that the influence of high speed socio-economic development and the overuse of the pesticides have already disturbed the benign development of water environment to some extents. While the indexes in response represented lower vulnerability degree than the other components. The results of the evaluation model are coincident with the status of water resources system in the study area, which indicates that the model is feasible and effective.

  9. Hydrological processes and the water budget of lakes

    USGS Publications Warehouse

    Winter, Thomas C.; Lerman, Abraham; Imboden, Dieter M.; Gat, Joel R.

    1995-01-01

    Lakes interact with all components of the hydrological system: atmospheric water, surface water, and groundwater. The fluxes of water to and from lakes with regard to each of these components represent the water budget of a lake. Mathematically, the concept of a water budget is deceptively simple: income equals outgo, plus or minus change in storage. In practice, however, measuring the water fluxes to and from lakes accurately is not simple, because understanding of the various hydrological processes and the ability to measure the various hydrological components are limited.

  10. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of water sprinkler systems...

  11. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of water sprinkler systems...

  12. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of water sprinkler systems...

  13. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of water sprinkler systems...

  14. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of water sprinkler systems... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the...

  15. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    USGS Publications Warehouse

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    The greatest limitation to the model is the lack of measured or estimated water-budget components for comparison to simulated water-budget components. Because the model is only calibrated to measured water levels, and not to water-budget components, the model results are nonunique. Other model limitations include the relatively coarse grid scale, lack of detailed information on pumpage from the quarry and from private developments and domestic wells, and the lack of separate water-level data for the Silurian- and Devonian-age rocks.

  16. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  17. Transformative Approaches and Technologies for Water Systems

    EPA Science Inventory

    This project will advance the transformation of water systems towards a more sustainable future. It will provide EPA with a sustainability assessment framework integrating drinking water, wastewater, and water reuse/resource recovery components, advances in real-time monitoring, ...

  18. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  19. Water Impact Prediction Tool for Recoverable Rockets

    NASA Technical Reports Server (NTRS)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a flight.

  20. User's manual for the National Water Information System of the U.S. Geological Survey: Automated Data Processing System (ADAPS)

    USGS Publications Warehouse

    ,

    2003-01-01

    The Automated Data Processing System (ADAPS) was developed for the processing, storage, and retrieval of water data, and is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey. NWIS is a distributed water database in which data can be processed over a network of computers at U.S. Geological Survey offices throughout the United States. NWIS comprises four subsystems: ADAPS, the Ground-Water Site Inventory System (GWSI), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). This section of the NWIS User's Manual describes the automated data processing of continuously recorded water data, which primarily are surface-water data; however, the system also allows for the processing of water-quality and ground-water data. This manual describes various components and features of the ADAPS, and provides an overview of the data processing system and a description of the system framework. The components and features included are: (1) data collection and processing, (2) ADAPS menus and programs, (3) command line functions, (4) steps for processing station records, (5) postprocessor programs control files, (6) the standard format for transferring and entering unit and daily values, and (7) relational database (RDB) formats.

  1. PRMS-IV, the precipitation-runoff modeling system, version 4

    USGS Publications Warehouse

    Markstrom, Steven L.; Regan, R. Steve; Hay, Lauren E.; Viger, Roland J.; Webb, Richard M.; Payn, Robert A.; LaFontaine, Jacob H.

    2015-01-01

    Computer models that simulate the hydrologic cycle at a watershed scale facilitate assessment of variability in climate, biota, geology, and human activities on water availability and flow. This report describes an updated version of the Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of various combinations of climate and land use on streamflow and general watershed hydrology. Several new model components were developed, and all existing components were updated, to enhance performance and supportability. This report describes the history, application, concepts, organization, and mathematical formulation of the Precipitation-Runoff Modeling System and its model components. This updated version provides improvements in (1) system flexibility for integrated science, (2) verification of conservation of water during simulation, (3) methods for spatial distribution of climate boundary conditions, and (4) methods for simulation of soil-water flow and storage.

  2. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  3. Water monitor system: Phase 1 test report

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.

    1976-01-01

    Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented.

  4. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  5. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  6. Water Budget for the Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).

  7. Accumulation of humic-like and proteinaceous dissolved organic matter in zero-discharge aquaculture systems as revealed by fluorescence EEM spectroscopy.

    PubMed

    Yamin, G; Borisover, M; Cohen, E; van Rijn, J

    2017-01-01

    Recirculating aquaculture systems (RAS), offering many economic and fish husbandry benefits, are characterized by an accumulation of dissolved organic matter (DOM) and, specifically, humic substances (HS). As reported in a number of studies, HS may affect biological activity in both invertebrates and vertebrates. Given the accumulation of HS in RAS, it is therefore of great interest to characterize DOM and, specifically, its HS fraction in the RAS. The present study was aimed at characterizing long-term changes in fluorescent DOM composition in the culture water of RAS systems, which were operated in a novel, zero water exchange mode. Two such zero-discharge recirculating systems (ZDS) were examined: a freshwater system, stocked with hybrid tilapia (Oreochromis aureus x Oreochromis niloticus) and a marine system, stocked with gilthead seabream (Sparus aurata). Excitation-emission matrices (EEMs) of fluorescence, coupled with parallel factor analysis (PARAFAC), were used to characterize and quantify the different DOM components in the ZDS. In the culture water, one tryptophan-like and four HS-like components were identified. The fluorescence intensities of three of the HS-like components as well as the tryptophan-like component increased at comparable rates during ZDS operation while a much slower accumulation of these compounds was observed in a parallel operated, flow-through, freshwater aquarium. The ZDS examined in this study comprised a sludge digestion stage where a considerable accumulation of all fluorescent components was detected. A HS-like components and a tryptophan-like component in blood of tilapia from the freshwater ZDS were similar to components found in the culture water. Blood levels of both components were higher in fish cultured in the DOM-rich ZDS than in fish raised in the control, flow-through freshwater aquarium. Fluorescence of the HS-like component found in the fish blood increased also with time of ZDS operation. The finding that fish blood contains a HS-like fluorescent component may have important implications for the understanding of the physiological effects of HS in fish and the possible benefits of these substances in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  9. A Systematic Classification for HVAC Systems and Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Han; Chen, Yan; Zhang, Jian

    Depending on the application, the complexity of an HVAC system can range from a small fan coil unit to a large centralized air conditioning system with primary and secondary distribution loops, and central plant components. Currently, the taxonomy of HVAC systems and the components has various aspects, which can get quite complex because of the various components and system configurations. For example, based on cooling and heating medium delivered to terminal units, systems can be classified as either air systems, water systems or air-water systems. In addition, some of the system names might be commonly used in a confusing manner,more » such as “unitary system” vs. “packaged system.” Without a systematic classification, these components and system terminology can be confusing to understand or differentiate from each other, and it creates ambiguity in communication, interpretation, and documentation. It is valuable to organize and classify HVAC systems and components so that they can be easily understood and used in a consistent manner. This paper aims to develop a systematic classification of HVAC systems and components. First, we summarize the HVAC component information and definitions based on published literature, such as ASHRAE handbooks, regulations, and rating standards. Then, we identify common HVAC system types and map them to the collected components in a meaningful way. Classification charts are generated and described based on the component information. Six main categories are identified for the HVAC components and equipment, i.e., heating and cooling production, heat extraction and rejection, air handling process, distribution system, terminal use, and stand-alone system. Components for each main category are further analyzed and classified in detail. More than fifty system names are identified and grouped based on their characteristics. The result from this paper will be helpful for education, communication, and systems and component documentation.« less

  10. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam

    2003-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.

  11. Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico

    USGS Publications Warehouse

    McAda, D.P.

    1996-01-01

    The Albuquerque Basin in central New Mexico covers an area of about 3,060 square miles. Ground water from the Santa Fe Group aquifer system of the Albuquerque Basin is the principal source of water for municipal, domestic, commercial, and industrial uses in the Albuquerque area, an area of about 410 square miles. Ground- water withdrawal in the basin has increased from about 97,000 acre-feet in 1970 to about 171,000 acre-feet in 1994. About 92 percent of the 1994 total was withdrawn in the Albuquerque area. Management of ground water in the Albuquerque Basin is related to the surface water in the Rio Grande. Because the aquifer system is hydraulically connected to the Rio Grande and water in the river is fully appropriated, the ability to reliably estimate the effects of ground-water withdrawals on flow in the river is important. This report describes the components of the Rio Grande/Santa Fe Group aquifer system in the Albuquerque area and the data availability and data and interpretation needs relating to those components, and presents a plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system. The information needs related to the components of the river/aquifer system are prioritized. Information that is necessary to improve the understanding or quantification of a component in the river/aquifer system is prioritized as essential. Information that could add additional understanding of the system, but would not be necessary to improve the quantification of the system, is prioritized as useful. The study elements are prioritized in the same manner as the information needs; study elements designed to provide information considered necessary to improve the quantification of the system are prioritized as essential, and those designed to provide information that would add additional understanding of the system, but would not be necessary to improve the quantification of the system, are prioritized as useful.

  12. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  13. Capture of carbon dioxide by hybrid sorption

    DOEpatents

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  14. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  15. 78 FR 66201 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    .... NREL commented that storage tanks do not make a complete water heating system, so an energy factor is.... Unfired storage tanks are not complete water- heating systems and require additional equipment in the... water-heating system is so dependent upon other components of the system that use of the uniform...

  16. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  17. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  18. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  19. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  20. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  1. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 2: Domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.

    1980-11-01

    The various types of solar domestic hot water systems are discussed including their advantages and disadvantages. The problems that occur in hydronic solar heating systems are reviewed with emphasis on domestic hot water applicatons. System problems in retrofitting of residential buildings are also discussed including structural and space constraints for various components and subsystems. System design parameters include various collector sizing methods, collector orientation, storage capacity and heat loss from pipes and tanks. The installation costs are broken down by components and subsystems. The approach used for utility economic impact analysis is reviewed. The simulation is described, and the results of the economic impact analysis are given. A summary assessment is included.

  2. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...

  3. Auto Drain Valve Water Separator inside the Unit of Komatsu HD 465-7R

    NASA Astrophysics Data System (ADS)

    Manurung, V. A. T.; Joko W, Y. T.; Poetra, R. I.

    2018-02-01

    Water separator is a component that separate water from fuel, so the circulating fuel in the fuel system is not contaminated by water. If there is water inside the water separator, it will be carried by into the fuel system and then impacting to the engine performance. It’s such as lowering engine power because the fuel filter is clogged due to the fuel mix with water. Then the real danger is in case of the fuel mixes with the water. It will damage the fuel system components such as blockage of injectors due to corrosion and wear of fuel supply pump. As informed from daily maintenance record data, we have found that the low power engine trouble was caused by the fuel filter that was clogged high enough. Using the fishbone analysis, we got the main problem is there was water in the fuel separator at maximum level and did not discharge. In this condition, it is need optional device to automatically discharge the water from the water separator while maximum level reached, so the operator does not need to drain the water manually. The operator will be warned by buzzing active alarm and flashing caution lamp inside the cabin. By this method, the potential risk of mix up water with fuel would be avoided and the loss of others component failure would be mostly avoided. By using this tool, we can save net quality income around IDR (Indonesia Rupiah) 11,673,519,800.

  4. MERIS Retrieval of Water Quality Components in the Turbid Albemarle-Pamlico Sound Estuary, USA

    EPA Science Inventory

    Two remote-sensing optical algorithms for the retrieval of the water quality components (WQCs) in the Albemarle-Pamlico Estuarine System (APES) have been developed and validated for chlorophyll a (Chl) concentration. Both algorithms are semiempirical because they incorporate some...

  5. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  6. Groundwater flow in the Brunswick/Glynn County area, Georgia, 2000-04

    USGS Publications Warehouse

    Cherry, Gregory S.

    2015-01-01

    Analysis of simulated water-budget components for 2000 and 2004 indicate that specified-head boundaries in the Floridan aquifer system to the south and southwest of the regional model area control about 70 percent of inflows and nearly 50 percent of outflows to the model region. Other water-budget components indicate an 80-million-gallon-per-day decrease in pumping from the Floridan aquifer system during this period.

  7. Expert system for maintenance management of a boiling water reactor power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Shen; Liou, L.W.; Levine, S.

    1992-01-01

    An expert system code has been developed for the maintenance of two boiling water reactor units in Berwick, Pennsylvania, that are operated by the Pennsylvania Power and Light Company (PP and L). The objective of this expert system code, where the knowledge of experienced operators and engineers is captured and implemented, is to support the decisions regarding which components can be safely and reliably removed from service for maintenance. It can also serve as a query-answering facility for checking the plant system status and for training purposes. The operating and maintenance information of a large number of support systems, whichmore » must be available for emergencies and/or in the event of an accident, is stored in the data base of the code. It identifies the relevant technical specifications and management rules for shutting down any one of the systems or removing a component from service to support maintenance. Because of the complexity and time needed to incorporate a large number of systems and their components, the first phase of the expert system develops a prototype code, which includes only the reactor core isolation coolant system, the high-pressure core injection system, the instrument air system, the service water system, and the plant electrical system. The next phase is scheduled to expand the code to include all other systems. This paper summarizes the prototype code and the design concept of the complete expert system code for maintenance management of all plant systems and components.« less

  8. 21 CFR 876.5860 - High permeability hemodialysis system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Water Purification Components and Systems for Hemodialysis,” and (5) “Guidance for Hemodialyzer Reuse... hemodiafiltration. Using a hemodialyzer with a semipermeable membrane that is more permeable to water than the...

  9. 21 CFR 876.5860 - High permeability hemodialysis system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Water Purification Components and Systems for Hemodialysis,” and (5) “Guidance for Hemodialyzer Reuse... hemodiafiltration. Using a hemodialyzer with a semipermeable membrane that is more permeable to water than the...

  10. 21 CFR 876.5860 - High permeability hemodialysis system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Water Purification Components and Systems for Hemodialysis,” and (5) “Guidance for Hemodialyzer Reuse... hemodiafiltration. Using a hemodialyzer with a semipermeable membrane that is more permeable to water than the...

  11. 21 CFR 876.5860 - High permeability hemodialysis system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Water Purification Components and Systems for Hemodialysis,” and (5) “Guidance for Hemodialyzer Reuse... hemodiafiltration. Using a hemodialyzer with a semipermeable membrane that is more permeable to water than the...

  12. 21 CFR 876.5860 - High permeability hemodialysis system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Water Purification Components and Systems for Hemodialysis,” and (5) “Guidance for Hemodialyzer Reuse... hemodiafiltration. Using a hemodialyzer with a semipermeable membrane that is more permeable to water than the...

  13. UV DISINFECTION GUIDANCE MANUAL FOR THE ...

    EPA Pesticide Factsheets

    Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.

  14. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.

  15. Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Nahra, Henry; Flynn, Michael

    2006-01-01

    The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA s C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.

  16. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  17. WATER DISTRIBUTION SYSTEMS: A SPATIAL AND COST EVALUATION

    EPA Science Inventory

    Problems associated with maintaining and replacing water supply distribution systems are reviewed. Some of these problems are associated with public health, economic and spatial development of the community, and costs of repair and replacement of system components. A repair frequ...

  18. Distillation Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly

    2010-01-01

    Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.

  19. Exploring the Use of Model-Based Systems Engineering (MBSE) to Develop Systems Architectures in Naval Ship Design

    DTIC Science & Technology

    2010-06-01

    data such as the NSMB B-series, or be based on hydrodynamic (lifting line) predict ions. The power including still air drag and any margin that is...Provide Fuel Function 3.6 Fuel Oil System Component REQ.1.4 Fuel Efficiency Requirement 1.1 Generate Mechanical En... Function 1.1 Prime Mover Component...3.3 Provide Lubrication Function 3.7 Lube Oil System Component 3.4 Provide Cooling Water Function 3.3 Cooling System Component 3.5 Provide Combust ion

  20. 78 FR 77649 - Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-106-2013] Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D, (Centrifugal, Submersible Pumps and Related Components), Auburn, New York Xylem Water Systems USA LLC (Xylem), operator of Subzone 37D, submitted a notification of proposed production activity to...

  1. Feedback loops and temporal misalignment in component-based hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  2. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  3. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  5. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  6. DETERMINANTS AND OPTIONS FOR WATER DISTRIBUTION SYSTEM MANAGEMENT: A COST EVALUATION

    EPA Science Inventory

    This report deals with the problems associated with maintaining and replacing water supply distribution systems. Some of these problems are associated with public health, economic and spatial development of the community, and costs of repair and replacement of system components. ...

  7. Getting the lead out: understanding risks in the distribution system

    EPA Science Inventory

    This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation me...

  8. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  9. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  10. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    PubMed

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  11. Accounting for water management issues within hydrological simulation: Alternative modelling options and a network optimization approach

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Nalbantis, Ioannis; Rozos, Evangelos; Koutsoyiannis, Demetris

    2010-05-01

    In mixed natural and artificialized river basins, many complexities arise due to anthropogenic interventions in the hydrological cycle, including abstractions from surface water bodies, groundwater pumping or recharge and water returns through drainage systems. Typical engineering approaches adopt a multi-stage modelling procedure, with the aim to handle the complexity of process interactions and the lack of measured abstractions. In such context, the entire hydrosystem is separated into natural and artificial sub-systems or components; the natural ones are modelled individually, and their predictions (i.e. hydrological fluxes) are transferred to the artificial components as inputs to a water management scheme. To account for the interactions between the various components, an iterative procedure is essential, whereby the outputs of the artificial sub-systems (i.e. abstractions) become inputs to the natural ones. However, this strategy suffers from multiple shortcomings, since it presupposes that pure natural sub-systems can be located and that sufficient information is available for each sub-system modelled, including suitable, i.e. "unmodified", data for calibrating the hydrological component. In addition, implementing such strategy is ineffective when the entire scheme runs in stochastic simulation mode. To cope with the above drawbacks, we developed a generalized modelling framework, following a network optimization approach. This originates from the graph theory, which has been successfully implemented within some advanced computer packages for water resource systems analysis. The user formulates a unified system which is comprised of the hydrographical network and the typical components of a water management network (aqueducts, pumps, junctions, demand nodes etc.). Input data for the later include hydraulic properties, constraints, targets, priorities and operation costs. The real-world system is described through a conceptual graph, whose dummy properties are the conveyance capacity and the unit cost of each link. Unit costs are either real or artificial, and positive or negative. Positive costs are set to prohibit undesirable fluxes and negative ones to force fulfilling water demands for various uses. The assignment of costs is based on a recursive algorithm that implements the physical constraints and the user-specified hierarchy for the water uses. Referring to the desired management policy, an optimal allocation is achieved regarding the unknown fluxes within the hydrosystem (flows, abstractions, water losses) by minimizing the total transportation cost through the graph. The mathematical structure of the problem enables use of accurate and exceptionally fast solvers. The proposed methodology is effective, efficient and easy to implement, in order to link on-line multiple modelling components, thus ensuring a comprehensive overview of the process interactions in complex and heavily modified hydrosystems. It is applicable to hydrological simulators of the semi-distributed type, in which it allows integrating groundwater models and flood routing schemes within decision support modules. The methodology is implemented within the HYGROGEIOS computer package, which is illustrated by example applications in modified river basins in Greece.

  12. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  13. Getting the lead out: understanding risks in the distribution ...

    EPA Pesticide Factsheets

    This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap. Invited presentation on topics indicated as of interest. With exposure to lead as the context, this presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap.

  14. Water resources planning based on complex system dynamics: A case study of Tianjin city

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Zhang, H. W.; Chen, B.; Chen, G. Q.; Zhao, X. H.

    2008-12-01

    A complex system dynamic (SD) model focusing on water resources, termed as TianjinSD, is developed for the integrated and scientific management of the water resources of Tianjin, which contains information feedback that governs interactions in the system and is capable of synthesizing component-level knowledge into system behavior simulation at an integrated level, thus presenting reasonable predictive results for policy-making on water resources allocation and management. As for the Tianjin city, interactions among 96 components for 12 years are explored and four planning alternatives are chosen, one of which is based on the conventional mode assuming that the existing pattern of human activities will be prevailed, while the others are alternative planning designs based on the interaction of local authorities and planning researchers. Optimal mode is therefore obtained according to different scenarios when compared the simulation results for evaluation of different decisions and dynamic consequences.

  15. Water availability and management for food security

    USDA-ARS?s Scientific Manuscript database

    Food security is directly linked to water security for food production. Water availability for crop production will be dependent upon precipitation or irrigation, soil water holding capacity, and crop water demand. The linkages among these components in rainfed agricultural systems shows the impact ...

  16. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events.

    PubMed

    Stedmon, Colin A; Seredyńska-Sobecka, Bożena; Boe-Hansen, Rasmus; Le Tallec, Nicolas; Waul, Christopher K; Arvin, Erik

    2011-11-15

    The fluorescence characteristics of natural organic matter in a groundwater based drinking water supply plant were studied with the aim of applying it as a technique to identify contamination of the water supply. Excitation-emission matrices were measured and modeled using parallel factor analysis (PARAFAC) and used to identify which wavelengths provide the optimal signal for monitoring contamination events. The fluorescence was characterized by four components: three humic-like and one amino acid-like. The results revealed that the relative amounts of two of the humic-like components were very stable within the supply plant and distribution net and changed in a predictable fashion depending on which wells were supplying the water. A third humic-like component and an amino acid-like component did not differ between wells. Laboratory contamination experiments with wastewater revealed that combined they could be used as an indicator of microbial contamination. Their fluorescence spectra did not overlap with the other components and therefore the raw broadband fluorescence at the wavelengths specific to their fluorescence could be used to detect contamination. Contamination could be detected at levels equivalent to the addition of 60 μg C/L in drinking water with a TOC concentration of 3.3 mg C/L. The results of this study suggest that these types of drinking water systems, which are vulnerable to microbial contamination due to the lack of disinfectant treatment, can be easily monitored using online organic matter fluorescence as an early warning system to prompt further intensive sampling and appropriate corrective measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Computer program for determination of concentrations of trace elements in components of water systems by nondestructive activation analysis (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavic, I.; Draskovic, R.; Tasovac, T.

    1973-03-01

    A computer program for the determination of trace elements in components of the water systems bed material, suspended material, dissolved substances, plankton, algae) by nondestructive activation analysis was developed. Results of the determination of Cr, Sb, Sc, Fe, Co, Na, and La concentrations in suspended materials from the Danube river, obtained by interpretation of data with a CDC- 3600 computer (64 k words), are presented. (auth)

  18. LASE

    Atmospheric Science Data Center

    2017-03-16

    ... Absorption Lidar (DIAL) system developed to measure water vapor, aerosol, and cloud profiles. These measurements can be used in ... heat flux, the water vapor component of the hydrologic cycle, and atmospheric transport using water vapor as a tracer of atmospheric ...

  19. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment.

    PubMed

    Tikhomirov, A A; Ushakova, S A; Manukovsky, N S; Lisovsky, G M; Kudenko, Yu A; Kovalev, V S; Gubanov, V G; Barkhatov, Yu V; Gribovskaya, I V; Zolotukhin, I G; Gros, J B; Lasseur, Ch

    2003-01-01

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California worms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogenic elements, shows an almost 100% closure of the cycle inside the system. The proposed experimental model of a biological system is discussed as a candidate for potential application in the investigations aimed at creating ecosystems with largely closed cycles of the internal mass exchange. The formation and maintenance of sustainable cycling of vitally important chemical elements and compounds in biological life support systems (BLSS) is an extremely pressing problem. To attain the stable functioning of biological life support systems (BLSS) and to maintain a high degree of closure of material cycles in than, it is essential to understand the character of mass exchange processes and stoichiometnc proportions of the initial and synthesized components of the system. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  20. Direct and system effects of water ingestion into jet engine compresors

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.

    1986-01-01

    Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.

  1. Quantification of sewer system infiltration using delta(18)O hydrograph separation.

    PubMed

    Prigiobbe, V; Giulianelli, M

    2009-01-01

    The infiltration of parasitical water into two sewer systems in Rome (Italy) was quantified during a dry weather period. Infiltration was estimated using the hydrograph separation method with two water components and delta(18)O as a conservative tracer. The two water components were groundwater, the possible source of parasitical water within the sewer, and drinking water discharged into the sewer system. This method was applied at an urban catchment scale in order to test the effective water-tightness of two different sewer networks. The sampling strategy was based on an uncertainty analysis and the errors have been propagated using Monte Carlo random sampling. Our field applications showed that the method can be applied easily and quickly, but the error in the estimated infiltration rate can be up to 20%. The estimated infiltration into the recent sewer in Torraccia is 14% and can be considered negligible given the precision of the method, while the old sewer in Infernetto has an estimated infiltration of 50%.

  2. Precision cleaning verification of fluid components by air/water impingement and total carbon analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1994-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 sq m. Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging/diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg/sq ft of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVRs impinged from witness plates of 0.05 to 0.75 sq m.

  3. Precision Cleaning Verification of Fluid Components by Air/Water Impingement and Total Carbon Analysis

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; Fogarty, Chris; Cantrell, Chris; Melton, Gregory S.

    1995-01-01

    NASA personnel at Kennedy Space Center's Material Science Laboratory have developed new environmentally sound precision cleaning and verification techniques for systems and components found at the center. This technology is required to replace existing methods traditionally employing CFC-113. The new patent-pending technique of precision cleaning verification is for large components of cryogenic fluid systems. These are stainless steel, sand cast valve bodies with internal surface areas ranging from 0.2 to 0.9 m(exp 2). Extrapolation of this technique to components of even larger sizes (by orders of magnitude) is planned. Currently, the verification process is completely manual. In the new technique, a high velocity, low volume water stream impacts the part to be verified. This process is referred to as Breathing Air/Water Impingement and forms the basis for the Impingement Verification System (IVS). The system is unique in that a gas stream is used to accelerate the water droplets to high speeds. Water is injected into the gas stream in a small, continuous amount. The air/water mixture is then passed through a converging-diverging nozzle where the gas is accelerated to supersonic velocities. These droplets impart sufficient energy to the precision cleaned surface to place non-volatile residue (NVR) contaminants into suspension in the water. The sample water is collected and its NVR level is determined by total organic carbon (TOC) analysis at 880 C. The TOC, in ppm carbon, is used to establish the NVR level. A correlation between the present gravimetric CFC-113 NVR and the IVS NVR is found from experimental sensitivity factors measured for various contaminants. The sensitivity has the units of ppm of carbon per mg-ft(exp 2) of contaminant. In this paper, the equipment is described and data are presented showing the development of the sensitivity factors from a test set including four NVR's impinged from witness plates of 0.05 to 0.75 m(exp 2).

  4. Trajectory of the arctic as an integrated system

    USGS Publications Warehouse

    Hinzman, Larry; Deal, Clara; McGuire, Anthony David; Mernild, Sebastian H.; Polyakov, Igor V.; Walsh, John E.

    2013-01-01

    Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic System and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic; and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.

  5. Trajectory of the Arctic as an integrated system.

    PubMed

    Hinzman, Larry D; Deal, Clara J; McGuire, A David; Mernild, Sebastian H; Polyakov, Igor V; Walsh, John E

    2013-12-01

    Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.

  6. Safety evaluation -- Spent water treatment system components inventory release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, E.N. Jr.

    1995-01-24

    Over the past few years various impediments to shipment of generated spent basin water treatment system components have resulted in the accumulation of quantities of these waste items at 100K. Specifically, there are (as of 01/01/95) 13 grout/culvert packaged cartridge filters (CF), four unpackaged cartridge filters, 60 spent ion exchange columns (IXC) and seven ion exchange modules (IXM) at 100K awaiting shipment for final waste disposal. As a result of the accumulation of this waste, the question has arisen regarding the consequences of potential releases of the inventory of radionuclides in these waste items relative to the K Area safetymore » envelope. The purpose of this paper is to address this question. The initial step evaluating the consequences of potential release of material from the spent water treatment system components was to determine the individual and total radionuclide inventories of concern. Generally the radioisotopes of concern to the dose consequences were Sr/Y-90, Cs-137, and the transuranic (TRU) isotopes. The loading of these radioisotopes needed to be determined for each of the components of the total number of accumulated IXCs, IXMs and CFs. This evaluation examines four potential releases of material from the spent water treatment system components. These releases are: the release of material from all 39 IXCs stored in 183-KW; the release of material from the IXCs, IXMs and CFs at 105-KE and 105-KW; the release of material from the 13 CFs stored behind 105-KE; and the non-mechanistic release of the total stored waste inventory.« less

  7. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  8. Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.

    PubMed

    Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E

    2007-11-01

    Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of related toxicants.

  9. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  10. Leaching of Heavy Metals from Water Bottle Components into the Drinking Water of Rodents

    PubMed Central

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals. PMID:23562029

  11. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    PubMed

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals.

  12. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  13. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  14. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    NASA Astrophysics Data System (ADS)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of lands in flood-prone areas, will alter the tradeoff for the optimal use of reservoir storage capacity. We emphasize three concepts: i) institutions, ii) scarcity, and iii) the role of social science in projects of this kind. Institutions represent the main instrument or tool that humans use to influence how resources are used, to reduce waste, promote efficiency, and foster predictability. Water scarcity when defined in human normative terms. The concept provides a lens through which to recognize the wide range of ways that water scarcity can arise and persist even in water-abundant settings. We conclude with observations about the role of social science in research on biophysical and human systems. Reference Jaeger, W.K., et al., 2013. Toward a formal definition of water scarcity in natural-human systems. Water Resources Research, Volume 49. Published online: 8 JUL 2013 | DOI: 10.1002/wrcr.20249

  15. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE PAGES

    Le, Peisi; Fratini, Emiliano; Ito, Kanae; ...

    2016-01-28

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  16. Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Peisi; Fratini, Emiliano; Ito, Kanae

    We present the hypothesis that the mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. With our experiments we investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. Wemore » measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. We found that structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.« less

  17. Advanced shield development for a fission surface power system for the lunar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. E. Craft; I. J. Silver; C. M. Clark

    A nuclear reactor power system such as the affordable fission surface power system enables a potential outpostonthemoon.Aradiation shieldmustbe included in the reactor system to reduce the otherwise excessive dose to the astronauts and other vital system components. The radiation shield is typically the most massive component of a space reactor system, and thus must be optimized to reduce mass asmuchas possible while still providing the required protection.Various shield options for an on-lander reactor system are examined for outpost distances of 400m and 1 kmfromthe reactor. Also investigated is the resulting mass savings from the use of a high performance cermetmore » fuel. A thermal analysis is performed to determine the thermal behaviours of radiation shields using borated water. For an outpost located 1000m from the core, a tetramethylammonium borohydride shield is the lightest (5148.4 kg), followed by a trilayer shield (boron carbide–tungsten–borated water; 5832.3 kg), and finally a borated water shield (6020.7 kg). In all of the final design cases, the temperature of the borated water remains below 400 K.« less

  18. 10 CFR 436.11 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... significantly the cost of energy consumed. Building water system means a water conservation measure or any... building means an energy or water conservation measure or any building, structure, or facility, or part... water conservation measure, or any component thereof. Retrofit means installation of a building energy...

  19. 10 CFR 436.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... significantly the cost of energy consumed. Building water system means a water conservation measure or any... building means an energy or water conservation measure or any building, structure, or facility, or part... water conservation measure, or any component thereof. Retrofit means installation of a building energy...

  20. 10 CFR 436.11 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... significantly the cost of energy consumed. Building water system means a water conservation measure or any... building means an energy or water conservation measure or any building, structure, or facility, or part... water conservation measure, or any component thereof. Retrofit means installation of a building energy...

  1. Relationships between and formation dynamics of the microbiota of consumers, producers, and the environment in an abalone aquatic system

    PubMed Central

    Zhao, Wang; Liu, Guang-Feng; Wang, Jiang-Yong

    2017-01-01

    An ecosystem is a community comprising living and nonliving components of the environment. Microbes are ubiquitous elements in each of these components. The dynamics of microbiota formation in an ecosystem is important to elucidate, because how the different components of a system exchange microbes, and how the microbes control ecological processes remain unresolved. In this study, an abalone, Haliotis diversicolor, seed-nursing pond was used as a model system. We first examined changes in bacterial communities during the seedling cultivation of this herbivorous juvenile aquatic invertebrate animal. Denaturing gradient gel electrophoresis (DGGE) and pyrosequencing were used to analyze bacterial community dynamics and spatio-temporal interactions of different system components: consumers (abalone), producers (algae or a substrate), and the environment (water). DGGE fingerprints revealed that the developmental stages of abalone influences bacterial communities of both the abalone and substrate. Although the communities in water fluctuated daily, they could be divided into two clusters that coincided with abalone stages, reflecting the transition from larva to juvenile at around day 21. Pyrosequencing showed that the microbiota in the abalone and substrate had more operational taxonomic units in common than that of either with water. The Bray-Curtis similarity index was used to quantify the formation dynamics of microbiota among the various components of the system. The bacterial communities in producers and consumers showed similar changes. These communities were unstable at the beginning and then slowly stabilized over time. The environmental bacterial community was more stable than the bacterial communities in consumers and producers, and may have been the basis for stability in the system. Our research provides insights into the dynamics of microbiota formation in various biotic elements of a system that will contribute to predictive systems modeling. PMID:28787009

  2. Relationships between and formation dynamics of the microbiota of consumers, producers, and the environment in an abalone aquatic system.

    PubMed

    Jiang, Jing-Zhe; Zhao, Wang; Liu, Guang-Feng; Wang, Jiang-Yong

    2017-01-01

    An ecosystem is a community comprising living and nonliving components of the environment. Microbes are ubiquitous elements in each of these components. The dynamics of microbiota formation in an ecosystem is important to elucidate, because how the different components of a system exchange microbes, and how the microbes control ecological processes remain unresolved. In this study, an abalone, Haliotis diversicolor, seed-nursing pond was used as a model system. We first examined changes in bacterial communities during the seedling cultivation of this herbivorous juvenile aquatic invertebrate animal. Denaturing gradient gel electrophoresis (DGGE) and pyrosequencing were used to analyze bacterial community dynamics and spatio-temporal interactions of different system components: consumers (abalone), producers (algae or a substrate), and the environment (water). DGGE fingerprints revealed that the developmental stages of abalone influences bacterial communities of both the abalone and substrate. Although the communities in water fluctuated daily, they could be divided into two clusters that coincided with abalone stages, reflecting the transition from larva to juvenile at around day 21. Pyrosequencing showed that the microbiota in the abalone and substrate had more operational taxonomic units in common than that of either with water. The Bray-Curtis similarity index was used to quantify the formation dynamics of microbiota among the various components of the system. The bacterial communities in producers and consumers showed similar changes. These communities were unstable at the beginning and then slowly stabilized over time. The environmental bacterial community was more stable than the bacterial communities in consumers and producers, and may have been the basis for stability in the system. Our research provides insights into the dynamics of microbiota formation in various biotic elements of a system that will contribute to predictive systems modeling.

  3. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    USGS Publications Warehouse

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  4. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  5. The occurrence and geochemistry of fluoride in some natural waters of Kenya

    NASA Astrophysics Data System (ADS)

    Gaciri, S. J.; Davies, T. C.

    1993-03-01

    In recent years the acquisition of considerable additional data on the hydrogeochemical behaviour of fluoride in natural waters of Kenya has been made possible by extensive surface-water and groundwater sampling campaigns as well as by improvements in analytical techniques. Ultimately, the principal source of fluoride relates to emissions from volcanic activity associated with the East African Rift System. Through various intermediate steps, but also directly, fluoride passes into the natural water system and components of the food chain. Ingestion by man is mainly through drinking water and other beverages. River waters in Kenya generally have a fluoride concentration lower than the recommended level (1.3 ppm) for potable water, thus promoting susceptibility to dental caries. Groundwaters and lake waters show considerably higher fluoride contents, resulting in the widespread incidence of fluorosis in areas where groundwater is the major source of drinking water, and lake fish is a regular component of the diet. This paper presents a synthesis of the data so far obtained on the sources and distribution of fluoride in the hydrological system of Kenya, examines the extent of fluorine toxicity and puts forward recommendations to combat or minimise the problem.

  6. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...

  7. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...

  8. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  9. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  10. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  11. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  12. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  13. Sensitivity analysis of key components in large-scale hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.

    2008-12-01

    This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.

  14. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.

  15. Component-based control of oil-gas-water mixture composition in pipelines

    NASA Astrophysics Data System (ADS)

    Voytyuk, I. N.

    2018-03-01

    The article theoretically proves the method for measuring the changes in content of oil, gas and water in pipelines; also the measurement system design for implementation thereof is discussed. An assessment is presented in connection with random and systemic errors for the future system, and recommendations for optimization thereof are presented.

  16. The Development of Advanced Passive Acoustic Monitoring Systems Using microMARS Technology

    DTIC Science & Technology

    2015-09-30

    localization that will be available in a number of configurations for deep and shallow water environments alike. OBJECTIVES The project has two...through two test series, first targeting the GPS synchronized shallow water and then the self-synchronized deep water configurations. The project will...main objectives: 1. Development of all the components of a compact passive acoustic monitoring system suitable both for shallow water moored

  17. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seokho H; Berry, Jan

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclearmore » pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.« less

  18. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE PAGES

    Misenheimer, Corey T.; Terry, Stephen D.

    2016-06-27

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  19. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misenheimer, Corey T.; Terry, Stephen D.

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  20. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    USGS Publications Warehouse

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local variations in vertical gradients are apparent. Water-quality sampling and monitoring efforts were conducted to characterize the interaction of components of the ground-water system. Elevated nitrate concentrations as high as 22 milligrams per liter were detected in shallow ground water from the regolith at the study site. These elevated nitrate concentrations likely are related to land use, which includes agricultural practices that involve animal feeding operations and crop fertilization. Continuous ground-water-quality data indicate seasonal fluctuations in field water-quality properties, differences with respect to depth, and fluctuations during recharge events. Water-quality properties recorded in the regolith well following rainfall indicate the upwelling of deeper ground water in the discharge area, likely from ground water in the transition-zone fractures. Additionally, interaction with a surface-water boundary appears likely in the ground-water discharge area, as water levels in all three ground-water zones, including the deep bedrock, mimic the surface-water rise during rainfall.

  1. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    NASA Astrophysics Data System (ADS)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  2. What Sets the Radial Locations of Warm Debris Disks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less

  3. Optimization of water balance within the martian crew life support system

    NASA Astrophysics Data System (ADS)

    Sychev, V.; Levinskikh, M.

    The present-day scenarios of the first exploration mission differ in the total length crew size period of the stay on Mars etc However no matter the scenario one of the common problems is optimization of water balance within the crew life support system Water balance optimization implies in addition to regeneration of atmospheric moisture and urine also dehydration of biowastes In this mission all wastes will be stored and for this reason safe storage is prerequisite Investigations of two-component laboratory BLSS in which the autotrophic component was composed of algae Spirulina platensis and the heterotrophic component was represented by Japanese quail Coturnix coturnix japonica dom showed that optimization of the autotrophic and heterotrophic gas exchange and water regeneration from quail biowastes could raise the system susbstance balance to 76 of the total balance during autonomic cultivation of algae and birds In these investigations dehydration of quail biowastes caused significant pollution of water and air by organics toxic for humans It was demonstrated that the sorption technologies applied on the Russian space station MIR and ISS cannot fully absorb organic contaminants released in the process of quail wastes drying Algal suspension as a hydrobiological filter was able to control the organic pollination of both air and water These results are in agreement with the data of ground-based simulation studies with participation of human subjects at IBMP According to the simulation data intensive

  4. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  5. Polarization - A key to an airborne optical system for the detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Skylight polarization, which varies with the position of the sun in the sky, influences the contrast of oil on water. Good contrast is most consistently obtained by viewing in azimuth directions toward or away from the sun. Contrast is enhanced by imaging selected polarization components and by taking the difference between orthogonal polarization components.

  6. Origin of diverse time scales in the protein hydration layer solvation dynamics: A simulation study

    NASA Astrophysics Data System (ADS)

    Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman

    2017-10-01

    In order to inquire the microscopic origin of observed multiple time scales in solvation dynamics, we carry out several computer experiments. We perform atomistic molecular dynamics simulations on three protein-water systems, namely, lysozyme, myoglobin, and sweet protein monellin. In these experiments, we mutate the charges of the neighbouring amino acid side chains of certain natural probes (tryptophan) and also freeze the side chain motions. In order to distinguish between different contributions, we decompose the total solvation energy response in terms of various components present in the system. This allows us to capture the interplay among different self- and cross-energy correlation terms. Freezing the protein motions removes the slowest component that results from side chain fluctuations, but a part of slowness remains. This leads to the conclusion that the slow component approximately in the 20-80 ps range arises from slow water molecules present in the hydration layer. While the more than 100 ps component has multiple origins, namely, adjacent charges in amino acid side chains, hydrogen bonded water molecules and a dynamically coupled motion between side chain and water. In addition, the charges enforce a structural ordering of nearby water molecules and helps to form a local long-lived hydrogen bonded network. Further separation of the spatial and temporal responses in solvation dynamics reveals different roles of hydration and bulk water. We find that the hydration layer water molecules are largely responsible for the slow component, whereas the initial ultrafast decay arises predominantly (approximately 80%) due to the bulk. This agrees with earlier theoretical observations. We also attempt to rationalise our results with the help of a molecular hydrodynamic theory that was developed using classical time dependent density functional theory in a semi-quantitative manner.

  7. The Research on the Framework of Healthy Water System Governance in Shandong Province

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Li, Xiaomei; Min, Xianwei

    2018-02-01

    At present, the traditional water conservancy system in Shandong has created and exerted great social and economic benefits, but there are some kinds of obvious problems at the same time, for example, the water pollution is serious, the water conservancy project is not complete, the high and new technology is not widely used, the management system is not perfect, and the allocation of water resources is not reasonable, and so on. On the premise of absorbing the experience and lessons of traditional water conservancy, this paper discussed the main components of the framework of health water system in Shandong Province, and formed the four supporting systems of Shandong healthy water system. This study is not only of great practical significance to accelerate the transformation of traditional water resources to healthy water system in the whole province, provide strong support for the construction of strong economic and cultural province. At the same time, it also provides an important reference for the national healthy water system.

  8. WATER AND METHANOL MASER ACTIVITIES IN THE NGC 2024 FIR 6 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Byun, Do-Young

    The NGC 2024 FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n, while one component was associated with FIR 4. A typical lifetime of the water maser velocity components is about eight months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km s{sup -1} day{sup -1}. The methanol class I masers were detected toward FIRmore » 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.« less

  9. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ..., Systems Modification, and Water Supply) which are comprised of seven elements (listed below). The Habitat... existing facilities and operations in order to improve conditions for fish and to improve water supply. The... elements. The third component, Water Supply, is intended to improve water supply for agricultural and...

  10. Modeling of Water-Breathing Propulsion Systems Utilizing the Aluminum-Seawater Reaction and Solid-Oxide Fuel Cells

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component

  11. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  12. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  13. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  14. 33 CFR 183.507 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false General. 183.507 Section 183.507 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems General § 183.507 General. Each fuel system component on a boat...

  15. Linking Health Concepts in the Assessment and Evaluation of Water Distribution Systems

    ERIC Educational Resources Information Center

    Karney, Bryan W.; Filion, Yves R.

    2005-01-01

    The concept of health is not only a specific criterion for evaluation of water quality delivered by a distribution system but also a suitable paradigm for overall functioning of the hydraulic and structural components of the system. This article views health, despite its complexities, as the only criterion with suitable depth and breadth to allow…

  16. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    NASA Astrophysics Data System (ADS)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  17. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  18. Open-cycle systems performance analysis programming guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, D.A.

    1981-12-01

    The Open-Cycle OTEC Systems Performance Analysis Program is an algorithm programmed on SERI's CDC Cyber 170/720 computer to predict the performance of a Claude-cycle, open-cycle OTEC plant. The algorithm models the Claude-cycle system as consisting of an evaporator, a turbine, a condenser, deaerators, a condenser gas exhaust, a cold water pipe and cold and warm seawater pumps. Each component is a separate subroutine in the main program. A description is given of how to write Fortran subroutines to fit into the main program for the components of the OTEC plant. An explanation is provided of how to use the algorithm.more » The main program and existing component subroutines are described. Appropriate common blocks and input and output variables are listed. Preprogrammed thermodynamic property functions for steam, fresh water, and seawater are described.« less

  19. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  20. Simulation and analysis of conjunctive use with MODFLOW's farm process

    USGS Publications Warehouse

    Hanson, R.T.; Schmid, W.; Faunt, C.C.; Lockwood, B.

    2010-01-01

    The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within " water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  1. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Pre-filtration treatment toolbox...

  2. Verification test report on a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  3. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  4. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries

    PubMed Central

    Tussupova, Kamshat; Berndtsson, Ronny; Sharapatova, Kulyash

    2018-01-01

    Improved water, sanitation and hygiene (WASH) are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people’s health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries. PMID:29534511

  5. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries.

    PubMed

    Omarova, Alua; Tussupova, Kamshat; Berndtsson, Ronny; Kalishev, Marat; Sharapatova, Kulyash

    2018-03-12

    Improved water, sanitation and hygiene (WASH) are significant in preventing diarrhea morbidity and mortality caused by protozoa in low- and middle-income countries. Due to the intimate and complex relationships between the different WASH components, it is often necessary to improve not just one but all of these components to have sustainable results. The objective of this paper was to review the current state of WASH-related health problems caused by parasitic protozoa by: giving an overview and classification of protozoa and their effect on people's health, discussing different ways to improve accessibility to safe drinking water, sanitation services and personal hygiene behavior; and suggesting an institutional approach to ensure improved WASH. The findings indicate that Giardia and Cryptosporidium are more often identified during waterborne or water-washed outbreaks and they are less sensitive than most of the bacteria and viruses to conventional drinking water and wastewater treatment methods. There are various institutions of control and prevention of water-related diseases caused by protozoa in developed countries. Unfortunately, the developing regions do not have comparable systems. Consequently, the institutional and systems approach to WASH is necessary in these countries.

  6. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  7. Dormancy and Recovery Testing for Biological Wastewater Processors

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary F.; Coutts, Janelle L.; Lunn, Griffin M.; Spencer, LaShelle; Khodadad, Christina L.; Birmele, Michele N.; Frances, Someliz; Wheeler, Raymond

    2015-01-01

    Resource recovery and recycling waste streams to usable water via biological water processors is a plausible component of an integrated water purification system. Biological processing as a pretreatment can reduce the load of organic carbon and nitrogen compounds entering physiochemical systems downstream. Aerated hollow fiber membrane bioreactors, have been proposed and studied for a number of years as an approach for treating wastewater streams for space exploration.

  8. Online Vibration Monitoring of a Water Pump Machine to Detect Its Malfunction Components Based on Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Rahmawati, P.; Prajitno, P.

    2018-04-01

    Vibration monitoring is a measurement instrument used to identify, predict, and prevent failures in machine instruments[6]. This is very needed in the industrial applications, cause any problem with the equipment or plant translates into economical loss and they are mostly monitored component off-line[2]. In this research, a system has been developed to detect the malfunction of the components of Shimizu PS-128BT water pump machine, such as capacitor, bearing and impeller by online measurements. The malfunction components are detected by taking vibration data using a Micro-Electro-Mechanical System(MEMS)-based accelerometer that are acquired by using Raspberry Pi microcomputer and then the data are converted into the form of Relative Power Ratio(RPR). In this form the signal acquired from different components conditions have different patterns. The collected RPR used as the base of classification process for recognizing the damage components of the water pump that are conducted by Artificial Neural Network(ANN). Finally, the damage test result will be sent via text message using GSM module that are connected to Raspberry Pi microcomputer. The results, with several measurement readings, with each reading in 10 minutes duration for each different component conditions, all cases yield 100% of accuracies while in the case of defective capacitor yields 90% of accuracy.

  9. Removal of Inorganic, Microbial, and Particulate Contaminants from a Fresh Surface Water: Village Marine Tec. Expeditionary Unit Water Purifier, Generation 1

    EPA Science Inventory

    The Village Marine Tec. Generation 1 Expeditionary Unit Water Purifier (EUWP) is a mobile skid-mounted system employing ultrafiltration (UF) and reverse osmosis (RO) to produce drinking water from a variety of different water quality sources. The UF components were evaluated to t...

  10. Prototype Wash Water Renovation System Integration with Government-Furnished Wash Fixture

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.

  11. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  12. Device and Component Testing | Water Power | NREL

    Science.gov Websites

    actuators. Specialized component validation of blades may be accomplished by applying loads at the system's during this time has assessed hundreds of wind blades. The NWTC has pioneered the development of

  13. State, Foreign Operations Appropriations: A Guide to Component Accounts

    DTIC Science & Technology

    2009-03-30

    microcredit , water and sanitation, education, environment, democracy and governance, among others...that allow private banks to finance housing shelter projects, water and sanitation systems, and microcredit and small enterprise development programs

  14. A DECISION SUPPORT TOOL FOR SUSTAINABLE URBAN WATER MANAGEMENT

    EPA Science Inventory

    Cities have to seek sustainable development to meet the needs of the growing human populations while managing and minimizing their impact on the natural environment. The water system is an important component in any urban area. Urban water management involves the interaction be...

  15. Programmed Training for Water/Wastewater Operators.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This manual is aimed at the water and wastewater technician who has the responsibility for monitoring the water environment. The televised programmed training stresses the interaction of three components: the program production and operation; group leaders; and operators, including distribution and collection system personnel. The academic…

  16. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  17. Regional evaluation of evapotranspiration in the Everglades

    USGS Publications Warehouse

    German, Edward R.

    1996-01-01

    Understanding the water budget of the Everglades system is crucial to the success of restoration and management strategies. Although the water budget is simple in concept, it is difficult to assess quantitatively. Models used to simulate changes in water levels and vegetation resulting from management strategies need to accurately simulate all components of the water budget.

  18. 75 FR 34731 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to Daikin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... applies to certain basic models of the Daikin Altherma system, which consists of an air-to-water heat pump... pumps, and an application for interim waiver. The Daikin Altherma system consists of an air-to-water... operates either as a split system with the compressor unit outdoors and the hydronic components in an...

  19. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  20. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  1. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a rural community. Keywords: Water Resources, Simulation Model, Domestic Water, Irrigation, Constructed Wetland, Rural Community

  2. Systems modeling to improve the hydro-ecological performance of diked wetlands

    NASA Astrophysics Data System (ADS)

    Alminagorta, Omar; Rosenberg, David E.; Kettenring, Karin M.

    2016-09-01

    Water scarcity and invasive vegetation threaten arid-region wetlands and wetland managers seek ways to enhance wetland ecosystem services with limited water, labor, and financial resources. While prior systems modeling efforts have focused on water management to improve flow-based ecosystem and habitat objectives, here we consider water allocation and invasive vegetation management that jointly target the concurrent hydrologic and vegetation habitat needs of priority wetland bird species. We formulate a composite weighted usable area for wetlands (WU) objective function that represents the wetland surface area that provides suitable water level and vegetation cover conditions for priority bird species. Maximizing the WU is subject to constraints such as water balance, hydraulic infrastructure capacity, invasive vegetation growth and control, and a limited financial budget to control vegetation. We apply the model at the Bear River Migratory Bird Refuge on the Great Salt Lake, Utah, compare model-recommended management actions to past Refuge water and vegetation control activities, and find that managers can almost double the area of suitable habitat by more dynamically managing water levels and managing invasive vegetation in August at the beginning of the window for control operations. Scenario and sensitivity analyses show the importance to jointly consider hydrology and vegetation system components rather than only the hydrological component.

  3. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production configuration: (1) A resonance search vertically up and down, horizontally from side to side, and...) Components that may be installed in enclosed spaces that are environmentally controlled, including an engine...

  4. 46 CFR 162.060-30 - Testing requirements for ballast water management system (BWMS) components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... production configuration: (1) A resonance search vertically up and down, horizontally from side to side, and...) Components that may be installed in enclosed spaces that are environmentally controlled, including an engine...

  5. Impact of seasonality on artificial drainage discharge under temperate climate conditions

    Treesearch

    Ulrike Hirt; Annett Wetzig; Devandra Amatya; Marisa Matranga

    2011-01-01

    Artificial drainage systems affect all components of the water and matter balance. For the proper simulation of water and solute fluxes, information is needed about artificial drainage discharge rates and their response times. However, there is relatively little information available about the response of artificial drainage systems to precipitation. To address this...

  6. Characterization of chromophoric dissolved organic matter and relationships among PARAFAC components and water quality parameters in Heilongjiang, China.

    PubMed

    Cui, Hongyang; Shi, Jianhong; Qiu, Linlin; Zhao, Yue; Wei, Zimin; Wang, Xinglei; Jia, Liming; Li, Jiming

    2016-05-01

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance that can transports nutrients and pollutants from terrestrial to aquatic systems. Additionally, it is used as a measure of water quality. To investigate the source and composition of CDOM, we used chemical and fluorescent analyses to characterize CDOM in Heilongjiang. The composition of CDOM can be investigated by excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). PARAFAC identified four individual components that were attributed to microbial humic-like (C1) and terrestrial humic-like (C2-4) in water samples collected from the Heilongjiang River. The relationships between the maximum fluorescence intensities of the four PARAFAC components and the water quality parameters indicate that the dynamic of the four components is related to nutrients in the Heilongjiang River. The relationships between the fluorescence component C3 and the biochemical oxygen demand (BOD5) indicates that component C3 makes a great contribution to BOD5 and it can be used as a carbon source for microbes in the Heilongjiang River. Furthermore, the relationships between component C3, the particulate organic carbon (POC), and the chemical oxygen demand (CODMn) show that component C3 and POC make great contributions to BOD5 and CODMn. The use of these indexes along with PARAFAC results would be of help to characterize the co-variation between the CDOM and water quality parameters in the Heilongjiang River.

  7. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    NASA Astrophysics Data System (ADS)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  8. SENSITIVITY OF DIFFERENT AEROMONAS SPECIES TO COPPER AND SILVER

    EPA Science Inventory

    Aeromonas bacteria are common flora in surface and ground waters and are considered to be human pathogens. They can also be found in municipally treated drinking water, likely as a component of biofilms, as found in distribution system pipes and point of use water filters. It ...

  9. 40 CFR 264.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to... component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...

  10. Using WNTR to Model Water Distribution System Resilience ...

    EPA Pesticide Factsheets

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of disruptive events, including earthquakes, contamination incidents, floods, climate change, and fires. The software includes the EPANET solver as well as a WNTR solver with the ability to model pressure-driven demand hydraulics, pipe breaks, component degradation and failure, changes to supply and demand, and cascading failure. Damage to individual components in the network (i.e. pipes, tanks) can be selected probabilistically using fragility curves. WNTR can also simulate different types of resilience-enhancing actions, including scheduled pipe repair or replacement, water conservation efforts, addition of back-up power, and use of contamination warning systems. The software can be used to estimate potential damage in a network, evaluate preparedness, prioritize repair strategies, and identify worse case scenarios. As a Python package, WNTR takes advantage of many existing python capabilities, including parallel processing of scenarios and graphics capabilities. This presentation will outline the modeling components in WNTR, demonstrate their use, give the audience information on how to get started using the code, and invite others to participate in this open source project. This pres

  11. A bottom-up approach to urban metabolism: the perspective of BRIDGE

    NASA Astrophysics Data System (ADS)

    Chrysoulakis, N.; Borrego, C.; San Josè, R.; Grimmond, S. B.; Jones, M. B.; Magliulo, V.; Klostermann, J.; Santamouris, M.

    2011-12-01

    Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. "Metabolic" studies are usually top-down approaches that assess the inputs and outputs of food, water, energy, and pollutants from a city, or that compare the changing metabolic process of several cities. In contrast, bottom-up approaches are based on quantitative estimates of urban metabolism components at local to regional scales. Such approaches consider the urban metabolism as the 3D exchange and transformation of energy and matter between a city and its environment. The city is considered as a system and the physical flows between this system and its environment are quantitatively estimated. The transformation of landscapes from primarily agricultural and forest uses to urbanized landscapes can greatly modify energy and material exchanges and it is, therefore, an important aspect of an urban area. Here we focus on the exchanges and transformation of energy, water, carbon and pollutants. Recent advances in bio-physical sciences have led to new methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, there is often poor communication of new knowledge and its implications to end-users, such as planners, architects and engineers. The FP7 Project BRIDGE (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging this gap and at illustrating the advantages of considering environmental issues in urban planning. BRIDGE does not perform a complete life cycle analysis or calculate whole system urban metabolism, but rather focuses on specific metabolism components (energy, water, carbon and pollutants). Its main goal is the development of a Decision Suport System (DSS) with the potential to select planning actions which better fit the goal of changing the metabolism of urban systems towards sustainability. BRIDGE evaluates how planning alternatives can modify the physical flows of the above urban metabolism components under consideration in five European cities: Helsinki, Athens, London, Firenze and Gliwice. A Multi-Criteria Evaluation approach has been adopted. To cope with the complexity of urban metabolism issues, objectives are defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socio-economic components (investment costs, housing, employment, etc.) of urban sustainability.

  12. Water-soluble resist for environmentally friendly lithography

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.

  13. Modeling and Optimization for Management of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, A. M.; Wilkening, J.; Rycroft, C.

    2014-12-01

    In many urban areas, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at controlling valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Gradient-based optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability at system endpoints.

  14. Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.

    1996-01-01

    The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.

  15. Experience with chemical system decontamination by the CORD process and electrochemical decontamination of pipe ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wille, H.; Bertholdt, H.O.; Operschall, H.

    Efforts to reduce occupational radiation exposure during inspection and repair work in nuclear power plants turns steadily increasing attention to the decontamination of systems and components. Due to the advanced age of nuclear power plants resulting in increasing dose rates, the decontamination of components, or rather of complete systems, or loops to protect operating and inspection personnel becomes demanding. Besides, decontaminating complete primary loops is in many cases less difficult than cleaning large components. Based on experience gained in nuclear power plants, an outline of two different decontamination methods performed recently are given. For the decontamination of complete systems ormore » loops, Kraftwerk Union AG has developed CORD, a low-concentration process. For the decontamination performance of a subsystem, such as the steam generator (SG) channel heads of a pressurized water reactor or the recirculation loops of a boiling water reactor the automated mobile decontamination appliance is used. The electrochemical decontamination process is primarily applicable for the treatment of specially limited surface areas.« less

  16. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    NASA Astrophysics Data System (ADS)

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  17. Characterization of recharge and flow behaviour of different water sources in Gunung Kidul and its impact on water quality based on hydrochemical and physico-chemical monitoring

    NASA Astrophysics Data System (ADS)

    Eiche, Elisabeth; Hochschild, Maren; Haryono, Eko; Neumann, Thomas

    2016-09-01

    Karst aquifers are important water resources but highly vulnerable due to their heterogeneous and complex characteristics. Various hydrological aspects (recharge, flow behaviour) have to be known in detail to develop a sustainable concept for water collection, distribution and treatment. In the karst area of Gunung Sewu (Java, Indonesia) such a concept was to be implemented within a German-Indonesian joint IWRM project. The basic hydrogeological conditions and water quality aspects were characterized on a regional scale through hydrochemical monitoring of springs, wells, subsurface and surface rivers. More detailed information about the recharge, flow and storage behaviour was obtained from high resolution monitoring of T, EC and discharge in one large underground river system. The water quality is well below any guideline values with regard to inorganic pollutants during dry season. During rainy season, dissolved Al concentrations are frequently above the Indonesian guideline value. Slow matrix flow is the most important recharge component during dry season, thus assuring the year-round water availability in the subsurface karst. During rainy season, quick infiltration of the surface water is a dominant recharge component. Rapid response of discharge, T and EC to heavy rain suggests the presence of point recharge that feeds a highly karstfied conduit system with fast conduit flow and short transit time of water. The strong variations in discharge and hydrochemistry are particularly challenging for technical water usage and treatment facilities. Piston flow is indicated to be the third important flow component and is induced by heavy rainfall.

  18. 10 CFR 50.55a - Codes and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specified in § 50.55, except that each combined license for a boiling or pressurized water-cooled nuclear... boiling or pressurized water-cooled nuclear power facility is subject to the conditions in paragraphs (f... performed. (2) Systems and components of boiling and pressurized water-cooled nuclear power reactors must...

  19. Lysimetric evaluation of eddy covariance and scitillometer systems for the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an important component in the water budget and used extensively in water planning and irrigation scheduling. Although lysimetry is considered the most accurate method for crop water use measurements, large precision weighing lysimeters are expensive to build and operate. A...

  20. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less

  1. Designed drug-release systems having various breathable polyurethane film-backed hydrocolloid acrylated adhesive layers for moisture healing.

    PubMed

    Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng

    2014-01-01

    A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.

  2. The effects of acid precipitation runoff episodes on reservoir and tapwater quality in an Appalachian Mountain water supply.

    PubMed Central

    Sharpe, W E; DeWalle, D R

    1990-01-01

    The aluminum concentration and Ryznar Index increased and the pH decreased in a small Appalachian water supply reservoir following acid precipitation runoff episodes. Concomitant increases in tapwater aluminum and decreases in tapwater pH were also observed at two homes in the water distribution system. Lead concentrations in the tapwater of one home frequently exceeded recommended levels, although spatial and temporal variation in tapwater copper and lead concentrations was considerable. Since source water and reservoir water copper and lead concentrations were much lower, the increased copper and lead concentrations in tapwater were attributed to corrosion of household plumbing. Tapwater copper concentration correlated well with tapwater pH and tapwater temperature. Asbestos fibers were not detected in tapwater. The asbestos-cement pipe in the water distribution system was protected by a spontaneous metallic coating that inhibited fiber release from the pipe. Several simultaneous reactions were hypothesized to be taking place in the distribution system that involved corrosion of metallic components and coating of asbestos-cement pipe components in part with corrosion products and in part by cations of watershed origin. Greater water quality changes might be expected in areas of higher atmospheric deposition. Images FIGURE 5. FIGURE 6. PMID:2088742

  3. Packaging of fiber lasers and components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.

    2016-03-01

    High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.

  4. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    PubMed

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  5. Scientific Models Help Students Understand the Water Cycle

    ERIC Educational Resources Information Center

    Forbes, Cory; Vo, Tina; Zangori, Laura; Schwarz, Christina

    2015-01-01

    The water cycle is a large, complex system that encompasses ideas across the K-12 science curriculum. By the time students leave fifth grade, they should understand "that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot" and be able to describe both components and processes…

  6. The Spatially-Distributed Agroecosystem-Watershed (Ages-W) Hydrologic/Water Quality (H/WQ) model for assessment of conservation effects

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality (H/WQ) simulation components under the Object Modeling System (OMS3) environmental modeling framework. AgES-W has recently been enhanced with the addition of nitrogen (N) a...

  7. THE USE OF PYROLYSIS/GC/MS TO CHARACTERIZE THE ORGANIC QUALITY OF SURFACE WATERS; SPECIAL APPLICATION TO DRINKING WATER TREATMENT AND THE FORMATION OF DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Natural Organ Material (NOM) in aquatic systems controls the effectiveness of engineered treatment processes and the fate of metals and pollutants in natural systems. At present less than 20% of NOM components can be identified. Pyrolysis-Gas Chromatography-Mass Spectrometry (P...

  8. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare.

    PubMed

    Moore, Ginny; Stevenson, David; Thompson, Katy-Anne; Parks, Simon; Ngabo, Didier; Bennett, Allan M; Walker, Jimmy T

    2015-01-01

    Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.

  9. Social knowledge and the construction of drinking water preference.

    PubMed

    Soares, Ana Carolina Cordeiro; Carmo, Rose Ferraz; Bevilacqua, Paula Dias

    2017-10-01

    The analytical categories of Health Surveillance territorialization and daily life guided the design of this study, which aimed to understand from the methodological framework of qualitative research the factors involved in the use of individual supply solutions (ISS) as drinking water sources. We conducted semi-structured interviews with residents of 22 households set at a municipality in the Zona da Mata Mineira. Statements were fully transcribed, processed through content analysis and interpreted based on the psychosocial theory of social representations. It was possible to apprehend the social and affective components of social representations. The social component characterized by the representation of water from IWSS ISS water as clean and of good quality seemed to drive or justify the "resistance" of individuals to use water from public supply. The affective component referred to the use of IWSS water from ISS as a return to and protection of individuals' origins, a way to strengthen respondents' identity. The results pointed out that people's perceptions and demands might guide actions aimed to stimulate trust in the use of public system water and the choice of this source of supply, contributing to health protection.

  10. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  11. Hydrology, description of computer models, and evaluation of selected water-management alternatives in the San Bernardino area, California

    USGS Publications Warehouse

    Danskin, Wesley R.; McPherson, Kelly R.; Woolfenden, Linda R.

    2006-01-01

    The San Bernardino area of southern California has complex water-management issues. As an aid to local water managers, this report provides an integrated analysis of the surface-water and ground-water systems, documents ground-water flow and constrained optimization models, and provides seven examples using the models to better understand and manage water resources of the area. As an aid to investigators and water managers in other areas, this report provides an expanded description of constrained optimization techniques and how to use them to better understand the local hydrogeology and to evaluate inter-related water-management problems. In this report, the hydrology of the San Bernardino area, defined as the Bunker Hill and Lytle Creek basins, is described and quantified for calendar years 1945-98. The major components of the surface-water system are identified, and a routing diagram of flow through these components is provided. Annual surface-water inflow and outflow for the area are tabulated using gaged measurements and estimated values derived from linear-regression equations. Average inflow for the 54-year period (1945-98) was 146,452 acre-feet per year; average outflow was 67,931 acre-feet per year. The probability of exceedance for annual surface-water inflow is calculated using a Log Pearson Type III analysis. Cumulative surface-water inflow and outflow and ground-water-level measurements indicate that the relation between the surface-water system and the ground-water system changed in about 1951, in about 1979, and again in about 1992. Higher ground-water levels prior to 1951 and between 1979 and 1992 induced ground-water discharge to Warm Creek. This discharge was quantified using streamflow measurements and can be estimated for other time periods using ground-water levels from a monitoring well (1S/4W-3Q1) and a logarithmic-regression equation. Annual wastewater discharge from the area is tabulated for the major sewage and power-plant facilities. More...

  12. Comparison and Assessment of Three Advanced Land Surface Models in Simulating Terrestrial Water Storage Components over the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Youlong; Mocko, David; Huang, Maoyi

    2017-03-01

    In preparation for next generation North American Land Data Assimilation System (NLDAS), 3 three advanced land surface models (CLM4.0, Noah-MP, and CLSM-F2.5) were run from 1979 4 to 2014 within the NLDAS-based framework. Monthly total water storage anomaly (TWSA) and 5 its individual water storage components were evaluated against satellite-based and in situ 6 observations, and reference reanalysis products at basin-wide and statewide scales. In general, all 7 three models are able to reasonably capture the monthly and interannual variability and 8 magnitudes for TWSA. However, contributions of the anomalies of individual water 9 components to TWSA are very dependentmore » on the model and basin. A major contributor to the 10 TWSA is the anomaly of total column soil moisture content (SMCA) for CLM4.0 and Noah-MP 11 or groundwater storage anomaly (GWSA) for CLSM-F2.5 although other components such as 12 the anomaly of snow water equivalent (SWEA) also play some role. For each individual water 13 storage component, the models are able to capture broad features such as monthly and 14 interannual variability. However, there are large inter-model differences and quantitative 15 uncertainties in this study. Therefore, it should be thought of as a preliminary synthesis and 16 analysis.« less

  13. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  14. Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.

    2000-01-01

    An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.

  15. Cold weather hydrogen generation system and method of operation

    DOEpatents

    Dreier, Ken Wayne; Kowalski, Michael Thomas; Porter, Stephen Charles; Chow, Oscar Ken; Borland, Nicholas Paul; Goyette, Stephen Arthur

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  16. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  17. Feasibility study of a solar domestic hot water system for Oliver Hall, the University of Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.C.W.

    1985-01-01

    Solar water heating represents a low-temperature use of solar energy. It has been proven cost effective in residential applications with renewable energy tax credits. However, tax credits for solar application are not available for state owned buildings, which incur higher system costs and may not economically justify solar energy. The purpose of this project was to design a site assembled solar hot water heating system to reduce system costs. Oliver Hall, a dormitory building at the University of Kansas, was chosen for this research project. The optimum size of the solar system was determined via several different methods to bemore » approximately 1800 square feet. The site chosen for the location of solar arrays was a ground-mounting on the west side of the dormitory due to the adjacency to the mechanical room, ease of maintenance, and lower initial cost. System components and equipment were chosen as the product of performance, cost, maintenance and product life. After completion of the system design, the unit cost data for each component was collected and the initial system cost was estimated to be $49,244 which translates into a payback period of 16 years.« less

  18. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  19. The geochemistry of uranium and thorium isotopes in the Western Desert of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabous, A.A.

    1994-11-01

    The concentrations of {sup 238}U, {sup 234}U, {sup 232}Th, and {sup 228}Th have been measured in the groundwaters of the Bahariya and Farafra oases of the Western Desert of Egypt. These waters are characterized by normal amounts of U, but unusually high concentrations of Th. The pattern of variation of the parent isotopes, {sup 238}U and {sup 232}Th, as well as the daughter isotopes, {sup 234}U, {sup 230}Th, and {sup 228}Th, is systematic within and between the two oases. From the unusually consistent distribution of the {sup 234}U/{sup 238}U activity ratios one can conclude that the samples from both oasesmore » are representative of a two-component mixing system. One component, characterized by low U content and a high {sup 234}U/{sup 238}U activity ratio, is typical of deep artesian systems and probably represents flowthrough water derived from the Nubian highlands to the south. The second component is characterized by a greater U concentration and a low activity ratio. This signature is hypothesized as being derived by leaching of downward infiltrating water during pluvial times. The source of the U may be the uraniferous phosphate strata that overly the sandstone aquifer in both oasis areas. Higher Th values are associated with the artesian flow component of the mixing system and suggests that Th-bearing minerals may be abundant in the Nubian sandstone aquifer. The distribution of {sup 230}Th and {sup 228}Th in the water samples supports this interpretation.« less

  20. Seismic Design of ITER Component Cooling Water System-1 Piping

    NASA Astrophysics Data System (ADS)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  1. Study to optimize gellant polymer-water systems for the control of hypergolic spills and fires

    NASA Technical Reports Server (NTRS)

    Jennings, R. R.; Macwilliams, D. C.; Foshee, W. C.; Katzer, M. F.

    1973-01-01

    A system of buffered gelled water was developed to prevent and control fires from small spills of nitrogen tetroxide-(N2O4)-Aerozine 50-hypergolic fuel. Laboratory studies on various alkalis, buffers, and seavengers for the fuel components are described. Chilling and sodium acetate-acetic acid buffer was found to be the best additives to the gelled water. Field tests and a delivery system (airborne) for the extinguishant are described. A short movie showing the field testing is available upon request.

  2. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  3. Hydraulic model of the proposed Water Recovery and Management system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Martin, Charles E.; Bacskay, Allen S.

    1991-01-01

    A model of the Water Recovery and Management (WRM) system utilizing SINDA '85/FLUINT to determine its hydraulic operation characteristics, and to verify the design flow and pressure drop parameters is presented. The FLUINT analysis package is employed in the model to determine the flow and pressure characteristics when each of the different loop components is operational and contributing to the overall flow pattern. The water is driven in each loop by storage tanks pressurized with cabin air, and is routed through the system to the desired destination.

  4. Spacecraft Water Exposure Guidelines (SWEGs)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  5. Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.

    2009-05-01

    An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronicmore » air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.« less

  7. 33 CFR 183.405 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems General § 183.405 General. Each electrical component on a boat to which this subpart applies must meet the requirements of this subpart unless the component is...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nephew, E.A.; Abbatiello, L.A.; Ballou, M.L.

    The basic concept of the Annual Cycle Energy System (ACES) - an integrated system for supplying space heating, hot water, and air conditioning to a building - and the theory underlying its design and operation are described. Practical procedures for designing an ACES for a single-family residence, together with recommended guidelines for the construction and installation of system components, are presented. Methods are discussed for estimating the life-cycle cost, component sizes, and annual energy consumption of the system for residential applications in different climatic regions of the US.

  9. Effects of the Shuttle Orbiter fuselage and elevon on the molecular distribution of water vapor from the flash evaporator system

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.; Kelso, R. M.

    1980-01-01

    A concern has arisen regarding the emissive distribution of water molecules from the shuttle orbiter flash evaporator system (FES). The role of the orbiter fuselage and elevon in affecting molecular scattering distributions was nuclear. The effect of these components were evaluated. Molecular distributions of the water vapor effluents from the FE were measured. These data were compared with analytically predicted values and the resulting implications were calculated.

  10. Is proglacial field an important contributor to runoff in glacierized watershed? Lesson learned from a case study in Duke River watershed, Yukon, Canada.

    NASA Astrophysics Data System (ADS)

    Chesnokova, A.; Baraer, M.

    2017-12-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance not only for water resources management but also for various ecosystem services. Those areas are environmentally fragile and host many climate-sensitive components of hydrological cycle. In a context of shifting from glacial to non-glacial regimes in Sub-Arctic, this study focuses on understanding hydrological role of proglacial field in runoff generation in headwaters of Duke River watershed, Canada, by comparing to that of alpine meadow (area that is not recently reworked by glacier). Duke Glacier, as many glaciers in St. Elias Mountains, is a surging glacier, and produced debris-charged dead-ice masses once the last surge has seized. In addition, such features as ice-cored moraines and taluses are found in proglacial field. Those features are hypothesised to cause high storage capacity and complex groundwater distribution systems which might affect significantly watershed hydrology. In order to estimate the contribution of different components of the alpine meadow and the proglacial field to runoff, HBCM, a multi-component distributed hydrochemical mixing model (Baraer et al., 2015) was applied. During field campaign in June 2016, 157 samples were taken from possible hydrological sources (end-members) and from main stream, and analysed for major ions, dissolved organic compounds and heavy stable water isotopes. End-members contribution was quantified based on tracer concentration at mixing points. Discharge was measured 6 km downstream from the glacier snout so that both proglacial field and alpine meadow occupy comparable areas of the catchment. Results show the difference between main water sources for the two hydrological systems: buried ice, ice-cored moraines and groundwater sources within proglacial field, and groundwater and supra-permafrost water within alpine meadow. Overall contribution of glaciers during June 2016 exceeded the contribution of the rest of the components of hydrological system. However, water production from both proglacial field and alpine meadow was significant, with proglacial field yielding more water than alpine meadow. Since the Duke Glacier keeps retreating, the area of proglacial field is increasing as well as it role in runoff generation in the area.

  11. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    PubMed

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (<1 sun). This scalable sheet-like material was used to obtain pure drinkable water from both seawater and sewage water under ambient conditions. Our results demonstrate a competent monolithic material platform providing a paradigm change in water purification by using a simple, point of use, reusable, and low-cost solar thermal water purification system for a variety of environmental conditions.

  12. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    NASA Astrophysics Data System (ADS)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  13. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.

  14. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  15. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  16. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  17. Research gaps and technology needs in development of PHM for passive AdvSMR components

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.

    2014-02-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  18. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands

    USGS Publications Warehouse

    Winter, Thomas C.

    1988-01-01

    Wetlands occur in geologic and hydrologic settings that enhance the accumulation or retention of water. Regional slope, local relief, and permeability of the land surface are major controls on the formation of wetlands by surface-water sources. However, these landscape features also have significant control over groundwater flow systems, which commonly play a role in the formation of wetlands. Because the hydrologic system is a continuum, any modification of one component will have an effect on contiguous components. Disturbances commonly affecting the hydrologic system as it relates to wetlands include weather modification, alteration of plant communities, storage of surface water, road construction, drainage of surface water and soil water, alteration of groundwater recharge and discharge areas, and pumping of groundwater. Assessments of the cumulative effects of one or more of these disturbances on the hydrologic system as related to wetlands must take into account uncertainty in the measurements and in the assumptions that are made in hydrologic studies. For example, it may be appropriate to assume that regional groundwater flow systems are recharged in uplands and discharged in lowlands. However, a similar assumption commonly does not apply on a local scale, because of the spatial and temporal dynamics of groundwater recharge. Lack of appreciation of such hydrologic factors can lead to misunderstanding of the hydrologic function of wetlands within various parts of the landscape and mismanagement of wetland ecosystems.

  19. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs,more » were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.« less

  20. The AgroEcoSystem (AgES) response-function model simulates layered soil water dynamics in semi-arid Colorado: sensitivity and calibration

    USDA-ARS?s Scientific Manuscript database

    Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...

  1. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  2. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of major solutes change slowly and are independent of discharge downstream from the dams on two major tributaries. This is indicative of reservoir release water. In addition, a third input is derived from the Colorado River via the Central Arizona Project canal system. Cross plots including concentrations of solutes such as nitrate and sulfate from downstream of the confluence indicate at least three end-member sources, as do Piper diagrams using major anion and cation data. Dynamic contributions from natural event water and urban inputs can be resolved from the slowly changing release water, and may dictate the short-term transport of pollutants during the storm-induced transition state.

  3. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems.

    PubMed

    Behzadian, Kourosh; Kapelan, Zoran

    2015-09-15

    Despite providing water-related services as the primary purpose of urban water system (UWS), all relevant activities require capital investments and operational expenditures, consume resources (e.g. materials and chemicals), and may increase negative environmental impacts (e.g. contaminant discharge, emissions to water and air). Performance assessment of such a metabolic system may require developing a holistic approach which encompasses various system elements and criteria. This paper analyses the impact of integration of UWS components on the metabolism based performance assessment for future planning using a number of intervention strategies. It also explores the importance of sustainability based criteria in the assessment of long-term planning. Two assessment approaches analysed here are: (1) planning for only water supply system (WSS) as a part of the UWS and (2) planning for an integrated UWS including potable water, stormwater, wastewater and water recycling. WaterMet(2) model is used to simulate metabolic type processes in the UWS and calculate quantitative performance indicators. The analysis is demonstrated on the problem of strategic level planning of a real-world UWS to where optional intervention strategies are applied. The resulting performance is assessed using the multiple criteria of both conventional and sustainability type; and optional intervention strategies are then ranked using the Compromise Programming method. The results obtained show that the high ranked intervention strategies in the integrated UWS are those supporting both water supply and stormwater/wastewater subsystems (e.g. rainwater harvesting and greywater recycling schemes) whilst these strategies are ranked low in the WSS and those targeting improvement of water supply components only (e.g. rehabilitation of clean water pipes and addition of new water resources) are preferred instead. Results also demonstrate that both conventional and sustainability type performance indicators are necessary for strategic planning in the UWS. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when powermore » is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.« less

  5. EVALUATING AND DESIGNING ULTRA-LOW-COST SOLAR WATER HEATING SYSTEMS

    EPA Science Inventory

    This project will have three key outputs:

    1. an evaluation of the thermal performance of ultra-low-cost solar components, with components being characterized by their absorbed solar energy per cost;
    2. a built demonstration prototype of...

    3. Toward more accurate basal boundary conditions: a new 2-D model of distributed and channelised subglacial drainage

      NASA Astrophysics Data System (ADS)

      Werder, M. A.; Hewitt, I. J.; Schoof, C.; Flowers, G. E.

      2012-04-01

      Basal boundary conditions are one of the least constrained components of today's ice sheet models. To get at these one needs to know the distributed basal water pressure. We present a new glacier drainage system model to contribute to this missing piece of the puzzle. This two dimensional mathematical/numerical model combines distributed and channelised drainage at the ice-bed interface coupled to a water storage component. Notably the model determines the location of the channels as part of the solution. This is achieved by allowing channels (modelled as R-channels) to form on any of the edges of the unstructured triangular grid used to discretise the model. The distributed system is represented by a water sheet which is a continuum description of a linked-cavity system and exchanges water with the channels along their length. Water storage is parameterised as a function of the subglacial water pressure, which can be interpreted as storage in an englacial aquifer or due to elastic processes. The parabolic equation that determines the water pressure is solved using finite elements, the time evolution of the water sheet thickness and channel diameter are governed by local differential equations that are integrated using explicit methods. To explore the model's properties, we apply it to synthetic ice sheet catchments with areas up to 3000km2. We present steady state drainage system configurations and evaluate their channel-network properties (fractal dimensions, channel spacing). We find that an arborescent channel network forms whose density depends on the water sheet conductivity relative to water input. As a further experiment, we force the model with a seasonally and diurnally varying melt water input to investigate how the modelled drainage system evolves on these time scales: a channelised system grows up glacier as meltwater is delivered to the bed in spring and collapses in autumn. Water pressure is highest just before the formation of channels and then drops. Conversely, the diurnal variations in discharge affect the drainage system morphology only slightly. Instead they lead to large water pressure variations which lag meltwater input and coincide with changes in the volume of stored water. By incorporating an evolving R-channel network within a continuum model of distributed water drainage and storage, this 2-D model succeeds in qualitatively reproducing many of the observed and postulated features of the glacier drainage system.

    4. Mental models of a water management system in a green building.

      PubMed

      Kalantzis, Anastasia; Thatcher, Andrew; Sheridan, Craig

      2016-11-01

      This intergroup case study compared users' mental models with an expert design model of a water management system in a green building. The system incorporates a constructed wetland component and a rainwater collection pond that together recycle water for re-use in the building and its surroundings. The sample consisted of five building occupants and the cleaner (6 users) and two experts who were involved with the design of the water management system. Users' mental model descriptions and the experts' design model were derived from in-depth interviews combined with self-constructed (and verified) diagrams. Findings from the study suggest that there is considerable variability in the user mental models that could impact the efficient functioning of the water management system. Recommendations for improvements are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

    5. Determination of sulfonamides in swine muscle after salting-out assisted liquid extraction with acetonitrile coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system prior to high-performance liquid chromatography.

      PubMed

      Tsai, Wen-Hsien; Huang, Tzou-Chi; Chen, Ho-Hsien; Wu, Yuh-Wern; Huang, Joh-Jong; Chuang, Hung-Yi

      2010-01-15

      A salting-out assisted liquid extraction coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system combined with high-performance liquid chromatography with diode-array detection (HPLC-DAD) was developed for the extraction and determination of sulfonamides in solid tissue samples. After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, an aliquot of 1 mL of the acetonitrile extract containing a small amount of dichloromethane (250-400 microL) was alkalinized with diethylamine. The clear organic extract obtained by centrifugation was used as a donor phase and then a small amount of water (40-55 microL) could be used as an acceptor phase to back-extract the analytes in the water/acetonitrile/dichloromethane ternary component system. In the back-extraction procedure, after mixing and centrifuging, the sedimented phase would be water and could be withdrawn easily into a microsyringe and directly injected into the HPLC system. Under the optimal conditions, recoveries were determined for swine muscle fortified at 10 ng/g and quantification was achieved by matrix-matched calibration. The calibration curves of five sulfonamides showed linearity with the coefficient of estimation above 0.998. Relative recoveries for the analytes were all from 96.5 to 109.2% with relative standard deviation of 2.7-4.0%. Preconcentration factors ranged from 16.8 to 30.6 for 1 mL of the acetonitrile extract. Limits of detection ranged from 0.2 to 1.0 ng/g. 2009 Elsevier B.V. All rights reserved.

    6. Diagram of the Water Recovery and Management for the International Space Station

      NASA Technical Reports Server (NTRS)

      2000-01-01

      This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

    7. Classification and authentication of unknown water samples using machine learning algorithms.

      PubMed

      Kundu, Palash K; Panchariya, P C; Kundu, Madhusree

      2011-07-01

      This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

    8. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

      USGS Publications Warehouse

      Christenson, S.C.; Parkhurst, D.L.

      1987-01-01

      In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium, selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

    9. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

      PubMed

      Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

      2016-01-01

      The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

    10. Developing Reliable Life Support for Mars

      NASA Technical Reports Server (NTRS)

      Jones, Harry W.

      2017-01-01

      A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and less certain expected reliability. A plan to develop reliable life support is needed to achieve the best possible reliability.

    11. Formation of higher plant component microbial community in closed ecological system

      NASA Astrophysics Data System (ADS)

      Tirranen, L. S.

      2001-07-01

      Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

    12. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed

      NASA Astrophysics Data System (ADS)

      Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde

      2017-04-01

      Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

    13. Water/rock interactions in experimentally simulated dirty snowball and dirty iceball cometary nuclei

      NASA Technical Reports Server (NTRS)

      Gooding, James L.; Allton, Judith H.

      1991-01-01

      In the dirty snowball model for cometary nuclei, comet-nucleus materials are regarded as mixtures of volatile ices and relatively non-volatile minerals or chemical compounds. Carbonaceous chondrite meteorites are regarded as useful analogs for the rocky component. To help elucidate the possible physical geochemistry of cometary nuclei, preliminary results are reported of calorimetric experiments with two-component systems involving carbonaceous chondrites and water ice. Based on collective knowledge of the physics of water ice, three general types of interactions can be expected between water and minerals at sub-freezing temperatures: (1) heterogeneous nucleation of ice by insoluble minerals; (2) adsorption of water vapor by hygroscopic phases; and (3) freezing- and melting-point depression of liquid water sustained by soluble minerals. The relative and absolute magnitude of all three effects are expected to vary with mineral composition.

    14. Numerical-simulation and conjunctive-management models of the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system, Rhode Island

      USGS Publications Warehouse

      Barlow, Paul M.; Dickerman, David C.

      2001-01-01

      This report describes the development, application, and evaluation of numerical-simulation and conjunctive-management models of the Hunt-Annaquatucket-Pettaquamscutt stream-aquifer system in central Rhode Island. Steady-state transient numerical models were developed to improve the understanding of the hydrologic budget of the system, the interaction of ground-water and surface-water components of the system, and the contributing areas and sources of water to supply wells in the system. The numerical models were developed and calibrated on the basis of hydrologic data collected during this and previous investigations. These data include lithologic information for the aquifer; hydraulic properties of aquifer and streambed materials; recharge to the aquifer; water levels measured in wells, ponds, and streambed piezometers; streamflow measurements for various streams within the system; and ground-water withdrawal rates from, and wastewater discharge to, the aquifer.

    15. Conceptual design and evaluation of selected Space Station concepts, volume 2

      NASA Technical Reports Server (NTRS)

      1983-01-01

      The partially closed cycle environmental control and Life Support Subsystems is examined. Components of the system include air pressure control, heat control, water management, air and water quality monitors, fire detection and suppression, personnel escape, and EVA support subsystems.

    16. 43 CFR 404.53 - Does this rule provide authority for the transfer of pre-existing facilities from Federal to...

      Code of Federal Regulations, 2010 CFR

      2010-10-01

      ... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.53 Does...-existing facilities or pre-existing components of any water system from Federal to private ownership, or...

    17. THE EPANET PROGRAMMER'S TOOLKIT FOR ANALYSIS OF WATER DISTRIBUTION SYSTEMS

      EPA Science Inventory

      The EPANET Programmer's Toolkit is a collection of functions that helps simplify computer programming of water distribution network analyses. the functions can be used to read in a pipe network description file, modify selected component properties, run multiple hydraulic and wa...

  1. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronicmore » air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.« less

  2. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  3. Physical habitat simulation system reference manual: version II

    USGS Publications Warehouse

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.

  4. Systems for monitoring and digitally recording water-quality parameters

    USGS Publications Warehouse

    Smoot, George F.; Blakey, James F.

    1966-01-01

    Digital recording of water-quality parameters is a link in the automated data collection and processing system of the U.S. Geological Survey. The monitoring and digital recording systems adopted by the Geological Survey, while punching all measurements on a standard paper tape, provide a choice of compatible components to construct a system to meet specific physical problems and data needs. As many as 10 parameters can be recorded by an Instrument, with the only limiting criterion being that measurements are expressed as electrical signals.

  5. EVALUATION OF CONTAINMENT SYSTEMS USING HYDRAULIC HEAD DATA

    EPA Science Inventory

    Subsurface vertical barriers have been used as components of containment systems to prevent or reduce the impact of containment sources on ground-water resources. Many containment systems also include a low permeability cover to prevent the infiltration-/recharge of precipitatio...

  6. Solar-heating and hot water system--St. Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Sunlight supplies about half heat energy needs of small office. System includes six tilt-adjustable commercial collectors and 1,000 gallon energy storage tank. Report contains description of system and components, drawings and photographs, manufacturer's data, and related material.

  7. Selected Micropollutants as Indicators in a Karst Catchment

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max. 28 ng/L. Simultaneously, acesulfame concentrations show superposition of background dilution (old component) and a breakthrough (fresh component, max. 22 ng/L). 1-D-transport-modelling of the cyclamate breakthrough revealed results that are in good agreement with the results of other studies. Analyses of micropollutants might become very sensitive tools in karst hydrogeology where natural background concentrations and signal dampening are limiting factors for conventional investigation methods.

  8. Decision support system for drinking water management

    NASA Astrophysics Data System (ADS)

    Janža, M.

    2012-04-01

    The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the acquisition of information to support the water management's decisions is simplified and faster, thus contributing to more efficient water management and a safer supply of drinking water.

  9. An assessment of drinking-water quality post-Haiyan.

    PubMed

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  10. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  11. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  13. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE PAGES

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; ...

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  14. Integrated fate modeling for exposure assessment of produced water on the Sable Island Bank (Scotian shelf, Canada).

    PubMed

    Berry, Jody A; Wells, Peter G

    2004-10-01

    Produced water is the largest waste discharge from the production phase of oil and gas wells. Produced water is a mixture of reservoir formation water and production chemicals from the separation process. This creates a chemical mixture that has several components of toxic concern, ranging from heavy metals to soluble hydrocarbons. Analysis of potential environmental effects from produced water in the Sable Island Bank region (NS, Canada) was conducted using an integrated modeling approach according to the ecological risk assessment framework. A hydrodynamic dispersion model was used to describe the wastewater plume. A second fugacity-based model was used to describe the likely plume partitioning in the local environmental media of water, suspended sediment, biota, and sediment. Results from the integrated modeling showed that the soluble benzene and naphthalene components reach chronic no-effect concentration levels at a distance of 1.0 m from the discharge point. The partition modeling indicated that low persistence was expected because of advection forces caused by tidal currents for the Sable Island Bank system. The exposure assessment for the two soluble hydrocarbon components suggests that the risks of adverse environmental effects from produced water on Sable Island Bank are low.

  15. Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Viti, T. M.; Garmire, D. G.

    2017-12-01

    Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.

  16. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.

    2017-03-01

    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

  17. 17 CFR 39.34 - System safeguards for systemically important derivatives clearing organizations and subpart C...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... rely on the same critical transportation, telecommunications, power, water, or other critical infrastructure components the entity normally relies upon for such activities; (2) Personnel, who live and work...

  18. Space shuttle solid rocket booster recovery system definition. Volume 2: SRB water impact Monte Carlo computer program, user's manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HD 220 program was created as part of the space shuttle solid rocket booster recovery system definition. The model was generated to investigate the damage to SRB components under water impact loads. The random nature of environmental parameters, such as ocean waves and wind conditions, necessitates estimation of the relative frequency of occurrence for these parameters. The nondeterministic nature of component strengths also lends itself to probabilistic simulation. The Monte Carlo technique allows the simultaneous perturbation of multiple independent parameters and provides outputs describing the probability distribution functions of the dependent parameters. This allows the user to determine the required statistics for each output parameter.

  19. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    PubMed

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  20. THE EFFECTS OF SCALE, DISTANCE AND TIME ON DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    This presentation introduces and describes many components related to what generates and/or controls the concentrations of metals and other constituents in drinking water. Emphasis is placed on ways in which sampling protocol affects apparent levels of constituents, and the magn...

  1. Connectivity of wetlands to downstream waters: Conceptual framework and review

    EPA Science Inventory

    A river represents the time-integrated combination of all waters contributing to it. Understanding the factors that influence a river’s health and sustainability, as well as its degradation, requires an integrated systems perspective. This considers all the components of the ri...

  2. Water and society: Interdisciplinary education in natural resources

    USDA-ARS?s Scientific Manuscript database

    Natural resource management and education must account for both the natural and human components of a complex system, yet examples of such interdisciplinary approaches are still relatively rare, especially in education. This study discusses a graduate seminar on water management, developed from an i...

  3. TEMPORAL VARIABILITY OF MICROBIAL INDICATORS OF FECAL CONTAMINATION OF MARINE AND FRESHWATER BEACHES

    EPA Science Inventory

    Monitoring methods for microbial indicators of fecal contamination are an integral component for protecting the health of swimmers exposed to potentially contaminated bathing beach waters. The design of monitoring systems which will accurately characterize the quality of water is...

  4. Field Scale Monitoring and Modeling of Water and Chemical Transfer in the Vadose Zone

    USDA-ARS?s Scientific Manuscript database

    Natural resource systems involve highly complex interactions of soil-plant-atmosphere-management components that are extremely difficult to quantitatively describe. Computer simulations for prediction and management of watersheds, water supply areas, and agricultural fields and farms have become inc...

  5. Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Straub, John E., II; Schultz, John R.; Sauer, Richard L.; Williams, David E.; Bobe, L. S.; Novikov, V. M.; Andreichouk, P. O.; Protasov, N. N.

    1999-01-01

    Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid. Tests using the actual condensate were then conducted with scaled-down elements of the Russian condensate recovery system to determine the quality of water produced. The composition and test results are described, and implications for ISS are discussed.

  6. [Multi-Scale Convergence of Cold-Land Process Representation in Land-Surface Models, Microwave Remote Sensing, and Field Observations

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng

    2005-01-01

    The cryosphere is a major component of the hydrosphere and interacts significantly with the global climate system, the geosphere, and the biosphere. Measurement of the amount of water stored in the snow pack and forecasting the rate of melt are thus essential for managing water supply and flood control systems. Snow hydrologists are confronted with the dual problems of estimating both the quantity of water held by seasonal snow packs and time of snow melt. Monitoring these snow parameters is essential for one of the objectives of the Earth Science Enterprise-understanding of the global hydrologic cycle. Measuring spatially distributed snow properties, such as snow water equivalence (SWE) and wetness, from space is a key component for improvement of our understanding of coupled atmosphere-surface processes. Through the GWEC project, we have significantly advanced our understandings and improved modeling capabilities of the microwave signatures in response to snow and underground properties.

  7. Man as the main component of the closed ecological system of the spacecraft or planetary station.

    PubMed

    Parin, V V; Adamovich, B A

    1968-01-01

    Current life-support systems of the spacecraft provide human requirements for food, water and oxygen only. Advanced life-support systems will involve man as their main component and will ensure completely his material and energy requirements. The design of individual components of such systems will assure their entire suitability and mutual control effects. Optimization of the performance of the crew and ecological system, on the basis of the information characterizing their function, demands efficient methods of collection and treatment of the information obtained through wireless recording of physiological parameters and their automatic treatment. Peculiarities of interplanetary missions and planetary stations make it necessary to conform the schedule of physiological recordings with the work-and-rest cycle of the space crew and inertness of components of the ecological system, especially of those responsible for oxygen regeneration. It is rational to model ecological systems and their components, taking into consideration the correction effect of the information on the health conditions and performance of the crewmen. Wide application of physiological data will allow the selection of optimal designs and sharply increase reliability of ecological systems.

  8. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    NASA Astrophysics Data System (ADS)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  9. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  10. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  11. South Atlantic sag basins: new petroleum system components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, S.G.; Mello, M.R.

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved inmore » the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.« less

  12. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa

    NASA Astrophysics Data System (ADS)

    Ogindo, H. O.; Walker, S.

    Seasonal water content fluctuation within the effective root zone was monitored during the growing season for a maize-bean intercrop (IMB), sole maize (SM) and sole bean (SB) in Free State Province, Republic of South Africa. Comparisons were undertaken for progressive depths of extraction 0-300 mm; 300-600 mm and 600-900 mm respectively. These enabled the understanding of water extraction behavior of the cropping systems within the different soil layers including the topsoil surface normally influenced by soil surface evaporation. Additive intercrops have been known to conserve water, largely due to the early high leaf area index and the higher total leaf area. In this study, the combined effect of the intercrop components seemed to lower the total water demand by the intercrop compared to the sole crops. During the two seasons (2000/2001 and 2001/2002) the drained upper limit (DUL) and crop lower limits (CLL) were determined. The maize-bean intercrop, sole maize and sole bean had CLL of 141 mm/m, 149 mm/m and 159 mm/m respectively. The DUL was 262 mm/m for the site and therefore the potential plant extractable soil water for the cropping systems were: 121 mm/m (IMB); 114 mm/m (SM) and 103 mm/m (SB). Overall, the intercrop did not have significantly different total soil water extraction during both seasons, although it was additive, showing that it had higher water to biomass conversion.

  13. Source-water susceptibility assessment in Texas—Approach and methodology

    USGS Publications Warehouse

    Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.

    2011-01-01

    Public water systems provide potable water for the public's use. The Safe Drinking Water Act amendments of 1996 required States to prepare a source-water susceptibility assessment (SWSA) for each public water system (PWS). States were required to determine the source of water for each PWS, the origin of any contaminant of concern (COC) monitored or to be monitored, and the susceptibility of the public water system to COC exposure, to protect public water supplies from contamination. In Texas, the Texas Commission on Environmental Quality (TCEQ) was responsible for preparing SWSAs for the more than 6,000 public water systems, representing more than 18,000 surface-water intakes or groundwater wells. The U.S. Geological Survey (USGS) worked in cooperation with TCEQ to develop the Source Water Assessment Program (SWAP) approach and methodology. Texas' SWAP meets all requirements of the Safe Drinking Water Act and ultimately provides the TCEQ with a comprehensive tool for protection of public water systems from contamination by up to 247 individual COCs. TCEQ staff identified both the list of contaminants to be assessed and contaminant threshold values (THR) to be applied. COCs were chosen because they were regulated contaminants, were expected to become regulated contaminants in the near future, or were unregulated but thought to represent long-term health concerns. THRs were based on maximum contaminant levels from U.S. Environmental Protection Agency (EPA)'s National Primary Drinking Water Regulations. For reporting purposes, COCs were grouped into seven contaminant groups: inorganic compounds, volatile organic compounds, synthetic organic compounds, radiochemicals, disinfection byproducts, microbial organisms, and physical properties. Expanding on the TCEQ's definition of susceptibility, subject-matter expert working groups formulated the SWSA approach based on assumptions that natural processes and human activities contribute COCs in quantities that vary in space and time; that increased levels of COC-producing activities within a source area may increase susceptibility to COC exposure; and that natural and manmade conditions within the source area may increase, decrease, or have no observable effect on susceptibility to COC exposure. Incorporating these assumptions, eight SWSA components were defined: identification, delineation, intrinsic susceptibility, point- and nonpoint-source susceptibility, contaminant occurrence, area-of-primary influence, and summary components. Spatial datasets were prepared to represent approximately 170 attributes or indicators used in the assessment process. These primarily were static datasets (approximately 46 gigabytes (GB) in size). Selected datasets such as PWS surface-water-intake or groundwater-well locations and potential source of contamination (PSOC) locations were updated weekly. Completed assessments were archived, and that database is approximately 10 GB in size. SWSA components currently (2011) are implemented in the Source Water Assessment Program-Decision Support System (SWAP-DSS) computer software, specifically developed to produce SWSAs. On execution of the software, the components work to identify the source of water for the well or intake, assess intrinsic susceptibility of the water- supply source, assess susceptibility to contamination with COCs from point and nonpoint sources, identify any previous detections of COCs from existing water-quality databases, and summarize the results. Each water-supply source's susceptibility is assessed, source results are weighted by source capacity (when a PWS has multiple sources), and results are combined into a single SWSA for the PWS.'SWSA reports are generated using the software; during 2003, more than 6,000 reports were provided to PWS operators and the public. The ability to produce detailed or summary reports for individual sources, and detailed or summary reports for a PWS, by COC or COC group was a unique capability of SWAP-DSS. In 2004, the TCEQ began a rotating schedule for SWSA wherein one-third of PWSs statewide would be assessed annually, or sooner if protection-program activities deemed it necessary, and that schedule has continued to the present. Cooperative efforts by the TCEQ and the USGS for SWAP software maintenance and enhancements ended in 2011 with the TCEQ assuming responsibility for all tasks.

  14. Design of virtual SCADA simulation system for pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles ofmore » energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.« less

  15. 36 CFR 297.1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILD AND SCENIC RIVERS Water Resources Projects § 297.1 General. Section 7 of the Wild and Scenic Rivers Act (16 U.S.C. 1278... designated as components or potential components of the National Wild and Scenic Rivers System from the...

  16. 36 CFR 297.1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILD AND SCENIC RIVERS Water Resources Projects § 297.1 General. Section 7 of the Wild and Scenic Rivers Act (16 U.S.C. 1278... designated as components or potential components of the National Wild and Scenic Rivers System from the...

  17. 36 CFR 297.1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILD AND SCENIC RIVERS Water Resources Projects § 297.1 General. Section 7 of the Wild and Scenic Rivers Act (16 U.S.C. 1278... designated as components or potential components of the National Wild and Scenic Rivers System from the...

  18. 36 CFR 297.1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILD AND SCENIC RIVERS Water Resources Projects § 297.1 General. Section 7 of the Wild and Scenic Rivers Act (16 U.S.C. 1278... designated as components or potential components of the National Wild and Scenic Rivers System from the...

  19. 36 CFR 297.1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE WILD AND SCENIC RIVERS Water Resources Projects § 297.1 General. Section 7 of the Wild and Scenic Rivers Act (16 U.S.C. 1278... designated as components or potential components of the National Wild and Scenic Rivers System from the...

  20. DEMONSTRATION AND EVALUATION OF AN AUTOMATED INFILTRATION GALLERY SYSTEM AT PORT HUENEME, CA

    EPA Science Inventory

    Laboratory and field studies have shown that is possible to degrade most fuel components under oxidizing conditions. The spread of soluble fuel components released to groundwater environments is often enhanced because ground water can not supply oxygen at a rate equal to the dema...

  1. Development of the ITER ICH Transmission Line and Matching System

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. A.; Goulding, R. H.; Pesavento, P. V.; Peters, B.; Swain, D. W.; Fredd, E. H.; Hosea, J.; Greenough, N.

    2011-10-01

    The ITER Ion Cyclotron Heating (ICH) System is designed to couple 20 MW of heating power for ion and electron heating. Prototype components for the ITER Ion Cyclotron Heating (ICH) transmission line and matching system are being designed and tested. The ICH transmission lines are pressurized 300 mm diameter coaxial lines with water-cooled aluminum outer conductor and gas-cooled and water-cooled copper inner conductor. Each ICH transmission line is designed to handle 40-55 MHz power at up to 6 MW/line. A total of 8 lines split to 16 antenna inputs on two ICH antennas. Industrial suppliers have designed coaxial transmission line and matching components and prototypes will be manufactured. The prototype components will be qualified on a test stand operating at the full power and pulse length needed for ITER. The matching system must accommodated dynamic changes in the plasma loading due to ELMS and the L to H-mode transition. Passive ELM tolerance will be performed using hybrid couplers and loads, which can absorb the transient reflected power. The system is also designed to compensate for the mutual inductances of the antenna current straps to limit the peak voltages on the antenna array elements.

  2. PRA (Probabilistic Risk Assessment) Applications Program for inspection at Oconee Unit 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gore, B.F.; Vo, T.V.; Harris, M.S.

    1987-10-01

    The extensive Oconee-3 PRA performed by EPRI has been analyzed to identify plant systems and components important to minimizing public risk, and to identify the primary failure modes of these components. This information has been tabulated, and correlated with inspection modules from the NRC Inspection and Enforcement Manual. The report presents a series of tables, organized by system and prioritized by public risk (in person-rem per year), which identify components associated with 98% of the inspectable risk due to plant operation. External events (earthquakes, tornadoes, fires and floods) are not addressed because inspections cannot directly minimize the risks from thesemore » events; however, flooding caused by the breach of internal systems is addressed. The systems addressed, in descending order of risk importance, are: Reactor Building Spray, R B Cooling, Condenser Circulating Water, Safety Relief Valves, Low Pressure Injection, Standby Shutdown Facility-High Pressure Injection, Low-Pressure Service Water, and Emergency Feedwater. This ranking is based on the Fussel-Vesely measure of risk importance, i.e., the fraction of the total risk which involves failures of the system of interest. 8 refs., 25 tabs.« less

  3. Optimal Dynamics of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  4. Kinetic Monte Carlo Simulations of Diffusion in Environmental Barrier Coating Materials

    NASA Technical Reports Server (NTRS)

    Good, Brian

    2017-01-01

    Ceramic Matrix Components (CMC) components for use in turbine engines offer a number of advantages compared with current practice. However, such components are subject to degradation through a variety of mechanisms. In particular, in the hot environment inside a turbine in operation a considerable amount of water vapor is present, and this can lead to corrosion and recession. Environmental Barrier Coating (EBC) systems that limit the amount of oxygen and water reaching the component are required to reduce this degradation and extend component life. A number of silicate-based materials are under consideration for use in such coating systems, including Yttterbium and Yttrium di- and monosilicates. In this work, we present results of kinetic Monte Carlo computer simulations of oxygen diffusion in Yttrium disilicate, and compare with previous work on Yttterbium disilicate. Coatings may also exhibit cracking, and the cracks can provide a direct path for oxygen to reach the component. There is typically a bond coat between the coating and component surface, but the bond coat material is generally chosen for properties other than low oxygen diffusivity. Nevertheless, the degree to which the bond coat can inhibit oxygen diffusion is of interest, as it may form the final defense against oxygen impingement on the component. We have therefore performed similar simulations of oxygen diffusion through HfSiO4, a proposed bond coat material.

  5. Data Management System for the National Energy-Water System (NEWS) Assessment Framework

    NASA Astrophysics Data System (ADS)

    Corsi, F.; Prousevitch, A.; Glidden, S.; Piasecki, M.; Celicourt, P.; Miara, A.; Fekete, B. M.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.

    2015-12-01

    Aiming at providing a comprehensive assessment of the water-energy nexus, the National Energy-Water System (NEWS) project requires the integration of data to support a modeling framework that links climate, hydrological, power production, transmission, and economical models. Large amounts of Georeferenced data has to be streamed to the components of the inter-disciplinary model to explore future challenges and tradeoffs in the US power production, based on climate scenarios, power plant locations and technologies, available water resources, ecosystem sustainability, and economic demand. We used open source and in-house build software components to build a system that addresses two major data challenges: On-the-fly re-projection, re-gridding, interpolation, extrapolation, nodata patching, merging, temporal and spatial aggregation, of static and time series datasets in virtually any file formats and file structures, and any geographic extent for the models I/O, directly at run time; Comprehensive data management based on metadata cataloguing and discovery in repositories utilizing the MAGIC Table (Manipulation and Geographic Inquiry Control database). This innovative concept allows models to access data on-the-fly by data ID, irrespective of file path, file structure, file format and regardless its GIS specifications. In addition, a web-based information and computational system is being developed to control the I/O of spatially distributed Earth system, climate, and hydrological, power grid, and economical data flow within the NEWS framework. The system allows scenario building, data exploration, visualization, querying, and manipulation any loaded gridded, point, and vector polygon dataset. The system has demonstrated its potential for applications in other fields of Earth science modeling, education, and outreach. Over time, this implementation of the system will provide near real-time assessment of various current and future scenarios of the water-energy nexus.

  6. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area

    PubMed Central

    Hao, Guozhu

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream. PMID:27391057

  7. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area.

    PubMed

    Jiang, Dan; Hao, Guozhu; Huang, Liwen; Zhang, Dan

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, Edward; Capece, John

    Hendry County Sustainable Bio-Fuels Center (HCSBC) is introduced and its main components are explained. These primarily include (1) farming systems, (2) sustainability analysis, (3) economic analysis and (4) educational components. Each of these components is discussed in further details, main researchers and their responsibility areas and introduced. The main focus of this presentation is a new farming concept. The proposed new farming concept is an alternative to the current "two sides of the ditch" model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs tryingmore » to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture corporations during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Various pros and cons of the proposed agricultural eco-services are discussed - the advantages include flexibility for participating farmers to achieve environmental outcomes with reduced costs and using innovative incentives; the minuses include the fact that the potential markets are not developed yet or that existing regulations may prevent agricultural producers from selling their services.« less

  9. Application of Chromophoric Dissolved Organic Matter Absorbance and Excitation-Emission Matrix Fluorescence Spectra (EEMS) to Investigate Clay-Organic Matter Flocculation Processes in Riverine-Estuarine Systems

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Reed, A. H.; Boyd, T. J.

    2016-12-01

    Changes in hydrodynamic shear, variations in ionic strength (salinity), and to a lesser degree pH, along the salinity gradient influences clay-organic matter (OM) flocculation, disaggregation and particle size distributions with depth in natural river-estuarine waters. The scale and rate of aggregation and disaggregation of specific clay-OM flocs assemblages under different hydrodynamic and physiochemical conditions in estuaries or coastal river systems is an area of ongoing research. Chromophoric dissolved organic matter (CDOM) is the fraction of the DOM pool that absorbs and/or emits light at discrete wavelengths when excited. The CDOM absorbance and Excitation Emission Matrix (EEM) fluorescence spectra in natural waters can potentially be used to investigate clay-OM interactions and implications for formation kinetics, size, strength, and settling velocities of cohesive particulate aggregates (flocs and suspended sediments) as they respond to hydrodynamic shear under different physiochemical conditions. Size characteristics of particulate matter and sediment samples collected from the Misa River in Italy in 2014 were compared to the optical properties of the water column to identify potential OM components/constituents influencing flocculation processes in riverine-estuarine systems. The EEMs results were coupled with a parallel factor analysis (PARAFAC) model to associate previously identified EEMS regions of CDOM components to those found in the waters of this study and identify the main OM components/constituents influencing the multi-way variance of the EEMS data. Initial results from the Misa River and subsequent studies show a difference in dominant DOM types by salinity, clay-OM composition, and flow conditions that may be indicative of system specific particle flocculation and disaggregation under different hydrodynamic regimes. These results suggest that the CDOM absorbance and EEMS fluorescence spectra in natural waters can potentially be used to qualify the influence of OM on the flocculation and sedimentation of clay particulates in river-estuarine systems under different physiochemical and hydrodynamic conditions.

  10. Automated irrigation management with soil and canopy sensing

    USDA-ARS?s Scientific Manuscript database

    Automated irrigation management provides for real time feedback between crop water needs and the delivery of specific amount of irrigation water to specific locations on demand. In addition to the basic components of any irrigation system, e.g. pumps, filters, valves, pipes and tubing, sprinkler he...

  11. Analysis of environmental variation in a Great Plains reservoir using principal components analysis and geographic information systems

    USGS Publications Warehouse

    Long, J.M.; Fisher, W.L.

    2006-01-01

    We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.

  12. The response of water quality variation in Poyang Lake (Jiangxi, People's Republic of China) to hydrological changes using historical data and DOM fluorescence.

    PubMed

    Yao, Xin; Wang, Shengrui; Ni, Zhaokui; Jiao, Lixin

    2015-02-01

    Poyang Lake is a unique wetland system that has evolved in response to natural seasonal fluctuations in water levels. To better characterize the response of water quality to hydrological variation, historical data were analyzed in combination with dissolved organic matter (DOM) fluorescence samplings conducted in situ. Historical data showed that long-term changes in water quality are mainly controlled by the sewage inputs to Poyang Lake. Monthly changes in water quality recorded during 2008 and 2012 suggest that water level may be the most important factor for water quality during a hydrological year. DOM fluorescence samples were identified as three humic-like components (C1, C2, and C3) and a protein-like component (C4). These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. Principal component analysis (PCA) showed higher C1 and C2 signals during a normal season than the wet season, whereas C3 was lower, and C4 was higher in the dry season than in the wet or normal seasons. From the open lake to the Yangtze River mouth, increased C3 component carried by backflows of the Yangtze River to the lake resulted in these unique variations of PCA factor 2 scores during September. These obvious compositional changes in DOM fluorescence were considered to be related to the hydrodynamic differences controlled by water regimen. DOM fluorescence could be a proxy for capturing rapid changes in water quality and thereby provide an early warning signal for the quality of water supply.

  13. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoidmore » overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety system components such as the safety relief valve (SRV), the RCIC system, the wet well, and the dry well. The results show reasonable system behaviors while exhibiting rich dynamics such as variable flow rates through RCIC turbine and pump during the SBO transient. The model has the potential to resolve the Fukushima RCIC mystery after adding the off-design two-phase turbine operation model and other additional improvements.« less

  14. Framework and tools for agricultural landscape assessment relating to water quality protection.

    PubMed

    Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine

    2009-05-01

    While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

  15. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 2: Evaluation of model results against observed δ18O in water samples

    NASA Astrophysics Data System (ADS)

    Roche, D. M.; Caley, T.

    2013-09-01

    The H218O stable isotope was previously introduced in the three coupled components of the earth system model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in palaeoclimatic context.

  16. δ18O water isotope in the iLOVECLIM model (version 1.0) - Part 2: Evaluation of model results against observed δ18O in water samples

    NASA Astrophysics Data System (ADS)

    Roche, D. M.; Caley, T.

    2013-03-01

    The H218O stable isotope was previously introduced in the three coupled components of the Earth System Model iLOVECLIM: atmosphere, ocean and vegetation. The results of a long (5000 yr) pre-industrial equilibrium simulation are presented and evaluated against measurement of H218O abundance in present-day water for the atmospheric and oceanic components. For the atmosphere, it is found that the model reproduces the observed spatial distribution and relationships to climate variables with some merit, though limitations following our approach are highlighted. Indeed, we obtain the main gradients with a robust representation of the Rayleigh distillation but caveats appear in Antarctica and around the Mediterranean region due to model limitation. For the oceanic component, the agreement between the modelled and observed distribution of water δ18O is found to be very good. Mean ocean surface latitudinal gradients are faithfully reproduced as well as the mark of the main intermediate and deep water masses. This opens large prospects for the applications in paleoclimatic context.

  17. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... an evaluation of the applicable components listed in paragraphs (c)(1) through (8) of this section... facilities, and controls, (6) Monitoring, reporting, and data verification, (7) System management and...

  18. ULTRASONIC CLEANING AS A REPLACEMENT FOR A CHLORO- FLUOROCARBON-BASED SYSTEM

    EPA Science Inventory

    This report describes the technical and economic evaluation of the replacement of a vapor degreasing system with an ultrasonic cleaning system to clean stainless steel components. Heated inorganic water-based cleaning fluid was utilized in lieu of a chlorofluorocarbon (CFC, freon...

  19. Embedded resource accounting for coupled natural-human systems: An application to water resource impacts of the western U.S. electrical energy trade

    NASA Astrophysics Data System (ADS)

    Ruddell, Benjamin L.; Adams, Elizabeth A.; Rushforth, Richard; Tidwell, Vincent C.

    2014-10-01

    In complex coupled natural-human systems (CNH), multitype networks link social, environmental, and economic systems with flows of matter, energy, information, and value. Embedded Resource Accounting (ERA) is a systems analysis framework that includes the indirect connections of a multitype CNH network. ERA is conditioned on perceived system boundaries, which may vary according to the accountant's point of view. Both direct and indirect impacts are implicit whenever two subnetworks interact in such a system; the ratio of two subnetworks' impacts is the embedded intensity. For trade in the services of water, this is understood as the indirect component of a water footprint, and as "virtual water" trade. ERA is a generalization of input-output, footprint, and substance flow methods, and is a type of life cycle analysis. This paper presents results for the water and electrical energy system in the western U.S. This system is dominated by California, which outsources the majority of its water footprint of electrical energy. Electricity trade increases total water consumption for electricity production in the western U.S. by 15% and shifts water use to water-stressed Colorado River Basin States. A systemic underaccounting for water footprints occurs because state-level processes discount a portion of the water footprint occurring outside of the state boundary.

  20. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  1. Integrated modeling for assessment of energy-water system resilience under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Veselka, T.; Zhou, Z.; Koritarov, V.; Mahalik, M.; Qiu, F.; Mahat, V.; Betrie, G.; Clark, C.

    2016-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. The IWESAF currently includes an extreme climate event generator to predict future extreme weather events, hydrologic and reservoir models, riverine temperature model, power plant water use simulator, and power grid operation and cost optimization model. The IWESAF can facilitate the interaction among the modeling systems and provide insights of the sustainability and resilience of the energy-water system under extreme climate events and economic consequence. The regional case demonstration in the Midwest region will be presented. The detailed information on some of individual modeling components will also be presented in several other abstracts submitted to AGU this year.

  2. Analysis of the plugging of the systems autonomy demonstration project brassboard filters

    NASA Technical Reports Server (NTRS)

    Clay, John C.

    1989-01-01

    A fine gray powder was clogging the brassboard filters. The powder appeared to be residue from a galvanic corrosive attack by ammonia of the aluminum and stainless steel components in the system. The corrosion was caused by water and chlorine that had entered into the system and combined with the ammonia. This combination made an electrolyte and a corrosive agent of the ammonia that attacked the metals in the system. The corroded material traveled through the system with the ammonia and clogged the filters. Key conclusions are: the debris collecting in the filters is a by-product of galvanic corrosion; the debris is principally corroded aluminum and stainless from the system; and galvanic corrosion occurred from water and chlorine that entered the system during normal and/or extreme operating and servicing conditions. Key recommendations are: use only one metal in the ammonia system-titanium, aluminum, or stainless steel; make the system as air-tight as possible (replace fittings with welded joints); and replace electron paramagnetic resonance (EPR) O-rings with neoprene O-rings, and do not use freon to clean system components.

  3. Particulate photocatalysts for overall water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  4. Long-term changes in river system hydrology in Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Wurbs, Ralph

    2018-06-01

    Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP) modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ) and Texas Water Development Board (TWDB). The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.

  5. A hydrologic-economic modeling approach for analysis of urban water supply dynamics in Chennai, India

    NASA Astrophysics Data System (ADS)

    Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence

    2010-07-01

    In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.

  6. Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Konieczki, Alice D.

    2005-01-01

    The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were classified into 19 groups through a cluster analysis of 8 characteristics of each area's hydrologic system. Six characteristics represented the inflows and outflows of water through the soils and streams, basin fill, and consolidated rocks, and can be used to determine the hydrogeologic area's position in a hydrogeologic flow system. Source-, link-, and sink-type hydrogeologic areas have outflow but not inflow, inflow and outflow, and inflow but not outflow, respectively, through one or more of the three hydrogeologic components. Isolated hydrogeologic areas have no inflow or outflow through any of the three hydrogeologic components. The remaining two characteristics are indexes that represent natural recharge and discharge processes and anthropogenic recharge and discharge processes occurring in the hydrogeologic area. Of the 19 groups of hydrogeologic areas, 1 consisted of predominantly isolated-type hydrogeologic areas, 7 consisted of source-type hydrogeologic areas, 9 consisted of link-type hydrogeologic areas, and 2 consisted of sink-type hydrogeologic areas. Groups comprising the source-, link-, and sink-type hydrogeologic areas can be distinguished between each other on the basis of the hydrogeologic component(s) through which interbasin flow occurs, as well as typical values for the two indexes. Conceptual models of the hydrologic systems of a representative hydrogeologic area for each group were developed to help distinguish groups and to synthesize the variation in hydrogeologic systems in the Basin and Range Physiographic Province. Hydrogeologic flow systems consist of either a single isolated hydrogeologic area or a series of multiple hydrogeologic areas that are hydraulically connected through interbasin flows. A total of 54 hydrogeologic flow systems were identified and classified into 9 groups. One group consisted of single isolated hydrogeologic areas. The remaining eight groups consisted of multiple hydrogeologic areas and were distinguished o

  7. Photosynthesis at the Microscale

    DTIC Science & Technology

    2013-03-25

    cobalt(II) system reported by Lehn and co- workers, 10 the photocatalytic activity of the dyads decreased by a factor of 1/3 on addition of water to...more active than the corresponding multi-component systems, the non-conjugated bridge (A7) exhibited higher activity for hydrogen production.38 There...water as a feedstock, many potential hydrogen-evolving catalysts are tested for catalytic activity in organic solvents, as they often are not

  8. Watershed models for decision support in the Yakima River basin, Washington

    USGS Publications Warehouse

    Mastin, M.C.; Vaccaro, J.J.

    2002-01-01

    A Decision Support System (DSS) is being developed by the U.S. Geological Survey and the Bureau of Reclamation as part of a long-term project, the Watershed and River Systems Management Program. The goal of the program is to apply the DSS to U.S. Bureau of Reclamation projects in the western United States. The DSS was applied to the Reclamation's Yakima Project in the Yakima River Basin in eastern Washington. An important component of the DSS is the physical hydrology modeling. For the application to the Yakima River Basin, the physical hydrology component consisted of constructing four watershed models using the U.S. Geological Survey's Precipitation-Runoff Modeling System within the Modular Modeling System. The implementation of these models is described. To facilitate calibration of the models, mean annual streamflow also was estimated for ungaged subbasins. The models were calibrated for water years 1950-94 and tested for water years 1995-98. The integration of the models in the DSS for real-time water-management operations using an interface termed the Object User Interface is also described. The models were incorporated in the DSS for use in long-term to short-term planning and have been used in a real-time operational mode since water year 1999.

  9. First principles molecular dynamics of metal/water interfaces under bias potential

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  10. Urban water - a new frontier in isotope hydrology.

    PubMed

    Ehleringer, James R; Barnette, Janet E; Jameel, Yusuf; Tipple, Brett J; Bowen, Gabriel J

    2016-01-01

    Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.

  11. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  12. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  13. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.

    PubMed

    Loubet, Philippe; Roux, Philippe; Guérin-Schneider, Laetitia; Bellon-Maurel, Véronique

    2016-03-01

    A framework and an associated modeling tool to perform life cycle assessment (LCA) of urban water system, namely the WaLA model, has been recently developed. In this paper, the WaLA model is applied to a real case study: the urban water system of the Paris suburban area, in France. It aims to verify the capacity of the model to provide environmental insights to stakeholder's issues related to future trends influencing the system (e.g., evolution of water demand, increasing water scarcity) or policy responses (e.g., choices of water resources and technologies). This is achieved by evaluating a baseline scenario for 2012 and several forecasting scenarios for 2022 and 2050. The scenarios are designed through the modeling tool WaLA, which is implemented in Simulink/Matlab: it combines components representing the different technologies, users and resources of the UWS. The life cycle inventories of the technologies and users components include water quantity and quality changes, specific operation (electricity, chemicals) and infrastructures data (construction materials). The methods selected for the LCIA are midpoint ILCD, midpoint water deprivation impacts at the sub-river basin scale, and endpoint Impact 2002+. The results of the baseline scenario show that wastewater treatment plants have the highest impacts compared to drinking water production and distribution, as traditionally encountered in LCA of UWS. The results of the forecasting scenarios show important changes in water deprivation impacts due to water management choices or effects of climate change. They also enable to identify tradeoffs with other impact categories and to compare several scenarios. It suggests the capacity of the model to deliver information for decision making about future policies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer

    NASA Astrophysics Data System (ADS)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.

    2009-10-01

    SummaryInformation about sources of recharge, distributions of flow paths, and the extent of water-rock reactions in karst aquifers commonly result from monitoring spring chemistry and discharge. To investigate the relationship between spring characteristics and the complexities of karst aquifers, we couple variations in surface- and groundwater chemistry to physical conditions including river stage, precipitation, and evapotranspiration (ET) within a sink-rise system through a 6-km portion of the Upper Floridan aquifer (UFA) in north-central Florida. Principal component analysis (PCA) of time series major-element compositions suggests that at least three sources of water affect spring discharge, including allogenic recharge into a swallet, diffuse recharge through a thin vadose zone, and water upwelling from deep within the aquifer. The deep-water source exerts the strongest influence on water chemistry by providing a majority of Na +, Mg 2+, K +, Cl -, and SO42- to the system. Anomalously high temperature at one of several monitoring wells reflects vertical flow of about 1 m/year. Mass-balance calculations suggest diffuse recharge and deep-water upwelling can provide up to 50% of the spring discharge; however, their contributions depend on head gradients between the conduit and surrounding aquifer matrix, which are influenced by variations in precipitation, ET, and river stage. Our results indicate that upwelling from deep flow paths may provide significant contributions of water to spring discharge, and that monitoring only springs limits interpretations of karst systems by masking critical components of the aquifer, such as water sources and flow paths. These results also suggest the matrix in eogenetic aquifers is a major pathway for flow even in a system dominated by conduits.

  15. Assessment of the urban water system with an open ...

    EPA Pesticide Factsheets

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest

  16. Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, V.

    2018-06-01

    Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.

  17. Basin-Scale Assessment of the Land Surface Water Budget in the National Centers for Environmental Prediction Operational and Research NLDAS-2 Systems

    NASA Technical Reports Server (NTRS)

    Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Brewer, Michael; Mocko, David; Kumar, Sujay V.; Wei, Helin; Meng, Jesse; hide

    2016-01-01

    The purpose of this study is to evaluate the components of the land surface water budget in the four land surface models (Noah, SAC-Sacramento Soil Moisture Accounting Model, (VIC) Variable Infiltration Capacity Model, and Mosaic) applied in the newly implemented National Centers for Environmental Prediction (NCEP) operational and research versions of the North American Land Data Assimilation System version 2 (NLDAS-2). This work focuses on monthly and annual components of the water budget over 12 National Weather Service (NWS) River Forecast Centers (RFCs). Monthly gridded FLUX Network (FLUXNET) evapotranspiration (ET) from the Max-Planck Institute (MPI) of Germany, U.S. Geological Survey (USGS) total runoff (Q), changes in total water storage (dS/dt, derived as a residual by utilizing MPI ET and USGS Q in the water balance equation), and Gravity Recovery and Climate Experiment (GRACE) observed total water storage anomaly (TWSA) and change (TWSC) are used as reference data sets. Compared to these ET and Q benchmarks, Mosaic and SAC (Noah and VIC) in the operational NLDAS-2 overestimate (underestimate) mean annual reference ET and underestimate (overestimate) mean annual reference Q. The multimodel ensemble mean (MME) is closer to the mean annual reference ET and Q. An anomaly correlation (AC) analysis shows good AC values for simulated monthly mean Q and dS/dt but significantly smaller AC values for simulated ET. Upgraded versions of the models utilized in the research side of NLDAS-2 yield largely improved performance in the simulation of these mean annual and monthly water component diagnostics. These results demonstrate that the three intertwined efforts of improving (1) the scientific understanding of parameterization of land surface processes, (2) the spatial and temporal extent of systematic validation of land surface processes, and (3) the engineering-oriented aspects such as parameter calibration and optimization are key to substantially improving product quality in various land data assimilation systems.

  18. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less

  19. 33 CFR 148.5 - How are terms used in this subchapter defined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the applicant's deepwater port to any significant degree; (3) That owns or controls an applicant or an..., conducting inspections, witnessing tests, and certifying systems and/or components associated with deepwater.... Coastal environment means the coastal waters including the lands in and under those waters, internal...

  20. 33 CFR 148.5 - How are terms used in this subchapter defined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the applicant's deepwater port to any significant degree; (3) That owns or controls an applicant or an..., conducting inspections, witnessing tests, and certifying systems and/or components associated with deepwater.... Coastal environment means the coastal waters including the lands in and under those waters, internal...

  1. 40 CFR 90.327 - Sampling system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each component (pump, sample line section, filters, and so forth) in the heated portion of the sampling... largest thermal mass and the oven temperature need be measured. (b) If water is removed by condensation, monitor the sample gas temperature or sample dew point either within the water trap or downstream. It may...

  2. 40 CFR 90.327 - Sampling system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each component (pump, sample line section, filters, and so forth) in the heated portion of the sampling... largest thermal mass and the oven temperature need be measured. (b) If water is removed by condensation, monitor the sample gas temperature or sample dew point either within the water trap or downstream. It may...

  3. 40 CFR 90.327 - Sampling system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each component (pump, sample line section, filters, and so forth) in the heated portion of the sampling... largest thermal mass and the oven temperature need be measured. (b) If water is removed by condensation, monitor the sample gas temperature or sample dew point either within the water trap or downstream. It may...

  4. 33 CFR 148.5 - How are terms used in this subchapter defined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certifying systems and/or components associated with deepwater ports as safe and suitable for their intended... conduct the business of the board of directors. Coastal environment means the coastal waters including the... this subchapter. Marine environment includes: (1) The coastal environment, waters of the contiguous...

  5. Ocean color, a three component system?

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Owen, W. P.

    1972-01-01

    This study measures the concentrations of phytoplankton chlorophyll and yellow substance in the coastal waters of the Gulf of Maine. Sea surface observations attempt to delineate the principal biochemical parameters responsible for sea surface color. It is shown that the reddish-brown water changed to a blue-green in the open gulf.

  6. The Solutions Data Base Component of the Water Pollution Abatement Subsystem (WPAS) of the Pollution Abatement Management System. (PAMS).

    DTIC Science & Technology

    1981-04-01

    Facilities EngineerATTN: DAEN-MPC Fitzs ;mons Amy Medical Center ATTN: DAEN-PE Army Instl. and Major Activities (CONuS; waiter Reed Army Medical center ATTN...S)St. Paul Fort Sheridan 21st Support ComandTulsa Fort Stewart4 Vicksburg Fort Wainmright AN: AREA (5) Walls Walla Vancouver Bks. Wilmington US Am...ABG/DEEE Patrick AFB, FL 32925 ATTN: XRQ ’ C Bandy, John T. The Solutions Data Base component of the Water Pollution Abatement Subsystem (WPAS) of the

  7. Direct process estimation from tomographic data using artificial neural systems

    NASA Astrophysics Data System (ADS)

    Mohamad-Saleh, Junita; Hoyle, Brian S.; Podd, Frank J.; Spink, D. M.

    2001-07-01

    The paper deals with the goal of component fraction estimation in multicomponent flows, a critical measurement in many processes. Electrical capacitance tomography (ECT) is a well-researched sensing technique for this task, due to its low-cost, non-intrusion, and fast response. However, typical systems, which include practicable real-time reconstruction algorithms, give inaccurate results, and existing approaches to direct component fraction measurement are flow-regime dependent. In the investigation described, an artificial neural network approach is used to directly estimate the component fractions in gas-oil, gas-water, and gas-oil-water flows from ECT measurements. A 2D finite- element electric field model of a 12-electrode ECT sensor is used to simulate ECT measurements of various flow conditions. The raw measurements are reduced to a mutually independent set using principal components analysis and used with their corresponding component fractions to train multilayer feed-forward neural networks (MLFFNNs). The trained MLFFNNs are tested with patterns consisting of unlearned ECT simulated and plant measurements. Results included in the paper have a mean absolute error of less than 1% for the estimation of various multicomponent fractions of the permittivity distribution. They are also shown to give improved component fraction estimation compared to a well known direct ECT method.

  8. Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2017-01-01

    Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion. An EBC system typically includes a bond coat located between the EBC and the component surface. Bond coat materials are generally chosen for properties other than low oxygen diffusivity, but low oxygen diffusivity is nevertheless a desirable characteristic, as the bond coat could provide some additional component protection, particularly in the case where cracks in the coating system provide a direct path from the environment to the bond coat interface. We have therefore performed similar kMC simulations of oxygen diffusion in this material.

  9. The second virial coefficient of system ((nitrogen-water))

    NASA Astrophysics Data System (ADS)

    Podmurnaya, O. A.

    2004-01-01

    The virial coefficient data of various components of atmosphere are interesting because permit to evaluate a deviation from ideal gas model. These data may be useful while investigating the clusters generation and determination their contribution in absorption. The second cross virial coefficient Baw for system ((nitrogen water)) has been calculated form +9°C to +50°C using the last experimental data about water vapor mole fraction. The reliability of this coefficient has been tested by analysing of errors sources and by comparing the results with other available experimental data.

  10. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  12. An inflight refill unit for replenishing research animal drinking water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. L.; Barnes, R.

    1995-01-01

    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab.

  13. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    NASA Astrophysics Data System (ADS)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  14. Solar heater/cooler for mass market

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes project to design, build, and test simple and affordable solar systems. Four combinations of heating, cooling, and domestic hot water supply systems were developed and installed. Test sites, plan for systems and components, and performance are discussed; text is complimented by detailed drawings and test data.

  15. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  16. An eco-hydrological approach to predicting regional vegetation and groundwater response to ecological water convergence in dryland riparian ecosystems

    USDA-ARS?s Scientific Manuscript database

    To improve the management strategy of riparian restoration, better understanding of the dynamic of eco-hydrological system and its feedback between hydrological and ecological components are needed. The fully distributed eco-hydrological model coupled with a hydrology component was developed based o...

  17. Conceptual and numerical modeling approach of the Guarani Aquifer System

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge in a regional sense.

  18. Regenerative Environmental Control and Life Support System Diagram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  19. Observation of Hydrological Processes Using Remote Sensing. Chapter 2.14; Volume 2: The Science of Hydrology

    NASA Technical Reports Server (NTRS)

    Wilder, Peter (Editor); Su, Z.; Robeling, R. A.; Schulz, J.; Holleman, I.; Levizzani, V.; Timmermans, W. J.; Rott, H.; Mognard-Campbell, N.; de Jeu, R.; hide

    2011-01-01

    Improving water management can make a significant contribution to achieving most of the Millennium Development Goals established by the UN General Assembly in 2000, especially those related to poverty, hunger, and major diseases. The World Summit on Sustainable Development (WSSD) in 2002 recognized this need. Water and sanitation in particular received great attention from the Summit. The Johannesburg Plan of Implementation recommended to improve water resources management and scientific understanding of the water cycle through joint cooperation and research. For this purpose, it is recommended to promote knowledge sharing, provide capacity building, and facilitate the transfer of technology including remote-sensing (RS) and satellite technologies, especially to developing countries and countries with economies in transition, and to support these countries in their efforts to monitor and assess the quantity and quality of water resources, for example, by establishing and/or further developing national monitoring networks and water resources databases and by developing relevant national indicators. The Johannesburg Plan also adopted integrated water resources management as the overarching concept in addressing and solving water-related issues. As a result of the commitments made in the Johannesburg Plan of Implementation, several global and regional initiatives have emerged. Current international initiatives such as the Global Monitoring for Environment and Security (GMES) program of the European Commission and the European Space Agency (ESA), and the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan, have all identified Earth observation (EO) of the water cycle as the key in helping to solve the world s water problems. The availability of spatial information on water quantity and quality will also enable closure of the water budget at river basin and continental scales to the point where effective water management is essential (e.g., as requested by the European Union s Water Framework Directive (WFD), as well as national policies). Geo-information science and EO are vital in achieving a better understanding of the water cycle and better monitoring, analysis, prediction, and management of the world s water resources. The major components of the water cycle of the Earth system and their possible observations are presented. Such observations are essential to understand the global water cycle and its variability, both spatially and temporally, and can only be achieved consistently by means of EOs. Additionally, such observations are essential to advance our understanding of coupling between the terrestrial, atmospheric, and oceanic branches of the water cycle, and how this coupling may influence climate variability and predictability. Water resources management directly interferes with the natural water cycle in the forms of building dams, reservoirs, water transfer systems, and irrigation systems that divert and redistribute part of the water storages and fluxes on land. The water cycle is mainly driven and coupled to the energy cycle in terms of phase changes of water (changes among liquid, water vapor, and solid phases) and transport of water by winds in addition to gravity and diffusion processes. The water-cycle components can be observed with in situ sensors as well as airborne and satellite sensors in terms of radiative quantities. Processing and conversion of these radiative signals are necessary to retrieve the water-cycle components.

  20. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  1. Water Plan 2030: A Dynamic Education Model for Teaching Water Management Issues

    NASA Astrophysics Data System (ADS)

    Rupprecht, C.; Washburne, J.; Lansey, K.; Williams, A.

    2006-12-01

    Dynamic educational tools to assist teachers and students in recognizing the impacts of water management decisions in a realistic context are not readily available. Water policy issues are often complex and difficult for students trying to make meaningful connections between system components. To fill this need, we have developed a systems modeling-based educational decision support system (DSS) with supplementary materials. This model, called Water Plan 2030, represents a general semi-arid watershed; it allows users to examine water management alternatives by changing input values for various water uses and basin conditions and immediately receive graphical outputs to compare decisions. The main goal of our DSS model is to foster students' abilities to make knowledgeable decisions with regard to water resources issues. There are two reasons we have developed this model for traditional classroom settings. First, the DSS model provides teachers with a mechanism for educating students about inter-related hydrologic concepts, complex systems and facilitates discussion of water resources issues. Second, Water Plan 2030 encourages student discovery of cause/effect relationships in a dynamic, hands-on environment and develops the ability to realize the implications of water management alternatives. The DSS model has been utilized in an undergraduate, non-major science class for 5 course hours, each of the past 4 semesters. Accompanying the PC-based model are supplementary materials to improve the effectiveness of implementation by emphasizing important concepts and guiding learners through the model components. These materials include in-class tutorials, introductory questions, role-playing activities and homework extensions that have been revised after each user session, based on student and instructor feedback. Most recently, we have developed individual lessons that teach specific model functions and concepts. These modules provide teachers the flexibility to adapt the model to meet numerous teaching goals. Evaluation results indicate that students improved their understanding of fundamental concepts and system interactions and showed the most improvement in questions related to water use by sector and sustainability issues. Model modifications have also improved student feedback of the model effectiveness and user- friendliness. Positive results from this project have created the demand for a web-based version, which will be online in late 2006.

  2. Automotive Stirling Engine Mod 1 Design Review, volume 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  3. Wind energy applications guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  4. Spectral responses of gravel beaches to tidal signals

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Boufadel, Michel C.

    2017-01-01

    Tides have been recognized as a major driving forcing affecting coastal aquifer system, and deterministic modeling has been very effective in elucidating mechanisms caused by tides. However, such modeling does not lend itself to capture embedded information in the signal, and rather focuses on the primary processes. Here, using yearlong data sets measured at beaches in Alaska Prince William Sound, we performed spectral and correlation analyses to identify temporal behavior of pore-water pressure, temperature and salinity. We found that the response of the beach system was characterized by fluctuations of embedded diurnal, semidiurnal, terdiurnal and quarterdiurnal tidal components. Hydrodynamic dispersion of salinity and temperature, and the thermal conductivity greatly affected pore water signals. Spectral analyses revealed a faster dissipation of the semi-diurnal component with respect to the diurnal components. Correlation functions showed that salinity had a relatively short memory of the tidal signal when inland freshwater recharge was large. In contrast, the signature of the tidal signal on pore-water temperature persisted for longer times, up to a week. We also found that heterogeneity greatly affected beach response. The response varied from a simple linear mapping in the frequency domain to complete modulation and masking of the input frequencies.

  5. Characterization of the Water Soluble Component of Inedible Residue from Candidate CELSS Crops

    NASA Technical Reports Server (NTRS)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  6. Compact Closed Cycle Brayton System Feasibility Study. Volume I.

    DTIC Science & Technology

    1979-08-01

    are exposed to cooler 204°C (400’F) gas originating from the power turbine balance piston labyrinth seal . The removal of the turbomachinery from the... seals , leakage of helium from the intercooler to the precooler inlet could occur, and there is a possibility of water mixing with j the turbomachinery...component joints to be sealed . Some leakage is tolerable at inter-component joints within the system as this leakage remains confined within the

  7. Characterization of CDOM from urban waters in Northern-Northeastern China using excitation-emission matrix fluorescence and parallel factor analysis.

    PubMed

    Zhao, Ying; Song, Kaishan; Li, Sijia; Ma, Jianhang; Wen, Zhidan

    2016-08-01

    Chromophoric dissolved organic matter (CDOM) plays an important role in aquatic systems, but high concentrations of organic materials are considered pollutants. The fluorescent component characteristics of CDOM in urban waters sampled from Northern and Northeastern China were examined by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) to investigate the source and compositional changes of CDOM on both space and pollution levels. One humic-like (C1), one tryptophan-like component (C2), and one tyrosine-like component (C3) were identified by PARAFAC. Mean fluorescence intensities of the three CDOM components varied spatially and by pollution level in cities of Northern and Northeastern China during July-August, 2013 and 2014. Principal components analysis (PCA) was conducted to identify the relative distribution of all water samples. Cluster analysis (CA) was also used to categorize the samples into groups of similar pollution levels within a study area. Strong positive linear relationships were revealed between the CDOM absorption coefficients a(254) (R (2) = 0.89, p < 0.01); a(355) (R (2) = 0.94, p < 0.01); and the fluorescence intensity (F max) for the humic-like C1 component. A positive linear relationship (R (2) = 0.77) was also exhibited between dissolved organic carbon (DOC) and the F max for the humic-like C1 component, but a relatively weak correlation (R (2) = 0.56) was detected between DOC and the F max for the tryptophan-like component (C2). A strong positive correlation was observed between the F max for the tryptophan-like component (C2) and total nitrogen (TN) (R (2) = 0.78), but moderate correlations were observed with ammonium-N (NH4-N) (R (2) = 0.68), and chemical oxygen demand (CODMn) (R (2) = 0.52). Therefore, the fluorescence intensities of CDOM components can be applied to monitor water quality in real time compared to that of traditional approaches. These results demonstrate that EEM-PARAFAC is useful to evaluate the dynamics of CDOM fluorescent components in urban waters from Northern and Northeastern China and this method has potential applications for monitoring urban water quality in different regions with various hydrological conditions and pollution levels.

  8. Use of the Delphi method in resolving complex water resources issues

    USGS Publications Warehouse

    Taylor, J.G.; Ryder, S.D.

    2003-01-01

    The tri-state river basins, shared by Georgia, Alabama, and Florida, are being modeled by the U.S. Fish and Wildlife Service and the U.S. Army Corps of Engineers to help facilitate agreement in an acrimonious water dispute among these different state governments. Modeling of such basin reservoir operations requires parallel understanding of several river system components: hydropower production, flood control, municipal and industrial water use, navigation, and reservoir fisheries requirements. The Delphi method, using repetitive surveying of experts, was applied to determine fisheries' water and lake-level requirements on 25 reservoirs in these interstate basins. The Delphi technique allowed the needs and requirements of fish populations to be brought into the modeling effort on equal footing with other water supply and demand components. When the subject matter is concisely defined and limited, this technique can rapidly assess expert opinion on any natural resource issue, and even move expert opinion toward greater agreement.

  9. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges (48 hours and two months). These results will be further discussed in the context of the location of the soil horizons within the toposequence.

  10. Growing water scarcity in agriculture: future challenge to global water security.

    PubMed

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  11. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.

    2011-04-01

    Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.

  12. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge.

    PubMed

    Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James

    2016-02-16

    This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.

  13. Probabilistic evaluation of the water footprint of a river basin: Accounting method and case study in the Segura River Basin, Spain.

    PubMed

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2018-06-15

    In the current study a method for the probabilistic accounting of the water footprint (WF) at the river basin level has been proposed and developed. It is based upon the simulation of the anthropised water cycle and combines a hydrological model and a decision support system. The methodology was carried out in the Segura River Basin (SRB) in South-eastern Spain, and four historical scenarios were evaluated (1998-2010-2015-2027). The results indicate that the WF of the river basin reached 5581 Mm 3 /year on average in the base scenario, with a high variability. The green component (3231 Mm 3 /year), mainly generated by rainfed crops (62%), was responsible for the great variability of the WF. The blue WF (1201 Mm 3 /year) was broken down into surface water (56%), renewable groundwater (20%) and non-renewable groundwater (24%), and it showed the generalized overexploitation of aquifers. Regarding the grey component (1150 Mm 3 /year), the study reveals that wastewater, especially phosphates (90%), was the main culprit producing water pollution in surface water bodies. The temporal evolution of the four scenarios highlighted the successfulness of the water treatment plans developed in the river basin, with a sharp decrease in the grey WF, as well as the stability of the WF and its three components in the future. So, the accounting of the three components of the WF in a basin was integrated into the management of water resources, it being possible to predict their evolution, their spatial characterisation and even their assessment in probabilistic terms. Then, the WF was incorporated into the set of indicators that usually is used in water resources management and hydrological planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. 40 CFR 1508.8 - Effects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... related effects on air and water and other natural systems, including ecosystems. Effects and impacts as... resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic...

  15. 40 CFR 1508.8 - Effects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... related effects on air and water and other natural systems, including ecosystems. Effects and impacts as... resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic...

  16. 40 CFR 1508.8 - Effects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... related effects on air and water and other natural systems, including ecosystems. Effects and impacts as... resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic...

  17. 40 CFR 1508.8 - Effects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... related effects on air and water and other natural systems, including ecosystems. Effects and impacts as... resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic...

  18. 40 CFR 1508.8 - Effects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... related effects on air and water and other natural systems, including ecosystems. Effects and impacts as... resources and on the components, structures, and functioning of affected ecosystems), aesthetic, historic...

  19. Enhancing Understanding Of Coupled Human-Natural Systems Through Collaborative Learning

    NASA Astrophysics Data System (ADS)

    Santelmann, M. V.; Chan, S.; Morzillo, A.; Stebbins, A.; Wright, M.

    2012-12-01

    In the past decade, it has become clear that the dynamic nature of coupled human-natural systems must be better understood and incorporated into decision making. If the interactions between society and the rest of the ecosystem are poorly represented in system models, our ability to explore the potential consequences of feedbacks between the biophysical system and policy or management actions will be limited. Teams of researchers from three Oregon universities are collaborating with regional experts, water managers, and decision-makers to examine how climate change, population growth, and economic growth may alter the availability and use of water in the Willamette River Basin over the next one hundred years. A central project component is development of a version of the ENVISION modeling framework that will provide decision makers with a way to visualize the Willamette water system and evaluate the interaction of management choices with changing environmental and socioeconomic conditions. Key objectives of the project broader impacts team include: 1) assist with incorporating the human component of the system into the model, (2) fostering growth of the research team as an interdependent, interdisciplinary research community, and (3) communicating effectively with regional stakeholders. Through Learning-Action Networks we have been able to gather insightful, project-relevant knowledge on water use, management, policies and issues that impact water management in the region. We have identified the types of project outputs that managers and decision makers would find useful for anticipating water scarcity and informing integrative water systems responses. Events and processes used to accomplish our objectives began with field trips involving researchers, educators, and other stakeholders. Follow-up meetings and an all day symposium featured focus group interviews, plenary sessions on project progress, and interactive poster sessions in which participants could help identify water related policies and actions they would like to see modeled. Participants assisted in compiling an interactive table of potential policies and actions organized by water use sector and policy type (e.g., regulatory vs. incentive based). Involvement of K-12 educators and development of innovative interdisciplinary courses has enhanced the broader impacts of the project and helped us achieve multiple project objectives. We present plans to build on initial collaborative learning experiences to promote project outcomes that will advance coupled human-natural systems research and enhance the utility of model outcomes in water management.

  20. An inexpensive economical solar heating system for homes

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.

    1976-01-01

    A low-cost solar home heating system to supplement existing warm-air heating systems is described. The report is written in three parts: (1) a brief background on solar heating, (2) experience with a demonstration system, and (3) information for the homeowner who wishes to construct such a system. Instructions are given for a solar heating installation in which the homeowner supplies all labor necessary to install off-the-shelf components estimated to cost $2,000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are available at local lumber yards, hardware stores, and plumbing supply stores, and are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are included. This report also gives performance data obtained from a demonstration system which was built and tested at the Langley Research Center.

  1. Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals.

    PubMed

    Cresci, Alessandro; De Rosa, Rosario; Putman, Nathan F; Agnisola, Claudio

    2017-02-01

    Rheotaxis, the unconditioned orienting response to water currents, is a main component of fish behavior. Rheotaxis is achieved using multiple sensory systems, including visual and tactile cues. Rheotactic orientation in open or low-visibility waters might also benefit from the stable frame of reference provided by the geomagnetic field, but this possibility has not been explored before. Zebrafish (Danio rerio) form shoals living in freshwater systems with low visibility, show a robust positive rheotaxis, and respond to geomagnetic fields. Here, we investigated whether a static magnetic field in the Earth-strength range influenced the rheotactic threshold of zebrafish in a swimming tunnel. The direction of the horizontal component of the magnetic field relative to water flow influenced the rheotactic threshold of fish as part of a shoal, but not of fish tested alone. Results obtained after disabling the lateral line of shoaling individuals with Co 2+ suggest that this organ system is involved in the observed magneto-rheotactic response. These findings constitute preliminary evidence that magnetic fields influence rheotaxis and suggest new avenues for further research. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. High-contrast observations of (136108) Haumea. A crystalline water-ice multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, C.; Carry, B.; Hestroffer, D.; Merlin, F.

    2011-04-01

    Context. The trans-Neptunian region of the Solar System is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. One can also see there are dynamical families and binary systems. One surprising feature detected in the spectra of some of the largest trans-Neptunians is the presence of crystalline water-ice. This is the case for the large TNO (136 108) Haumea (2003 EL61). Aims: We seek to constrain the state of the water ice of Haumea and its satellites and to investigate possible energy sources that maintain the water ice in its crystalline form. Methods: Spectro-imaging observations in the near infrared were performed with the integral field spectrograph SINFONI mounted on UT4 at the ESO Very Large Telescope. The spectra of both Haumea and its larger satellite Hi'iaka were analyzed. Relative astrometry of the components was also measured, providing a check of the orbital solutions and equinox seasons. Results: We describe the physical characteristics of the crystalline water-ice present on the surface of Haumea and its largest satellite Hi'iaka and analyze possible sources of heating to maintain water in a crystalline state: tidal dissipation in the system components vs. radiogenic source. The surface of Hi'iaka appears to be covered by large grains of water ice, almost entirely in its crystalline form. Under some restricted conditions, both radiogenic heating and tidal forces between Haumea and Hi'iaka could provide the energy needed to maintain the ice in its crystalline state. Based on observations collected at the European Southern Observatory, Paranal, Chile - 60.A-9235.

  3. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less

  4. Strategies for estimating the water budget at different scales using the JGrass-NewAGE system

    NASA Astrophysics Data System (ADS)

    Bancheri, M.; Rigon, R.; Serafin, F.; Abera, W.; Bottazzi, M.

    2017-12-01

    Recently we presented two papers one dedicated to the estimation of the water budget components in a small, basin, the Posina catchment [Abera et al., 2017], and the other in a large basin, the Blue Nile [Abera et al., 2017b]. At the smallest scale the ground measurements available do not guarantee the closure of the budget without making additional hypothesis. The large scale case, instead, was largely supported by remote sensing data either for calibration and/or validation. This contribution explains how we actually did it, clarifies some aspects of the informatics and openly discusses the issues risen in our work. We also consider varying configuration of the water budget schemes at the subbasin level, and how this affects the estimates.Finally we analyse the problem of travel times [Rigon et al., 2016a, Rigon et al, 2016b] as it comes out from considering the multiple fluxes and storages. All considerations and simulations are based on the JGrass-NewAGE system [Formetta et al., 2014] and its evolution (Bancheri [2017]).ReferencesAbera, W., Formetta, G., Borga, M., & Rigon, R. (2017a). Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, http://doi.org/10.1016/j.advwatres.2017.03.010Abera, W., Formetta, G., Brocca, L., & Rigon, R. (2017b). Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-21-3145-2017Bancheri, M., A travel time model for water budget of complex catchments, ph.D Thesis, 2017Formetta, G., Antonello, A., Franceschi, S., David, O., & Rigon, R. (2014). Hydrological modelling with components: A GIS-based open-source framework. Environmental Modelling and Software,. http://doi.org/10.1016/j.envsoft.2014.01.019Rigon, R., Bancheri, M., Formetta, G., & de Lavenne, A. (2016). The geomorphological unit hydrograph from a historical-critical perspective. Earth Surface Processes and Landform. http://doi.org/10.1002/esp.3855Rigon, R., Bancheri, M., & Green, T. R. (2016). Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences. http://doi.org/10.5194/hess-20-4929-2016

  5. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Man Gyun; Oh, Seungrohk

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce themore » time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.« less

  7. Benchmark testing of DIII-D neutral beam modeling with water flow calorimetry

    DOE PAGES

    Rauch, J. M.; Crowley, B. J.; Scoville, J. T.; ...

    2016-06-02

    Power loading on beamline components in the DIII-D neutral beam system is measured in this paper using water flow calorimetry. The results are used to benchmark beam transport models. Finally, anomalously high heat loads in the magnet region are investigated and a speculative hypothesis as to their origin is presented.

  8. 40 CFR 89.308 - Sampling system requirements for gaseous emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For each component (pump, sample line section, filters, and so forth) in the heated portion of the... mass and the oven temperature need be measured. (b) If water is removed by condensation, the sample gas temperature shall be monitored within the water trap or the sample dewpoint shall be monitored downstream. In...

  9. 40 CFR 89.308 - Sampling system requirements for gaseous emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) For each component (pump, sample line section, filters, and so forth) in the heated portion of the... mass and the oven temperature need be measured. (b) If water is removed by condensation, the sample gas temperature shall be monitored within the water trap or the sample dewpoint shall be monitored downstream. In...

  10. 40 CFR 89.308 - Sampling system requirements for gaseous emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) For each component (pump, sample line section, filters, and so forth) in the heated portion of the... mass and the oven temperature need be measured. (b) If water is removed by condensation, the sample gas temperature shall be monitored within the water trap or the sample dewpoint shall be monitored downstream. In...

  11. 40 CFR 89.308 - Sampling system requirements for gaseous emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For each component (pump, sample line section, filters, and so forth) in the heated portion of the... mass and the oven temperature need be measured. (b) If water is removed by condensation, the sample gas temperature shall be monitored within the water trap or the sample dewpoint shall be monitored downstream. In...

  12. 40 CFR 89.308 - Sampling system requirements for gaseous emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) For each component (pump, sample line section, filters, and so forth) in the heated portion of the... mass and the oven temperature need be measured. (b) If water is removed by condensation, the sample gas temperature shall be monitored within the water trap or the sample dewpoint shall be monitored downstream. In...

  13. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  14. Modeling erosion from forest roads with WEPP

    Treesearch

    J. McFero Grace

    2007-01-01

    Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...

  15. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  16. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    PubMed Central

    Gardner, Alan T.; Karam, Hanan N.; Mulligan, Ann E.; Harvey, Charles F.; Hammar, Terence R.; Hemond, Harold F.

    2009-01-01

    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument's two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated. PMID:22389608

  17. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW. For the Rankine cycle, a search of several commonly used commercial refrigerants provided R11 and R717 as possible working fluids. Hence, the Rankine-cycle analysis has been performed for both R11 and R717. Two different configurations were considered for the system--one in which the heat pump is directly connected to the rejection loop and another in which a heat exchanger connects the heat pump to the rejection loop. For a marginal increase in mass, the decoupling of the rejection loop and the radiator from the heat pump provides greater reliability of the system and better control. Hence, the decoupled system is the configuration of choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a radiator temperature of 362 K. R11 was the working fluid in the heat pump, and R717 was the transport fluid in the rejection loop. Two TCS's based on an absorption-cycle heat pump were considered, one with an ammonia-water mixture and the other with a lithium bromide-water mixture as the working fluid. A complete cycle analysis was performed for these systems. The system components were approximated as heat exchangers with no internal pressure drop for the mass estimate. This simple approach underpredicts the mass of the systems, but is a good 'optimistic' first approximation to the TCS mass in the absence of reliable component mass data. The mass estimates of the two systems reveal that, in spite of this optimistic estimate, the absorption heat pumps are not competitive with the Rankine-cycle heat pumps. Future work at the systems level will involve similar analyses for the Brayton- and Stirling-cycle heat pumps. The analyses will also consider the operation of the pump under partial-load conditions. On the component level, a capillary evaporator will be designed, built, and tested in order to investigate its suitability in lunar base TCS and microgravity two-phase applications.

  18. Inference of nitrogen cycling in three watersheds of northern Florida, USA, by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Fu, Ji-Meng; Winchester, John W.

    1994-03-01

    Nitrogen in fresh waters of three rivers in northern Florida - the Apalachicola-Chattahoochee-Flint (ACF) River system, Ochlockonee (Och), and Sopchoppy (Sop) - is inferred to be derived mostly from atmospheric deposition. Because the N:P mole ratios in the rivers are nearly three times higher than the Redfield ratio for aquatic photosynthesis, N is saturated in the ecosystems, not a limiting nutrient, although it may be chemically transformed. Absolute principal component analysis (APCA), a receptor model, was applied to many years of monitoring data for Apalachicola River water and rainfall over its basin in order to better understand aquatic chemistry of nitrogen in the watershed. The APCA model describes the river water as mainly a mixture of components with compositions resembling fresh rain, aged rain, and groundwater. In the fresh rain component, the ratio of atmospheric nitrate to sulfate is close to that in rainwater, as if some samples had been collected following very recent rainfall. The aged rain component of the river water is distinguished by a low NO 3-/SO 42- ratio, signifying an atmospheric source but with most of its nitrate having been lost or transformed. The groundwater component, inferred from its concentration to contribute on average about one fourth of the river water, contains abundant Ca 2+ but no detectable nitrogen. Results similar to ACF were obtained for Sop and Och, though Och exhibits some association of NO 3- with the Ca 2+-rich component. Similar APCA of wet precipitation resolves mainly components that represent acid rain, with NO 3-, SO 42- and NH 4+ and sea salt, with Na +, Cl - and Mg 2+. Inland, the acid rain component is relatively more prominent and Cl - is depleted, while at atmospheric monitoring sites nearer the coastal region sea salt tends to be more prominent.

  19. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    NASA Astrophysics Data System (ADS)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure and the generic core system (Core Framework, Actor Framework) allows the application in new regions and the selection of a reduced number of modules for simulation. As part of the Open Source Initiative in GLOWA-Danube (opendanubia.glowa-danube.de) a comprehensive documentation for the system installation was created and both the program code of the framework and of all major components is licensed under the GNU General Public License. In addition, some helpful programs and scripts necessary for the operation and processing of input and result data sets are provided.

  20. Atmospheric water budget over the South Asian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (<500 mm/year). Similar result is observed in in NASA GLDAS data (1980-2014). The atmospheric water budget shows annual, seasonal, and intra-seasonal variations. Evapotranspiration does not show a high intra-seasonal variability as compared to other water budget components. The coupling among the water budget anomalies is investigated. The results show that regional inter-annual evapotranspiration anomalies are not exactly in phase with rainfall anomalies; it is strongly influenced by the surface conditions and other atmospheric forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  1. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  2. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  3. Chemometric expertise of the quality of groundwater sources for domestic use.

    PubMed

    Spanos, Thomas; Ene, Antoaneta; Simeonova, Pavlina

    2015-01-01

    In the present study 49 representative sites have been selected for the collection of water samples from central water supplies with different geographical locations in the region of Kavala, Northern Greece. Ten physicochemical parameters (pH, electric conductivity, nitrate, chloride, sodium, potassium, total alkalinity, total hardness, bicarbonate and calcium) were analyzed monthly, in the period from January 2010 to December 2010. Chemometric methods were used for monitoring data mining and interpretation (cluster analysis, principal components analysis and source apportioning by principal components regression). The clustering of the chemical indicators delivers two major clusters related to the water hardness and the mineral components (impacted by sea, bedrock and acidity factors). The sampling locations are separated into three major clusters corresponding to the spatial distribution of the sites - coastal, lowland and semi-mountainous. The principal components analysis reveals two latent factors responsible for the data structures, which are also an indication for the sources determining the groundwater quality of the region (conditionally named "mineral" factor and "water hardness" factor). By the apportionment approach it is shown what the contribution is of each of the identified sources to the formation of the total concentration of each one of the chemical parameters. The mean values of the studied physicochemical parameters were found to be within the limits given in the 98/83/EC Directive. The water samples are appropriate for human consumption. The results of this study provide an overview of the hydrogeological profile of water supply system for the studied area.

  4. Shallow peatland ecohydrology - the control of peat depth on moss productivity

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2017-04-01

    Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.

  5. Water Quantity and Water Quality Impacts of Intensive Woody Biomass Feedstock Production in the Southeastern US.

    NASA Astrophysics Data System (ADS)

    Bitew, M. M.; Jackson, C. R.; Vache, K. B.; Griffiths, N.; Starr, G.; McDonnell, J.; Rau, B.; Younger, S. E.; Fouts, K.

    2016-12-01

    Intensively managed loblolly pine is a candidate species for biofuel feedstock production in the southeastern Coastal Plain of the United States. However, the water quantity and quality effects of high intensity, short-rotation silviculture are largely unknown. Here we evaluate the potential hydrologic and water quality impacts of biofuel-induced land use changes based on model scenarios developed using existing forest BMPs and industry wide experiences. We quantified the effect of bio-energy production scenarios on each of water the balance components by applying an integrated physically based distributed watershed modeling system, and multi-objective assessment functions that accurately describes the flow regimes, water quality, and isotopic observations from three experimental headwater watersheds of Fourmile Creek at Savannah River Site, SC. The model incorporates optimized travel times of groundwater flowpaths and flow control processes in the riparian region allowing water quality analysis of groundwater dominated watershed systems. We compared five different short rotation pine management scenarios ranging from 35 year (low intensity) to 10 year (high intensity) rotations and a mixture of forestry and agriculture/pasture production practices. Simulation results, based on long-term climate records, revealed that complete conversion to short-rotation woody crops would have a negligible effect on water budget components; <2% decrease in streamflow, <1.5% increase in actual evapotranspiration, an average 0.5 m fall in the groundwater table, and no change in subsurface flow due to biofuel production. Simulation results of mixed 50% agriculture and pasture and 50% short-rotation woody crops showed the largest deviation in water budget components compared to the reference condition. Analysis of extreme stream flows showed that the largest effect was observed in the low intensity mixed land use scenario. The smallest effect was in the low intensity biomass production scenario with a 0.5% increase in a 100 year return event.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  7. Recent directions taken in water, energy, and biogeochemical budgets research

    USGS Publications Warehouse

    Lins, Harry F.

    1994-01-01

    Understanding and predicting global change is a major scientific focus of the late 20th century. Although atmospheric scientists have made substantial progress in developing models that account for many components of the climate system, significant progress is needed in understanding processes associated with the exchange of water, energy, and carbon between terrestrial systems and the atmosphere.To strengthen terrestrial process research, especially research associated with the interactions of water, energy, gases, nutrients, and vegetation, the U.S. Geological Survey initiated an intensive study of Water, Energy, and Biogeochemical Budgets (WEBB). WEBB is aimed at improving understanding of processes controlling terrestrial water, energy, and biogeochemical fluxes, their interactions, and their relations to climatic variables; and the ability to predict continental water, energy, and biogeochemical budgets over a range of spatial and temporal scales.

  8. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing products—toilets, urinals, faucets, and showerheads —has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additionalmore » research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).« less

  9. Water availability and vulnerability of 225 large cities in the United States

    NASA Astrophysics Data System (ADS)

    Padowski, Julie C.; Jawitz, James W.

    2012-12-01

    This study presents a quantitative national assessment of urban water availability and vulnerability for 225 U.S. cities with population greater than 100,000. Here, the urban assessments account for not only renewable water flows, but also the extracted, imported, and stored water that urban systems access through constructed infrastructure. These sources represent important hydraulic components of the urban water supply, yet are typically excluded from water scarcity assessments. Results from this hydraulic-based assessment were compared to those obtained using a more conventional method that estimates scarcity solely based on local renewable flows. The inclusion of hydraulic components increased the mean availability to cities, leading to a significantly lower portion of the total U.S. population considered "at risk" for water scarcity (17%) than that obtained from the runoff method (47%). Water vulnerability was determined based on low-flow conditions, and smaller differences were found for this metric between at-risk populations using the runoff (66%) and hydraulic-based (54%) methods. The large increase in the susceptible population between the scarcity measures evaluated using the hydraulic method may better reconcile the seeming contradiction in the United States between perceptions of natural water abundance and widespread water scarcity. Additionally, urban vulnerability measures developed here were validated using a media text analysis. Vulnerability assessments that included hydraulic components were found to correlate with the frequency of urban water scarcity reports in the popular press while runoff-based measures showed no significant correlation, suggesting that hydraulic-based assessments provide better context for understanding the nature and severity of urban water scarcity issues.

  10. Eddy Correlation Flux Measurement System (ECOR) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  11. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  12. Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate

    DOEpatents

    Cooper, John F.; Balazs, G. Bryan; Hsu, Peter; Lewis, Patricia R.; Adamson, Martyn G.

    2000-01-01

    An integrated system for destruction of organic waste comprises a hydrolysis step at moderate temperature and pressure, followed by direct chemical oxidation using peroxydisulfate. This system can be used to quantitatively destroy volatile or water-insoluble halogenated organic solvents, contaminated soils and sludges, and the organic component of mixed waste. The hydrolysis step results in a substantially single phase of less volatile, more water soluble hydrolysis products, thus enabling the oxidation step to proceed rapidly and with minimal loss of organic substrate in the off-gas.

  13. Molecular polarizability of water from local dielectric response theory

    DOE PAGES

    Ge, Xiaochuan; Lu, Deyu

    2017-08-08

    Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less

  14. Test bed design for evaluating the Space Station ECLSS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Ezell, Timothy G.; Long, David A.

    1990-01-01

    The design of the Phase III Environmental Control and Life Support System (ECLSS) Water Recovery System (WRS) test bed is in progress at the Marshall Space Flight Center (MSFC), building 4755, in Huntsville, Alabama. The overall design for the ECLSS WRS test bed will be discussed. Described within this paper are the design, fabrication, placement, and testing of the supporting facility which will provide the test bed for the ECLSS subsystems. Topics to be included are sterilization system design, component selection, microbial design considerations, and verification of test bed design prior to initiating WRS testing.

  15. Altimetry Using GPS-Reflection/Occultation Interferometry

    NASA Technical Reports Server (NTRS)

    Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi

    2008-01-01

    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.

  16. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  17. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  18. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  19. Environmental Assessment of the 445th Airlift Wing Conversion from C-5 to C-17 Aircraft at Wright-Patterson Air Force Base

    DTIC Science & Technology

    2010-12-01

    effects on ground - water would continue to occur as a result of aircraft operations. Long-Term: No impact. Surface Water...that existed at the time the 15 study was prepared as well as a Maximum Mission Scenario that was based on the noise effects of various 16 potentially ...and human health of a community or locale. Storm water 19 is an important component of surface water systems because of its potential to

  20. Coupling long and short term decisions in the design of urban water supply infrastructure for added reliability and flexibility

    NASA Astrophysics Data System (ADS)

    Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.

    2016-12-01

    The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.

  1. Simulation-optimization aids in resolving water conflict: Temecula Basin, Southern California

    USGS Publications Warehouse

    Hanson, Randall T.; Faunt, Claudia C.; Schmid, Wolfgang; Lear, Jonathan

    2014-01-01

    The productive agricultural areas of Pajaro Valley, California have exclusively relied on ground water from coastal aquifers in central Monterey Bay. As part of the Basin Management Plan (BMP), the Pajaro Valley Water Management Agency (PVWMA) is developing additional local supplies to replace coastal pumpage, which is causing seawater intrusion. The BMP includes an aquifer storage and recovery (ASR) system, which captures and stores local winter runoff, and supplies it to growers later in the growing season in lieu of ground-water pumpage. A Coastal Distribution System (CDS) distributes water from the ASR and other supplemental sources. A detailed model of the Pajaro Valley is being used to simulate the coupled supply and demand components of irrigated agriculture from 1963 to 2006. Recent upgrades to the Farm Process in MODFLOW (MF2K-FMP) allow simulating the effects of ASR deliveries and reduced pumping for farms in subregions connected to the CDS. The BMP includes a hierarchy of monthly supply alternatives, including a recovery well field around the ASR system, a supplemental wellfield, and onsite farm supply wells. The hierarchy of delivery requirements is used by MF2K-FMP to estimate the effects of these deliveries on coastal ground-water pumpage and recovery of water levels. This integrated approach can be used to assess the effectiveness of the BMP under variable climatic conditions, and to test the impacts of more complete subscription by coastal farmers to the CDS deliveries. The model will help managers assess the effects of new BMP components to further reduce pumpage and seawater intrusion.

  2. Vapor compression distiller and membrane technology for water revitalization

    NASA Technical Reports Server (NTRS)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  3. Vapor compression distiller and membrane technology for water revitalization.

    PubMed

    Ashida, A; Mitani, K; Ebara, K; Kurokawa, H; Sawada, I; Kashiwagi, H; Tsuji, T; Hayashi, S; Otsubo, K; Nitta, K

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied; one is an absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation able to easily produce condensed water under zero gravity was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  4. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    NASA Astrophysics Data System (ADS)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  5. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    NASA Astrophysics Data System (ADS)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most predictive factors in terms of the variation in viscosity of the emulsion with coal type. The viscosity of the oil used is linearly related to the viscosity of the COW. The relative viscosity - concentration relationship for the emulsions was evaluated by an equation developed by Quemada for use in blood rheology: (eta)(,r) = (1 - (phi)/(phi)(,max))('-2). The best fit of the data to the equation was found when the coal plus water concentration was used for (phi). The maximum packing fraction increased with increasing shear rate, reflecting a breaking up of the agglomerates in the system. By using the relative packing fraction of the coal plus oil concentration, the relative viscosity of the emulsions tested at the three shear rates evaluted can be fit to the Quemada relative viscosity equation. In the pipe flow tests, the emulsions showed little time-dependent behavior, however they did exhibit a well effect. A fair correlation was obtained between pipe flow behavior and the results obtained in the viscometer. Coal/water/#4 oil emulsions behave as coal and water in oil systems and can be successfully modeled using theories from suspension rheology.

  6. 78 FR 41436 - Proposed Revision to Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Safety Analysis Reports for Nuclear Power Plants: LWR Edition,'' on a proposed new section to its... revised position on the treatment of the high winds external hazard for certain RTNSS structures, systems... winds external hazard for certain RTNSS structures, systems and components (SSCs). This position differs...

  7. On issue of increasing profitability of automated energy technology complexes for preparation and combustion of water-coal suspensions

    NASA Astrophysics Data System (ADS)

    Brylina, O. G.; Osintsev, K. V.; Prikhodko, YU S.; Savosteenko, N. V.

    2018-03-01

    The article considers the issues of energy technological complexes economy increase on the existing techniques of water-coal suspensions preparation and burning basis due to application of highly effective control systems of electric drives and neurocontrol. The automated control system structure for the main boiler components is given. The electric drive structure is disclosed by the example of pumps (for transfer of coal-water mash and / or suspension). A system for controlling and diagnosing a heat and power complex based on a multi-zone regulator is proposed. The possibility of using neural networks for implementing the control algorithms outlined in the article is considered.

  8. Energy Storage Criteria Handbook.

    DTIC Science & Technology

    1982-10-01

    Phase Change Material Heating System .......................... 311 14.3.1 Analysis of Storage Purpose ........................... 312 14.3.2 Choosing...329 Worksheet I: Cost Analysis of PCM System ...................... 330 14.4 Water Tank Cold Storage...Selecting Components ........................333 14.5.6 Economic Analysis .......................................334 Worksheet A: Cooling Load and Tank

  9. 46 CFR 160.135-11 - Fabrication of prototype lifeboats for approval.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... The Commandant may prescribe additional prototype tests and inspections necessary to maintain quality... inspecting— (i) Fiber Reinforced Plastic (FRP) Construction. (A) FRP components of each prototype lifeboat... system; (vii) Installation of the steering system; and (viii) Installation of the water spray fire...

  10. 46 CFR 160.135-11 - Fabrication of prototype lifeboats for approval.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... The Commandant may prescribe additional prototype tests and inspections necessary to maintain quality... inspecting— (i) Fiber Reinforced Plastic (FRP) Construction. (A) FRP components of each prototype lifeboat... system; (vii) Installation of the steering system; and (viii) Installation of the water spray fire...

  11. 46 CFR 160.135-11 - Fabrication of prototype lifeboats for approval.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... The Commandant may prescribe additional prototype tests and inspections necessary to maintain quality... inspecting— (i) Fiber Reinforced Plastic (FRP) Construction. (A) FRP components of each prototype lifeboat... system; (vii) Installation of the steering system; and (viii) Installation of the water spray fire...

  12. The Regional Hydrologic Extremes Assessment System: A software framework for hydrologic modeling and data assimilation

    PubMed Central

    Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B.; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali

    2017-01-01

    The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications. PMID:28545077

  13. The Regional Hydrologic Extremes Assessment System: A software framework for hydrologic modeling and data assimilation.

    PubMed

    Andreadis, Konstantinos M; Das, Narendra; Stampoulis, Dimitrios; Ines, Amor; Fisher, Joshua B; Granger, Stephanie; Kawata, Jessie; Han, Eunjin; Behrangi, Ali

    2017-01-01

    The Regional Hydrologic Extremes Assessment System (RHEAS) is a prototype software framework for hydrologic modeling and data assimilation that automates the deployment of water resources nowcasting and forecasting applications. A spatially-enabled database is a key component of the software that can ingest a suite of satellite and model datasets while facilitating the interfacing with Geographic Information System (GIS) applications. The datasets ingested are obtained from numerous space-borne sensors and represent multiple components of the water cycle. The object-oriented design of the software allows for modularity and extensibility, showcased here with the coupling of the core hydrologic model with a crop growth model. RHEAS can exploit multi-threading to scale with increasing number of processors, while the database allows delivery of data products and associated uncertainty through a variety of GIS platforms. A set of three example implementations of RHEAS in the United States and Kenya are described to demonstrate the different features of the system in real-world applications.

  14. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as livestock production systems and agricultural production economics will be integrated to the agricultural model to make the systems tool. It will capture feedback loops, time delays, and the nonlinearities of the system. Moreover, the model is designed for quick reconfiguration to different regions given parametrized crop data.

  15. High density liquid structure enhancement in glass forming aqueous solution of LiCl.

    PubMed

    Camisasca, G; De Marzio, M; Rovere, M; Gallo, P

    2018-06-14

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H 2 O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H 2 O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  16. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    NASA Astrophysics Data System (ADS)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  17. Stream Discharge and Evapotranspiration Responses to Climate Change and Their Associated Uncertainties in a Large Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2017-12-01

    Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.

  18. Electrical properties of methane hydrate + sediment mixtures

    USGS Publications Warehouse

    Du Frane, Wyatt L.; Stern, Laura A.; Constable, Steven; Weitemeyer, Karen A.; Smith, Megan M; Roberts, Jeffery J.

    2015-01-01

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. Toward this goal, we built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. Here we report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. These results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  19. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.

    PubMed

    Hu, X H; Li, Y P; Huang, G H; Zhuang, X W; Ding, X W

    2016-05-01

    In this study, a Bayesian-based two-stage inexact optimization (BTIO) method is developed for supporting water quality management through coupling Bayesian analysis with interval two-stage stochastic programming (ITSP). The BTIO method is capable of addressing uncertainties caused by insufficient inputs in water quality model as well as uncertainties expressed as probabilistic distributions and interval numbers. The BTIO method is applied to a real case of water quality management for the Xiangxi River basin in the Three Gorges Reservoir region to seek optimal water quality management schemes under various uncertainties. Interval solutions for production patterns under a range of probabilistic water quality constraints have been generated. Results obtained demonstrate compromises between the system benefit and the system failure risk due to inherent uncertainties that exist in various system components. Moreover, information about pollutant emission is accomplished, which would help managers to adjust production patterns of regional industry and local policies considering interactions of water quality requirement, economic benefit, and industry structure.

  20. Aggregation study in mixture surfactant system TX-100+SDS in heavy water solutions by SANS method

    NASA Astrophysics Data System (ADS)

    Rajewska, A.; Islamov, A. Kh.; Bakeeva, R. F.

    2018-03-01

    The mixing of amphiphiles in water may lead to the formation of mixed micelles which often present new properties with respect to the pure component solutions [1,2]. The mixture system of classic surfactants SDS (sodium dodecyl sulfate)+TX-100(p-(1,1,3,3- tetramethyl) poly(oxyethylene) (anionic + non-ionic) in heavy water solutions was investigated at temperatures 30°, 50°, 70°C for compositions 1:1, 2:1, 3:1 by the small-angle neutron scattering(SANS) method on spectrometer (‘YuMO’) at the IBR-2 pulsed neutron source at FLNP, JINR in Dubna (Russia). Measurements have covered Q range from 8x10-3 to 0.4 Å-1. From the measured dependence of the scattered intensity on the scattering angle, we derived the size, shape of micelles, aggregation number at various compositions and temperatures. The size of mixed micelle is a weak function of the mixing ratio between the two components.

  1. Concentration dependences of the physicochemical properties of a water-acetone system

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.

    2017-01-01

    Concentration dependences of the UV spectrum, refractive index, specific electrical conductivity, boiling point, pH, surface tension, and heats of dissolution of a water-acetone system on the amount of acetone in the water are studied. It is found that the reversible protolytic interaction of the components occurs in all such solutions, resulting in the formation of hydroxyl and acetonium ions. It is shown that shifts of the equilibrium between the molecules and ions in the solution leads to extreme changes in their electrical properties. It is concluded that the formation of acetone solutions of water is accompanied by heat absorption, while the formation of aqueous solutions of acetone is accompanied by heat release.

  2. The Nevada NSF EPSCoR infrastructure for climate change science, education, and outreach project: highlights and progress on investigations of ecological change and water resources along elevational gradients

    NASA Astrophysics Data System (ADS)

    Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.

    2010-12-01

    In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.

  3. Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor

    PubMed Central

    Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-01-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652

  4. Coupled Spatiotemporal Dynamics of Microbial Community Ecology, Biogeochemistry, and Hydrologic Mixing

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.

  5. An enhanced model of land water and energy for global hydrologic and earth-system studies

    USGS Publications Warehouse

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean

    2014-01-01

    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  6. Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.

    PubMed

    Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol

    2014-10-01

    Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. An embedded system developed for hand held assay used in water monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray

    2005-11-01

    The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.

  8. Riparian Forest Buffers - Function for Protection and Enhancement of Water Resources

    Treesearch

    David J. Welsch

    1991-01-01

    Streamside forests are crucial to the protection and enhancement of the water resources of the Eastern United States. They are extremely complex ecosystems that help provide optimum food and habitat for stream communities as well as being useful in mitigating or controlling nonpoint source pollution (NPS). Used as a component of an integrated management system...

  9. Measuring the Resilience of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria; Dearden, Richard; Levri, Julie A.

    2002-01-01

    Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.

  10. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  11. Cherenkov water detector NEVOD

    NASA Astrophysics Data System (ADS)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  12. Environmental Assessment of the Relocation and Construction of a Military Working Dog (MWD) Kennel

    DTIC Science & Technology

    2006-12-01

    specified area to function. Components include transportation and circulation (i.e., movement of vehicles), utilities, solid waste handling, and...sites to appropriate receiving surface waters. For several reasons, storm water systems can employ a variety of devices to slow the movement of water...football field) Fence 3,600 meters 05 CDCII Preschool Playground 8,800 05 CDCII Pretoddler Playground 5,225 05 CDCII Toddler Playground 6,450 05

  13. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    NASA Astrophysics Data System (ADS)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  14. Dams impact carbon dynamics in U.S. rivers

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Dissolved organic carbon (DOC)—which leaches into freshwater systems from plants, soils, and sediments, and from other detritus present in the water itself—is the major food supplement for microorganisms and plays an important role in several environmental processes and in the global carbon cycle. In some aquatic systems such as estuaries, the optically measurable colored component of dissolved organic matter (CDOM) is often proportional to the concentration of DOC. CDOM forms when light-absorbing compounds are released into the water by decaying organic material and through photochemical degradation of certain organic compounds. Hence, CDOM reflects not just the environment and ecosystem, which is the source of the detritus, but also the processes that deliver the organic matter into aquatic systems. Human activities, such as logging, agriculture, and waste water treatment, also affect CDOM levels in aquatic systems. It is relatively easy and inexpensive to measure the CDOM content in small volumes of water.

  15. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  16. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  17. Hydrogeologic framework of the Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.

    2015-01-01

    The hydrologic framework of the Santa Clara Valley in northern California was redefined on the basis of new data and a new hydrologic model. The regional groundwater flow systems can be subdivided into upper-aquifer and lower-aquifer systems that form a convergent flow system within a basin bounded by mountains and hills on three sides and discharge to pumping wells and the southern San Francisco Bay. Faults also control the flow of groundwater within the Santa Clara Valley and subdivide the aquifer system into three subregions.After decades of development and groundwater depletion that resulted in substantial land subsidence, Santa Clara Valley Water District (SCVWD) and the local water purveyors have refilled the basin through conservation and importation of water for direct use and artificial recharge. The natural flow system has been altered by extensive development with flow paths toward major well fields. Climate has not only affected the cycles of sedimentation during the glacial periods over the past million years, but interannual to interdecadal climate cycles also have affected the supply and demand components of the natural and anthropogenic inflows and outflows of water in the valley. Streamflow has been affected by development of the aquifer system and regulated flow from reservoirs, as well as conjunctive use of groundwater and surface water. Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of groundwater and recapture of artificial recharge in the Santa Clara Valley. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into wells from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 ft (152 m) of the aquifer system. Artificial recharge represents about one-half of the inflow of water into the valley for the period 1970–1999. Most subsidence is occurring below 250 ft (76 m), and most pumpage occurs within the upper-aquifer system between 300 and 650 ft (between 91 and 198 m) below land surface.Overall, the natural quality of most groundwater in the Santa Clara Valley is good. Isotopic data indicate that artificial recharge is occurring throughout the shallower parts of the upper-aquifer system and that recent recharge (less than 50 yr old) occurs throughout most of the basin in the upper-aquifer system, but many of the wells in the center of the basin with deeper well screens do not contain tritium and recent recharge. Age dates indicate that the groundwater in the upper-aquifer system generally is less than 2000 yr old, and groundwater in the lower-aquifer system generally ranges from 16,700 to 39,900 yr old. Depth-dependent sampling indicates that wellbores are the main path for vertical flow between aquifer layers. Isotopic data indicate as much as 60% of water pumped from production wells originated as artificial recharge. Shallow aquifers not only contain more recent recharge but may be more susceptible to anthropogenic and natural contamination, as evidenced by trace occurrences of iron, nitrate, and volatile organic compounds (VOCs) in selected water-supply wells.Water-resource management issues are centered on sustaining a reliable and good-quality source of water to the residents and industries of the valley. While the basin has been refilled, increased demand owing to growth and droughts could result in renewed storage depletion and the related potential adverse effects of land subsidence and seawater intrusion. The new hydrologic model demonstrates the importance of the aquifer layering, faults, and stream channels in relation to groundwater flow and infiltration of recharge. This model provides a means to analyze water resource issues because it separates the supply and demand components of the inflows and outflows.

  18. 10 CFR 71.4 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person... a shipper for transport. Containment system means the assembly of components of the packaging...

  19. 10 CFR 71.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: The International System of Units (SI) followed or preceded by U.S. standard or customary units. The U... water as a common, contract, or private carrier, or by civil aircraft. Certificate holder means a person... a shipper for transport. Containment system means the assembly of components of the packaging...

  20. Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction.

    PubMed

    Fenn, Emily E; Wong, Daryl B; Fayer, M D

    2011-02-07

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  1. Water dynamics in small reverse micelles in two solvents: Two-dimensional infrared vibrational echoes with two-dimensional background subtraction

    NASA Astrophysics Data System (ADS)

    Fenn, Emily E.; Wong, Daryl B.; Fayer, M. D.

    2011-02-01

    Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w0 = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w0 = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w0, but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl4 system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.

  2. Modelling Nitrogen Cycling in a Mariculture Ecosystem as a Tool to Evaluate its Outflow

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Bacher, C.; Meuret, A.; Hussenot, J.

    2001-03-01

    A model was constructed to describe an intensive mariculture ecosystem growing sea bass ( Dicentrarchus labrax), located in the salt marshes of the Fiers d'Ars Bay on the French Atlantic coast, in order to assess nitrogen cycling within the system and nitrogen outflow from the system. The land-based system was separated into three main compartments: a seawater reservoir, fish ponds and a lagoon (sedimentation pond). Three submodels were built for simulation purposes: (1) a hydrological submodel which simulated water exchange; (2) a fish growth and excretion bioenergetic submodel; and (3) a nitrogen compound transformation and loss submodel (i.e. ammonification, nitrification and assimilation processes). A two-year sampling period of nitrogen water quality concentrations and fish growth was used to validate the model. The model fitted the observations of dissolved nitrogen components, fish growth and water fluxes on a daily basis in all the compartments. The dissolved inorganic nitrogen ranged widely and over time from 0·5 to 9 g N m -3within the system, depending on seawater supply and water temperature, without affecting fish growth. Fish feed was the most important input of nitrogen into the system. The mean average input of nitrogen in the feed was 205 kg N day -1, of which 19% was retained by fish, 4% accumulated in the sediment and 61% flowed from the system as dissolved components. The farm represented about 25% of the total dissolved nitrogen export from the bay, although the farm surface area was 100 times smaller than that of the bay.

  3. An expert system for diagnostics and estimation of steam turbine components condition

    NASA Astrophysics Data System (ADS)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.

  4. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  5. Ground-water flow and quality in Wisconsin's shallow aquifer system

    USGS Publications Warehouse

    Kammerer, P.A.

    1995-01-01

    In terms of chemical quality, the water is suitable for potable supply and most other uses, but objectionable hardness in large areas and concen- trations of iron and manganese that exceed State drinking-water standards cause aesthetic problems that may require treatment of the water for some uses. Concentrations of major dissolved constitu- ents (calcium, magnesium, and bicarbonate), hard- ness, alkalinity, and dissolved solids are highest where the bedrock component of the aquifer is dolo- mite and lowest where the shallow aquifer is almost entirely sand and gravel. Concentrations of other minor constituents (sodium, potassium, sulfate, chloride, and fluoride) are less closely related to common minerals that compose the aquifer system. Sulfate and fluoride concentrations exceed State drinking-water standards locally. Extreme variability in concentrations of iron and manganese are common locally. Iron and manganese concentra- tions exceed State drinking-water standards in water from one-third and one-quarter of the wells, respectively. Likely causes of nitrate-nitrogen con- centrations that exceed State drinking-water stan- dards include local contamination from plant fertilizers, animal wastes, waste water disposed of on land, and septic systems. Water quality in the shallow aquifer system has been affected by saline water from underlying aquifers, primarily along the eastern and western boundaries of the State where the thickness of Paleozoic rocks is greatest.

  6. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...., materials, allowable stresses, design; (6) Excavation; (e) Materials standards. (f) Construction components...) Plumbing fixtures; (7) Water supply and distribution; (8) Storm drain systems. (j) Electrical. (1) Wiring...

  7. 24 CFR 200.925b - Residential and institutional building code comparison items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...., materials, allowable stresses, design; (6) Excavation; (e) Materials standards. (f) Construction components...) Plumbing fixtures; (7) Water supply and distribution; (8) Storm drain systems. (j) Electrical. (1) Wiring...

  8. Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.

    2015-12-01

    Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.

  9. GPR image analysis to locate water leaks from buried pipes by applying variance filters

    NASA Astrophysics Data System (ADS)

    Ocaña-Levario, Silvia J.; Carreño-Alvarado, Elizabeth P.; Ayala-Cabrera, David; Izquierdo, Joaquín

    2018-05-01

    Nowadays, there is growing interest in controlling and reducing the amount of water lost through leakage in water supply systems (WSSs). Leakage is, in fact, one of the biggest problems faced by the managers of these utilities. This work addresses the problem of leakage in WSSs by using GPR (Ground Penetrating Radar) as a non-destructive method. The main objective is to identify and extract features from GPR images such as leaks and components in a controlled laboratory condition by a methodology based on second order statistical parameters and, using the obtained features, to create 3D models that allows quick visualization of components and leaks in WSSs from GPR image analysis and subsequent interpretation. This methodology has been used before in other fields and provided promising results. The results obtained with the proposed methodology are presented, analyzed, interpreted and compared with the results obtained by using a well-established multi-agent based methodology. These results show that the variance filter is capable of highlighting the characteristics of components and anomalies, in an intuitive manner, which can be identified by non-highly qualified personnel, using the 3D models we develop. This research intends to pave the way towards future intelligent detection systems that enable the automatic detection of leaks in WSSs.

  10. Estimating the global terrestrial hydrologic cycle through modeling, remote sensing, and data assimilation

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Troy, Tara; Sahoo, Alok; Sheffield, Justin; Wood, Eric

    2010-05-01

    Documentation of the water cycle and its evolution over time is a primary scientific goal of the Global Energy and Water Cycle Experiment (GEWEX) and fundamental to assessing global change impacts. In developed countries, observation systems that include in-situ, remote sensing and modeled data can provide long-term, consistent and generally high quality datasets of water cycle variables. The export of these technologies to less developed regions has been rare, but it is these regions where information on water availability and change is probably most needed in the face of regional environmental change due to climate, land use and water management. In these data sparse regions, in situ data alone are insufficient to develop a comprehensive picture of how the water cycle is changing, and strategies that merge in-situ, model and satellite observations within a framework that results in consistent water cycle records is essential. Such an approach is envisaged by the Global Earth Observing System of Systems (GOESS), but has yet to be applied. The goal of this study is to quantify the variation and changes in the global water cycle over the past 50 years. We evaluate the global water cycle using a variety of independent large-scale datasets of hydrologic variables that are used to bridge the gap between sparse in-situ observations, including remote-sensing based retrievals, observation-forced hydrologic modeling, and weather model reanalyses. A data assimilation framework that blends these disparate sources of information together in a consistent fashion with attention to budget closure is applied to make best estimates of the global water cycle and its variation. The framework consists of a constrained Kalman filter applied to the water budget equation. With imperfect estimates of the water budget components, the equation additionally has an error residual term that is redistributed across the budget components using error statistics, which are estimated from the uncertainties among data products. The constrained Kalman filter treats the budget closure constraint as a perfect observation within the assimilation framework. Precipitation is estimated using gauge observations, reanalysis products, and remote sensing products for below 50°N. Evapotranspiration is estimated in a number of ways: from the VIC land surface hydrologic model forced with a hybrid reanalysis-observation global forcing dataset, from remote sensing retrievals based on a suite of energy balance and process based models, and from an atmospheric water budget approach using reanalysis products for the atmospheric convergence and storage terms and our best estimate for precipitation. Terrestrial water storage changes, including surface and subsurface changes, are estimated using estimates from both VIC and the GRACE remote sensing retrievals. From these components, discharge can then be calculated as a residual of the water budget and compared with gauge observations to evaluate the closure of the water budget. Through the use of these largely independent data products, we estimate both the mean seasonal cycle of the water budget components and their uncertainties for a set of 20 large river basins across the globe. We particularly focus on three regions of interest in global changes studies: the Northern Eurasian region which is experiencing rapid change in terrestrial processes; the Amazon which is a central part of the global water, energy and carbon budgets; and Africa, which is predicted to face some of the most critical challenges for water and food security in the coming decades.

  11. Teaching Systems Thinking in the Context of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Lee, Tammy D.; Gail Jones, M.; Chesnutt, Katherine

    2017-06-01

    Complex systems affect every part of our lives from the ecosystems that we inhabit and share with other living organisms to the systems that supply our water (i.e., water cycle). Evaluating events, entities, problems, and systems from multiple perspectives is known as a systems thinking approach. New curriculum standards have made explicit the call for teaching with a systems thinking approach in our science classrooms. However, little is known about how elementary in-service or pre-service teachers understand complex systems especially in terms of systems thinking. This mixed methods study investigated 67 elementary in-service teachers' and 69 pre-service teachers' knowledge of a complex system (e.g., water cycle) and their knowledge of systems thinking. Semi-structured interviews were conducted with a sub-sample of participants. Quantitative and qualitative analyses of content assessment data and questionnaires were conducted. Results from this study showed elementary in-service and pre-service teachers applied different levels of systems thinking from novice to intermediate. Common barriers to complete systems thinking were identified with both in-service and pre-service teachers and included identifying components and processes, recognizing multiple interactions and relationships between subsystems and hidden dimensions, and difficulty understanding the human impact on the water cycle system.

  12. Program on State Agency Remote Sensing Data Management (SARSDM). [missouri

    NASA Technical Reports Server (NTRS)

    Eastwood, L. F., Jr.; Gotway, E. O.

    1978-01-01

    A planning study for developing a Missouri natural resources information system (NRIS) that combines satellite-derived data and other information to assist in carrying out key state tasks was conducted. Four focal applications -- dam safety, ground water supply monitoring, municipal water supply monitoring, and Missouri River basin modeling were identified. Major contributions of the study are: (1) a systematic choice and analysis of a high priority application (water resources) for a Missouri, LANDSAT-based information system; (2) a system design and implementation plan, based on Missouri, but useful for many other states; (3) an analysis of system costs, component and personnel requirements, and scheduling; and (4) an assessment of deterrents to successful technological innovation of this type in state government, and a system management plan, based on this assessment, for overcoming these obstacles in Missouri.

  13. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    DOE PAGES

    Shin, Sangmin; Lee, Seungyub; Judi, David; ...

    2018-02-07

    Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measuresmore » addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.« less

  14. A Systematic Review of Quantitative Resilience Measures for Water Infrastructure Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Sangmin; Lee, Seungyub; Judi, David

    Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measuresmore » addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.« less

  15. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. Copyright 2001 Elsevier Science (USA).

  16. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  17. US Integrated Ocean Observing System (IOOS°): Delivering Benefits to Science and Society

    NASA Astrophysics Data System (ADS)

    Willis, Z. S.

    2011-12-01

    The United States Integrated Ocean Observing System (IOOS°) is a user-driven, coordinated network of people, organizations, and technology that generate and disseminate continuous data about our coastal waters, Great Lakes, and oceans supported by strong research and development activities. IOOS° is our Eyes on our Oceans, Coasts and Great Lakes that enable the United States to track, predict, manage, and adapt to changes in our marine environment and deliver critical information to decision makers to improve safety, enhance our economy and protect our environment. IOOS provides a major shift in the approach to ocean observing by drawing together the vast network of disparate federal and non-federal observing systems to produce a cohesive suite of data, information, and products on a sufficient geographic and temporal scale to support decision-making. Two interdependent components constitute the U.S. IOOS: (1) the global ocean component, and (2) the coastal component. The strength of IOOS is in its partnerships, starting with the federal agencies, the partnerships extend internationally for the global component and to the local level for the coastal component. The coastal component includes the national set of observations for the U.S. Ocean, Coasts and Great Lakes, a network of Regional Associations that are establishing Regional Coastal Ocean Observing Systems (RCOOS) and the Alliance for Coastal Technologies (ACT). The U.S. IOOS is our nation's contribution to the Global Ocean Observing System (GOOS) - the ocean component of the Global Earth Observation System of Systems (GEOSS).

  18. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Treesearch

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  19. Solar Energy System Description Document: Scattergood School, Site ID 009, PON 2249.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Huntsville, AL.

    Described are the components, functions, and monitoring instrumentation of a solar heating system at Scattergood School, a Quaker school located in Iowa. The system provides the school gymnasium's space heating and preheating for domestic hot water. This project was constructed and is being evaluated under the United States Department of Energy's…

  20. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    USGS Publications Warehouse

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event - event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.

  1. Toward an Improved Understanding of the Global Fresh Water Budget

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.

  2. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  3. Lithotype characterizations by Nuclear Magnetic Resonance (NMR): A case study on limestone and associated rocks from the eastern Dahomey Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Olatinsu, O. B.; Olorode, D. O.; Clennell, B.; Esteban, L.; Josh, M.

    2017-05-01

    Three representative rock types (limestone, sandstone, and shale) and glauconite samples collected from Ewekoro Quarry, eastern Dahomey Basin in Nigeria were characterized using low field 2 MHz and 20 MHz Nuclear Magnetic Resonance (NMR) techniques. NMR T2 relaxation time decay measurement was conducted on disc samples under partial water-saturation and full water-saturation conditions using CPMG spin-echo routine. The T2 relaxation decay was converted into T2 distribution in the time domain to assess and evaluate the pore size distribution of the samples. Good agreement exists between water content from T2 NMR distributions and water imbibition porosity (WIP) technique. Results show that the most useful characteristics to discriminate the different facies come from full saturation NMR 2 MHz pore size distribution (PSD). Shale facies depict a quasi-unimodal distribution with greater than 90% contribution from clay bound water component (T2s) coupled to capillary bound water component (T2i) centred on 2 ms. The other facies with well connected pore structure show either bimodal or trimodal T2 distribution composed of the similar clay bound water component centred on 0.3 ms and quasi-capillary bound water component centred on 10 ms. But their difference depends on the movable water T2 component (T2l) that does not exist in the glauconite facies (bimodal distribution) while it exists in both the sandstone and limestone facies. The basic difference between the limestone and sandstone facies is related to the longer T2 coupling: T2i and T2l populations are coupled in sandstone generating a single population which convolves both populations (bimodal distribution). Limestone with a trimodal distribution attests to the fact that carbonate rocks have more complex pore system than siliclastic rocks. The degree of pore connectivity is highest in sandstone, followed by limestone and least in glauconite. Therefore a basic/quick NMR log run on samples along a geological formation can provide precise lithofacies characterization with quantitative information on pore size, structure and distributions.

  4. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Integration with Models of Other Water Recovery Subsystems

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.

  5. Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Wu, Tzu-Ching; Tsai, Wen-Ping; Herricks, Edwin E.

    2009-09-01

    SummaryThe identification and verification of ecohydrologic flow indicators has found new support as the importance of ecological flow regimes is recognized in modern water resources management, particularly in river restoration and reservoir management. An ecohydrologic indicator system reflecting the unique characteristics of Taiwan's water resources and hydrology has been developed, the Taiwan ecohydrological indicator system (TEIS). A major challenge for the water resources community is using the TEIS to provide environmental flow rules that improve existing water resources management. This paper examines data from the extensive network of flow monitoring stations in Taiwan using TEIS statistics to define and refine environmental flow options in Taiwan. Multivariate statistical methods were used to examine TEIS statistics for 102 stations representing the geographic and land use diversity of Taiwan. The Pearson correlation coefficient showed high multicollinearity between the TEIS statistics. Watersheds were separated into upper and lower-watershed locations. An analysis of variance indicated significant differences between upstream, more natural, and downstream, more developed, locations in the same basin with hydrologic indicator redundancy in flow change and magnitude statistics. Issues of multicollinearity were examined using a Principal Component Analysis (PCA) with the first three components related to general flow and high/low flow statistics, frequency and time statistics, and quantity statistics. These principle components would explain about 85% of the total variation. A major conclusion is that managers must be aware of differences among basins, as well as differences within basins that will require careful selection of management procedures to achieve needed flow regimes.

  6. Building an Open Source Framework for Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Jagers, B.; Meijers, E.; Villars, M.

    2015-12-01

    In order to develop effective strategies and associated policies for environmental management, we need to understand the dynamics of the natural system as a whole and the human role therein. This understanding is gained by comparing our mental model of the world with observations from the field. However, to properly understand the system we should look at dynamics of water, sediments, water quality, and ecology throughout the whole system from catchment to coast both at the surface and in the subsurface. Numerical models are indispensable in helping us understand the interactions of the overall system, but we need to be able to update and adjust them to improve our understanding and test our hypotheses. To support researchers around the world with this challenging task we started a few years ago with the development of a new open source modeling environment DeltaShell that integrates distributed hydrological models with 1D, 2D, and 3D hydraulic models including generic components for the tracking of sediment, water quality, and ecological quantities throughout the hydrological cycle composed of the aforementioned components. The open source approach combined with a modular approach based on open standards, which allow for easy adjustment and expansion as demands and knowledge grow, provides an ideal starting point for addressing challenging integrated environmental questions.

  7. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  8. Inexpensive economical solar heating system for homes (un sistema economico de calefaccion solar para viviendas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfred, J.W.; Shinn, J.M. Jr; Kirby, C.E.

    1976-07-01

    This report describes a low-cost solar home heating system to supplement the home-owner's present warm-air heating system. It has three parts: (1) A brief background on solar heating, (2) Langley's experience with a demonstration system, and (3) information for the home-owner who wishes to construct such a system. Instructions are given for a solar heating installation in which he supplies all labor needed to install off-the-shelf components estimated to cost $2000. These components, which include solar collector, heat exchanger, water pump, storage tank, piping, and controls to make the system completely automatic, are readily available at local lumber yards, hardwaremore » stores, and plumbing supply stores, and they are relatively simple to install. Manufacturers and prices of each component used and a rough cost analysis based on these prices are given for the owner's convenience. This report also gives performance data obtained from a demonstration system which has been built and tested at the Langley Research Center.« less

  9. Hydrologic data collected in Maumelle and Winona reservoir systems, central Arkansas, May 1989 through October 1992

    USGS Publications Warehouse

    Green, W. Reed; Louthian, Bobbie L.

    1993-01-01

    Physical, chemical, and biological water-quality data were collected and compiled for sites located in the Lakes Maumelle and Winona reservoir systems May 5, 1989, to October 30, 1992. Data were collected in order to establish a comprehensive water-quality data base for the two systems and will be used in water-quality interpretive chemical variables (temperature, pH, specific conductance, dissolved oxygen, light transparency, and penetration); solids, and major cations and anions); trace metals; organics (pesticides and industrial organic chemicals); and biological components (bacteria and chlorophyll-a); and nutrients, trace metals, and organic contaminants in bed material. Reservoir sedimentation was measured by comparing fathometry measurements taken during the study to pre-impoundment tophographic maps.

  10. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  11. RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.

    USGS Publications Warehouse

    Latkovich, Vito J.

    1985-01-01

    The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.

  12. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  13. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  14. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-04-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first deployment of an iGrav superconducting gravimeter (SG) in a minimized field enclosure on a grassland site for integrative monitoring of water storage changes. Results of the field SG were compared to data provided by a nearby SG located in the controlled environment of an observatory building. For wet-temperate climate conditions, the system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily time scales. With about 99% and 85% of the gravity signal originating within a radius of 4000 and 200 meter around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field monitoring technique at the landscape scale.

  15. Water requirements for livestock production: a global perspective.

    PubMed

    Schlink, A C; Nguyen, M L; Viljoen, G J

    2010-12-01

    Water is a vital but poorly studied component of livestock production. It is estimated that livestock industries consume 8% of the global water supply, with most of that water being used for intensive, feed-based production. This study takes a broad perspective of livestock production as a component of the human food chain, and considers the efficiency of its water use. Global models are in the early stages of development and do not distinguish between developing and developed countries, or the production systems within them. However, preliminary indications are that, when protein production is adjusted for biological value in the human diet, no plant protein is significantly more efficient at using water than protein produced from eggs, and only soybean is more water efficient than milk and goat and chicken meat. In some regions, especially developing countries, animals are not used solely for food production but also provide draught power, fibre and fertiliser for crops. In addition, animals make use of crop by-products that would otherwise go to waste. The livestock sector is the fastest-growing agricultural sector, which has led to increasing industrialisation and, in some cases, reduced environmental constraints. In emerging economies, increasing involvement in livestock is related to improving rural wealth and increasing consumption of animal protein. Water usage for livestock production should be considered an integral part of agricultural water resource management, taking into account the type of production system (e.g. grain-fed or mixed crop-livestock) and scale (intensive or extensive), the species and breeds of livestock, and the social and cultural aspects of livestock farming in various countries.

  16. Coupling System Dynamics and Physically-based Models for Participatory Water Management - A Methodological Framework, with Two Case Studies: Water Quality in Quebec, and Soil Salinity in Pakistan

    NASA Astrophysics Data System (ADS)

    Boisvert-Chouinard, J.; Halbe, J.; Baig, A. I.; Adamowski, J. F.

    2014-12-01

    The principles of Integrated Water Resource Management outline the importance of stakeholder participation in water management processes, but in practice, there is a lack of meaningful engagement in water planning and implementation, and participation is often limited to public consultation and education. When models are used to support water planning, stakeholders are usually not involved in their development and use, and the models commonly fail to represent important feedbacks between socio-economic and physical processes. This paper presents the development of holistic models of the Du Chêne basin in Quebec, and the Rechna Doab basin in Pakistan, that simulate socio-economic and physical processes related to, respectively, water quality management, and soil salinity management. The models each consists of two sub-components: a System Dynamics (SD) model, and a physically based model. The SD component was developed in collaboration with key stakeholders in the basins. The Du Chêne SD model was coupled with a Soil and Water Assessment Tool (SWAT) model, while the Rechna Doab SD model was coupled with SahysMod, a soil salinity model. The coupled models were used to assess the environmental and socio-economic impacts of different management scenarios proposed by stakeholders. Results indicate that coupled SD - physically-based models can be used as effective tools for participatory water planning and implementation. The participatory modeling process provides a structure for meaningful stakeholder engagement, and the models themselves can be used to transparently and coherently assess and compare different management options.

  17. Microbial biofilm studies of the Environmental Control and Life Support System water recovery test for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Obenhuber, D. C.; Huff, T. L.; Rodgers, E. B.

    1991-01-01

    Analysis of biofilm accumulation, studies of iodine disinfection of biofilm, and the potential for microbially influenced corrosion in the water recovery test (WRT) are presented. The analysis of WRT components showed the presence of biofilms and organic deposits in selected tubing. Water samples from the WRT contained sulfate-reducing and acid-producing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples, but stainless steel corrosion rates were not accelerated.

  18. Enhancements to the EPANET-RTX (Real-Time Analytics) ...

    EPA Pesticide Factsheets

    Technical brief and software The U.S. Environmental Protection Agency (EPA) developed EPANET-RTX as a collection of object-oriented software libraries comprising the core data access, data transformation, and data synthesis (real-time analytics) components of a real-time hydraulic and water quality modeling system. While EPANET-RTX uses the hydraulic and water quality solvers of EPANET, the object libraries are a self-contained set of building blocks for software developers. “Real-time EPANET” promises to change the way water utilities, commercial vendors, engineers, and the water community think about modeling.

  19. A reliable low cost integrated wireless sensor network for water quality monitoring and level control system in UAE

    NASA Astrophysics Data System (ADS)

    Abou-Elnour, Ali; Khaleeq, Hyder; Abou-Elnour, Ahmad

    2016-04-01

    In the present work, wireless sensor network and real-time controlling and monitoring system are integrated for efficient water quality monitoring for environmental and domestic applications. The proposed system has three main components (i) the sensor circuits, (ii) the wireless communication system, and (iii) the monitoring and controlling unit. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee and myRIO wireless modules have been used to implement the wireless system. The water quality parameters are accurately measured by the present computer based monitoring system and the measurement results are instantaneously transmitted and published with minimum infrastructure costs and maximum flexibility in term of distance or location. The mobility and durability of the proposed system are further enhanced by fully powering via a photovoltaic system. The reliability and effectiveness of the system are evaluated under realistic operating conditions.

  20. Optimization of the Working Cycle for an Underwater Propulsion System Based on Aluminium-Water Combustion

    NASA Astrophysics Data System (ADS)

    Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin

    2017-05-01

    The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.

Top