40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
Water Distribution System Operation and Maintenance. A Field Study Training Program. Second Edition.
ERIC Educational Resources Information Center
Kerri, Kenneth D.; And Others
Proper installation, inspection, operation, maintenance, repair and management of water distribution systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide water distribution system operators with the knowledge and skills required to operate and maintain…
Small Water System Operations and Maintenance. A Field Study Training Program. Second Edition.
ERIC Educational Resources Information Center
Kerri, Kenneth D.; And Others
Proper installation, inspection, operation, maintenance, repair and management of small water systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide small water system operators with the knowledge and skills required to operate and maintain these systems…
Dunne, Paul; Tasker, Gary
1996-01-01
The reservoirs and pumping stations that comprise the Raritan River Basin water-supply system and its interconnections to the Delaware-Raritan Canal water-supply system, operated by the New Jersey Water Supply Authority (NJWSA), provide potable water to central New Jersey communities. The water reserve of this combined system can easily be depleted by an extended period of below-normal precipitation. Efficient operation of the combined system is vital to meeting the water-supply needs of central New Jersey. In an effort to improve the efficiency of the system operation, the U.S. Geological Survey (USGS), in cooperation with the NJWSA, has developed a computer model that provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system. This fact sheet describes the model, its technical basis, and its operation.
Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems
NASA Astrophysics Data System (ADS)
de Neufville, R.; Galelli, S.; Tian, X.
2017-12-01
This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.
NASA Astrophysics Data System (ADS)
Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian
2010-06-01
A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance of the Central and Southern Project and other water management systems in the South Florida... locations and times. Natural system means all land and water managed by the Federal government or the State... System Operating Manual and Project Operating Manuals. Operating Manuals contain water control plans...
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance of the Central and Southern Project and other water management systems in the South Florida... locations and times. Natural system means all land and water managed by the Federal government or the State... System Operating Manual and Project Operating Manuals. Operating Manuals contain water control plans...
Operational Management System for Regulated Water Systems
NASA Astrophysics Data System (ADS)
van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.
2012-04-01
Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.
Portable System for Field-feeding Greywater Remediation and Recycling
2007-03-01
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that...system to remediate and recycle dirty sink water from its field feeding and sanitation operations . A greywater recycling system is expected to reduce...two weeks and each of the three systems was operated out-of doors treating water created during actual field feeding operations . Water samples were
POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. King
2000-06-19
The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of themore » Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.« less
Flexible and adaptive water systems operations through more informed and dynamic decisions
NASA Astrophysics Data System (ADS)
Castelletti, A.; Giuliani, M.
2016-12-01
Timely adapting the operations of water systems to be resilient against rapid changes in both hydroclimatic and socioeconomic forcing is generally recommended as a part of planning and managing water resources under uncertain futures. A great opportunity to make the operations more flexible and adaptive is offered by the unprecedented amount of information that is becoming available to water system operators, providing a wide range of data at increasingly higher temporal and spatial resolution. Yet, many water systems are still operated using very simple information systems, typically based on basic statistical analysis and the operator's experience. In this work, we discuss the potential offered by incorporating improved information to enhance water systems operation and increase their ability of adapting to different external conditions and resolving potential conflicts across sectors. In particular, we focus on the use of different variables associated to different dynamics of the system (slow and fast) diversely impacting the operating objectives on the short-, medium- and long-term. The multi-purpose operations of the Hoa Binh reservoir in the Red River Basin (Vietnam) is used to demonstrate our approach. Numerical results show that our procedure is able to automatically select the most valuable information for improving the Hoa Binh operations and mitigating the conflict between short-term objectives, i.e. hydropower production and flood control. Moreover, we also successfully identify low-frequency climate information associated to El-Nino Southern Oscillation for improving the performance in terms of long-term objectives, i.e. water supply. Finally, we assess the value of better informing operational decisions for adapting the system operations to changing conditions by considering different climate change projections.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aircraft water system operations and maintenance plan. 141.804 Section 141.804 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system...
75 FR 48329 - Tribal Drinking Water Operator Certification Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9186-8] Tribal Drinking Water Operator Certification Program... details of EPA's voluntary Tribal Drinking Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be...
NASA Astrophysics Data System (ADS)
Wang, H.; Asefa, T.
2017-12-01
A real-time decision support tool (DST) for water supply system would consider system uncertainties, e.g., uncertain streamflow and demand, as well as operational constraints and infrastructure outage (e.g., pump station shutdown, an offline reservoir due to maintenance). Such DST is often used by water managers for resource allocation and delivery for customers. Although most seasonal DST used by water managers recognize those system uncertainties and operational constraints, most use only historical information or assume deterministic outlook of water supply systems. This study presents a seasonal DST that incorporates rainfall/streamflow uncertainties, seasonal demand outlook and system operational constraints. Large scale climate-information is captured through a rainfall simulator driven by a Bayesian non-homogeneous Markov Chain Monte Carlo model that allows non-stationary transition probabilities contingent on Nino 3.4 index. An ad-hoc seasonal demand forecasting model considers weather conditions explicitly and socio-economic factors implicitly. Latin Hypercube sampling is employed to effectively sample probability density functions of flow and demand. Seasonal system operation is modelled as a mixed-integer optimization problem that aims at minimizing operational costs. It embeds the flexibility of modifying operational rules at different components, e.g., surface water treatment plants, desalination facilities, and groundwater pumping stations. The proposed framework is illustrated at a wholesale water supplier in Southeastern United States, Tampa Bay Water. The use of the tool is demonstrated in proving operational guidance in a typical drawdown and refill cycle of a regional reservoir. The DST provided: 1) probabilistic outlook of reservoir storage and chance of a successful refill by the end of rainy season; 2) operational expectations for large infrastructures (e.g., high service pumps and booster stations) throughout the season. Other potential use of such DST is also discussed.
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas
2015-06-01
An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.
Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system
NASA Astrophysics Data System (ADS)
Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei
2017-08-01
The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.
NASA Astrophysics Data System (ADS)
Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea
2017-04-01
Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macknick, Jordan; Zhou, Ella; O'Connell, Matthew
The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impactsmore » on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.« less
USDA-ARS?s Scientific Manuscript database
Atlantic salmon cultured in the NCWMAC breeding program have grown well in the fish culture systems during the first 3 years of operation. The systems were operated at approximately 98% reuse (2% makeup water on the basis of flow rate). The water recirculating systems maintained acceptable water qua...
Energy and water quality management systems for water utility's operations: a review.
Cherchi, Carla; Badruzzaman, Mohammad; Oppenheimer, Joan; Bros, Christopher M; Jacangelo, Joseph G
2015-04-15
Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems. For utilities with an installed EWQMS, operating cost savings of 8-15% have been reported due to higher use of cheaper tariff periods and better operating efficiencies, resulting in the reduction in energy consumption of ∼6-9%. This review provides the current state-of-knowledge on EWQMS typical structural features and operational strategies and benefits and drawbacks are analyzed. The review also highlights the challenges encountered during installation and implementation of EWQMS and identifies the knowledge gaps that should motivate new research efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy-Water Microgrid Opportunity Analysis at the University of Arizona's Biosphere 2 Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, Jennifer A; Kandt, Alicen J; Macknick, Jordan E
Microgrids provide reliable and cost-effective energy services in a variety of conditions and locations. There has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage synergies of operating renewable energy and water systems in a coordinated framework. Water systems can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributedmore » generation, Defense operations, and many parts of the world lacking critical infrastructure. NREL and the University of Arizona have been jointly researching energy-water microgrid opportunities at the University's Biosphere 2 (B2) research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the criticality of water and energy infrastructure, and its ability to operate connected to or disconnected from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs at the food-energy-water nexus. In this study, NREL used the B2 facility as a case study for an energy-water microgrid test site, with the potential to catalyze future energy-water system integration research. The study identified opportunities for energy and water efficiency and estimated the sizes of renewable energy and storage systems required to meet remaining loads in a microgrid, identified dispatchable loads in the water system, and laid the foundation for an in-depth energy-water microgrid analysis. The foundational work performed at B2 serves a model that can be built upon for identifying relevant energy-water microgrid data, analytical requirements, and operational challenges associated with development of future energy-water microgrids.« less
Upper Rio Grande water operations model: A tool for enhanced system management
Gail Stockton; D. Michael Roark
1999-01-01
The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.
2011-08-01
Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
USDA-ARS?s Scientific Manuscript database
When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...
Water Quality in Small Community Distribution Systems. A Reference Guide for Operators
The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...
An open source hydroeconomic model for California's water supply system: PyVIN
NASA Astrophysics Data System (ADS)
Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.
2016-12-01
Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.
NASA Astrophysics Data System (ADS)
Cheng, C. L.
2015-12-01
Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.
Drinking Water Supply without Use of a Disinfectant
NASA Astrophysics Data System (ADS)
Rajnochova, Marketa; Tuhovcak, Ladislav; Rucka, Jan
2018-02-01
The paper focuses on the issue of drinking water supply without use of any disinfectants. Before the public water supply network operator begins to consider switching to operation without use of chemical disinfection, initial assessment should be made, whether or not the water supply system in question is suitable for this type of operation. The assessment is performed by applying the decision algorithm. The initial assessment is followed by another decision algorithm which serves for managing and controlling the process of switching to drinking water supply without use of a disinfectant. The paper also summarizes previous experience and knowledge of this way operated public water supply systems in the Czech Republic.
A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana
Blakey, J.F.; Skinner, P.W.
1973-01-01
Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
...-Filing system does not support unlisted software, and the NRC Meta System Help Desk will not be able to... reverse osmosis system during normal plant operation to purify the water in the borated water storage... result of water returned from the RO System with lower boron concentration. Thus, no adverse effects from...
Regenerative (Regen) ECLSS Operations Water Balance
NASA Technical Reports Server (NTRS)
Tobias, Barry
2010-01-01
In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."
NASA JSC water monitor system: City of Houston field demonstration
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.
1979-01-01
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.
76 FR 52871 - Pseudomonas fluorescens Strain CL145A; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
..., hydroelectric power facility operator or water supply system operator. Potentially affected entities may include... (NAICS code 221111). Water supply and irrigation systems (NAICS code 221310). This listing is not... treatment areas are limited to completely enclosed pipe or water conveyance systems or concrete chambers...
NASA Astrophysics Data System (ADS)
Azmeri, Hadihardaja, Iwan K.; Shaskia, Nina; Admaja, Kamal Surya
2017-11-01
Rukoh Reservoir's construction was planned to be built in Krueng Rukoh Watershed with supplet ion from Krueng Tiro River. Rukoh Reservoir operating system as a multipurpose reservoir raised potential conflict of interest between raw water and irrigation water. In this study, the operating system of Rukoh Reservoirs was designed to supply raw water in Titeu Sub-District and replenish water shortage in Baro Irrigation Area which is not able to be served by the Keumala Weir. Reservoir operating system should be planned optimally so that utilization of water in accordance with service area demands. Reservoir operation method was analyzed by using optimization technique with nonlinear programming. Optimization of reservoir operation is intended to minimize potential conflicts of interest in the operation. Suppletion discharge from Krueng Tiro River amounted to 46.62%, which was calculated based on ratio of Baro and Tiro irrigation area. However, during dry seasons, water demands could not be fully met, so there was a shortage of water. By considering the rules to minimize potential conflicts of interest between raw water and irrigation water, it would require suppletion from Krueng Tiro amounted to 52.30%. The increment of suppletion volume could minimize conflicts of interest. It produced l00% reservoir reliability for raw water and irrigation demands. Rukoh reservoir could serve raw water demands of Titeu Sub-District and irrigation demands of Baro irrigation area which is covering an area of 6,047 hectars. Reservoir operation guidelines can specify reservoir water release to balance the demands and the target storage.
UV DISINFECTION GUIDANCE MANUAL FOR THE ...
Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.
Uetera, Yushi; Kishii, Kozue; Yasuhara, Hiroshi; Kumada, Naohito; Moriya, Kyoji; Saito, Ryoichi; Okazaki, Mitsuhiro; Misawa, Yoshiki; Kawamura, Kunio
2013-01-01
This report deals with the construction and management of the reverse osmosis (RO) water system for final rinsing of surgical instruments in the washer-disinfector. Numerous operational challenges were encountered in our RO water system and these were analyzed utilizing the Ishikawa Fishbone diagram. The aim was to find potential problems and promote preventive system management for RO water. It was found that the measures that existed were inappropriate for preventing contamination in the heat-labile RO water system. The storage tank was found to be significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors were found when a new water engineer took over the duty from his predecessor. It was also found that there were some deficiencies in the standard operating procedures (SOPs), and that on-the-job training was not enough. The water engineer failed to disinfect the sampling port and water drainage system. The RO membrane had been used for 4 years, even though the SOP standard specified changing it as every 3 years. Various bacteria, such as Rothia mucilaginosa, were cultured from the RO water sampled from the equipment. Because Rothia mucilaginosa is a resident in the oral cavity and upper respiratory tract, it is believed that the bacteria were introduced into the system by the maintenance personnel or working environment. Therefore, the presence of R. mucilaginosa implied the failure of sanitary maintenance procedures. This study suggests that water systems should be designed based on the plans for profound system maintenance. It also suggests that SOP and on-the job training are essential to avoid any operator errors. These results must be carefully considered when either constructing new RO systems or performing maintenance and periodical examination of the equipment. Reverse osmosis (RO) water is used for final rinsing in our washer-disinfector. The authors used the Ishikawa Fishbone diagram to clarify the critical points for optimizing RO water quality. There existed no measures to prevent contamination in the heat-labile RO water system. The storage tank was significantly contaminated and had to be replaced with a new one equipped with a sampling port and water drainage system. Additional filters and an UV treatment lamp were installed. The whole system disinfection started 1.5 years later using a peracetic acid-based compound after confirming the material compatibility. Operator errors occurred when a new water engineer took over the duty from his predecessor. There were neither standard operating procedures (SOPs) nor on-the-job training. The new water engineer had failed to disinfect the sampling port and water drainage system. Rothia mucilaginosa was cultured from the RO water. It is a resident in the oral cavity and upper respiratory tract. This implied the possible failure of sanitary procedures in the system maintenance. The Ishikawa Fishbone diagram was useful for this study. It suggests that water systems should be designed with plans for system maintenance taken into account. It also suggests that SOP and on-the job training are essential in order to avoid operator errors.
NASA Astrophysics Data System (ADS)
Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.
2016-12-01
The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.
Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy
NASA Technical Reports Server (NTRS)
Carter, Layne; Tabb, David; Anderson, Molly
2017-01-01
Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.
Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H
2016-11-01
Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.
Solar-driven membrane distillation demonstration in Leupp, Arizona.
Ravisankar, Vishnu Arvind; Seaman, Robert; Mirchandani, Sera; Arnold, Robert G; Ela, Wendell P
2016-03-01
The Navajo Nation is the largest and one of the driest Native American reservations in the US. The population in the Navajo Nation is sporadically distributed over a very large area making it extremely ineffective to connect homes to a centralized water supply system. Owing to this population distribution and the multi decadal drought prevailing in the region, over 40% of the 300,000 people living on Navajo Tribal Lands lack access to running potable water. For many people the only alternative is hauling water from filling stations, resulting in economic hardship and limited supply. A solution to this problem is a de-centralized off-grid water source. The University of Arizona and US Bureau of Reclamation's Solar Membrane Distillation (SMD), stand-alone, pilot desalination system on the Navajo Reservation will provide an off-grid source of potable water; the pilot will serve as a proximal water source, ease the financial hardships caused by the drought, and provide a model for low-cost water treatment systems in arid tribal lands. Bench-scale experiments and an earlier field prototype plant showed viable operation of a solar heated, membrane distillation (MD) system, but further optimization is required. The objectives of the Navajo pilot study are to i) demonstrate integration of solar collectors and membrane distillation, ii) optimize operational parameters, iii) demonstrate and monitor technology performance during extended duration operation, and iv) facilitate independent system operation by the Navajo Water Resources Department, including hand-over of a comprehensive operations manual for implementation of subsequent SMD systems. The Navajo SMD system is designed as a perennial installation that includes remote communication of research data and full automation for remote, unmanned operation.
Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine
2015-01-01
There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda. PMID:26516883
Huttinger, Alexandra; Dreibelbis, Robert; Roha, Kristin; Ngabo, Fidel; Kayigamba, Felix; Mfura, Leodomir; Moe, Christine
2015-10-27
There is a critical need for safe water in healthcare facilities (HCF) in low-income countries. HCF rely on water supplies that may require additional on-site treatment, and need sustainable technologies that can deliver sufficient quantities of water. Water treatment systems (WTS) that utilize ultrafiltration membranes for water treatment can be a useful technology in low-income countries, but studies have not systematically examined the feasibility of this technology in low-income settings. We monitored 22 months of operation of 10 WTS, including pre-filtration, membrane ultrafiltration, and chlorine residual disinfection that were donated to and operated by rural HCF in Rwanda. The systems were fully operational for 74% of the observation period. The most frequent reasons for interruption were water shortage (8%) and failure of the chlorination mechanism (7%). When systems were operational, 98% of water samples collected from the HCF taps met World Health Organization (WHO) guidelines for microbiological water quality. Water quality deteriorated during treatment interruptions and when water was stored in containers. Sustained performance of the systems depended primarily on organizational factors: the ability of the HCF technician to perform routine servicing and repairs, and environmental factors: water and power availability and procurement of materials, including chlorine and replacement parts in Rwanda.
NASA Astrophysics Data System (ADS)
van der Zwan, Rene
2013-04-01
The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... level be raised to support SSF RC Makeup System operability. Thus, the SFP water level will not be..., but should note that the NRC's E-Filing system does not support unlisted software, and the NRC Meta... a reverse osmosis system during normal plant operation to remove silica from borated water storage...
2013-06-01
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...System Permanent Easement (acres) ................................................. 15 Table 3.4: Comparison of Construction and Operation ...cultural, transportation and socioeconomic effects associated with the proposed construction and operation of an alternate water supply system and
Description of water-systems operations in the Arkansas River basin, Colorado
Abbott, P.O.
1985-01-01
To facilitate a current project modeling the hydrology of the Arkansas River basin in Colorado, a description of the regulation of water in the basin is necessary. The geographic and climatic setting of the Arkansas River basin that necessitates the use, reuse, importation, and storage of water are discussed. The history of water-resource development in the basin, leading to the present complex of water systems, also is discussed. Municipal, irrigation, industrial, and multipurpose water systems are described. System descriptions are illustrated with schematic line drawings, and supplemented with physical data tables for the lakes, tunnels, conduits, and canals in the various systems. Copies of criteria under which certain of the water systems operate, are included. (USGS)
NASA Astrophysics Data System (ADS)
Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha
2016-09-01
A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.
International Space Station Water Balance Operations
NASA Technical Reports Server (NTRS)
Tobias, Barry; Garr, John D., II; Erne, Meghan
2011-01-01
In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers manage this new concept of "water balance."
Edwards, M.D.
1987-01-01
The Water Resources Division of the U.S. Geological Survey is developing a National Water Information System (NWIS) that will integrate and replace its existing water data and information systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information, and Water Resources Scientific Information Center programs. It will be a distributed data system operated as part of the Division 's Distributed Information System, which is a network of computers linked together through a national telecommunication network known as GEONET. The NWIS is being developed as a series of prototypes that will be integrated as they are completed to allow the development and implementation of the system in a phased manner. It also is being developed in a distributed manner using personnel who work under the coordination of a central NWIS Project Office. Work on the development of the NWIS began in 1983 and it is scheduled for completion in 1990. This document presents an overall plan for the design, development, implementation, and operation of the system. Detailed discussions are presented on each of these phases of the NWIS life cycle. The planning, quality assurance, and configuration management phases of the life cycle also are discussed. The plan is intended to be a working document for use by NWIS management and participants in its design and development and to assist offices of the Division in planning and preparing for installation and operation of the system. (Author 's abstract)
Role of Educational Strategies for Human Resources in Green Infrastructure Operation and Maintenance
NASA Astrophysics Data System (ADS)
Ebrahimi, G.; Thurm, B.; Öberg, G.
2014-12-01
Rainwater harvesting and water reuse are receiving increasing attention as they hold the potential to effectively improve water conservation efforts. While many technical solutions have been developed, alternative water systems in built environments face significant challenges in the implementation and operational phases. The aim of this study is to examine obstacles to the implementation of alternative water systems in practice and identify criteria of feasible and sustainable solutions that allow bypassing of the identified obstacles. Interviews were conducted with planners, system designers and operators to find out which factors that central actors believe influence successful implementation of such systems. The results were analyzed in light of the literature. The actual performance of the water harvesting and reuse systems in four recently built green buildings in the Province of British Columbia, Canada was analyzed in light of the predicted outcome, according to the criteria identified in the interviews. It was found that the major obstacle to success is that the practical challenges involved in the implementation of alternative systems are underestimated. This, for example, leads to that education strategies for operational staff are not developed, and the staff is left floundering. This study highlights the importance of recognizing the need for strategic and directed educational programs for the human resources who are involved in operating and maintaining rainwater harvesting and water reuse systems.
Power System Operations With Water Constraints
NASA Astrophysics Data System (ADS)
Qiu, F.; Wang, J.
2015-12-01
The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.
USDA-ARS?s Scientific Manuscript database
A six-month trial was conducted to compare the effects of high and low make-up water flushing rates on rainbow trout performance and water quality in replicated water reuse aquaculture systems (WRAS). Six identical 9.5 m3 WRAS, containing a single 5.3 m3 tank and operated at a total recirculating fl...
Bacterial populations were examined in a simulated chloraminated drinking water distribution system (i.e. loop). The loop (BW-AB-I) received chlorinated municipal water (BW-C) amended with ammonia (2mg/L monochloramine). After six years of continuous operation, the operational ...
Hydraulics for Operators. Training Module 1.330.2.77.
ERIC Educational Resources Information Center
Bengston, Harlan H.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the application of hydraulic principles for operation and maintenance of water supply systems, water distribution systems, wastewater treatment systems and wastewater collection systems. Included are objectives, instructor guides,…
NASA Astrophysics Data System (ADS)
Lee, S.; Hamlet, A. F.; Burges, S. J.
2008-12-01
Climate change in the Western U.S. will bring systematic hydrologic changes affecting many water resources systems. Successful adaptation to these changes, which will be ongoing through the 21st century, will require the 'rebalancing' of competing system objectives such as water supply, flood control, hydropower production, and environmental services in response to hydrologic (and other) changes. Although fixed operating policies for the operation of reservoirs has been a traditional approach to water management in the 20th century, the rapid pace of projected climate shifts (~0.5 F per decade), and the prohibitive costs of recursive policy intervention to mitigate impacts, suggest that more sophisticated approaches will be needed to cope with climate change on a long term basis. The use of 'dynamic rule curves' is an approach that maintains some of the key characteristics of current water management practice (reservoir rule curves) while avoiding many of the fundamental drawbacks of traditional water resources management strategies in a non-stationary climate. In this approach, water resources systems are optimized for each operational period using ensemble streamflow and/or water demand forecasts. The ensemble of optimized reservoir storage traces are then analyzed to produce a set of unique reservoir rule curves for each operational period reflecting the current state of the system. The potential advantage of this approach is that hydrologic changes associated with climate change (such as systematically warmer temperatures) can be captured explicitly in operational hydrologic forecasts, which would in turn inform the optimized reservoir management solutions, creating water resources systems that are largely 'self tending' as the climate system evolves. Furthermore, as hydrologic forecasting systems improve (e.g. in response to improved ENSO forecasting or other scientific advances), so does the performance of reservoir operations. An example of the approach is given for flood control in the Columbia River basin.
Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R
2012-02-01
Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.
NASA Technical Reports Server (NTRS)
Namkoong, D.
1976-01-01
A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.
NASA Technical Reports Server (NTRS)
Namkoong, D.
1976-01-01
A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.
Water-gel for gating graphene transistors.
Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho
2014-05-14
Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin
2013-04-01
Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2013-04-01
Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total water stored in the reservoirs) and the month of the year as inputs; and the demand deliveries as outputs. The developed simulation management model integrates the fuzzy-ruled system of the operation of the two main reservoirs of the basin with the corresponding mass balance equations, the physical or boundary conditions and the water allocation rules among the competing demands. Historical information on inflow time series is used as inputs to the model simulation, being trained and validated using historical information on reservoir storage level and flow in several streams of the Mijares river. This methodology provides a more flexible and close to real policies approach. The model is easy to develop and to understand due to its rule-based structure, which mimics the human way of thinking. This can improve cooperation and negotiation between managers, decision-makers and stakeholders. The approach can be also applied to analyze the historical operation of the reservoir (what we have called a reservoir operation "audit").
Developing an Army Strategy for Building Partner Capacity for Stability Operations
2010-01-01
and redistribute essen- tial supplies, food, and medicine within an affected region, or deliver essential items that are not available locally or...2006, p. 5-15. 46 Developing an Army Strategy for BPC for Stability Operations • Build, restore, maintain, and operate water purification plants ...and potable water distribution systems.73 The primary objective of this ability is to ensure that water treatment plants and the dis- tribution systems
The impact of integrated water management on the Space Station propulsion system
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1987-01-01
The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule... must include the following requirements for procedures for disinfection and flushing of aircraft water system. (i) The air carrier must conduct disinfection and flushing of the aircraft water system in...
Programmed Training for Water/Wastewater Operators.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual is aimed at the water and wastewater technician who has the responsibility for monitoring the water environment. The televised programmed training stresses the interaction of three components: the program production and operation; group leaders; and operators, including distribution and collection system personnel. The academic…
NASA Astrophysics Data System (ADS)
Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde
2017-04-01
Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.
Code of Federal Regulations, 2011 CFR
2011-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
Code of Federal Regulations, 2010 CFR
2010-04-01
... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...
7 CFR 1980.313 - Site and building requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...
NASA Technical Reports Server (NTRS)
Bazley, Jesse
2015-01-01
The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.
Code of Federal Regulations, 2011 CFR
2011-07-01
... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... all of the aircraft it owns or operates that are public water systems comply with all provisions of.... Aircraft water system means an aircraft that qualifies as a public water system under the Safe Drinking... system include the water service panel, the filler neck of the aircraft finished water storage tank, and...
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...
NASA Technical Reports Server (NTRS)
Romanowski, William E. (Inventor); Suljak, George T. (Inventor)
1989-01-01
A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.
Halon Gas and Library Fire Protection.
ERIC Educational Resources Information Center
Pacey, Antony
1991-01-01
Describes the operation of halon gas fire extinguishing systems, which have been installed in a number of libraries and archives across Canada where protection of special collections from water and mold damage resulting from operation of a standard water sprinkler system is paramount. The advantages and disadvantages of this type of system are…
Defense Infrastructure: Department of Defense Renewable Energy Initiatives
2010-04-26
Operational 2005 No 2009 10 280 Dept Navy NAVFAC Hawaii HI Solar Water Heating Systems, Fort Kamehameha WWTF Solar Thermal Fully Operational 2006 Yes... Kamehameha WWTF 0.00 50.00 Reduces fossil fuel use, increases energy security Supports 10 USC 2911 renewable energy goal Supports 10 USC 2911...renewable energy goal Solar Water Heating Systems, Fort Kamehameha WWTF 281 Dept Navy NAVFAC Hawaii HI Solar Water Heating System, Building X-11
NASA Astrophysics Data System (ADS)
Tzabiras, John; Spiliotopoulos, Marios; Kokkinos, Kostantinos; Fafoutis, Chrysostomos; Sidiropoulos, Pantelis; Vasiliades, Lampros; Papaioannou, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
The overall objective of this work is the development of an Information System which could be used by stakeholders for the purposes of water management as well as for planning and strategic decision-making in semi-arid areas. An integrated modeling system has been developed and applied to evaluate the sustainability of water resources management strategies in Lake Karla watershed, Greece. The modeling system, developed in the framework of "HYDROMENTOR" research project, is based on a GIS modelling approach which uses remote sensing data and includes coupled models for the simulation of surface water and groundwater resources, the operation of hydrotechnical projects (reservoir operation and irrigation works) and the estimation of water demands at several spatial scales. Lake Karla basin was the region where the system was tested but the methodology may be the basis for future analysis elsewhere. Τwo (2) base and three (3) management scenarios were investigated. In total, eight (8) water management scenarios were evaluated: i) Base scenario without operation of the reservoir and the designed Lake Karla district irrigation network (actual situation) • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation ii) Base scenario including the operation of the reservoir and the Lake Karla district irrigation network • Reduction of channel losses • Alteration of irrigation methods • Introduction of greenhouse cultivation The results show that, under the existing water resources management, the water deficit of Lake Karla watershed is very large. However, the operation of the reservoir and the cooperative Lake Karla district irrigation network coupled with water demand management measures, like reduction of water distribution system losses and alteration of irrigation methods, could alleviate the problem and lead to sustainable and ecological use of water resources in the study area. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation"
NASA Astrophysics Data System (ADS)
Wahyudi, Slamet Imam; Adi, Henny Pratiwi; Santoso, Esti; Heikoop, Rick
2017-03-01
Settlement in the Jati District, Kudus Regency, Central Java Province, Indonesia, is growing rapidly. Previous paddy fields area turns into new residential, industrial and office buildings. The rain water collected in small Kencing river that flows into big Wulan River. But the current condition, during high rain intensity Wulan river water elevation higher than the Kencing river, so that water can not flow gravity and the area inundated. To reduce the flooding, required polder drainage system by providing a long channel as water storage and pumping water into Wulan river. How to get optimal value of water storage volume, drainage system channels and the pump capacity? The result used to be efficient in the operation and maintenance of the polder system. The purpose of this study is to develop some scenarios water storage volume, water gate operation and to get the optimal value of operational pumps removing water from the Kencing River to Wulan River. Research Method is conducted by some steps. The first step, it is done field orientation in detail, then collecting secondary data including maps and rainfall data. The map is processed into Watershed or catchment area, while the rainfall data is processed into runoff discharge. Furthermore, the team collects primary data by measuring topography to determine the surface and volume of water storage. The analysis conducted to determine of flood discharge, water channel hydraulics, water storage volume and pump capacity corresponding. Based on the simulating of long water storage volume and pump capacity with some scenario trying, it can be determined optimum values. The results used to be guideline in to construction proses, operation and maintenance of the drainage polder system.
Design description of the Schuchuli Village photovoltaic power system
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.
1981-01-01
A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.
Screening reactor steam/water piping systems for water hammer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, P.
1997-09-01
A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greatermore » than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.« less
Biofilm formation and control in a simulated spacecraft water system - Two-year results
NASA Technical Reports Server (NTRS)
Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.
1991-01-01
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.
Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
NASA Astrophysics Data System (ADS)
Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.
2018-04-01
Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... reconstructed conveyances, water coolers shall be an integral part of the closed system. (d) Water filters if... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water systems; constant temperature bottles. 1250... INTERSTATE CONVEYANCE SANITATION Equipment and Operation of Land and Air Conveyances § 1250.42 Water systems...
Park, G L; Schäfer, A I; Richards, B S
2012-01-01
Renewable energy powered membrane systems that are directly-connected must take account of both the inherent fluctuations and the intermittency of the energy resource. In order to determine the effect of intermittent operation, a membrane system was tested with variables of (i) amplitude from 60 to 300 W and (ii) length of time with no power from 0.5 to 3 min. This was performed over one hour periods with six on/off cycles to simulate the system operating under intermittent operation for short periods of time when directly-connected to a small wind turbine. The setup used a Filmtec BW30-4040 brackish water reverse osmosis membrane with feed waters of 2,750 mg/L and 5,500 mg/L NaCl. The results showed that the membrane system produced potable water under the majority of intermittency experiments performed. There was a relatively large increase in the average salt concentration of the permeate, especially when the system was off for shorter periods of time (0.5-1 min). Longer periods of no power (1-3 min) did not have as significant an effect on the average water quality. This is important when the need for energy buffering or short term storage is considered for these systems as it shows the potential for improving the overall flux and water quality using temporary energy storage.
Conceptual design for the National Water Information System
Edwards, Melvin D.; Putnam, Arthur L.; Hutchison, Norman E.
1986-01-01
The Water Resources Division of the U.S. Geological Survey began the design and development of a National Water Information System (NWIS) in 1983. The NWIS will replace and integrate the existing data systems of the National Water Data Storage and Retrieval System, National Water Data Exchange, National Water-Use Information Program, and Water Resources Scientific Information Center. The NWIS has been designed as an interactive, distributed data system. The software system has been designed in a modular manner which integrates existing software functions and allows multiple use of software modules. The data base has been designed as a relational data model that allows integrated storage of the existing water data, water-use data, and water-data indexing information by using a common relational data base management system. The NWIS will be operated on microcomputers located in each of the Water Resources Division's District offices and many of its State, subdistrict, and field offices. The microcomputers will be linked together through a national telecommunication network maintained by the U. S. Geological Survey. The NWIS is scheduled to be placed in operation in 1990.
NASA Astrophysics Data System (ADS)
Giuliani, M.; Pianosi, F.; Castelletti, A.
2015-11-01
Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator's experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control.
Comparison of two total energy systems for a diesel power generation plant. [deep space network
NASA Technical Reports Server (NTRS)
Chai, V. W.
1979-01-01
The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.
NASA Astrophysics Data System (ADS)
Welch, K. M.
1981-09-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the design goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data.
RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS
Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period. The solar facility utilizes 35 collectors with a total aperture area of 8,960 ft/sup 2/. The system is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn, supplies water at 180/sup 0/F to a rotoclave (underground tank) for themore » concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
NASA Astrophysics Data System (ADS)
Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H. R.; Giuliani, M.; Castelletti, A.
2016-09-01
Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.
NASA Astrophysics Data System (ADS)
Weiss, W. J.; Becker, W.; Schindler, S.
2012-12-01
The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system simulation model (OASIS, HydroLogics, Inc.), reservoir water quality models, a near real-time monitoring network, and hydrologic forecasts to provide analytical support for both long-term planning and near-term operations. The OST helps managers and operators balance multiple objectives, including water supply reliability, water quality, and environmental and community release objectives. This paper will describe the results of initial testing to evaluate the potential to reduce DBP levels by managing source water withdrawals to minimize the transport of natural organic matter (NOM) precursors from upper reservoirs. Operating rules were developed that take advantage of selective withdrawal capabilities at some upstate reservoirs and the inherent flexibility of the overall water supply system, seeking to minimize DBPs within the larger framework of water supply, water quality, environmental, and regulatory objectives. The results demonstrated that there is substantial flexibility within the system to manage DBP levels, in some cases providing the potential for reductions of DBP precursors of nearly 10%. Additional research is underway that seeks to better understand the sources of natural organic matter in the NYC watershed to provide guidance for on-line monitoring to be used with the OST to support real-time operation support for DBP control.
Waterworks Operator Training Manual.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
Sixteen self-study waterworks operators training modules are provided. Module titles are the following: basic mathematics, basic chemistry, analysis procedures, microbiology, basic electricity, hydraulics, chlorination, plant operation, surface water, ground water, pumps, cross connections, distribution systems, safety, public relations, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less
Managing the Nation's water in a changing climate
Lins, H.F.; Stakhiv, E.Z.
1998-01-01
Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydrological events.
1986-07-01
COMPUTER-AIDED OPERATION MANAGEMENT SYSTEM ................. 29 Functions of an Off-Line Computer-Aided Operation Management System Applications of...System Comparisons 85 DISTRIBUTION 5V J. • 0. FIGURES Number Page 1 Hardware Components 21 2 Basic Functions of a Computer-Aided Operation Management System...Plant Visits 26 4 Computer-Aided Operation Management Systems Reviewed for Analysis of Basic Functions 29 5 Progress of Software System Installation and
Energy-Water Microgrid Case Study at the University of Arizona's BioSphere 2
NASA Astrophysics Data System (ADS)
Daw, J.; Macknick, J.; Kandt, A.; Giraldez, J.
2016-12-01
Microgrids can provide reliable and cost-effective energy services in a variety of conditions and locations. To date, there has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage the synergies associated with designing and operating renewable energy and water systems in a coordinated framework. Water and wastewater treatment equipment can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Co-management and optimization of energy and water resources could lead to improved reliability and economic operating conditions. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributed generation, Defense operations, and many parts of the world lacking critical infrastructure.The National Renewable Energy Laboratory (NREL) and the University of Arizona have been jointly researching energy-water microgrid opportunities through an effort at the university's BioSphere 2 (B2) Earth systems science research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the existence and criticality of water and energy infrastructure, and its ability to operate connected-to or disconnected-from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs in the food-energy-water nexus. The research effort at B2 identified the technical potential and associated benefits of an energy-water microgrid through the evaluation of energy ancillary services and peak load reductions and quantified the potential for B2 water-related loads to be utilized and modified to provide grid services in the context of an optimized energy-water microgrid. The foundational work performed at B2 also serves a model that can be built upon for identifying relevant energy-water microgrid data, analytical requirements, and operational challenges associated with development of future energy-water microgrids.
NASA Astrophysics Data System (ADS)
Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel
2014-05-01
The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.
Drinking Water Microbiome as a Screening Tool for ...
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. The current research investigated the viability of biological signatures as potential indicators of operational failure and predictors of nitrification in DWDS. For this purpose, we examined the bulk water (BW) bacterial microbiome of a chloraminated DWDS simulator operated through successive operational schemes, including an episode of nitrification. BW data was chosen because sampling of BW in a DWDS by water utility operators is relatively simpler and easier than collecting biofilm samples from underground pipes. The methodology applied a supervised classification machine learning approach (naïve Bayes algorithm) for developing predictive models for nitrification. Classification models were trained with biological datasets (Operational Taxonomic Unit [OTU] and genus-level taxonomic groups) generated using next generation high-throughput technology, and divided into two groups (i.e. binary) of positives and negatives (Failure and Stable, respectively). We also invest
River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998
Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.
2001-01-01
The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... must include the following requirements for procedures for disinfection and flushing of aircraft water system. (i) The air carrier must conduct disinfection and flushing of the aircraft water system in... water procedures; (ii) Sample collection procedures; (iii) Disinfection and flushing procedures; (iv...
40 CFR 141.626 - Operational evaluation levels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 141.626 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Stage 2 Disinfection Byproducts Requirements § 141... operations, excess storage capacity, distribution system flushing, changes in sources or source water quality...
Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs
NASA Astrophysics Data System (ADS)
Galimova, L. A.
2017-10-01
Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.
Scholz, Miklas
2004-12-01
The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.G.; Wegman, S.
1998-04-01
The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for materialmore » and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.« less
NASA Astrophysics Data System (ADS)
Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.
2016-12-01
Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.
Gluntz, Douglas M.; Taft, William E.
1994-01-01
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.
2015-12-01
The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.
Lucchetti, G.; Gray, G.A.
1988-01-01
A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.
NASA Astrophysics Data System (ADS)
O'Connell, M.; Macknick, J.; Voisin, N.; Fu, T.
2017-12-01
The western US electric grid is highly dependent upon water resources for reliable operation. Hydropower and water-cooled thermoelectric technologies represent 67% of generating capacity in the western region of the US. While water resources provide a significant amount of generation and reliability for the grid, these same resources can represent vulnerabilities during times of drought or low flow conditions. A lack of water affects water-dependent technologies and can result in more expensive generators needing to run in order to meet electric grid demand, resulting in higher electricity prices and a higher cost to operate the grid. A companion study assesses the impact of changes in water availability and air temperatures on power operations by directly derating hydro and thermo-electric generators. In this study we assess the sensitivities and tipping points of water availability compared with higher fuel prices in electricity sector operations. We evaluate the impacts of varying electricity prices by modifying fuel prices for coal and natural gas. We then analyze the difference in simulation results between changes in fuel prices in combination with water availability and air temperature variability. We simulate three fuel price scenarios for a 2010 baseline scenario along with 100 historical and future hydro-climate conditions. We use the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions under each combination of fuel price and water constraint. Some of the metrics evaluated are total production cost, generation type mix, emissions, transmission congestion, and reserve procurement. These metrics give insight to how strained the system is, how much flexibility it still has, and to what extent water resource availability or fuel prices drive changes in the electricity sector operations. This work will provide insights into current electricity operations as well as future cases of increased penetration of variable renewable generation technologies such as wind and solar.
Mineralizing urban net-zero water treatment: Phase II field ...
Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo
Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia
NASA Technical Reports Server (NTRS)
Mathur, A. K.; Pederson, S.
1982-01-01
The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).
NASA Astrophysics Data System (ADS)
Wang, L.; Koike, T.
2010-12-01
The climate change-induced variability in hydrological cycles directly affects regional water resources management. For improved multiple multi-objective reservoir operation, an integrated modeling system has been developed by incorporating a global optimization system (SCE-UA) into a distributed biosphere hydrological model (WEB-DHM) coupled with the reservoir routing module. The reservoir storage change is estimated from the difference between the simulated inflows and outflows; while the reservoir water level can be defined from the updated reservoir storage by using the H-V curve. According to the reservoir water level, the new operation rule can be decided. For optimization: (1) WEB-DHM is calibrated for each dam’s inflows separately; (2) then the calibrated WEB-DHM is used to simulate inflows and outflows by assuming outflow proportional to inflow; and (3) the proportion coefficients are optimized with Shuffle Complex Evolution method (SCE-UA), to fulfill an objective function towards minimum flood risk at downstream and maximum reservoir water storage for future use. The GSMaP product offers hourly global precipitation maps in near real-time (about four hours after observation). Aiming at near real-time reservoir operation in large river basins, the integrated modeling system takes the inputs from both an operational global quantitative precipitation forecast (JMA-GPV; to achieve an optimal operation rule in the assumed lead time period) and the GSMaP product (to perform current operation with the obtained optimal rule, after correction by gauge rainfall). The newly-developed system was then applied to the Red River Basin, with an area of 160,000 km2, to test its performance for near real-time dam operation. In Vietnam, three reservoirs are located in the upstream of Hanoi city, with Hoa Binh the largest (69% of total volume). After calibration with the gauge rainfall, the inflows to three reservoirs are well simulated; the discharge and water level at Hanoi city are also well reproduced with the actual dam releases. With the corrected GSMaP rainfall (by using gauge rainfall), the inflows to reservoirs and the water level at Hanoi city can be also reasonably reproduced. The study aims at achieving an optimal operation rule in the lead time period (with the quantitative precipitation forecast) and then using it to perform current operation (with the corrected GSMaP rainfall). At Hanoi, there are relatively low flows in July, but high floods in August 2005. Results show that with the actual operation, dangerous water level in Hanoi was observed; while with the lead-time operation, the water level in Hanoi can be obviously cut down, and maximum water storage is also achieved for Hoa Binh reservoir at the end of flood season.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
...-AF22 National Pollutant Discharge Elimination System (NPDES) Concentrated Animal Feeding Operation... co-proposes two options for obtaining basic information from CAFOs to support EPA in meeting its water quality protection responsibilities under the Clean Water Act (CWA). The purpose of this co...
75 FR 21344 - Habitat Conservation Plan for City of Kent, Washington
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
... Supply System adjacent to Rock Creek, King County, Washington. The Clark Springs Water Supply System... Springs Water Supply facilities; Maintenance of 320 acres of Kent-owned property as it relates to the protection of its water supply; and Operation and maintenance of a water augmentation system for the...
NASA Astrophysics Data System (ADS)
van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke
2016-04-01
The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the communication of pump operation setpoints to the SCADA system. In case of failing communication, backup procedures are programmed in the PLC of the pump stations. In that case the old on/off operation based on local water levels will be used. The system has been operational since January 2016 and has been monitored since then. In addition to monitoring the positive effect on the inflow at the WWTP, an important issue is the possible sedimentation in the sewer systems. This will be monitored too.
NASA Astrophysics Data System (ADS)
Moon, Jiwon; Yeo, In Wook
2013-04-01
Underground unlined caverns have been constructed in fractured rocks to stockpile oil and petroleum products, where they are hydraulically contained by natural groundwater pressure. However, for the case that natural groundwater pressure is not maintained at the required level, water curtain boreholes, through which water is injected, are often constructed above the cavern as engineering barrier to secure water pressure enough to overwhelm the operational pressure of the cavern. For secure containment of oil and petroleum products inside the cavern, it is essential to keep water pressure around the cavern higher than operational pressure of the cavern using either natural groundwater pressure or engineering barrier. In the Republic of Korea, a number of underground stockpile bases are being operated by Korea National Oil Corporation (KNOC) and private companies, most of which have water curtain system. The criterion that KNOC adopts for water curtain system design and operation such as the vertical distance from the cavern and operational injection rate is based on the Åberg hypothesis that the vertical hydraulic gradient should be larger than one. The criterion has been used for maintaining oil storage cavern without its thorough review. In this study, systematic numerical works have been done for reviewing the Åberg criterion. As groundwater predominantly takes places through fractures in underground caverns, discrete fracture modeling approach is essential for this study. Fracture data, obtained from boreholes drilled at the stage of site investigation at the Yeosu stockpile base in Korea, were statistically analyzed in terms of orientation and intensity, which were used to generate the site descriptive three dimensional fracture networks. Then, groundwater flow modeling has been carried out for the fracture networks. Constant head boundaries were applied along the circumference of the cavern and water curtain boreholes. Main flow channel and hydraulic connectivity between water curtain boreholes and the caverns have been identified, along which hydraulic heads are monitored to find out whether the required hydraulic pressure is maintained around the cavern. The flow modeling has been repeatedly carried out at different constant head boundary conditions to create the criterion for the optimal operation of water curtain system.
Navy Safety Center data on the effects of fire protection systems on electrical equipment
NASA Astrophysics Data System (ADS)
Levine, Robert S.
1991-04-01
Records of the Navy Safety Center, Norfolk, VA were reviewed to find data relevant to inadvertant operation of installed fire extinguishing systems in civilian nuclear power plants. Navy data show the incidence of collateral fire or other damage by fresh water on operating electrical equipment in submarines and in shore facilities is about the same as the civilian experience, about 30 percent. Aboard surface ships, however, the collateral damage incidence in much lower, about 15 percent. With sea water, the collateral damage incidence is at least 75 percent. It is concluded that the fire extinguisher water has to be contaminated, as by rust in sprinkler systems or deposited salt spray, for most collateral damage to occur. Reasons for inadvertant operation (or advertant operation) of firex systems at shore facilities, submarines, and surface ships resemble those for nuclear power plants. Mechanical or electrical failures lead the list, followed by mishaps during maintenance. Detector and alarm system failures are significant problems at Navy shore facilities, and significant at nuclear power plants. Fixed halon and CO2 systems in shore facilities cause no collateral damage. Lists of individual Navy incidents with water and with halon and carbon dioxide are included as appendices.
Flexible Distributed Energy & Water from Waste for Food and Beverage Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ruijie
Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) tomore » recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.« less
LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, R. P.; Bellah, W.
The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, Ruben P.; Bellah, Wendy
The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2017-01-01
The ISS WRS produces potable water from crew urine, crew latent, and Sabatier product water. This system has been operational on ISS since November 2008, producing over 30,000 L of water during that time. The WRS includes a Urine Processor Assembly (UPA) to produce a distillate from the crew urine. This distillate is combined with the crew latent and Sabatier product water and further processed by the Water Processor Assembly (WPA) to the potable water. The UPA and WPA use technologies commonly used on ISS for water purification, including filtration, distillation, adsorption, ion exchange, and catalytic oxidation. The primary challenge with the design and operation of the WRS has been with implementing these technologies in microgravity. The absence of gravity has created unique issues that impact the constituency of the waste streams, alter two-phase fluid dynamics, and increases the impact of particulates on system performance. NASA personnel continue to pursue upgrades to the existing design to improve reliability while also addressing their viability for missions beyond ISS.
Decision Support System for Reservoir Management and Operation in Africa
NASA Astrophysics Data System (ADS)
Navar, D. A.
2016-12-01
Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Calley, D. J.
1975-01-01
The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.
A water management decision support system contributing to sustainability
NASA Astrophysics Data System (ADS)
Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan
2017-04-01
Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high tide, water should be pumped. The goal of the pilot is to make the operation of the regional water authority more sustainable and cost-efficient. Sustainability can be achieved by minimizing the CO2 production trough minimizing the energy used for pumping. This work is showing the functionalities of the new decision support system, using RTC-Tools 2, through the example of a pilot project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, J.E.; Ratajczak, A.F.; Delombard, R.
1982-02-01
The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well,more » and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.« less
NASA Technical Reports Server (NTRS)
Martz, J. E.; Ratajczak, A. F.; Delombard, R.
1982-01-01
The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, K.M.
1981-01-01
The Loyola University site is a student dormitory in New Orleans, Louisiana whose active solar energy system is designed to supply 52% of the hot water demand. The system is equipped with 4590 square feet of flat-plate collectors, a 5000-gallon water tank, auxiliary water supplied at high temperature and pressure from a central heating plant with a gas-fired boiler, and a differential controller that selects from 5 operating modes. System performance data are given, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and system coefficient of performance. The solar fraction is well below the designmore » goal; this is attributed to great fluctuations in demand. Insolation, temperature, operation and solar energy utilization data are also presented. The performance of the collector, storage, and domestic hot water subsystems, the system operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, sensor technology, and typical monthly data. (LEW)« less
NASA Astrophysics Data System (ADS)
Broman, D.; Gangopadhyay, S.; McGuire, M.; Wood, A.; Leady, Z.; Tansey, M. K.; Nelson, K.; Dahm, K.
2017-12-01
The Upper Klamath River Basin in south central Oregon and north central California is home to the Klamath Irrigation Project, which is operated by the Bureau of Reclamation and provides water to around 200,000 acres of agricultural lands. The project is managed in consideration of not only water deliveries to irrigators, but also wildlife refuge water demands, biological opinion requirements for Endangered Species Act (ESA) listed fish, and Tribal Trust responsibilities. Climate change has the potential to impact water management in terms of volume and timing of water and the ability to meet multiple objectives. Current operations use a spreadsheet-based decision support tool, with water supply forecasts from the National Resources Conservation Service (NRCS) and California-Nevada River Forecast Center (CNRFC). This tool is currently limited in its ability to incorporate in ensemble forecasts, which offer the potential for improved operations by quantifying forecast uncertainty. To address these limitations, this study has worked to develop a RiverWare based water resource systems model, flexible enough to use across multiple decision time-scales, from short-term operations out to long-range planning. Systems model development has been accompanied by operational system development to handle data management and multiple modeling components. Using a set of ensemble hindcasts, this study seeks to answer several questions: A) Do a new set of ensemble streamflow forecasts have additional skill beyond what?, and allow for improved decision making under changing conditions? B) Do net irrigation water requirement forecasts developed in this project to quantify agricultural demands and reservoir evaporation forecasts provide additional benefits to decision making beyond water supply forecasts? C) What benefit do ensemble forecasts have in the context of water management decisions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a 1:12 mixture of water and propylene glycol which flows through the tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently used to preheat the temperature of the laundry water, kitchen water, and domestic potable water. Included in this report are: detailed drawings and flow chart; operational methodology; preventive maintenance instructions; general instructions and safety precautions; and a correctivemore » maintenance and tabulation of failure modes. Appendices include: manufacturers technical manual and component specifications; IBM data sensors and responsibilities; digital county monitor operations manual; and on site monitor operations manual. Reference CAPE-2834. (LS)« less
Recent California Water Transfers: Emerging Options in Water Management
1992-12-01
geographically separated, requiring the use of conveyance and storage systems controlled by other parties. The controversies and complexities of effecting ...systematic examination of the engineering and operational aspects of water transfers. Instead, the mechanics of economically effecting actual water...drought and is now part of almost all California urban water plans and operations. The current drought also has had significant effects on how water
1987-09-01
understanding of the water resources system. Operation CVSIM operates on a daily time-step and incorporates both surface and ground -water responses...subunits and calculates riparian evapotranspiration, pumpage, recharge, storage, and outflow. SEASID Operates Seaside coastal ground -water basin and...diversions. Reservoir effects included controlled releases to the river, spills, evaporation, and leakage. Ground -water flow in the upper watershed is
Four-man rated dual catalyst system for the recovery of water from urine
NASA Technical Reports Server (NTRS)
Budininkas, P.
1978-01-01
The catalytic system was integrated with a 4-man rated urine wick evaporator. During operation, urine vapor produced by the wick-evaporator was treated in the catalytic system to remove ammonia and volatile hydrocarbons, and water was recovered by condensation in a water cooled condenser. The system operated completely automatically and required no manual adjustments, except periodic supply of urine and removal of the recovered water. Although the system was designed for treating 0.325 kg urine per hour, this rate could be achieved only with a fresh wick, then gradually decreased as the wick became saturated with urine solids. The average urine treatment rates achieved during each of the three endurance tests were 0.137, 0.217, and 0.235 kg/hr. The quality of the recovered water meets drinking water standards, with the exception of a generally low pH.
NASA Astrophysics Data System (ADS)
Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.
2013-12-01
Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing the decision preferences guiding current operations. Our results show that the estimated policy closely captures the dynamics of current releases and flows for the Lower Susquehanna. After identifying the historical baseline policy, our proposed decision analytic framework then combines evolutionary many-objective optimization with visual analytics to discover improved operating policies. Our Lower Susquehanna results confirm that the system's current history-based operations are negatively biased to overestimate the reliability of the reservoir's multi-sector services. Moreover, our proposed framework has successfully identified alternative reservoir policies that are more robust to hydroclimatic uncertainties while being capable of better addressing the tradeoffs across the Conowingo Dam's multi-sector services.
46 CFR 35.40-18 - Water spray systems-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...
46 CFR 35.40-18 - Water spray systems-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...
Small Drinking Water Systems Research and Development
In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...
Bakalar, Goran
2016-01-01
There are high functioning and low functioning ballast water treatment systems on board ships. In this study, five systems were analysed so as to methodically examine the operational difficulties for ship crew members while giving important consideration to sustainable environment practices. Multi-criteria analysis, a questionnaire, survey and interviews were used as the research method so as to ascertain and corroborate existing problems on board ships, and the reliability of the systems was calculated. The co-insistency, maintenance and the efficiency of the systems, were shown as being the major problem as there are no systems for tracking ship ballast operations from land. The treatment system that used oxidants was, through multi criteria analysis, evaluated as being the best and was ranked first. However, the survey results showed that the ship's crew had serious problems with this system which difficult to solve during the ship's operations with cargo. The deoxygenation system was the most appropriate according to ballast water treatment criteria in the port or at sea. The treatment system which used electrolysis with oxidant was better in terms of efficacy and the treatment system electrolysis with ultra violet light was better in terms of the criterion environment pollution footprint. During further research, it was shown that 7 % of the surveyed crew members had major problems with operating ballast water treatment systems, including the system which was ranked first through multi criteria analysis. They by-passed these systems while continuing to ballast or de-ballast. It was calculated that of the total time needed for the ballast water treatment system operation, 9 % of this time was used for repairs or maintenance of the systems. Some examples are changing a used UV bulb, cleaning the filter or controlling the amount of oxidant which would be discharged into the sea. A conclusion was made and solution was suggested. The study results emphasised taking action in the interest of protecting the natural world, with particular attention being given to environmental protection to support human life.
The Role of Model Fidelity in Understanding the Food-Energy-Water Nexus at the Asset Level
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Lowry, T. S.; Behery, S.; Macknick, J.; Yang, Y. C. E.
2017-12-01
An improved understanding of the food-energy-water nexus at the asset level (e.g., power plant, irrigation ditch, water utility) is necessary for the efficient management and operations of connected infrastructure systems. Interdependencies potentially influencing the operations of a particular asset can be numerous. For example, operations of energy and agricultural assets depend on the delivery of water, which in turn depend on the physical hydrology, river/reservoir operations, water rights, the networked water infrastructure and other factors. A critical challenge becomes identification of those linkages central to the analysis of the system. Toward this need, a case study was conducted centered on the San Juan River basin, a major tributary to the Colorado River. A unique opportunity was afforded by the availability of two sets of coupled models built on the same simulation platform but formulated at distinctly different fidelities. Comparative analysis was driven by statistically downscaled climate data from three global climate models (emission scenario RCP 8.5) and planned growth in regional water demand. Precipitation was partitioned between evaporation, runoff and recharge using the Variable Infiltration Capacity (VIC) hydrologic model. Priority administration of small-scale water use of upland tributary flows was simulated using Colorado's StateMod model. Mainstem operations of the San Juan River, including releases from Navajo Reservoir, were subsequently modeled using RiverWare to estimate impacts on water deliveries, environmental flows and interbasin transfers out to the year 2100. Models differ in the spatial resolution, disaggregation of water use, infrastructure operations and representation of system dynamics. Comparisons drawn between this suite of coupled models provides insight into the value of model fidelity relative to assessing asset vulnerability to a range of uncertain growth and climate futures. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
NASA Astrophysics Data System (ADS)
Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.
2017-12-01
Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are otherwise challenging to observe. The method could allow water managers to document spatiotemporal variation in PWSS flow patterns, critical for interrogating the distribution system to inform operation decision making or disaster response, optimize water supply and, monitor and enforce water rights.
Gluntz, D.M.; Taft, W.E.
1994-12-20
A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.
3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...
3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA
NASA Astrophysics Data System (ADS)
Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.
2011-10-01
This paper develops alternative strategies for European call options for water purchase under hydrological uncertainties that can be used by water resources managers for decision making. Each alternative strategy maximizes its own objective over a selected sequence of future hydrology that is characterized by exceedance probability. Water trade provides flexibility and enhances water distribution system reliability. However, water trade between two parties in a regional water distribution system involves many issues, such as delivery network, reservoir operation rules, storage space, demand, water availability, uncertainty, and any existing contracts. An option is a security giving the right to buy or sell an asset; in our case, the asset is water. We extend a flow path-based water distribution model to include reservoir operation rules. The model simultaneously considers both the physical distribution network as well as the relationships between water sellers and buyers. We first test the model extension. Then we apply the proposed optimization model for European call options to the Tainan water distribution system in southern Taiwan. The formulation lends itself to a mixed integer linear programming model. We use the weighing method to formulate a composite function for a multiobjective problem. The proposed methodology provides water resources managers with an overall picture of water trade strategies and the consequence of each strategy. The results from the case study indicate that the strategy associated with a streamflow exceedence probability of 50% or smaller should be adopted as the reference strategy for the Tainan water distribution system.
NASA Astrophysics Data System (ADS)
Matonse, A. H.; Porter, J. H.; Frei, A.
2015-12-01
Providing an average 1.1 billion gallons (~ 4.2 x 106 cubic meters) of drinking water per day to approximately nine million people in New York City (NYC) and four upstate counties, the NYC water supply is among the world's largest unfiltered systems. In addition to providing a reliable water supply in terms of water quantity and quality, the city has to fulfill other flow objectives to serve downstream communities. At times, such as during extreme hydrological events, water quality issues may restrict water usage for parts of the system. To support a risk-based water supply decision making process NYC has developed the Operations Support Tool (OST). OST combines a water supply systems model with reservoir water quality models, near real time data ingestion, data base management and an ensemble hydrological forecast. A number of reports have addressed the frequency and intensities of extreme hydrological events across the continental US. In the northeastern US studies have indicated an increase in the frequency of extremely large precipitation and streamflow events during the most recent decades. During this presentation we describe OST and, using case studies we demonstrate how this tool has been useful to support operational decisions. We also want to motivate a discussion about how undergoing changes in patterns of hydrological extreme events elevate the challenge faced by water supply managers and the role of the scientific community to integrate nonstationarity approaches in hydrologic forecast and modeling.
Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey
Chang, Ming; Tasker, Gary D.; Nieswand, Steven
2001-01-01
Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.
Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida
NASA Technical Reports Server (NTRS)
1981-01-01
Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.
Water electrolysis system refurbishment and testing
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.
NASA Astrophysics Data System (ADS)
van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan
2015-04-01
In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.
NASA Astrophysics Data System (ADS)
Mortazavi-Naeini, Mohammad; Kuczera, George; Cui, Lijie
2014-06-01
Significant population increase in urban areas is likely to result in a deterioration of drought security and level of service provided by urban water resource systems. One way to cope with this is to optimally schedule the expansion of system resources. However, the high capital costs and environmental impacts associated with expanding or building major water infrastructure warrant the investigation of scheduling system operational options such as reservoir operating rules, demand reduction policies, and drought contingency plans, as a way of delaying or avoiding the expansion of water supply infrastructure. Traditionally, minimizing cost has been considered the primary objective in scheduling capacity expansion problems. In this paper, we consider some of the drawbacks of this approach. It is shown that there is no guarantee that the social burden of coping with drought emergencies is shared equitably across planning stages. In addition, it is shown that previous approaches do not adequately exploit the benefits of joint optimization of operational and infrastructure options and do not adequately address the need for the high level of drought security expected for urban systems. To address these shortcomings, a new multiobjective optimization approach to scheduling capacity expansion in an urban water resource system is presented and illustrated in a case study involving the bulk water supply system for Canberra. The results show that the multiobjective approach can address the temporal equity issue of sharing the burden of drought emergencies and that joint optimization of operational and infrastructure options can provide solutions superior to those just involving infrastructure options.
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Upgrades to the ISS Water Recovery System
NASA Technical Reports Server (NTRS)
Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.
2016-01-01
The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.
Economics of water injected air screw compressor systems
NASA Astrophysics Data System (ADS)
Venu Madhav, K.; Kovačević, A.
2015-08-01
There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.
Optimizing Hydropower Day-Ahead Scheduling for the Oroville-Thermalito Project
NASA Astrophysics Data System (ADS)
Veselka, T. D.; Mahalik, M.
2012-12-01
Under an award from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Water Power Program, a team of national laboratories is developing and demonstrating a suite of advanced, integrated analytical tools to assist managers and planners increase hydropower resources while enhancing the environment. As part of the project, Argonne National Laboratory is developing the Conventional Hydropower Energy and Environmental Systems (CHEERS) model to optimize day-ahead scheduling and real-time operations. We will present the application of CHEERS to the Oroville-Thermalito Project located in Northern California. CHEERS will aid California Department of Water Resources (CDWR) schedulers in making decisions about unit commitments and turbine-level operating points using a system-wide approach to increase hydropower efficiency and the value of power generation and ancillary services. The model determines schedules and operations that are constrained by physical limitations, characteristics of plant components, operational preferences, reliability, and environmental considerations. The optimization considers forebay and afterbay implications, interactions between cascaded power plants, turbine efficiency curves and rough zones, and operator preferences. CHEERS simultaneously considers over time the interactions among all CDWR power and water resources, hydropower economics, reservoir storage limitations, and a set of complex environmental constraints for the Thermalito Afterbay and Feather River habitats. Power marketers, day-ahead schedulers, and plant operators provide system configuration and detailed operational data, along with feedback on model design and performance. CHEERS is integrated with CDWR data systems to obtain historic and initial conditions of the system as the basis from which future operations are then optimized. Model results suggest alternative operational regimes that improve the value of CDWR resources to the grid while enhancing the environment and complying with water delivery obligations for non-power uses.
Gordon, G T; McCann, B P
2015-01-01
This paper describes the basis of a stakeholder-based sustainable optimisation indicator (SOI) system to be developed for small-to-medium sized activated sludge (AS) wastewater treatment plants (WwTPs) in the Republic of Ireland (ROI). Key technical publications relating to best practice plant operation, performance audits and optimisation, and indicator and benchmarking systems for wastewater services are identified. Optimisation studies were developed at a number of Irish AS WwTPs and key findings are presented. A national AS WwTP manager/operator survey was carried out to verify the applied operational findings and identify the key operator stakeholder requirements for this proposed SOI system. It was found that most plants require more consistent operational data-based decision-making, monitoring and communication structures to facilitate optimised, sustainable and continuous performance improvement. The applied optimisation and stakeholder consultation phases form the basis of the proposed stakeholder-based SOI system. This system will allow for continuous monitoring and rating of plant performance, facilitate optimised operation and encourage the prioritisation of performance improvement through tracking key operational metrics. Plant optimisation has become a major focus due to the transfer of all ROI water services to a national water utility from individual local authorities and the implementation of the EU Water Framework Directive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, J.M.; Kaplan, N.; Wilkening, H.A. Jr.
Under contract from the Department of Energy, AAI Corporation designed, constructed, and operated a solar heating system to provide hot water for curing concrete blocks at the York Building Products Co., Inc.'s new manufacturing facility near Harrisburg, PA. The objective of Phase III of this program was to operate, collect data, and evaluate the solar system for a three-year period (September 1978 to September 1981). The solar facility utilizes 35 collectors with a total aperture area of 8960 ft/sup 2/. The sysem is designed to deliver a water/ethylene glycol solution at 200/sup 0/F to a heat exchanger, which, in turn,more » supplies water at 180/sup 0/F to a rotoclave (underground tank) for the concrete-block curing process. A fossil-fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three-year period was 10,284 gallons. Thus, this program has successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.« less
The optimal operation of cooling tower systems with variable-frequency control
NASA Astrophysics Data System (ADS)
Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing
2018-02-01
This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.
NASA Astrophysics Data System (ADS)
Wi, S.; Freeman, S.; Brown, C.
2017-12-01
This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.
Biofilm formation and control in a simulated spacecraft water system - Interim results
NASA Technical Reports Server (NTRS)
Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.
1989-01-01
The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
Passive decay heat removal system for water-cooled nuclear reactors
Forsberg, Charles W.
1991-01-01
A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.
Installation package for a sunspot cascade solar water heating system
NASA Technical Reports Server (NTRS)
1980-01-01
Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.
NASA Astrophysics Data System (ADS)
Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.
2016-04-01
This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.
Schäfer, A I; Broeckmann, A; Richards, B S
2007-02-01
In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.
Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation
It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and, therefore, will influence the design and operation of current and future drinking water treatment systems. Some of these impacts may lead to violations ...
Hydraulic model of the proposed Water Recovery and Management system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Martin, Charles E.; Bacskay, Allen S.
1991-01-01
A model of the Water Recovery and Management (WRM) system utilizing SINDA '85/FLUINT to determine its hydraulic operation characteristics, and to verify the design flow and pressure drop parameters is presented. The FLUINT analysis package is employed in the model to determine the flow and pressure characteristics when each of the different loop components is operational and contributing to the overall flow pattern. The water is driven in each loop by storage tanks pressurized with cabin air, and is routed through the system to the desired destination.
Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.
ERIC Educational Resources Information Center
Counts, Cary A.
This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
...: Thomas J. Victorine, Director of Operations, San Jose Water Company, 110 W. Santa Clara Street, San Jose... system. The water supplied to the water treatment plant comes from three existing storage reservoirs. A... generating capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l...
Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture
Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz
2014-01-01
We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178
75 FR 27580 - Notice of Lodging of the Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... systems at approximately 50 WTPs, train operators, institute Standard Operating Procedures, and implement... Water Treatment Plants (``WTPs'') owned and/or operated by PRASA. The Decree also resolves PRASA's... 402 of the Act, 33 U.S.C. 1342, for at least 102 WTPs owned and/or operated by PRASA. Under the...
Full-scale studies of factors related to coliform regrowth in drinking water.
LeChevallier, M W; Welch, N J; Smith, D B
1996-07-01
An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem.
Full-scale studies of factors related to coliform regrowth in drinking water.
LeChevallier, M W; Welch, N J; Smith, D B
1996-01-01
An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem. PMID:8779557
1987-02-01
The FSWRS will be used by forces deployed to Theaters of Operations located in water-short areas of the world, and will greatly reduce water supply... operators take ’ A appropriate precautions in handling sulfuric acid and un- . treat.d waters. Although no health hazards are anticipated to result from...field. The FSWRS will be used by forces deployed to Theaters of Operations located in water short areas of the world, and will greatly reduce water
33 CFR 157.158 - COW operations: Changed characteristics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW operations: Changed... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.158 COW operations: Changed characteristics. The COW system may be operated with characteristics that do not meet those...
Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Teegavarapu, R. S.
2008-05-01
The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.
Installation package - SIMS prototype system 1A
NASA Technical Reports Server (NTRS)
1976-01-01
This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The distribution system ...
Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico
This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The study was organized ...
Water Treatment Technology - Distribution Systems.
ERIC Educational Resources Information Center
Ross-Harrington, Melinda; Kincaid, G. David
One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…
Environmental Assessment for Landfill Drainage Improvements Vandenberg Air Force Base, California
2003-04-07
intercontinental ballistic missile systems , and support aircraft operations in the western range. As a nonmilitary facet of operations, Vandenberg AFB is also...consisting of upgrades and/or repairs to the existing drainage system , must be implemented at the Vanden berg AFB landfill to facilitate compliance...under the California State Water Resources Control Board (SWRCB) Water Quality Order No. 97~3-DWQ, National Pollutant Discharge Elimination System
NASA Astrophysics Data System (ADS)
Serrat-Capdevila, A.; Valdes, J. B.
2005-12-01
An optimization approach for the operation of international multi-reservoir systems is presented. The approach uses Stochastic Dynamic Programming (SDP) algorithms, both steady-state and real-time, to develop two models. In the first model, the reservoirs and flows of the system are aggregated to yield an equivalent reservoir, and the obtained operating policies are disaggregated using a non-linear optimization procedure for each reservoir and for each nation water balance. In the second model a multi-reservoir approach is applied, disaggregating the releases for each country water share in each reservoir. The non-linear disaggregation algorithm uses SDP-derived operating policies as boundary conditions for a local time-step optimization. Finally, the performance of the different approaches and methods is compared. These models are applied to the Amistad-Falcon International Reservoir System as part of a binational dynamic modeling effort to develop a decision support system tool for a better management of the water resources in the Lower Rio Grande Basin, currently enduring a severe drought.
2013-06-01
accumulate and shelter sessile and mobile marine species. Fouling in sea chests and sea water pipework is also an operational issue for marine engineers ...pipework is also an operational issue for marine engineers , as it restricts water flow to essential vessel systems and may enhance biocorrosion [18, 19...subtidal marine communities worldwide and are considered as key species and important habitat engineers in benthic communities [30]. They possess high
Treatise on water hammer in hydropower standards and guidelines
NASA Astrophysics Data System (ADS)
Bergant, A.; Karney, B.; Pejović, S.; Mazij, J.
2014-03-01
This paper reviews critical water hammer parameters as they are presented in official hydropower standards and guidelines. A particular emphasize is given to a number of IEC standards and guidelines that are used worldwide. The paper critically assesses water hammer control strategies including operational scenarios (closing and opening laws), surge control devices (surge tank, pressure regulating valve, flywheel, etc.), redesign of the water conveyance system components (tunnel, penstock), or limitation of operating conditions (limited operating range) that are variably covered in standards and guidelines. Little information is given on industrial water hammer models and solutions elsewhere. These are briefly introduced and discussed in the light of capability (simple versus complex systems), availability of expertise (in house and/or commercial) and uncertainty. The paper concludes with an interesting water hammer case study referencing the rules and recommendations from existing hydropower standards and guidelines in a view of effective water hammer control. Recommendations are given for further work on development of a special guideline on water hammer (hydraulic transients) in hydropower plants.
NASA Technical Reports Server (NTRS)
1975-01-01
Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.
Solar Water Heater Installation Package
NASA Technical Reports Server (NTRS)
1982-01-01
A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system, Elcam San Diego, was designed to supply domestic hot water heating for a single family residence located in Encinitas, California. System description, performance assessment, operating energy, energy savings, maintenance, and conclusions are presented. The system is a 'Sunspot' two tank cascade type, where solar energy is supplied to either a 66 gallon preheat tank (solar storage) or a 40 gallon domestic hot water tank. Water is pumped directly from one of the two tanks, through the 65 square feet collector array and back into the same tank. Freeze protection is provided by automatically circulating hot water from the hot water tank through the collectors and exposed plumbing when freezing conditions exist. Auxiliary energy is supplied by natural gas. Analysis is based on instrumented system data monitored and collected for one full season of operation.
Bradshaw, Jonathan L; Luthy, Richard G
2017-10-17
Infrastructure systems that use stormwater and recycled water to augment groundwater recharge through spreading basins represent cost-effective opportunities to diversify urban water supplies. However, technical questions remain about how these types of managed aquifer recharge systems should be designed; furthermore, existing planning tools are insufficient for performing robust design comparisons. Addressing this need, we present a model for identifying the best-case design and operation schedule for systems that deliver recycled water to underutilized stormwater spreading basins. Resulting systems are optimal with respect to life cycle costs and water deliveries. Through a case study of Los Angeles, California, we illustrate how delivering recycled water to spreading basins could be optimally implemented. Results illustrate trade-offs between centralized and decentralized configurations. For example, while a centralized Hyperion system could deliver more recycled water to the Hansen Spreading Grounds, this system incurs approximately twice the conveyance cost of a decentralized Tillman system (mean of 44% vs 22% of unit life cycle costs). Compared to existing methods, our model allows for more comprehensive and precise analyses of cost, water volume, and energy trade-offs among different design scenarios. This model can inform decisions about spreading basin operation policies and the development of new water supplies.
Installation package for a solar heating and hot water system
NASA Technical Reports Server (NTRS)
1978-01-01
Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.
The drinking water distribution system simulator (DSS) from the U.S. EPA was operated with a direct cross-connection of 0.3% wastewater to system volume per day for 70 d. During the cross-connection, tap water, wastewater, and system discharge water were monitored to ensure that ...
Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool
NASA Astrophysics Data System (ADS)
Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.
2011-12-01
The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The statistical algorithm is a relatively simple and versatile, but lacks short-term skill critical for water quality and spill management. To improve short-term skill, OST will ultimately operate with meteorologically driven hydrologic forecasts provided by the National Weather Service (NWS). OST functionalities will support a wide range of DEP uses, including short term operational projections, outage planning and emergency management, operating rule development, and water supply planning. A core use of OST will be to inform reservoir management strategies to control and mitigate turbidity events while ensuring water supply reliability. OST will also allow DEP to manage its complex reservoir system to meet multiple objectives, including ecological flows, tailwater fisheries and recreational releases, and peak flow mitigation for downstream communities.
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
NASA Astrophysics Data System (ADS)
Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; Galelli, Stefano
2017-09-01
Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strong relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made - namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Sean W. D.; Bennett, James C.; Robertson, David E.
Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less
Complex relationship between seasonal streamflow forecast skill and value in reservoir operations
Turner, Sean W. D.; Bennett, James C.; Robertson, David E.; ...
2017-09-28
Considerable research effort has recently been directed at improving and operationalising ensemble seasonal streamflow forecasts. Whilst this creates new opportunities for improving the performance of water resources systems, there may also be associated risks. Here, we explore these potential risks by examining the sensitivity of forecast value (improvement in system performance brought about by adopting forecasts) to changes in the forecast skill for a range of hypothetical reservoir designs with contrasting operating objectives. Forecast-informed operations are simulated using rolling horizon, adaptive control and then benchmarked against optimised control rules to assess performance improvements. Results show that there exists a strongmore » relationship between forecast skill and value for systems operated to maintain a target water level. But this relationship breaks down when the reservoir is operated to satisfy a target demand for water; good forecast accuracy does not necessarily translate into performance improvement. We show that the primary cause of this behaviour is the buffering role played by storage in water supply reservoirs, which renders the forecast superfluous for long periods of the operation. System performance depends primarily on forecast accuracy when critical decisions are made – namely during severe drought. As it is not possible to know in advance if a forecast will perform well at such moments, we advocate measuring the consistency of forecast performance, through bootstrap resampling, to indicate potential usefulness in storage operations. Our results highlight the need for sensitivity assessment in value-of-forecast studies involving reservoirs with supply objectives.« less
SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magda, Karoly
This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less
Assessing Performance of Multipurpose Reservoir System Using Two-Point Linear Hedging Rule
NASA Astrophysics Data System (ADS)
Sasireka, K.; Neelakantan, T. R.
2017-07-01
Reservoir operation is the one of the important filed of water resource management. Innovative techniques in water resource management are focussed at optimizing the available water and in decreasing the environmental impact of water utilization on the natural environment. In the operation of multi reservoir system, efficient regulation of the release to satisfy the demand for various purpose like domestic, irrigation and hydropower can lead to increase the benefit from the reservoir as well as significantly reduces the damage due to floods. Hedging rule is one of the emerging techniques in reservoir operation, which reduce the severity of drought by accepting number of smaller shortages. The key objective of this paper is to maximize the minimum power production and improve the reliability of water supply for municipal and irrigation purpose by using hedging rule. In this paper, Type II two-point linear hedging rule is attempted to improve the operation of Bargi reservoir in the Narmada basin in India. The results obtained from simulation of hedging rule is compared with results from Standard Operating Policy, the result shows that the application of hedging rule significantly improved the reliability of water supply and reliability of irrigation release and firm power production.
Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben
2017-04-01
The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.
Nuuanu YMCA Honolulu, Hawaii solar-water-heating project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-14
The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. (LEW)« less
Nuuanu YMCA solar water-heating project (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-08-13
The Nuuanu YMCA is a combination athletic facility and men's dormitory. The building is of masonry construction, and includes a four-story dormitory on which the solar water heating system was mounted. The water storage tank was placed at a higher elevation than the collectors so that the majority of the system would operate in thermosyphon. A small system with a pump is included on another roof of the building and is circulated into the same storage tank. A pump was later added to the thermosyphon system. The system has 182 collector panels, each consisting of a polycarbonate box, low ironmore » tempered glazing, copper waterways and painted aluminum absorber. The water is stored in a 4000-gallon storage tank on the roof. The system provides domestic hot water and serves as a preheat system for the existing building water heaters. The system was installed and met performance criteria. An acceptance test plan is described and data are given. The thermosyphon system was found not to be efficient compared to the pumped system. System operation, maintenance and controls are described, and YMCA energy consumption data are given. Blueprints are included. These Drawings accompany report No. DOE/CS/31640-T1. (LEW)« less
Grey water treatment in a series anaerobic--aerobic system for irrigation.
Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2010-01-01
This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.
Bacterial populations were examined in a simulated chloraminated drinking water distribution system (i.e. PVC pipe loop). After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The s...
Advanced Hydraulics for Operators. Training Module 1.331.3.77.
ERIC Educational Resources Information Center
Bengston, Harlan H.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the application of hydraulic principles to water supply and water pollution control systems including water distribution systems and sewer systems. Included are objectives, instructor guides, student handouts and transparency masters.…
NASA Technical Reports Server (NTRS)
Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.
1973-01-01
An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
NASA Astrophysics Data System (ADS)
Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.
2017-12-01
The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.
Data processing for water monitoring system
NASA Technical Reports Server (NTRS)
Monford, L.; Linton, A. T.
1978-01-01
Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.
Shallow Water Optical Water Quality Buoy
NASA Technical Reports Server (NTRS)
Bostater, Charles
1998-01-01
This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by KB Science and Engineering and is currently patented by KB Science. The buoy's purpose was to collected hyperspectral optical signatures for analysis and resulting estimation of water quality parameters such as chlorophyll-a, seston and dissolved organic matter (DOC). The ultimate goal of the project was to develop a buoy that would integrate a probe to measure upwelling light from a source and thus relate this backscattered light to water quality parameters.
Mun, J S; Han, M Y
2012-01-01
The appropriate design and evaluation of a rainwater harvesting (RWH) system is necessary to improve system performance and the stability of the water supply. The main design parameters (DPs) of an RWH system are rainfall, catchment area, collection efficiency, tank volume and water demand. Its operational parameters (OPs) include rainwater use efficiency (RUE), water saving efficiency (WSE) and cycle number (CN). The sensitivity analysis of a rooftop RWH system's DPs to its OPs reveals that the ratio of tank volume to catchment area (V/A) for an RWH system in Seoul, South Korea is recommended between 0.03 and 0.08 in terms of rate of change in RUE. The appropriate design value of V/A is varied with D/A. The extra tank volume up to V/A of 0.15∼0.2 is also available, if necessary to secure more water. Accordingly, we should figure out suitable value or range of DPs based on the sensitivity analysis to optimize design of an RWH system or improve operation efficiency. The operational data employed in this study, which was carried out to validate the design and evaluation method of an RWH system, were obtained from the system in use at a dormitory complex at Seoul National University (SNU) in Korea. The results of these operational data are in good agreement with those used in the initial simulation. The proposed method and the results of this research will be useful in evaluating and comparing the performance of RWH systems. It is found that RUE can be increased by expanding the variety of rainwater uses, particularly in the high rainfall season. Copyright © 2011 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... into a duct or hood. It is usually expressed in inches of water gauge. (vii) Exhaust system. A system... velocity. It is usually expressed in inches of water gauge. (xviii) Vertical spindle disc grinder. A... operate the booth without the filters in place. (iv) (A) For wet or water-wash spray booths, the water...
Code of Federal Regulations, 2010 CFR
2010-07-01
... into a duct or hood. It is usually expressed in inches of water gauge. (vii) Exhaust system. A system... velocity. It is usually expressed in inches of water gauge. (xviii) Vertical spindle disc grinder. A... operate the booth without the filters in place. (iv) (A) For wet or water-wash spray booths, the water...
EFFECTS OF MIXING AND AGING ON WATER QUALITY IN DISTRIBUTION SYSTEM STORAGE FACILITIES
Aging of water in distribution system storage facilities can lead to deterioration of the water quality due to loss of disinfectant residual and bacterial regrowth. Facilities should be operated to insure that the age of the water is not excessive taking into account the quality...
MODELING THE IMPACTS OF FIRE FLOWS ON DISTRIBUTION SYSTEM WATER QUALITY, DESIGN AND OPERATION
In most water distribution systems, a significant amount of the piping and storage capacity is used to provide adequate quantities of water during fire conditions. This increased capacity results in higher capital costs and potential negative impacts on water quality due to longe...
Inkinen, Jenni; Kaunisto, Tuija; Pursiainen, Anna; Miettinen, Ilkka T; Kusnetsov, Jaana; Riihinen, Kalle; Keinänen-Toivola, Minna M
2014-02-01
Complex interactions existing between water distribution systems' materials and water can cause a reduction in water quality and unwanted changes in materials, aging or corrosion of materials and formation of biofilms on surfaces. Substances leaching from pipe materials and water fittings, as well as the microbiological quality of water and formation of biofilms were evaluated by applying a Living Lab theme i.e. a research in a real life setting using a full scale system during its first year of operation. The study site was a real office building with one part of the building lined with copper pipes, the other with cross-linked polyethylene (PEX) pipes thus enabling material comparison; also differences within the cold and hot water systems were analysed. It was found that operational conditions, such as flow conditions and temperature affected the amounts of metals leaching from the pipe network. In particular, brass components were considered to be a source of leaching; e. g. the lead concentration was highest during the first few weeks after the commissioning of the pipe network when the water was allowed to stagnate. Assimilable organic carbon (AOC) and microbially available phosphorus (MAP) were found to leach from PEX pipelines with minor effects on biomass of the biofilm. Cultivable and viable biomass (heterotrophic plate count (HPC), and adenosine triphosphate (ATP)) levels in biofilms were higher in the cold than in the hot water system whereas total microbial biomass (total cell count (DAPI)) was similar with both systems. The type of pipeline material was not found to greatly affect the microbial biomass or Alpha-, Beta- and Gammaproteobacteria profiles (16s rRNA gene copies) after the first one year of operation. Also microbiological quality of water was found to deteriorate due to stagnation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detection of Underwater UXOs in Mud
2013-04-01
the system can operate in a water depth up to 30 m. 4 1.3 Outline of Report The report is structured as follows: Section 2 provides an...and tilt angle can be modified, such that the system can operate in a water depth up to 30 m. Figure 2 – Data flow diagram for the MUD processing...ground-truth location. The water depth is in the range between 8 and 15 m. Figure 4 – SAS image snippets of the CMRE EVA cylinder using (a) regular
Bacterial populations were examined in a simulated chloraminated drinking water distribution system. After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated system to study biofilm development. The distribution system wa...
Alternative Electrochemical Systems for Ozonation of Water
NASA Technical Reports Server (NTRS)
Andrews, Craig C.; Murphy, Oliver J.
2003-01-01
Electrochemical systems that are especially well suited for the small-scale generation of ozone and ozonated water for local use have been invented. These systems can operate with very little maintenance, and the only inputs needed during operation are electric power and water. Ozonated water produced by these systems can be used in diverse industrial applications: A few examples include sterilization in the brewing industry, general disinfection, and treatment of sewage and recycled water. The basic principle of operation admits of several alternative system configurations. The heart of the system is a stack of electrolytic cells, each containing a proton-exchange membrane (which serves as a solid electrolyte) sandwiched between a catalytic anode and a catalytic cathode. Preferably, the proton-exchange membrane is made of a perfluorinated sulfonic acid polymer. During electrolysis, a mixture of O2 and O3 gases is generated at the anode and H2 is generated at the cathode. Some of the O3 generated at the anode becomes dissolved in the water. The proportion of O3 in the O2/O3 mixture can be maximized by the selection of suitable electrode materials and the use of a high overpotential. Although the proton-exchange membrane conducts protons, it does not conduct electrons. It is also impermeable by gases; consequently, it maintains separation between the O2/O3 mixture evolved at the anode and the H2 evolved at the cathode.
Bacterial community structure in the drinking water microbiome is governed by filtration processes.
Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde
2012-08-21
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, M.; Macian-Sorribes, H.
2016-12-01
The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.
Wake Island Supplemental Environmental Assessment
2007-02-01
operations, the oxidizer transfer system would be flushed with water . This operation is expected to yield approximately 5 grams (0.2 ounces) of nitric...Defense System (BMDS) to provide a defensive capability for the U.S., its deployed forces, friends, and allies from ballistic missile threats. The...infrastructure, land use, physical resources, noise, socioeconomics, transportation, and water resources. MDA determined that six of the thirteen resource
The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...
NASA Technical Reports Server (NTRS)
Martz, J. E.; Roberts, A. F.
1985-01-01
A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of about 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, J.E.; Roberts, A.F.
1985-03-01
A photovoltaic (PV) system powering a grain mill and water pump was installed in the remote African village of Tangaye, Burkina Faso (formerly Upper Volta) under the sponsorship of the U.S. Agency for International Development (AID) and by the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) in early 1979. The presence reports covers the second two years of operation from April 1981 through June 1983. During this time, the grain mill and water pump were operational 96 and 88 percent of the time respectively, and the PV system generated sufficient electricity to enable the grinding of aboutmore » 111 metric tons of finely ground flow and the pumping of over 5000 cm sq of water from the 10 m deep well. The report includes a description of the current configuration of the system, a review of system performance, a discussion of the socioeconomic impact of the system on the villagers and a summary of results and conclusions covering the entire four-year period.« less
NASA Astrophysics Data System (ADS)
Shedd, R.; Reed, S. M.; Porter, J. H.
2015-12-01
The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional information not available from deterministic forecasts and allows managers to better assess risk, and provides greater context for decision-making than has been available in the past. HEFS has allowed NYCDEP water supply managers to make better decisions on reservoir operations than they likely would have in the past, using only deterministic forecasts.
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
Producing Quality Water for Industrial Use.
ERIC Educational Resources Information Center
Schaezler, Donald J.
1978-01-01
This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)
Case Study of The ARRA-Funded GSHP Demonstration at the Natural Sources Building, Montana Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Mini; Liu, Xiaobing
Under the American Recovery and Reinvestment Act (ARRA), 26 ground source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects was proposed by Montana Tech of the University of Montana for a 56,000 sq ft, newly constructed, on-campus research facility – the Natural Resources Building (NRB) located in Butte, Montana. This demonstrated GSHP system consists of a 50 ton water-to-water heat pump and a closed-loop ground heat exchanger with two redundant 7.5 hp constant-speed pumps to use watermore » in the nearby flooded mines as a heat source or heat sink. It works in conjunction with the originally installed steam HX and an aircooled chiller to provide space heating and cooling. It is coupled with the existing hot water and chilled water piping in the building and operates in the heating or cooling mode based on the outdoor air temperature. The ground loop pumps operate in conjunction with the existing pumps in the building hot and chilled water loops for the operation of the heat pump unit. The goal of this demonstration project is to validate the technical and economic feasibility of the demonstrated commercial-scale GSHP system in the region, and illustrate the feasibility of using mine waters as the heat sink and source for GSHP systems. Should the demonstration prove satisfactory and feasible, it will encourage similar GSHP applications using mine water, thus help save energy and reduce carbon emissions. The actual performance of the system is analyzed with available measured data for January through July 2014. The annual energy performance is predicted and compared with a baseline scenario, with the heating and cooling provided by the originally designed systems. The comparison is made in terms of energy savings, operating cost savings, cost-effectiveness, and environmental benefits. Finally, limitations in conducting the analysis are identified and recommendations for improvement in the control and operation of such systems are made.« less
Development and evaluation of a helicopter-borne water-quality monitoring system
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Jordan, R. A.; Flynn, J.; Thomas, R. W.
1978-01-01
A small, helicopter-borne water-quality monitoring package is being developed by the NASA/EPA using a combination of basic in situ water quality sensors and physical sample collector technology. The package is a lightweight system which can be carried and operated by one person as a passenger in a small helicopter typically available by rental at commercial airports. Real-time measurements are made by suspending the water quality monitoring package with a cable from the hovering helicopter. Designed primarily for use in rapidly assessing hazardous material spills in inland and coastal zone water bodies, the system can survey as many as 20 data stations up to 1.5 kilometers apart in 1 hour. The system provides several channels of sensor data and allows for the addition of future sensors. The system will also collect samples from selected sites with sample collection on command. An EPA Spill Response Team member can easily transport, deploy, and operate the water quality monitoring package to determine the distribution, movement, and concentration of the spilled material in the water body.
NASA Technical Reports Server (NTRS)
1980-01-01
Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.
NASA Astrophysics Data System (ADS)
1980-09-01
Information concerning the installation, operation, and maintenance of the pyramidal Solar System for space heating and domestic hot water is presented. Principles of operation, sequence of installation, and procedures for the operation and maintenance of each subsystem making up the solar system are presented. Troubleshooting charts and maintenance schedules are presented.
Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System
NASA Astrophysics Data System (ADS)
Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.
2016-12-01
The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.
Improving Water Resources System Operation by Direct Use of Hydroclimatic Information
NASA Astrophysics Data System (ADS)
Castelletti, A.; Pianosi, F.
2011-12-01
It is generally agreed that more information translates into better decisions. For instance, the availability of inflow predictions can improve reservoir operation; soil moisture data can be exploited to increase irrigation efficiency; etc. However, beyond this general statement, many theoretical and practical questions remain open. Provided that not all information sources are equally relevant, how does their value depend on the physical features of the water system and on the purposes of the system operation? What is the minimum lead time needed for anticipatory management to be effective? How does uncertainty in the information propagates through the modelling chain from hydroclimatic data through descriptive and decision models, and finally affect the decision? Is the data-predictions-decision paradigm truly effective or would it be better to directly use hydroclimatic data to take optimal decisions, skipping the intermediate step of hydrological forecasting? In this work we investigate these issues by application to the management of a complex water system in Northern Vietnam, characterized by multiple, conflicting objectives including hydropower production, flood control and water supply. First, we quantify the value of hydroclimatic information as the improvement in the system performances that could be attained under the (ideal) assumption of perfect knowledge of all future meteorological and hydrological input. Then, we assess and compare the relevance of different candidate information (meteorological or hydrological observations; ground or remote data; etc.) for the purpose of system operation by novel Input Variable Selection techniques. Finally, we evaluate the performance improvement made possible by the use of such information in re-designing the system operation.
NASA Astrophysics Data System (ADS)
Raymond, M.
1982-06-01
The Karasek Home is a single family Massachusetts residence whose active-solar-energy system is equipped with 640 square feet of trickle-down liquid flat-plate collectors, storage in a 300-gallon tank and a 2000-gallon tank embedded in a rock bin in the basement, and an oil-fired glass-lined 40-gallon domestic hot water tank for auxiliary water and space heating. Monthly performance data are tabulated for the overall system and for the collector, storage, space heating, and domestic hot water subsystems. For each month a graph is presented of collector array efficiency versus the difference between the inlet water temperature and ambient temperature divided by insolation. Typical system operation is illustrated by graphs of insolation and temperatures at different parts of the system versus time for a typical day. The typical system operating sequence for a day is also graphed as well as solar energy utilization and heat losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less
Basics of Solar Heating & Hot Water Systems.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…
WATER SYSTEM OPERATOR TRAINING FOR THE CENTRAL ARIZONA PROJECT
USDA-ARS?s Scientific Manuscript database
The Central Arizona Project (CAP) is designed to bring about 1.5 million acre-feet of Colorado River water per year to Maricopa, Pima, and Pinal counties in Arizona. CAP carries water from Lake Havasu down to Tucson. The CAP canal system is a 336-mile long system of aqueducts, tunnels, pumping pla...
Solar energy system performance evaluation: A seasonal report for SEMCO, Macon, Georgia
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system for heating water in a single-family residence for a family of four is described. The system operation, the operating energy, energy savings, maintenance, and performance are analyzed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS How Will Safety Management Systems... international certification for the company's and vessel's safety management system. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The objectives of the Ingham County Solar Project include: the demonstration of a major operational supplement to fossil fuels, thereby reducing the demand for non-renewable energy sources, demonstration of the economic and technical feasibility of solar systems as an important energy supplement over the expected life of the building, and to encourage Michigan industry to produce and incorporate solar systems in their own facility. The Ingham County solar system consists of approximately 10,000 square feet of solar collectors connected in a closed configuration loop. The primary loop solution is a mixture of water and propylene glycol which flows through themore » tube side of a heat exchanger connected to the primary storage tank. The heat energy which is supplied to the primary storage tank is subsequently utilized to increase the temperature of the laundry water, kitchen water, and domestic potable water.« less
Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.
Vacuum distillation/vapor filtration water recovery
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Neveril, R. B.; Remus, G. A.
1974-01-01
The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Herman, Jonathan D.; Castelletti, Andrea; Reed, Patrick M.
2014-05-01
Current water reservoir operating policies are facing growing water demands as well as increasing uncertainties associated with a changing climate. However, policy inertia and myopia strongly limit the possibility of adapting current water reservoir operations to the undergoing change. Historical agreements and regulatory constraints limit the rate that reservoir operations are innovated and creates policy inertia, where water institutions are unlikely to change their current practices in absence of dramatic failures. Yet, no guarantee exists that historical management policies will not fail in coming years. In reference to policy myopia, although it has long been recognized that water reservoir systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, the broader understanding of the multi-objective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome both policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification, many-objective optimization under uncertainty, and visual analytics to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. The proposed framework initially uses available streamflow observations to implicitly identify the current but unknown operating policy of Conowingo Dam. The quality of the identified baseline policy was validated by its ability to replicate historical release dynamics. Starting from this baseline policy, we then combine evolutionary many-objective optimization with visual analytics to discover new operating policies that better balance the tradeoffs within the Lower Susquehanna. Results confirm that the baseline operating policy, which only considers deterministic historical inflows, significantly overestimates the reliability of the reservoir's competing demands. The proposed framework removes this bias by successfully identifying alternative reservoir policies that are more robust to hydroclimatic uncertainties, while also better addressing the tradeoffs across the Conowingo Dam's multi-sector services.
Water Loss Reduction as the Basis of Good Water Supply Companies' Management
NASA Astrophysics Data System (ADS)
Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof
2017-10-01
Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.
Nuclear reactor with makeup water assist from residual heat removal system
Corletti, Michael M.; Schulz, Terry L.
1993-01-01
A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.
Nuclear reactor with makeup water assist from residual heat removal system
Corletti, M.M.; Schulz, T.L.
1993-12-07
A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.
USDA-ARS?s Scientific Manuscript database
Two studies were conducted to determine if accumulating water quality parameters would negatively impact rainbow trout Oncorhynchus mykiss health and welfare within water recirculation aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and ...
Data gaps in evidence-based research on small water enterprises in developing countries.
Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J
2009-12-01
Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.
One-year assessment of a solar space/water heater--Clinton, Mississippi
NASA Technical Reports Server (NTRS)
1981-01-01
Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.
NASA Astrophysics Data System (ADS)
Denaro, S.; Del Gobbo, U.; Castelletti, A.; Tebaldini, S.; Monti Guarnieri, A.
2015-12-01
In this work, we explore the use of exogenous snow-related information for enhancing the operation of water facilities in snow dominated watersheds. Traditionally, such information is assimilated into short-to-medium term streamflow forecasts, which are then used to inform water systems operation. Here, we adopt an alternative model-free approach, where the policy is directly conditioned upon a small set of selected observational data able to surrogate the snow-pack dynamics. In snow-fed water systems, the Snow Water Equivalent (SWE) stored in the basin often represents the largest contribution to the future season streamflow. The SWE estimation process is challenged by the high temporal and spatial variability of snow-pack and snow properties. Traditional retrieval methods, based on few ground sensors and optical satellites, often fail at representing the spatial diversity of snow conditions over large basins and at producing continuous (gap-free) data at the high sample frequency (e.g. daily) required to optimally control water systems. Against this background, SWE estimates from remote sensed radar products stand out, being able to acquire spatial information with no dependence on cloud coverage. In this work, we propose a technique for retrieving SWE estimates from Synthetic Aperture Radar (SAR) Cosmo SkyMed X-band images: a regression model, calibrated on ground SWE measurements, is implemented on dry snow maps obtained through a multi-temporal approach. The unprecedented spatial scale of this application is novel w.r.t. state of the art radar analysis conducted on limited spatial domains. The operational value of the SAR retrieved SWE estimates is evaluated based on ISA, a recently developed information selection and assessment framework. The method is demonstrated on a snow-rain fed river basin in the Italian Alps. Preliminary results show SAR images have a good potential for monitoring snow conditions and for improving water management operations.
Many regions in the United States have excessive levels of ammonia in their drinking water sources (e.g., ground and surface waters) as a result of naturally occurring processes, agricultural and urban runoff, concentrated animal feeding operations, municipal wastewater treatment...
NASA Astrophysics Data System (ADS)
Howard, R. G.
The active solar energy system for a recreation hall for senior citizens in Wisconsin, is equipped with 1290 square feet of evacuated tube collectors, 3000 gallons of water in a tank, and a natural gas fired furnace for auxiliary space heating and a natural gas fired domestic water heater. The solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance are given as well as performance data for the collector, storage, domestic hot water, and space heating subsystems, operating energy, energy savings, and weather conditions. Predicted performance data are also given for comparison with the measured data.
Solar space and water heating system at Stanford University, Central Food Services Building
NASA Astrophysics Data System (ADS)
1980-05-01
This active hydronic domestic hot water and space heating system was 840 sq ft of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... operation of motor vehicles between the high-water mark and the water surface of Blue Mesa Reservoir for the... motor vehicles may be used off park roads. Unless authorized by special regulation, the operation of snowmobiles and the operation of motor vehicles off road within areas of the National Park System are...
Optimal reconstruction of historical water supply to a distribution system: A. Methodology.
Aral, M M; Guan, J; Maslia, M L; Sautner, J B; Gillig, R E; Reyes, J J; Williams, R C
2004-09-01
The New Jersey Department of Health and Senior Services (NJDHSS), with support from the Agency for Toxic Substances and Disease Registry (ATSDR) conducted an epidemiological study of childhood leukaemia and nervous system cancers that occurred in the period 1979 through 1996 in Dover Township, Ocean County, New Jersey. The epidemiological study explored a wide variety of possible risk factors, including environmental exposures. ATSDR and NJDHSS determined that completed human exposure pathways to groundwater contaminants occurred in the past through private and community water supplies (i.e. the water distribution system serving the area). To investigate this exposure, a model of the water distribution system was developed and calibrated through an extensive field investigation. The components of this water distribution system, such as number of pipes, number of tanks, and number of supply wells in the network, changed significantly over a 35-year period (1962--1996), the time frame established for the epidemiological study. Data on the historical management of this system was limited. Thus, it was necessary to investigate alternative ways to reconstruct the operation of the system and test the sensitivity of the system to various alternative operations. Manual reconstruction of the historical water supply to the system in order to provide this sensitivity analysis was time-consuming and labour intensive, given the complexity of the system and the time constraints imposed on the study. To address these issues, the problem was formulated as an optimization problem, where it was assumed that the water distribution system was operated in an optimum manner at all times to satisfy the constraints in the system. The solution to the optimization problem provided the historical water supply strategy in a consistent manner for each month of the study period. The non-uniqueness of the selected historical water supply strategy was addressed by the formulation of a second model, which was based on the first solution. Numerous other sensitivity analyses were also conducted using these two models. Both models are solved using a two-stage progressive optimality algorithm along with genetic algorithms (GAs) and the EPANET2 water distribution network solver. This process reduced the required solution time and generated a historically consistent water supply strategy for the water distribution system.
SEMINAR PUBLICATION: CONTROL OF LEAD AND COPPER IN DRINKING WATER
This publication presents subjects relating to the control of lead and copper in drinking water systems. t is of interest to system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment te...
Computer model of Raritan River Basin water-supply system in central New Jersey
Dunne, Paul; Tasker, Gary D.
1996-01-01
This report describes a computer model of the Raritan River Basin water-supply system in central New Jersey. The computer model provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system during extended periods of below-average precipitation. The computer model is a continuity-accounting model consisting of a series of interconnected nodes. At each node, the inflow volume, outflow volume, and change in storage are determined and recorded for each month. The model runs with a given set of operating rules and water-use requirements including releases, pumpages, and diversions. The model can be used to assess the hypothetical performance of the Raritan River Basin water- supply system in past years under alternative sets of operating rules. It also can be used to forecast the likelihood of specified outcomes, such as the depletion of reservoir contents below a specified threshold or of streamflows below statutory minimum passing flows, for a period of up to 12 months. The model was constructed on the basis of current reservoir capacities and the natural, unregulated monthly runoff values recorded at U.S. Geological Survey streamflow- gaging stations in the basin.
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Remus, G. A.; Kurg, E. K.
1971-01-01
The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.
NASA Astrophysics Data System (ADS)
Uen, T. S.; Tsai, W. P.; Chang, F. J.; Huang, A.
2016-12-01
In recent years, urbanization had a great effect on the growth of population and the resource management scheme of water, food and energy nexus (WFE nexus) in Taiwan. Resource shortages of WFE become a long-term and thorny issue due to the complex interactions of WFE nexus. In consideration of rapid socio-economic development, it is imperative to explore an efficient and practical approach for WFE resources management. This study aims to search the optimal solution to WFE nexus and construct a stable water supply system for multiple stakeholders. The Shimen Reservoir and Feitsui Reservoir in northern Taiwan are chosen to conduct the joint operation of the two reservoirs for water supply. This study intends to achieve water resource allocation from the two reservoirs subject to different operating rules and restrictions of resource allocation. The multi-objectives of the joint operation aim at maximizing hydro-power synergistic gains while minimizing water supply deficiency as well as food shortages. We propose to build a multi-objective evolutionary optimization model for analyzing the hydro-power synergistic gains to suggest the most favorable solutions in terms of tradeoffs between WFE. First, this study collected data from two reservoirs and Taiwan power company. Next, we built a WFE nexus model based on system dynamics. Finally, this study optimized the joint operation of the two reservoirs and calculated the synergy of hydro-power generation. The proposed methodology can tackle the complex joint reservoir operation problems. Results can suggest a reliable policy for joint reservoir operation for creating a green economic city under the lowest risks of water supply.
Operation of passive membrane systems for drinking water treatment.
Oka, P A; Khadem, N; Bérubé, P R
2017-05-15
The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate flux nor that developed to draw air into the system for sparging using gravity add substantial mechanical or operational complexity to the system. The high throughput capacity that can be sustained by eliminating all but a couple of simple fouling control measures make passive membrane systems ideally suited to provide high quality water especially where access to financial resources, technical expertise and/or electrical power is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this part. Public water system means a system for the provision to the public of piped water for human consumption, if such system has at least fifteen service connections or regularly serves at least twenty-five... control of the operator of such system and used primarily in connection with such system; and (2) Any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... this part. Public water system means a system for the provision to the public of piped water for human consumption, if such system has at least fifteen service connections or regularly serves at least twenty-five... control of the operator of such system and used primarily in connection with such system; and (2) Any...
A Systems Approach to Manage Drinking Water Quality ...
Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate the water supply vulnerability and examine technological options in adaptation. Total organic carbon (TOC) in surface water can vary significantly due to changes or a combination of changes in watershed land use, climate variability, and extreme meteorological events (e.g., hurricanes). On the other hand, water demand is known to vary temporarily and spatially leading to changes in water ages and hence DBP formation potential. Typically a drinking water facility is designed to operate within a projected range of influent water quality and water demand. When the variations exceed the design range, water supply becomes vulnerable in the compliance to Safe Drinking Water Act (SDWA) Stage-II disinfection by-product (DBP) rules. This paper describes a framework of systems-level modeling, monitoring and control in adaptive planning and system operation. The framework, built upon the integration of model projections, adaptive monitoring and systems control, has three primary functions. Its advantages and limitations will be discussed with the application examples in Cincinnati (Ohio, USA) and Las Vegas (Nevada, USA). At a conceptual level, an integrated land use and hydrological model
Solar hot water system installed at Quality Inn, Key West, Florida
NASA Astrophysics Data System (ADS)
1980-04-01
The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.
Solar hot water system installed at Quality Inn, Key West, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.
NASA Astrophysics Data System (ADS)
Spangemacher, Lars; Fröhlich, Siegmund; Buse, Hauke
2017-11-01
Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Purpose. 96.400 Section 96.400 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Authorization of Recognized...
An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner
NASA Technical Reports Server (NTRS)
Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel
1987-01-01
The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-106-2013] Notification of Proposed Production Activity, Xylem Water Systems USA LLC, Subzone 37D, (Centrifugal, Submersible Pumps and Related Components), Auburn, New York Xylem Water Systems USA LLC (Xylem), operator of Subzone 37D, submitted a notification of proposed production activity to...
NASA Astrophysics Data System (ADS)
Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.
2014-04-01
Practical experience gained from using water and steam admission into the combustion chambers of aircraft- and marine-derivative gas turbines for bringing their operation in compliance with the requirements of environmental standards is described. The design and schematic modifications of combustion chambers and fuel system through which this goal is achieved are considered. The results obtained from industrial and rig tests of combustion chambers fitted with water or steam admission systems are presented.
Integrated assessment of water-power grid systems under changing climate
NASA Astrophysics Data System (ADS)
Yan, E.; Zhou, Z.; Betrie, G.
2017-12-01
Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.
Clarens, Andres F; Zimmerman, Julie B; Keoleian, Greg A; Hayes, Kim F; Skerlos, Steven J
2008-11-15
A number of environmentally adapted lubricants have been proposed in response to the environmental and health impacts of metalworking fluids (MWFs). The alternatives typically substitute petroleum with vegetable-based components and/or deliver minimum quantities of lubricant in gas rather than water, with the former strategy being more prevalent than the latter. A comparative life cycle assessment of water- and gas-based systems has shown that delivery of lubricants in air rather than water can reduce solid waste by 60%, water use by 90%, and aquatic toxicity by 80%, while virtually eliminating occupational health concerns. However, air-delivery of lubricants cannot be used for severe machining operations due to limitations of cooling and lubricant delivery. For such operations, lubricants delivered in supercritical carbon dioxide (scCO2) are effective while maintaining the health and environmental advantages of air-based systems. Although delivery conditions were found to significantly influence the environmental burdens of all fluids, energy consumption was relatively constant under expected operating conditions. Global warming potential (GWP) increased when delivering lubricants in gas rather than water though all classes of MWFs have low GWP compared with other factory operations. It is therefore concluded that the possibility of increased GWP when switching to gas-based MWFs is a reasonable tradeoff for definite and large reductions in aquatic toxicity, water use, solid waste, and occupational health risks.
ENSO detection and use to inform the operation of large scale water systems
NASA Astrophysics Data System (ADS)
Pham, Vuong; Giuliani, Matteo; Castelletti, Andrea
2016-04-01
El Nino Southern Oscillation (ENSO) is a large-scale, coupled ocean-atmosphere phenomenon occurring in the tropical Pacific Ocean, and is considered one of the most significant factors causing hydro-climatic anomalies throughout the world. Water systems operations could benefit from a better understanding of this global phenomenon, which has the potential for enhancing the accuracy and lead-time of long-range streamflow predictions. In turn, these are key to design interannual water transfers in large scale water systems to contrast increasingly frequent extremes induced by changing climate. Despite the ENSO teleconnection is well defined in some locations such as Western USA and Australia, there is no consensus on how it can be detected and used in other river basins, particularly in Europe, Africa, and Asia. In this work, we contribute a general framework relying on Input Variable Selection techniques for detecting ENSO teleconnection and using this information for improving water reservoir operations. Core of our procedure is the Iterative Input variable Selection (IIS) algorithm, which is employed to find the most relevant determinants of streamflow variability for deriving predictive models based on the selected inputs as well as to find the most valuable information for conditioning operating decisions. Our framework is applied to the multipurpose operations of the Hoa Binh reservoir in the Red River basin (Vietnam), taking into account hydropower production, water supply for irrigation, and flood mitigation during the monsoon season. Numerical results show that our framework is able to quantify the relationship between the ENSO fluctuations and the Red River basin hydrology. Moreover, we demonstrate that such ENSO teleconnection represents valuable information for improving the operations of Hoa Binh reservoir.
Report #2006-P-00014, March 7, 2006. The Louisiana Department of Health and Hospitals and drinking water systems operators provided the public with timely and accurate information about the safety and proper treatment of drinking water.
Glossary | STORET Legacy Data Center | US EPA
2014-06-06
The U.S. Environmental Protection Agency (EPA) maintains two data management systems containing water quality information for the nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived database and STORET is an operational system actively being populated with water quality data.
University Efforts on Non-PRASA Drinking Water Systems
In 2013 and 2014, the U.S. EPA and InterAmerican University of San German worked with water treatment operators from Patillas, Puerto Rico on the installation, training and testing of pretreatment/UV disinfection systems in the communities of La Sophia and Apeadero. Test water s...
Organizations - I | STORET Legacy Data Center | US EPA
2007-05-16
The U.S. Environmental Protection Agency (EPA) maintains two data management systems containing water quality information for the nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived database and STORET is an operational system actively being populated with water quality data.
Glossary | STORET Legacy Data Center | US EPA
2011-02-14
The U.S. Environmental Protection Agency (EPA) maintains two data management systems containing water quality information for the nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived database and STORET is an operational system actively being populated with water quality data.
Contacts | STORET Legacy Data Center | US EPA
2007-05-16
The U.S. Environmental Protection Agency (EPA) maintains two data management systems containing water quality information for the nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived database and STORET is an operational system actively being populated with water quality data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
NASA Astrophysics Data System (ADS)
Dobson, B.; Pianosi, F.; Wagener, T.
2016-12-01
Extensive scientific literature exists on the study of how operation decisions in water resource systems can be made more effectively through the use of optimization methods. However, to the best of the authors' knowledge, there is little in the literature on the implementation of these optimization methods by practitioners. We have performed a survey among UK reservoir operators to assess the current state of method implementation in practice. We also ask questions to assess the potential for implementation of operation optimization. This will help academics to target industry in their current research, identify any misconceptions in industry about the area and open new branches of research for which there is an unsatisfied demand. The UK is a good case study because the regulatory framework is changing to impose "no build" solutions for supply issues, as well as planning across entire water resource systems rather than individual components. Additionally there is a high appetite for efficiency due to the water industry's privatization and most operators are part of companies that control multiple water resources, increasing the potential for cooperation and coordination.
Collection, storage, retrieval, and publication of water-resources data
Showen, C. R.
1978-01-01
This publication represents a series of papers devoted to the subject of collection, storage, retrieval, and publication of hydrologic data. The papers were presented by members of the U.S. Geological Survey at the International Seminar on Organization and Operation of Hydrologic Services, Ottawa, Canada, July 15-16, 1976, sponsored by the World Meteorological Organization. The first paper, ' Standardization of Hydrologic Measurements, ' by George F. Smoot discusses the need for standardization of the methods and instruments used in measuring hydrologic data. The second paper, ' Use of Earth Satellites for Automation of Hydrologic Data Collection, ' by Richard W. Paulson discusses the use of inexpensive battery-operated radios to transmit realtime hydrologic data to earth satellites and back to ground receiving stations for computer processing. The third paper, ' Operation Hydrometeorological Data-Collection System for the Columbia River, ' by Nicholas A. Kallio discusses the operation of a complex water-management system for a large river basin utilizing the latest automatic telemetry and processing devices. The fourth paper, ' Storage and Retrieval of Water-Resources Data, ' by Charles R. Showen discusses the U.S. Geological Survey 's National Water Data Storage and Retrieval System (WATSTORE) and its use in processing water resources data. The final paper, ' Publication of Water Resources Data, ' by S. M. Lang and C. B. Ham discusses the requirement for publication of water-resources data to meet the needs of a widespread audience and for archival purposes. (See W78-09324 thru W78-09328) (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.
Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.
Wu, Tingting; Englehardt, James D
2016-12-01
An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water Recovery System Design to Accommodate Dormant Periods for Manned Missions
NASA Technical Reports Server (NTRS)
Tabb, David; Carter, Layne
2015-01-01
Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.
NASA Technical Reports Server (NTRS)
Sharp, J. M.; Thomas, R. W.
1975-01-01
How LANDSAT imagery can be cost effectively employed to augment an operational hydrologic model is described. Attention is directed toward the estimation of snow water content, a major predictor variable in the volumetric runoff forecasting model. A stratified double sampling scheme is supplemented with qualitative and quantitative analyses of existing operations to develop a comparison between the existing and satellite-aided approaches to snow water content estimation. Results show a decided advantage for the LANDSAT-aided approach.
Guide for preparing active solar heating systems operation and maintenance manuals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This book presents a systematic and standardized approach to the preparation of operation and maintenance manuals for active solar heating systems. Provides an industry consensus of the best operating and maintenance procedures for large commercial-scale solar service water and space heating systems. A sample O M manual is included. 3-ring binder included.
Mitigating Dam Impacts Using Environmental Flow Releases
NASA Astrophysics Data System (ADS)
Richter, B. D.
2017-12-01
One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible benefits of dam re-operations.
2012-10-01
facilities, such as water supply, waste water treatment , and power generation. The Ministry of Defense’s procurement process is unable to provide the...the Joint Regional Afghanistan Security Forces Compound Water Treatment System...Ministry of Interior NTM-A North Atlantic Treaty Organization Training Mission-Afghanistan O&M operation and maintenance PCO Primary Contracting Officer
Image based automatic water meter reader
NASA Astrophysics Data System (ADS)
Jawas, N.; Indrianto
2018-01-01
Water meter is used as a tool to calculate water consumption. This tool works by utilizing water flow and shows the calculation result with mechanical digit counter. Practically, in everyday use, an operator will manually check the digit counter periodically. The Operator makes logs of the number shows by water meter to know the water consumption. This manual operation is time consuming and prone to human error. Therefore, in this paper we propose an automatic water meter digit reader from digital image. The digits sequence is detected by utilizing contour information of the water meter front panel.. Then an OCR method is used to get the each digit character. The digit sequence detection is an important part of overall process. It determines the success of overall system. The result shows promising results especially in sequence detection.
NASA Astrophysics Data System (ADS)
Quinn, J. D.; Reed, P. M.; Giuliani, M.; Castelletti, A.
2017-08-01
Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min-max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
7 CFR 1767.26 - Operating revenue.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (CONTINUED) ACCOUNTING REQUIREMENTS FOR RUS ELECTRIC BORROWERS Uniform System of Accounts § 1767.26 Operating... 453Sales of Water and Water Power 454Rent from Electric Property 455Interdepartmental Rents 456Other Electric Revenues 456.1Revenues from Transmission of Electricity of Others 457.1Regional Transmission...
Optimal Interventions in Host-Nation Health Systems During Counterinsurgency Operations
2014-12-12
suggest. Finally, stability operations within COIN should consider childhood malnutrition rates and the access to improved water sources as good...consider childhood malnutrition rates and the access to improved water sources as good examples of potential measures of effectiveness (MOEs) that may...
Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool
NASA Astrophysics Data System (ADS)
Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.
2013-12-01
Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail end of high flow periods. These improvements allowed DEP to more effectively manage water quality control and spill mitigation operations immediately after storm events. Later on, post-processed hydrologic forecasts from the National Weather Service (NWS) including the Advanced Hydrologic Prediction Service (AHPS) and the Hydrologic Ensemble Forecast Service (HEFS) were implemented into OST. These forecasts further increased the predictive skill over the initial statistical models as current basin conditions (e.g. soil moisture, snowpack) and meteorological forecasts (with HEFS) are now explicitly represented. With the post-processed HEFS forecasts, DEP may now truly quantify impacts associated with wet weather events on the horizon, rather than relying on statistical representations of current hydrologic trends. This presentation will highlight the benefits of the improved forecasts using examples from actual system operations.
Heat for film processing from solar energy
NASA Technical Reports Server (NTRS)
1981-01-01
Report describes solar water heating system for laboratory in Mill Valley, California. System furnishes 59 percent of hot water requirements for photographic film processing. Text of report discusses system problems and modifications, analyzes performance and economics, and supplies drawings and operation/maintenance manual.
NASA Astrophysics Data System (ADS)
Yan, X. H.; Zhao, T. S.; Zhao, G.; An, L.; Zhou, X. L.
2015-10-01
Passive direct methanol fuel cells (DMFCs) operating with neat methanol can achieve the maximum system energy density. However, the anodic methanol oxidation reaction requires reactant water, which is completely supplied by water generated at the cathode, causing the system to experience a critical issue known as water starvation. A solution to this problem involves increasing the water recovery flux to meet the rate of water consumption of the anodic reaction, and increase the local water concentration as high as possible at the anode catalyst layer (CL) to improve the anodic kinetics. In the present work, a new microporous layer (MPL) consisting of a hydrophilic layer and a hydrophobic layer is proposed. The purposes of these two layers are to, respectively, trap and retain water and to create capillary pressure to prevent water loss. Our experiments have shown that the use of this novel MPL at the anode and cathode can increase the rate of water recovery and water retention, resulting in an increase in the local water concentration. As a result, the use of this dual-layer MPL to either electrode of a passive DMFC operating with neat methanol leads to a significant performance boost.
Mutalipassi, M; Di Natale, M; Mazzella, V; Zupo, V
2018-01-01
Modern research makes frequent use of animal models, that is, organisms raised and bred experimentally in order to help the understanding of biological and chemical processes affecting organisms or whole environments. The development of flexible, reprogrammable and modular systems that may help the automatic production of 'not-easy-to-keep' species is important for scientific purposes and for such aquaculture needs as the production of alive foods, the culture of small larvae and the test of new culture procedures. For this reason, we planned and built a programmable experimental system adaptable to the culture of various aquatic organisms, at different developmental stages. The system is based on culture cylinders contained into operational tanks connected to water conditioning tanks. A programmable central processor unit controls the operations, that is, water changes, temperature, light irradiance, the opening and closure of valves for the discharge of unused foods, water circulation and filtration and disinfection systems, according to the information received by various probes. Various devices may be set to modify water circulation and water changes to fulfil the needs of given organisms, to avoid damage of delicate structures, improve feeding performances and reduce the risk of movements over the water surface. The results obtained indicate that the system is effective in the production of shrimp larvae, being able to produce Hippolyte inermis post-larvae with low mortality as compared with the standard operation procedures followed by human operators. Therefore, the patented prototype described in the present study is a possible solution to automate and simplify the rearing of small invertebrates in the laboratory and in production plants.
Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2016-12-01
Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.
Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.
1996-01-01
The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.
Legacy STORET Level 5 | STORET Legacy Data Center | US ...
2007-05-16
The U.S. Environmental Protection Agency (EPA) maintains two data management systems containing water quality information for the nation's waters: the Legacy Data Center (LDC), and STORET. The LDC is a static, archived database and STORET is an operational system actively being populated with water quality data.
URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM
This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...
Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.
Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle
2017-07-05
Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.
Performance test for a solar water heater
NASA Technical Reports Server (NTRS)
1979-01-01
Two reports describe procedures and results of performance tests on domestic solar powered hot water system. Performance tests determine amount of energy collected by system, amount of energy delivered to solar source, power required to operate system and maintain proper tank temperature, overall system efficiency, and temperature distribution in tank.
33 CFR 146.105 - General alarm system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manned facility must have a general alarm system. When operated, this system shall be audible in all... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false General alarm system. 146.105 Section 146.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...
Water Supply Systems For Aircraft Fire And Rescue Protection
DOT National Transportation Integrated Search
1995-01-01
This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.
[Evaluation of drinking-water treatment by Lifestraw® and Ceramic-pot filters].
Pérez-Vidal, Andrea; Díaz-Gómez, Jaime; Salamanca-Rojas, Karen L; Rojas-Torres, Leidy Y
2016-04-01
Objective To evaluate under laboratory conditions, the removal efficiency of turbidity and E. coli of two household water filters: LifeStraw® family (MF) and ceramic pot filter (CPF). Methods The two systems were operated over 6 months using two identical control units per system, treating 7.5 L/d of a synthetic substrate used as raw water. The turbidity of the substrate was adjusted with Kaolinite and the E. coli concentration, with a replica of the ATCC 95922 strain. The differences of effluent quality of the systems, in terms of turbidity and E. coli, were evaluated with Analysis of Variance (ANOVA). Operative and maintenance aspects, that could limit or enhance the use of the systems, were also considered in the evaluation. Results The water synthetic substrate quality had an average of 32.2 ± 2.8 NTU for turbidity and 3,9x105 UFC/100 mL for E. coli. Both systems reduce the turbidity to values below 2 NTU with an inactivation of 100 % of E. coli. Statistical differences were found between the systems in terms of turbidity removal, MF being more efficient than the CPF (99,2 ± 0.4 % and 97.6 % ± 1.14, respectively). Conclusions Both systems are suitable for household water supply treatment, acheiving the water quality standards established by Colombian regulations. The MF was more efficient for suspended solids removal and filtration rate, but when economic, operative, and maintenance aspects along with social acceptability and lifespan are considered, the CPF seems more suitable, especially in rural areas.
USEPA Guidance for Designing a Source Water Monitoring System
Treatment plants are commonly designed and operated to handle typical variability in source water quality, treat contaminants known to occur in source water, comply with drinking water standards, and meet customer expectations. However, unanticipated changes in source water qual...
Management of groundwater supply and water quality in the Los Angeles Basin, California
Reichard, E.G.; Crawford, S.M.; Land, M.T.; Paybins, K.S.
1999-01-01
Water use and water needs in the coastal Los Angeles Basin in California have been very closely tied to the development of the region during the last 150 years. The first water wells were drilled in the mid-1800s. Currently about 40% of the water supply (9.4 m3 s-1) in the region is provided by groundwater. Other sources of water supply include reclaimed water and surface water imported from Owens Valley, the Colorado River, and northern California. Increasing groundwater use in the basin led to over-abstraction and seawater instrusion. Because of this, an important component of water management in the area has been the artificial recharge of local, imported, and reclaimed water which is spread in ponds and injected in wells to recharge the aquifer system and control seawater intrusion. The US Geological Survey (USGS) is working co-operatively with the Water Replenishment District of Southern California to evaluate the hydraulic and water-quality effects of these recharge operations and to assess the potential impacts of alternative water-management strategies, including changes in pumping and increases in the use of reclaimed water. As part of this work, the USGS has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. Chemical and isotopic data were used to identify the age and source of recharge to groundwater throughout the study area. This information is key to understanding the fate of artificially recharged water and helps define the three-dimensional groundwater flow system. The geohydrological data, especially the geophysical and geological data collected from 11 newly installed multi-completion monitoring wells, were used to redefine the regional hydrostratigraphy. The groundwater flow model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water-management strategies.As part of the work aimed at evaluating the hydraulic and water-quality effects of recharge operations and to assess the potential impacts of alternative water-management strategies, the US Geological Survey (USGS), has developed a geographic information system (GIS), collected water-quality and geohydrological data from new and existing wells, and developed a multi-aquifer regional groundwater flow model. At present, the developed model is being used to enhance the understanding of the geohydrological system and to quantitatively evaluate new water-management strategies.
A decision support system for drinking water production integrating health risks assessment.
Delpla, Ianis; Monteith, Donald T; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier
2014-07-18
The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation.
Assessing water reservoir management and development in Northern Vietnam
NASA Astrophysics Data System (ADS)
Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.
2012-04-01
In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.
Analysis of information systems for hydropower operations
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.
1976-01-01
The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.
Analysis of information systems for hydropower operations: Executive summary
NASA Technical Reports Server (NTRS)
Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.
1976-01-01
An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.
33 CFR 96.240 - What functional requirements must a safety management system meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...
33 CFR 96.230 - What objectives must a safety management system meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... management system meet? 96.230 Section 96.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.230 What objectives must a safety...
Status of the Regenerative ECLS Water Recovery System
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2010-01-01
The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...
Feasibility and costs of water fluoridation in remote Australian Aboriginal communities
Ehsani, Jonathon P; Bailie, Ross
2007-01-01
Background Fluoridation of public water supplies remains the key potential strategy for prevention of dental caries. The water supplies of many remote Indigenous communities do not contain adequate levels of natural fluoride. The small and dispersed nature of communities presents challenges for the provision of fluoridation infrastructure and until recently smaller settlements were considered unfavourable for cost-effective water fluoridation. Technological advances in water treatment and fluoridation are resulting in new and more cost-effective water fluoridation options and recent cost analyses support water fluoridation for communities of less than 1,000 people. Methods Small scale fluoridation plants were installed in two remote Northern Territory communities in early 2004. Fluoride levels in community water supplies were expected to be monitored by local staff and by a remote electronic system. Site visits were undertaken by project investigators at commissioning and approximately two years later. Interviews were conducted with key informants and documentation pertaining to costs of the plants and operational reports were reviewed. Results The fluoridation plants were operational for about 80% of the trial period. A number of technical features that interfered with plant operation were identified and addressed though redesign. Management systems and the attitudes and capacity of operational staff also impacted on the effective functioning of the plants. Capital costs for the wider implementation of these plants in remote communities is estimated at about $US94,000 with recurrent annual costs of $US11,800 per unit. Conclusion Operational issues during the trial indicate the need for effective management systems, including policy and funding responsibility. Reliable manufacturers and suppliers of equipment should be identified and contractual agreements should provide for ongoing technical assistance. Water fluoridation units should be considered as a potential priority component of health related infrastructure in at least the larger remote Indigenous communities which have inadequate levels of natural fluoride and high levels of dental caries. PMID:17555604
Integrated waste and water management system
NASA Technical Reports Server (NTRS)
Murray, R. W.; Sauer, R. L.
1986-01-01
The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.
Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-16
The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.
NASA Astrophysics Data System (ADS)
Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.
2017-11-01
There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.
STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS
Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Purpose. 96.100 Section 96.100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS General § 96.100 Purpose. This...
Implementation of MAR within the Rio Grande Basin of Central New Mexico, USA
NASA Astrophysics Data System (ADS)
Marley, Robert; Blandford, T. Neil; Ewing, Amy; Webb, Larry; Yuhas, Katherine
2014-05-01
The U.S. Bureau of Reclamation has identified the Rio Grande basin within Central New Mexico as one of several regions where water supplies are over-allocated and future conflicts over the inadequate resource are highly likely. Local water providers have consistently identified managed aquifer recharge (MAR) as an important tool to provide conjunctive management of surface-water, groundwater, and reclaimed water sources in order to extend the useful life of existing water sources. However, MAR projects have been slow to take root partly due to rigorous demonstration requirements, groundwater quality protection concerns, and ongoing water right uncertainties. At first glance the several thousand meters of unconsolidated basin-fill sediments hosting the regional aquifer appear to provide an ideal environment for the subsurface storage of surplus water. However, the basin has a complex structural and depositional history that impacts the siting and overall effectiveness of MAR systems. Several recharge projects are now in various stages of implementation and are overcoming site specific challenges including source water and ambient groundwater compatibility, low-permeability sediments and compartmentalization of the aquifer by extensive faulting, well clogging, and overall water quality management. This presentation will highlight ongoing efforts of these water providers to develop full-scale recharge facilities. The performance of natural in-channel infiltration, engineered infiltration galleries, and direct injection systems designed to introduce from 500 to 5,000 mega-liters per annum to target intervals present from 150 to 600 meters below ground surface will be described. Source waters for recharge operations include inter-basin transferred surface water and highly treated reclaimed water sources requiring from minor to extensive treatment pre-recharge and post-recovery. Operational complexities have raised concerns related to long-term operation and maintenance and overall economic sustainability of these projects. Further, potential reduction in surface water return flows as a result of recharge operations and impacts to other water users during recovery of the stored water must be considered. Proposed rules for long-term storage, estimating water losses, and eventual water recovery as they relate to water rights administration within stream-connected aquifer systems will also be outlined during the presentation.
Automated Water-Purification System
NASA Technical Reports Server (NTRS)
Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.
1988-01-01
Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.
33 CFR 127.705 - Security systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...
33 CFR 127.705 - Security systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...
33 CFR 127.705 - Security systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...
33 CFR 127.705 - Security systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...
33 CFR 127.705 - Security systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security systems. 127.705 Section 127.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Security § 127.705 Security systems. The operator shall...
Solving Water Crisis through Understanding of Hydrology and Human Systems: a Possible Target
NASA Astrophysics Data System (ADS)
Montanari, A.
2014-12-01
While the majority of the Earth surface is still in pristine conditions, the totality of the hydrological systems that are relevant to humans are human impacted, with the only exception of small headwater catchments. In fact, the limited transferability of water in space and time implies that water withdrawals from natural resources take place where and when water is needed. Therefore, hydrological systems are impacted where and when humans are, thereby causing a direct perturbation of all water bodies that are relevant to society. The current trend of population dynamics and the current status of water systems are such that the above impact will be not sustainable in the near future, therefore causing a water emergency that will be extended to all intensively populated regions of the world, with relevant implications on migration fluxes, political status and social security. Therefore mitigation actions are urgently needed, whose planning needs to be based on improved interpretations of the above impact. Up to recent times, hydrologists mainly concentrated their research on catchments where the human perturbation is limited, to improve our understanding of pristine hydrology. There were good motivations for this focus: given the relevant uncertainty affecting hydrological modeling, and the even greater uncertainty involved in societal modeling, hydrologists made an effort to separate hydrological and human dynamics. Nowadays, the urgency of the above need to mitigate the global water crisis through improved water resources management calls for a research attempt to bridge water and social sciences. The relevant research question is how to build operational models in order to fully account for the interactions and feedbacks between water resources systems and society. Given that uncertainty estimation is necessary for the operational application of model results, one of the crucial issues is how to quantify uncertainty by means of suitable assumptions. This talk will provide an introduction to the problem and a personal perspective to move forward to set up improved operational models to assist societal planning to mitigate the global water crisis.
Facility for generating crew waste water product for ECLSS testing
NASA Technical Reports Server (NTRS)
Buitekant, Alan; Roberts, Barry C.
1990-01-01
An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.
Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Tyler, S. W.; Childress, A. E.
2010-12-01
The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination systems, thus, it can be used to meet the future needs of energy and water use in a sustainable way.
Sizing criteria for a low footprint passive mine water treatment system.
Sapsford, D J; Williams, K P
2009-02-01
The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.
Development of an automated potable water bactericide monitoring unit
NASA Technical Reports Server (NTRS)
Walsh, J. M.; Brawner, C. C.; Sauer, R. L.
1975-01-01
A monitor unit has been developed that permits the direct determination of the level of elemental iodine, used for microbiological control, in a spacecraft potable water supply system. Salient features of unit include low weight, volume and maintenance requirements, complete automatic operation, no inflight calibration, no expendables (except electrical current) and high accuracy and precision. This unit is capable of providing a signal to a controller that, in turn, automatically adjusts the addition rate of iodine to the potable water system so that a predetermined level of iodine can be maintained. In addition, the monitor provides a reading whereby the crewman can verify that the proper amount of iodine (within a range) is present in the water. A development history of the monitor is presented along with its design and theory of operation. Also presented are the results generated through testing of the unit in a simulated Shuttle potable water system.
NASA Astrophysics Data System (ADS)
Almukhametova, E. M.; Gizetdinov, I. A.
2018-05-01
Development of most deposits in Russia is accompanied with a high level of crude water cut. More than 70% of the operating well count of Barsukovskoye deposit operates with water; about 12% of the wells are characterized by a saturated water cut; many wells with high water cut are idling. To optimize the current FPM system of the Barsukovskoye deposit, a calculation method over a hydrodynamic model was applied with further analysis of hydrodynamic connectivity between the wells. A plot was selected, containing several wells with water cut going ahead of reserve recovery rate; injection wells, exerting the most influence onto the selected producer wells, were determined. Then, several variants were considered for transformation of the FPM system of this plot. The possible cases were analyzed with the hydrodynamic model with further determination of economic effect of each of them.
NASA Astrophysics Data System (ADS)
Newman, J. P.; Dandy, G. C.; Maier, H. R.
2014-10-01
In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling informed decisions to be made when planning water systems for greenfield developments.
Enhancing water supply through reservoir reoperation
NASA Astrophysics Data System (ADS)
Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.
2017-12-01
Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1976-01-01
A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.
Water reuse at highway rest stations.
DOT National Transportation Integrated Search
1974-01-01
A laboratory biological wastewater treatment system was operated to investigate the effects of wastewater effluent recycle on the treatment system and the effluent water quality. This concept is being investigated for use at highway rest areas in the...
40 CFR 122.32 - As an operator of a small MS4, am I regulated under the NPDES storm water program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false As an operator of a small MS4, am I regulated under the NPDES storm water program? 122.32 Section 122.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit...
40 CFR 122.32 - As an operator of a small MS4, am I regulated under the NPDES storm water program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false As an operator of a small MS4, am I regulated under the NPDES storm water program? 122.32 Section 122.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit...
Technology for Water Treatment
NASA Technical Reports Server (NTRS)
1992-01-01
There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2011-05-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P [Montpelier, VT
2009-02-10
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Water turbine system and method of operation
Costin, Daniel P.
2010-06-15
A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...
Code of Federal Regulations, 2013 CFR
2013-07-01
... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
Hoppe, H; Messmann, S; Giga, A; Gruening, H
2011-01-01
'Classical' real-time control (RTC) strategies in sewer systems are based on water level and flow measurements with the goal of activation of retention volume. The control system rule of 'clean (storm water) runoff into the receiving water - polluted runoff into the treatment plant' has been thwarted by rough operating conditions and lack of measurements. Due to the specific boundary conditions in the city of Wuppertal's separate sewer system (clean stream water is mixed with polluted storm water runoff) a more sophisticated--pollution-based--approach was needed. In addition the requirements to be met by the treatment of storm water runoff have become more stringent in recent years. To separate the highly-polluted storm water runoff during rain events from the cleaner stream flow a pollution-based real-time control (P-RTC) system was developed and installed. This paper describes the measurement and P-RTC equipment, the definition of total suspended solids as the pollution-indicating parameter, the serviceability of the system, and also gives a cost assessment. A sensitivity analysis and pollution load calculations have been carried out in order to improve the P-RTC algorithm. An examination of actual measurements clearly shows the ecological and economic advantages of the P-RTC strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, J. Daniel
2012-07-01
The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (target area ), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory trackingmore » and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.« less
Total Water Management - Report
There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current operations put different stresses on the environment and urban infrastructure. Total Water Management (TWM) is an approac...
Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager
In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allo...
33 CFR 96.110 - Who does this subpart apply to?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Who does this subpart apply to? 96.110 Section 96.110 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS...
33 CFR 96.410 - Who does this regulation apply to?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Who does this regulation apply to? 96.410 Section 96.410 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS...
Pump Operation Workshop. Third Edition (Revised).
ERIC Educational Resources Information Center
Ontario Ministry of the Environment, Toronto.
Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system, Elcam-Tempe, was designed by Elcam Incorporated, Santa Barbara, California, to supply commercial domestic hot water heating systems to the Agriculture Department residence at Arizona State University. The building is a single story residence located at the agriculture experiment farm of the Arizona State University. The energy system's four modes of operation are described. Electrical energy savings at the site was a net of 5.54 million Btu after the 0.17 million Btu of operating energy required to operate collector loop circulating pump were subtracted. The energy savings due to solar was less than the system's potential. On an average, twice as much hot water could have been used with significant solar energy contribution. The system corrosion and deposits caused by using dissimilar metals in the collector loop was the only problem noted with the Elcam-Tempe system.
Peter-Varbanets, Maryna; Gujer, Willi; Pronk, Wouter
2012-06-15
River water was treated by ultrafiltration at a relatively low transmembrane pressure (40 mbar). As observed before, flux stabilization occurred after several days of operation although no back-flushing or cross flow was applied. Interruptions in flux were applied by temporary offset of the transmembrane pressure. After restoration of the transmembrane pressure, the initial flux was higher than the stable flux level, and the flux recovery depended on the standstill time. Furthermore, if a short cross flow was applied after standstill, the flux was restored to an even higher level. In all cases, the flux decreased again during operation to reach finally the same stable level as before standstill. In order to evaluate the influence of intermittent operation as practiced for water treatment on a household level, daily interruptions of flux were applied. An optimum of total daily water production rate was obtained at 21 h of operation and 3 h of standstill per day. A model was developed which can describe the impact of intermittent operation on the flux depending on the duration of the standstill and operating periods. This enables the prediction of production capacity of the system operated intermittently. The flux increase during standstill could be explained by a relaxation and expansion of the biofouling layer, while the higher flux after forward-flushing was caused by this layer being partially sloughed off. Household water treatment with the process presented here will generally be operated on a discontinuous basis. The results show that such operation schemes do not compromise the permeability of the system, but actually lead to higher fluxes after standstill. Copyright © 2012 Elsevier Ltd. All rights reserved.
33 CFR 157.155 - COW operations: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW operations: General. 157.155... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.155 COW operations: General. (a) The master of a tank vessel having a COW system under § 157.10(e), § 157.10a(a)(2), or 157.10c(b)(2) shall...
33 CFR 157.156 - COW operations: Meeting manual requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW operations: Meeting manual... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.156 COW operations... COW system under §§ 157.10(e), 157.10a(a)(2), or 157.10c(b)(2) that has the Crude Oil Washing...
Uses of communication satellites in water utility operations
NASA Astrophysics Data System (ADS)
Tighe, W. S.
This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.
Geothermal pump down-hole energy regeneration system
Matthews, Hugh B.
1982-01-01
Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
NASA Technical Reports Server (NTRS)
1980-01-01
The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.
Operating & Environmental Standards « Coast Guard Maritime Commons
: Marine Safety Information Bulletin 03-18, Oily bilge water management This bulletin summarizes key legal updates to Marine Safety Center's ballast water management system website The Marine Safety Center recently updated two tools posted to its ballast water management system website to assist industry when
40 CFR 35.929-1 - Approval of the user charge system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...
40 CFR 35.929-1 - Approval of the user charge system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...
40 CFR 35.929-1 - Approval of the user charge system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...
40 CFR 35.929-1 - Approval of the user charge system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...
40 CFR 35.929-1 - Approval of the user charge system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the grantee's costs of waste water treatment services; (B) The grantee's budgeting and accounting... operation and maintenance; (C) The ad valorem tax system collected tax funds for the costs of waste water..., which required the subscriber to pay its share of the cost of waste water treatment services. (4) A user...
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Investigation of cloud/water vapor motion winds from geostationary satellite
NASA Technical Reports Server (NTRS)
Nieman, Steve; Velden, Chris; Hayden, Kit; Menzel, Paul
1993-01-01
Work has been primarily focussed on three tasks: (1) comparison of wind fields produced at MSFC with the CO2 autowind/autoeditor system newly installed in NESDIS operations; (2) evaluation of techniques for improved tracer selection through use of cloud classification predictors; and (3) development of height assignment algorithm with water vapor channel radiances. The contract goal is to improve the CIMSS wind system by developing new techniques and assimilating better existing techniques. The work reported here was done in collaboration with the NESDIS scientists working on the operational winds software, so that NASA funded research can benefit NESDIS operational algorithms.
The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities
NASA Astrophysics Data System (ADS)
Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.
2015-12-01
The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.
SPE (tm) water electrolyzers in support of mission from planet Earth
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1991-01-01
During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.
NASA Astrophysics Data System (ADS)
Olivares, M. A.; Gonzalez Cabrera, J. M., Sr.; Moreno, R.
2016-12-01
Operation of hydropower reservoirs in Chile is prescribed by an Independent Power System Operator. This study proposes a methodology that integrates power grid operations planning with basin-scale multi-use reservoir operations planning. The aim is to efficiently manage a multi-purpose reservoir, in which hydroelectric generation is competing with other water uses, most notably irrigation. Hydropower and irrigation are competing water uses due to a seasonality mismatch. Currently, the operation of multi-purpose reservoirs with substantial power capacity is prescribed as the result of a grid-wide cost-minimization model which takes irrigation requirements as constraints. We propose advancing in the economic co-optimization of reservoir water use for irrigation and hydropower at the basin level, by explicitly introducing the economic value of water for irrigation represented by a demand function for irrigation water. The proposed methodology uses the solution of a long-term grid-wide operations planning model, a stochastic dual dynamic program (SDDP), to obtain the marginal benefit function for water use in hydropower. This marginal benefit corresponds to the energy price in the power grid as a function of the water availability in the reservoir and the hydrologic scenarios. This function allows capture technical and economic aspects to the operation of hydropower reservoir in the power grid and is generated with the dual variable of the power-balance constraint, the optimal reservoir operation and the hydrologic scenarios used in SDDP. The economic value of water for irrigation and hydropower are then integrated into a basin scale stochastic dynamic program, from which stored water value functions are derived. These value functions are then used to re-optimize reservoir operations under several inflow scenarios.
Direct and system effects of water ingestion into jet engine compresors
NASA Technical Reports Server (NTRS)
Murthy, S. N. B.; Ehresman, C. M.; Haykin, T.
1986-01-01
Water ingestion into aircraft-installed jet engines can arise both during take-off and flight through rain storms, resulting in engine operation with nearly saturated air-water droplet mixture flow. Each of the components of the engine and the system as a whole are affected by water ingestion, aero-thermally and mechanically. The greatest effects arise probably in turbo-machinery. Experimental and model-based results (of relevance to 'immediate' aerothermal changes) in compressors have been obtained to show the effects of film formation on material surfaces, centrifugal redistribution of water droplets, and interphase heat and mass transfer. Changes in the compressor performance affect the operation of the other components including the control and hence the system. The effects on the engine as a whole are obtained through engine simulation with specified water ingestion. The interest is in thrust, specific fuel consumption, surge margin and rotational speeds. Finally two significant aspects of performance changes, scalability and controllability, are discussed in terms of characteristic scales and functional relations.
NASA Technical Reports Server (NTRS)
1982-01-01
An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.
Retransmission of water resources data using the ERTS-1 data collection system
NASA Technical Reports Server (NTRS)
Halliday, R. A.; Reid, I. A.; Chapman, E. F.
1974-01-01
The Water Survey of Canada operates a network of approximately 2400 gauging stations at which water level data are collected. Nine DCPs were installed in isolated areas of northern and western Canada. It was felt that DCPs in these locations would be exposed to climatic conditions severe enough to provide a check on system reliability. Water level data are transmitted from all sites and, also, some of the DCPs are used to transmit ice break-up, water velocity, precipitation, air temperature, water stage recorder clock operation or DCP battery voltage. Consideration is being given to transmitting other parameters that would be of value in flood or flow forecasting. Results of the project have been excellent. There has been no data loss that can be attributed to failure of a DCP although data were lost because of sensor malfunctions. The quality of data collected compares favourably with that of the hard record obtained at the remote sites. Costs of using the ERTS Data Collection System are reasonable.
33 CFR 127.1305 - Operations Manual.
Code of Federal Regulations, 2010 CFR
2010-07-01
... personnel of the facility; (e) A description for each security system provided for the transfer area; (f) A... Section 127.1305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Operations Manual must contain— (a) A description of each liquid-transfer system and vapor transfer system...
Upgrades to the International Space Station Water Recovery System
NASA Technical Reports Server (NTRS)
Kayatin, Matthew J.; Pruitt, Jennifer M.; Nur, Mononita; Takada, Kevin C.; Carter, Layne
2017-01-01
The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
33 CFR 96.220 - What makes up a safety management system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false What makes up a safety management... SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.220 What makes up a safety management system? (a) The...
Application of aerial photography to water-related programs in Michigan
NASA Technical Reports Server (NTRS)
Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.
1977-01-01
Aerial photography and information system technology were used to generate information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the city of Lansing; the inventory identified 35% more surface water areas than indicated on existing field maps. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County, were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps focusing on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.
Modeling water resources as a constraint in electricity capacity expansion models
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.
2013-12-01
In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs and availability of freshwater (surface and groundwater) and alternative water resources (municipal wastewater and brackish groundwater). In each region, a new power plant must secure sufficient water rights for operation before being built. Water rights constraints thus influence the type of power plant, cooling system, or location of new generating capacity. Results indicate that the aggregate national generating capacity by fuel type and associated carbon dioxide emissions change marginally with the inclusion of water rights. Water resource withdrawals and consumption, however, can vary considerably. Regional water resource dynamics indicate substantial differences in the location where power plant-cooling system technology combinations are built. These localized impacts highlight the importance of considering water resources as a constraint in the electricity sector when evaluating costs, transmission infrastructure needs, and externalities. Further scenario evaluations include assessments of how climate change could affect the availability of water resources, and thus the development of the electricity sector.
Potential biofouling of spacecraft propellant systems due to contaminated deionized water
NASA Astrophysics Data System (ADS)
Hogue, Patrick
2006-08-01
Deionized (DI) water, with a density close to hydrazine, is used to fill spacecraft propellant tanks for mechanical testing during ground operations, after which is it removed and the tanks dried for use with anhydrous hydrazine. Pure nitrogen is used as a pressurant during storage and during water fill and drain operations. Since DI water systems are notorious for contamination by slime-forming bacteria, DI water intended for use in New Horizons and STEREO hydrazine tanks at APL was assessed for microorganism content using the heterotrophic plate count (HPC) method. Results show that some growth occurred during storage of DI water in propellant tanks, however not at the logarithmic rate associated with well-nourished bacteria. Ralstonia and Burkholderia were present in DI water on-loaded however only Ralstonia was present in off-loaded water. One possible source of nutrients during water storage in propellant tanks is organic material originating from the EPDM (EPR per AF-E-332) expulsion diaphragm. This paper will demonstrate potential for bio-fouling of spacecraft propulsion systems due to growth of slime-forming bacteria and will suggest that specifications controlling microorganism content should be imposed on water used for spacecraft ground testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; DeBusk, W.F.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as ''operational plant density,'' a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t(dry wt) ha/sup -1/yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, K.R.; DeBusk, W.F.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida's climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as operational plant density, a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yieldsmore » were found to be 106, 72, and 41 t (dry wt) ha/sup -1/ yr/sup -1/, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500-2,000 g dry wt m/sup -2/ for water hyacinth, 200-700 g dry wt m/sup -2/ for water lettuce, and 250-650 g dry wt m/sup -2/ for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter.« less
Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure
Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
NASA Astrophysics Data System (ADS)
Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.
2017-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.
Water survey of Canada: Application for use of ERTS-A for retransmission of water resources data
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator); Reid, I. A.
1974-01-01
The author has identified the following significant results. Water resources data including water level, water velocity, precipitation, air temperature, ice condition, DCP battery voltage, and water stage recorder clock operation have been transmitted from remote areas in Canada using the ERTS Data Collection System. The Data Collection Platforms have met all requirements. The suitability of satellite retransmission as a means of obtaining data from remote areas has been demonstrated. The present network of 9 Data Collection Platforms will be expanded to 28 to develop a quasi-operational network.
Water-hyacinth production primary and advanced treatment of wastewater. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegler, B.R. Jr.
1983-01-01
A prototype water hyacinth wastewater treatment system has been in operation for two years at Walt Disney World, near Orlando, Florida. Typically, the hyacinth system removes 80-90% total suspended solids and B.O.D. from the influent stream. Major impacts on water quality exiting the system are: seasonal variations in solar radiation, air and water temperature; operational problems, particularly harvesting equipment breakdown, and retention time in the ponds. Phosphorus and nitrogen removal show a strong seasonal dependence, with removal rates varying from 0.08 to 1.11 g/m/sup 2//day for N and from 0.05 to 0.29 g/m/sup 2//day for P. Nitrogen removal rates showmore » a strong dependence on retention times, with a retention time of 5 days appearing to be a critical limit for the establishment of an active population of denitrifying bacteria. Hyacinth biomass productivity of the system was approximately 66.7 dry metric tons per hectare year (30 dry tons/acre year) during the second year of operation. An Experimental Test Unit (ETU) for anaerobic digestion of hyacinths to methane will be installed by late 1983.« less
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.
2016-03-01
The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.
An intelligent agent for optimal river-reservoir system management
NASA Astrophysics Data System (ADS)
Rieker, Jeffrey D.; Labadie, John W.
2012-09-01
A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.
High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2015-01-01
Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.
Operator Training: Who Is Responsible?
ERIC Educational Resources Information Center
Wubbena, Robert L.
1979-01-01
Summarized are the findings of a study to identify and correct water pollution control operator training deficiencies. Several models are presented to aid in developing a coordinated delivery system for operator training and certification. (CS)
Description and operation of Haakon School geothermal heating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, F.W.; Kirol, L.D.; Sanders, R.D.
1997-12-01
Haakon School is located in the city of Philip, near the Badlands National Park in the southwest quadrant of South Dakota. The town overlies the Madison Formation which is a large-area aquifer. The aquifer has a demonstrated capability to produce geothermal water. A system to tap this potential and heat the Haakon School District buildings in Philip has been in operation since November 1980. Five school buildings having a total area of 44,000 ft{sup 2} (4088 ft{sup 2}) are heated with 157{degrees}F (69{degrees}C) water. A single well provides water at a maximum artesian flow of 340 gpm (21.5 L/s), whichmore » more than meets the heat demand of the school buildings. Eight buildings in the Philip business district utilize geothermal fluid discharged from the school for space heating. During the 1980-81 heating season, these buildings obtained 75% to 90% of their heat from geothermal fluid. Peak heat delivery of the system is 5.5 million Btu/h (1.61. MJ/s), with an annual energy delivery of 9.5 billion Btu (10 TJ). The geothermal system has operated nearly problem free with the exception of the equipment to remove Radium-226 from the spent fluid. Barium chloride is added to the water to precipitate sulfates containing the radium. Accumulation of precipitates in piping has caused some operational problems.« less
System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Perchonok, Michele H.
2004-01-01
In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
Scheili, A; Rodriguez, Manuel J; Sadiq, R
2015-11-01
The aim of this study was to produce a drinking water assessment tool for operators of small distribution systems. A drinking water quality index (DWQI) was developed and applied to small systems based on the water quality index of the Canadian Council of Ministers of Environment. The drinking water quality index was adapted to specific needs by creating four drinking water quality scenarios. First, the temporal and spatial dimensions of drinking water quality variability were taken into account. The DWQI was designed to express global drinking water quality according to different monitoring frequencies. Daily, monthly, and seasonal assessment was also considered. With the data made available, it was possible to use the index as a spatial monitoring tool and express water quality in different points in the distribution system. Moreover, adjustments were made to prioritize the type of contaminant to monitor. For instance, monitoring contaminants with acute health effects led to a scenario based on daily measures, including easily accessible and affordable water quality parameters. On the other hand, contaminants with chronic effects, especially disinfection by-products, were considered in a seasonal monitoring scenario where disinfection by-product reference values were redefined according to their seasonal variability. A sensitivity analysis was also carried out to validate the index. Globally, the DWQI developed is adapted to the needs of small systems. In fact, expressing drinking water quality using the DWQI contributes to the identification of problematic periods and segments in the distribution system. Further work may include this index in the development of a customized decision-making tool for small-system operators and managers.
Reservoir operations under climate change: Storage capacity options to mitigate risk
NASA Astrophysics Data System (ADS)
Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.
2017-12-01
Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.
Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield
NASA Astrophysics Data System (ADS)
Widiastuti, I.; Wijayanto, D. S.
2017-03-01
Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.
A Decision Support System for Drinking Water Production Integrating Health Risks Assessment
Delpla, Ianis; Monteith, Donald T.; Freeman, Chris; Haftka, Joris; Hermens, Joop; Jones, Timothy G.; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier
2014-01-01
The issue of drinking water quality compliance in small and medium scale water services is of paramount importance in relation to the 98/83/CE European Drinking Water Directive (DWD). Additionally, concerns are being expressed over the implementation of the DWD with respect to possible impacts on water quality from forecast changes in European climate with global warming and further anticipated reductions in north European acid emissions. Consequently, we have developed a decision support system (DSS) named ARTEM-WQ (AwaReness Tool for the Evaluation and Mitigation of drinking Water Quality issues resulting from environmental changes) to support decision making by small and medium plant operators and other water stakeholders. ARTEM-WQ is based on a sequential risk analysis approach that includes consideration of catchment characteristics, climatic conditions and treatment operations. It provides a holistic evaluation of the water system, while also assessing human health risks of organic contaminants potentially present in treated waters (steroids, pharmaceuticals, pesticides, bisphenol-a, polychlorobiphenyls, polycyclic aromatic hydrocarbons, petrochemical hydrocarbons and disinfection by-products; n = 109). Moreover, the system provides recommendations for improvement while supporting decision making in its widest context. The tool has been tested on various European catchments and shows a promising potential to inform water managers of risks and appropriate mitigative actions. Further improvements should include toxicological knowledge advancement, environmental background pollutant concentrations and the assessment of the impact of distribution systems on water quality variation. PMID:25046634
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevallier, J.; Turner, L.
This article describes the design and operation of Trident IX a successfully applied jack up system. A summary of Trident IX's two years of operation in the Arabian Gulf and offshore West Africa is presented. The system is compared to conventional jacking systems in terms of design, operation, costs and safety. Dynamic forces at 400 ft. water depths are summarized, and design of the legs to withstand these dynamic forces and accomodate the new system are explained. Features are listed.
From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System
NASA Astrophysics Data System (ADS)
Kavanaugh, K. E.; Stumpf, R. P.
2016-02-01
A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.
Source And Sink Of Iodine For Drinking Water
NASA Technical Reports Server (NTRS)
Sauer, Richard L.; Flanagan, David T.; Gibbons, Randall E.
1991-01-01
Proposed system for controlling concentration of iodine in potable water exploits temperature dependence of equilibrium partition of iodine between solution in water and residence in ion-exchange resin. Used to maintain concentration of iodine sufficient to kill harmful microbes, but not so great to make water unpalatable. Requires little attention, yet controls concentration of iodine more precisely than iodination and deiodination by manual techniques. Conceived for use aboard spacecraft, system has terrestrial applications in regions where water must be kept potable, resupply difficult, and system must operate largely unattended.
NASA Astrophysics Data System (ADS)
Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.
2016-06-01
For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Boyce, S. E.; Hanson, R. T.; Llewellyn, D.
2014-12-01
It is well established that groundwater pumping affects surface-water availability by intercepting groundwater that would otherwise discharge to streams and/or by increasing seepage from surface-water channels. Conversely, surface-water management operations effect groundwater availability by altering the timing, location, and quantity of groundwater recharge and demand. Successful conjunctive use may require analysis with an integrated approach that accounts for the many interactions and feedbacks between surface-water and groundwater availability and their joint management. In order to improve simulation and analysis of conjunctive use, Bureau of Reclamation and USGS are collaborating to develop a surface-water operations module within MODFLOW One Water Hydrologic Flow Model (MF-OWHM), a new version of the USGS Modular Groundwater Flow Model (MODFLOW). Here we describe the development and application of the surface-water operations module. We provide an overview of the conceptual approach used to simulate surface-water operations—including surface-water storage, allocation, release, diversion, and delivery on monthly to seasonal time frames—in a fully-integrated manner. We then present results from a recent case study analysis of the Rio Grande Project, a large-scale irrigation project located in New Mexico and Texas, under varying surface-water operations criteria and climate conditions. Case study results demonstrate the importance of integrated hydrologic simulation of surface water and groundwater operations in analysis and management of conjunctive-use systems.
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
Description of photovoltaic village power systems in the United States and Africa
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Bifano, W. J.
1979-01-01
Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.
2017-12-01
The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.
NASA Astrophysics Data System (ADS)
Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida
2017-11-01
Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.
40 CFR 60.692-3 - Standards: Oil-water separators.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each... wastewater shall, in addition to the requirements in paragraph (a) of this section, be equipped and operated... wastewater which was equipped and operated with a fixed roof covering the entire separator tank or a portion...
40 CFR 60.692-3 - Standards: Oil-water separators.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each... wastewater shall, in addition to the requirements in paragraph (a) of this section, be equipped and operated... wastewater which was equipped and operated with a fixed roof covering the entire separator tank or a portion...
Process water reduction in a wire milling operation. 1989 summer intern report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberg, J.
1989-12-31
Johnson Filtration Systems is a company located in New Brighton, Minnesota which employs 256 people. The focus of the project was to reduce the water usage of the wire milling operation. Water in the milling process is used to clean the wire and cool the mill components. Total annual water usage for this operation is six million gallons. The milling process changes the cross sectional shape of the wire by using flattening hammers and rollers. A synthetic coolant is used to enhance this process and remove heat. The coolant is removed from the wire as it is pulled through amore » squeegee, washed it with water and dried with an air knife.« less
Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure - abstract
Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...
SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS
Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...
,
2004-01-01
The Ground-Water Site-Inventory (GWSI) System is a ground-water data storage and retrieval system that is part of the National Water Information System (NWIS) developed by the U.S. Geological Survey (USGS). The NWIS is a distributed water database in which data can be processed over a network of workstations and file servers at USGS offices throughout the United States. This system comprises the GWSI, the Automated Data Processing System (ADAPS), the Water-Quality System (QWDATA), and the Site-Specific Water-Use Data System (SWUDS). The GWSI System provides for entering new sites and updating existing sites within the local database. In addition, the GWSI provides for retrieving and displaying ground-water and sitefile data stored in the local database. Finally, the GWSI provides for routine maintenance of the local and national data records. This manual contains instructions for users of the GWSI and discusses the general operating procedures for the programs found within the GWSI Main Menu.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.200 Purpose. This subpart establishes the minimum standards that the safety...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities... that which can be attained by a closed-cycle recirculating cooling water system; (2) You must design...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... listed and six unlisted species of fish covered by Kent's Clark Springs Water Supply HCP. This notice... applications are for the operation and maintenance of Kent's Clark Springs Water Supply System adjacent to Rock Creek, King County, Washington. The Clark Springs Water Supply System consists of a spring-fed...
10 CFR 36.59 - Detection of leaking sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
... alarm set-point to a higher level if necessary to operate the pool water purification system to clean up... certificate from a transferor that leak test has been done within the 6 months before the transfer. Water from... either by using a radiation monitor on a pool water circulating system or by analysis of a sample of pool...
10 CFR 36.59 - Detection of leaking sources.
Code of Federal Regulations, 2012 CFR
2012-01-01
... alarm set-point to a higher level if necessary to operate the pool water purification system to clean up... certificate from a transferor that leak test has been done within the 6 months before the transfer. Water from... either by using a radiation monitor on a pool water circulating system or by analysis of a sample of pool...
10 CFR 36.59 - Detection of leaking sources.
Code of Federal Regulations, 2011 CFR
2011-01-01
... alarm set-point to a higher level if necessary to operate the pool water purification system to clean up... certificate from a transferor that leak test has been done within the 6 months before the transfer. Water from... either by using a radiation monitor on a pool water circulating system or by analysis of a sample of pool...
10 CFR 36.59 - Detection of leaking sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
... alarm set-point to a higher level if necessary to operate the pool water purification system to clean up... certificate from a transferor that leak test has been done within the 6 months before the transfer. Water from... either by using a radiation monitor on a pool water circulating system or by analysis of a sample of pool...
Largo hot water system long range thermal performance test report, addendum
NASA Technical Reports Server (NTRS)
1978-01-01
The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... Water System, the Auxiliary Building Filtered Ventilation Exhaust System, or the Diesel Generators... nuclear service water system (NSWS) for a time period of 14 days. Basis for proposed no significant... the diesel generator buildings in the event of a leak or a break in the system piping. The probability...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... the NRC's E-Filing system does not support unlisted software, and the NRC Meta System Help Desk will... Osmosis (RO) system borated water storage tank suction connections. Basis for proposed no significant... requirement. For the SFP, the suction to the RO system is above the required TS water level, therefore, the...
Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia
NASA Technical Reports Server (NTRS)
1981-01-01
Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Giuliani, M.; Castelletti, A.
2012-04-01
There is a general agreement that one of the most challenging issues related to water system management is the presence of many and often conflicting interests as well as the presence of several and independent decision makers. The traditional approach to multi-objective water systems management is a centralized management, in which an ideal central regulator coordinates the operation of the whole system, exploiting all the available information and balancing all the operating objectives. Although this approach allows to obtain Pareto-optimal solutions representing the maximum achievable benefit, it is based on assumptions which strongly limits its application in real world contexts: 1) top-down management, 2) existence of a central regulation institution, 3) complete information exchange within the system, 4) perfect economic efficiency. A bottom-up decentralized approach seems therefore to be more suitable for real case applications since different reservoir operators may maintain their independence. In this work we tested the consequences of a change in the water management approach moving from a centralized toward a decentralized one. In particular we compared three different cases: the centralized management approach, the independent management approach where each reservoir operator takes the daily release decision maximizing (or minimizing) his operating objective independently from each other, and an intermediate approach, leading to the Nash equilibrium of the associated game, where different reservoir operators try to model the behaviours of the other operators. The three approaches are demonstrated using a test case-study composed of two reservoirs regulated for the minimization of flooding in different locations. The operating policies are computed by solving one single multi-objective optimal control problem, in the centralized management approach; multiple single-objective optimization problems, i.e. one for each operator, in the independent case; using techniques related to game theory for the description of the interaction between the two operators, in the last approach. Computational results shows that the Pareto-optimal control policies obtained in the centralized approach dominate the control policies of both the two cases of decentralized management and that the so called price of anarchy increases moving toward the independent management approach. However, the Nash equilibrium solution seems to be the most promising alternative because it represents a good compromise in maximizing management efficiency without limiting the behaviours of the reservoir operators.
This project is a collaborative drinking water research study. EPA is evaluating water samples collected by PWS operators in order to investigate relationships between bromide in source water and the formation of brominated DBPs in finished drinking water. This study will includ...
Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir
NASA Astrophysics Data System (ADS)
Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang
2018-01-01
Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.
Bovee, Ken D.; Waddle, Terry J.; Talbert, Colin; Hatten, James R.; Batt, Thomas R.
2008-01-01
The Yakima River Decision Support System (YRDSS) was designed to quantify and display the consequences of different water management scenarios for a variety of state variables in the upper Yakima River Basin, located in central Washington. The impetus for the YRDSS was the Yakima River Basin Water Storage Feasibility Study, which investigated alternatives for providing additional water in the basin for threatened and endangered fish, irrigated agriculture, and municipal water supply. The additional water supplies would be provided by combinations of water exchanges, pumping stations, and off-channel storage facilities, each of which could affect the operations of the Bureau of Reclamation's (BOR) five headwaters reservoirs in the basin. The driver for the YRDSS is RiverWare, a systems-operations model used by BOR to calculate reservoir storage, irrigation deliveries, and streamflow at downstream locations resulting from changes in water supply and reservoir operations. The YRDSS uses output from RiverWare to calculate and summarize changes at 5 important flood plain reaches in the basin to 14 state variables: (1) habitat availability for selected life stages of four salmonid species, (2) spawning-incubation habitat persistence, (3) potential redd scour, (4) maximum water temperatures, (5) outmigration for bull trout (Salvelinus confluentus) from headwaters reservoirs, (6) outmigration of salmon smolts from Cle Elum Reservoir, (7) frequency of beneficial overbank flooding, (8) frequency of damaging flood events, (9) total deliverable water supply, (10) total water supply deliverable to junior water rights holders, (11) end-of-year reservoir carryover, (12) potential fine sediment transport rates, (13) frequency of events capable of armor layer disruption, and (14) geomorphic work performed during each water year. Output of the YRDSS consists of a series of conditionally formatted scoring tables, wherein the changes to a state variable resulting from an operational scenario are compiled and summarized. Increases in the values for state variables result in their respective backgrounds to turn green in the scoring matrix, whereas decreases in the values for state variables result in their respective backgrounds turning red. This convention was designed to provide decision makers with a quick visual assessment of the overall results of an operating scenario. An evaluation matrix and a variety of weighting strategies to reflect the relative importance of different state variables are also presented as options for further distillation of YRDSS results during the decision-making process.
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Constraints and potential for efficient inter-sectoral water allocations in Tanzania
NASA Astrophysics Data System (ADS)
Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Sokile, Charles S.; Mahoo, Henry F.
In many sub-Saharan African countries, there are conflicts over water uses in most river basins. In Tanzania, conflicts are becoming alarming and are exacerbated by increasing water demands due to rapid population growth and expanding economic activities. This paper reviews the major constraints and potential for achieving efficient systems of allocating water resources to different uses and users in Tanzania. The following constraints are identified: (a) the lack of active community involvement in management of water resources, (b) conflicting institutions and weak institutional capacities both in terms of regulations and protection of interests of the poor, (c) the lack of data and information to inform policy and strategies for balanced water allocation, and (d) inadequate funds for operation, maintenance and expansion of water supply systems. Despite these constraints, there are also opportunities for improving water allocation and management systems in the country. These include: the available reserve of both surface and groundwater resources, which remain unexploited; high demand for water services; a high potential for investing in the water sector; and availability of basic infrastructure and elements of institutional framework that can be improved. The paper recommends the use of combined variants of water allocation devices which (a) meet different water requirements and ensure desirable multiple-use outcomes, (b) facilitate the classification of water resources in terms of desired environmental protection levels, (c) allow reforms in water utilization to achieve equity and meet changing social and economic priorities, (d) facilitate the development of effective local institutions, (e) put in place the legal system that assigns rights to water resources and describes how those rights may be transferred, (f) enforce the rights and punish infringements on those rights, and (g) use cost-effective pricing systems to ensure that payment for water uses cover development, operational and management costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel
Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less
Optimal design and operation of booster chlorination stations layout in water distribution systems.
Ohar, Ziv; Ostfeld, Avi
2014-07-01
This study describes a new methodology for the disinfection booster design, placement, and operation problem in water distribution systems. Disinfectant residuals, which are in most cases chlorine residuals, are assumed to be sufficient to prevent growth of pathogenic bacteria, yet low enough to avoid taste and odor problems. Commonly, large quantities of disinfectants are released at the sources outlets for preserving minimum residual disinfectant concentrations throughout the network. Such an approach can cause taste and odor problems near the disinfectant injection locations, but more important hazardous excessive disinfectant by-product formations (DBPs) at the far network ends, of which some may be carcinogenic. To cope with these deficiencies booster chlorination stations were suggested to be placed at the distribution system itself and not just at the sources, motivating considerable research in recent years on placement, design, and operation of booster chlorination stations in water distribution systems. The model formulated and solved herein is aimed at setting the required chlorination dose of the boosters for delivering water at acceptable residual chlorine and TTHM concentrations for minimizing the overall cost of booster placement, construction, and operation under extended period hydraulic simulation conditions through utilizing a multi-species approach. The developed methodology links a genetic algorithm with EPANET-MSX, and is demonstrated through base runs and sensitivity analyses on a network example application. Two approaches are suggested for dealing with water quality initial conditions and species periodicity: (1) repetitive cyclical simulation (RCS), and (2) cyclical constrained species (CCS). RCS was found to be more robust but with longer computational time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... a level of > 22 inches water column in support of SGIG system operation. Exelon is submitting this... site, but should note that the NRC's E-Filing system does not support unlisted software, and the NRC... EDGs and the associated support systems, such as the fuel oil storage and transfer systems, are...
Stream protection with small cable yarding systems
Penn A. Peters; Chris B. LeDoux
1984-01-01
Small cable yarder systems that can be purchased and operated by independent logging contractors have less potential negative impact on water quality than ground-based systems operating on steep terrain because they do not require such an intense road system. Stream protection costs were estimated at $3.78 per lineal foot of stream when a typical small yarder (Koller K...
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland
Banks, William S.L.; Dillow, Jonathan J.A.
2001-01-01
The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14 extraction wells at rates ranging from 0.4 to 4.9 gallons per minute.
Tomás-Callejas, Alejandro; López-Velasco, Gabriela; Valadez, Angela M; Sbodio, Adrian; Artés-Hernández, Francisco; Danyluk, Michelle D; Suslow, Trevor V
2012-02-01
Standard postharvest unit operations that rely on copious water contact, such as fruit unloading and washing, approach the criteria for a true critical control point in fresh tomato production. Performance data for approved sanitizers that reflect commercial systems are needed to set standards for audit compliance. This study was conducted to evaluate the efficacy of chlorine dioxide (ClO(2)) for water disinfection as an objective assessment of recent industry-adopted standards for dump tank and flume management in fresh tomato packing operations. On-site assessments were conducted during eight temporally distinct shifts in two Florida packinghouses and one California packinghouse. Microbiological analyses of incoming and washed fruit and dump and flume system water were evaluated. Water temperature, pH, turbidity, conductivity, and oxidation-reduction potential (ORP) were monitored. Reduction in populations of mesophilic and coliform bacteria on fruit was not significant, and populations were significantly higher (P < 0.05) after washing. Escherichia coli was near the limit of detection in dump tanks but consistently below the detection limit in flumes. Turbidity and conductivity increased with loads of incoming tomatoes. Water temperature varied during daily operations, but pH and ORP mostly remained constant. The industry standard positive temperature differential of 5.5°C between water and fruit pulp was not maintained in tanks during the full daily operation. ORP values were significantly higher in the flume than in the dump tank. A positive correlation was found between ORP and temperature, and negative correlations were found between ORP and turbidity, total mesophilic bacteria, and coliforms. This study provides in-plant data indicating that ClO(2) can be an effective sanitizer in flume and spray-wash systems, but current operational limitations restrict its performance in dump tanks. Under current conditions, ClO(2) alone is unlikely to allow the fresh tomato industry to meet its microbiological quality goals under typical commercial conditions.
Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia
NASA Technical Reports Server (NTRS)
1981-01-01
A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.
33 CFR 96.370 - What are the requirements for vessels of countries not party to Chapter IX of SOLAS?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS How Will Safety Management Systems Be Certificated and... vessel, or self-propelled mobile offshore drilling unit of 500 gross tons or more, operated in U.S...
33 CFR 96.370 - What are the requirements for vessels of countries not party to Chapter IX of SOLAS?
Code of Federal Regulations, 2011 CFR
2011-07-01
... vessel, or self-propelled mobile offshore drilling unit of 500 gross tons or more, operated in U.S... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS How Will Safety Management Systems Be Certificated and...
Optimized MBR for greywater reuse systems in hotel facilities.
Atanasova, Natasa; Dalmau, Montserrat; Comas, Joaquim; Poch, Manel; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi
2017-05-15
Greywater is an important alternative water source, particularly in semi-arid, touristic areas, where the biggest water demand is usually in the dry period. By using this source wisely, tourist facilities can substantially reduce the pressure to scarce water resources. In densely urbanized touristic areas, where space has high value, compact solutions such as MBR based greywater reuse systems appear very appropriate. This research focuses on technical and economical evaluation of such solution by implementing a pilot MBR to a hotel with separated grey water. The pilot was operated for 6 months, with thorough characterisation of the GW performed, its operation was monitored and its energy consumption was optimized by applying a control system for the air scour. Based on the pilot operation a design and economic model was set to estimate the feasibility (CAPEX, OPEX, payback period of investment) of appropriate scales of MBR based GW systems, including separation of GW, MBR technology, clean water storage and disinfection. The model takes into account water and energy prices in Spain and a planning period of 20 years. The results demonstrated an excellent performance in terms of effluent quality, while the energy demand for air-scour was reduced by up to 35.2%, compared to the manufacturer recommendations. Economical evaluation of the entire MBR based GW reuse system shows its feasibility for sizes already at 5 m 3 /day (60 PE). The payback period of the investment for hotels like the demonstration hotel, treating 30 m 3 /day is 3 years. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelson, K.A.
1988-07-01
In 1984, a radium-removal treatment plant was constructed for the small community of Redhill Forest located in the central mountains of Colorado. The treatment plant consists of a process for removing iron and manganese ahead of an ion-exchange process for the removal of radium. The raw water comes from deep wells and has naturally occurring radium and iron concentrations of about 30-40 pCi/L and 7-10 mg/L, respectively. Before the raw water enters the main treatment plant, the raw water is aerated to remove radon gas and carbon dioxide. The unique features of the Redhill Forest Treatment Plant are related tomore » the ways in which the radium removed from the raw water is further treated and eventually disposed of as treatment plant waste. A separate system removes only radium from the backwash/regeneration water of the ion exchange process and the radium is permanently complexed on a Radium Selective Complexer (RSC) resin made by Dow Chemical. The RSC resin containing radium is replaced with virgin resin as needed and the resin waste transported to a permanent final disposal site in Beatty, NV. This report presents a detailed description of the Redhill Forest treatment system and the results of in-depth monitoring of the processes and other factors relating to the overall operation of the radium-removal system. Included are descriptions of modifications made in the plant operation to improve the overall system operation and of the procedures for final disposal of the RSC resin-containing radium.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... drain system, a gravity-operated conveyor (such as a chute), and a mechanically-powered conveyor (such... features permanently integrated into the design of the unit. Emission point means an individual tank, surface impoundment, container, oil-water or organic-water separator, transfer system, process vent, or...
ENVIRONMENTAL POLLUTION CONTROL ALTERNATIVES: DRINKING WATER TREATMENT FOR SMALL COMMUNITIES
This document provides information for small system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment technologies suitable for small systems. t is not intended to be a comprehensive m...
Code of Federal Regulations, 2012 CFR
2012-07-01
... drain system, a gravity-operated conveyor (such as a chute), and a mechanically-powered conveyor (such... features permanently integrated into the design of the unit. Emission point means an individual tank, surface impoundment, container, oil-water or organic-water separator, transfer system, process vent, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... drain system, a gravity-operated conveyor (such as a chute), and a mechanically-powered conveyor (such... features permanently integrated into the design of the unit. Emission point means an individual tank, surface impoundment, container, oil-water or organic-water separator, transfer system, process vent, or...
Assessing Ammonia Treatment Options
This is the second of three articles to help water system operators understand ammonia and how to monitor and control its effects at the plant and in the distribution system. The first article (Opflow, April 2012) provided an overview of ammonia's chemistry, origins, and water sy...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Thomas; Liu, Zan; Sickinger, David
The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSCmore » evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of water on Sandia's site. In addition to describing the installation of the TSC and its integration into the ESIF, this paper focuses on the full heat rejection system simulation program used for hourly analysis of the energy and water consumption of the complete system under varying operating scenarios. A follow-up paper will detail the test results. The evaluation of the TSC's performance at NREL will also determine a path forward at Sandia for possible deployment in a large-scale system not only for data center use but also possibly site wide.« less
Water vapor measurement system in global atmospheric sampling program, appendix
NASA Technical Reports Server (NTRS)
Englund, D. R.; Dudzinski, T. J.
1982-01-01
The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.
Decision Support Model for Optimal Management of Coastal Gate
NASA Astrophysics Data System (ADS)
Ditthakit, Pakorn; Chittaladakorn, Suwatana
2010-05-01
The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.
Application of aerial photography to water-related programs in Michigan
NASA Technical Reports Server (NTRS)
Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.
1977-01-01
The paper describes the use of aerial photography and information system technology in the provision of information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the City of Lansing Vector Control Area. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps specifically focussed on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichman, K.; Tsao, J.; Mayfield, M.
The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less
Improving Sanitation and Health in Rural Alaska
NASA Technical Reports Server (NTRS)
Bubenheim, David L.
2013-01-01
In rural Alaskan communities personal health is threatened by energy costs and limited access to clean water, wastewater management, and adequate nutrition. Fuel--based energy systems are significant factors in determining local accessibility to clean water, sanitation and food. Increasing fuel costs induce a scarcity of access and impact residents' health. The University of Alaska Fairbanks (UAF) School of Natural Resources and Agricultural Sciences (SNRAS), NASA's Ames Research Center, and USDA Agricultural Research Service (ARS) have joined forces to develop high-efficiency, low-energy consuming techniques for water treatment and food production in rural circumpolar communities. Methods intended for exploration of space and establishment of settlements on the Moon or Mars will ultimately benefit Earth's communities in the circumpolar north. The initial phase of collaboration is completed. Researchers from NASA Ames Research Center and SNRAS, funded by the USDA-ARS, tested a simple, reliable, low-energy sewage treatment system to recycle wastewater for use in food production and other reuse options in communities. The system extracted up to 70% of the water from sewage and rejected up to 92% of ions in the sewage with no carryover of toxic effects. Biological testing showed that plant growth using recovered water in the nutrient solution was equivalent to that using high-purity distilled water. With successful demonstration that the low energy consuming wastewater treatment system can provide safe water for communities and food production, the team is ready to move forward to a full-scale production testbed. The SNRAS/NASA team (including Alaska students) will design a prototype to match water processing rates and food production to meet rural community sanitation needs and nutritional preferences. This system would be operated in Fairbanks at the University of Alaska through SNRAS. Long-term performance will be validated and operational needs of the system determined. The testbed will be a part of the university education and operator training program. The "Forgotten Alaska" has long awaited this technology to augment the traditional
43 CFR 417.3 - Notice of recommendations and determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... RECLAMATION, DEPARTMENT OF THE INTERIOR PROCEDURAL METHODS FOR IMPLEMENTING COLORADO RIVER WATER CONSERVATION... raised, cropping practices, the type of irrigation system in use, the condition of water carriage and distribution facilities, record of water orders, and rejections of ordered water, general operating practices...
43 CFR 417.3 - Notice of recommendations and determinations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... RECLAMATION, DEPARTMENT OF THE INTERIOR PROCEDURAL METHODS FOR IMPLEMENTING COLORADO RIVER WATER CONSERVATION... raised, cropping practices, the type of irrigation system in use, the condition of water carriage and distribution facilities, record of water orders, and rejections of ordered water, general operating practices...
43 CFR 417.3 - Notice of recommendations and determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... RECLAMATION, DEPARTMENT OF THE INTERIOR PROCEDURAL METHODS FOR IMPLEMENTING COLORADO RIVER WATER CONSERVATION... raised, cropping practices, the type of irrigation system in use, the condition of water carriage and distribution facilities, record of water orders, and rejections of ordered water, general operating practices...
33 CFR 117.42 - Remotely operated and automated drawbridges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.42 Remotely operated and... authorize a drawbridge to operate under an automated system or from a remote location. (b) If the request is... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Remotely operated and automated...
NASA Technical Reports Server (NTRS)
1981-01-01
Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.
Installation package for SIMS prototype system 2, solar hot water
NASA Technical Reports Server (NTRS)
1978-01-01
The prototype system 2 solar hot water was designed for use in a single family dwelling and consists of the following subsystems: collector, storage, energy transport, and control. Guidelines are presented for utilization in the development of detailed installation plans and specifications. Instruction on operation, maintenance, and repair of the system is discussed.
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas
2015-04-01
Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".
1991-09-01
SEVERITY INDEX (PDSI) ................. 116 iv FOREWORD Recent droughts in the United States have caused water management agencies to examine the operation ...detail, and a discussion of reservoir operating procedures, may be found in the Corps’ Engineering Manual on Management of Water Control Systems (U. S...fishery management . The seasonal fluctuation that occurs at many flood control reservoirs, and the daily fluctuations that occur with hydropower operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, G.R.; Watson, J.T.
1993-05-01
One of the Tennessee Valley Authority`s (TVA`s) major goals is cleanup and protection of the waters of the Tennessee River system. Although great strides have been made, point source and nonpoint source pollution still affect the surface water and groundwater quality in the Tennessee Valley and nationally. Causes of this pollution are poorly operating wastewater treatment systems or the lack of them. Practical solutions are needed, and there is great interest and desire to abate water pollution with effective, simple, reliable and affordable wastewater treatment processes. In recognition of this need, TVA began demonstration of the constructed wetlands technology inmore » 1986 as an alternative to conventional, mechanical processes, especially for small communities. Constructed wetlands can be downsized from municipal systems to small systems, such as for schools, camps and even individual homes.« less
NASA Astrophysics Data System (ADS)
Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.
2017-12-01
Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.
Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem
Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge Nationalmore » Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods. These efforts were designed to incorporate well into existing hydropower and reservoir system scheduling models, with runtimes that are comparable to existing software tools. In addition, the transferability of these tools to assess other systems is enhanced due the use of simplistic and easily attainable values for inputs, straight-forward calibration of predictive equation coefficients, and standardized comparison of traditionally familiar outputs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized intomore » six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.« less
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-03-15
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life.
Lee, Chi-Yuan; Li, Shih-Chun; Chen, Chia-Hung; Huang, Yen-Ting; Wang, Yu-Syuan
2018-01-01
Looking for alternative energy sources has been an inevitable trend since the oil crisis, and close attentioned has been paid to hydrogen energy. The proton exchange membrane (PEM) water electrolyzer is characterized by high energy efficiency, high yield, simple system and low operating temperature. The electrolyzer generates hydrogen from water free of any carbon sources (provided the electrons come from renewable sources such as solar and wind), so it is very clean and completely satisfies the environmental requirement. However, in long-term operation of the PEM water electrolyzer, the membrane material durability, catalyst corrosion and nonuniformity of local flow, voltage and current in the electrolyzer can influence the overall performance. It is difficult to measure the internal physical parameters of the PEM water electrolyzer, and the physical parameters are interrelated. Therefore, this study uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor; internal multiple physical information is extracted to determine the optimal working parameters for the PEM water electrolyzer. The real operational data of local flow, voltage and current in the PEM water electrolyzer are measured simultaneously by the flexible integrated microsensor, so as to enhance the performance of the PEM water electrolyzer and to prolong the service life. PMID:29543734
Model-based approach for cyber-physical attack detection in water distribution systems.
Housh, Mashor; Ohar, Ziv
2018-08-01
Modern Water Distribution Systems (WDSs) are often controlled by Supervisory Control and Data Acquisition (SCADA) systems and Programmable Logic Controllers (PLCs) which manage their operation and maintain a reliable water supply. As such, and with the cyber layer becoming a central component of WDS operations, these systems are at a greater risk of being subjected to cyberattacks. This paper offers a model-based methodology based on a detailed hydraulic understanding of WDSs combined with an anomaly detection algorithm for the identification of complex cyberattacks that cannot be fully identified by hydraulically based rules alone. The results show that the proposed algorithm is capable of achieving the best-known performance when tested on the data published in the BATtle of the Attack Detection ALgorithms (BATADAL) competition (http://www.batadal.net). Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Yu, Dapeng; Guan, Mingfu; Wilby, Robert; Bruce, Wright; Szegner, Mark
2017-04-01
Emergency services (such as Fire & Rescue, and Ambulance) can face the challenging tasks of having to respond to or operate under extreme and fast changing weather conditions, including surface water flooding. UK-wide, return period based surface water flood risk mapping undertaken by the Environment Agency provides useful information about areas at risks. Although these maps are useful for planning purposes for emergency responders, their utility to operational response during flood emergencies can be limited. A street-level, high resolution, real-time, surface water flood nowcasting system, has been piloted in the City of Leicester, UK to assess emergency response resilience to surface water flooding. Precipitation nowcasting over 7- and 48-hour horizons are obtained from the UK Met Office and used as inputs to the system. A hydro-inundation model is used to simulate urban surface water flood depths/areas at both the city and basin scale, with a 20 m and 3 m spatial resolution respectively, and a 15-minute temporal resolution, 7-hour and 48-hour in advance. Based on this, we evaluate both the direct and indirect impacts of potential surface water flood events on emergency responses, including: (i) identifying vulnerable populations (e.g. care homes and schools) at risk; and (ii) generating novel metrics of accessibility (e.g. travel time from service stations to vulnerable sites; spatial coverage with certain legislative timeframes) in real-time. In doing so, real-time information on potential risks and impacts of emerging flood incidents arising from intense rainfall can be communicated via a dedicated web-based platform to emergency responders thereby improving response times and operational resilience.
Source, use and disposition of freshwater in Puerto Rico, 2010
Molina, Wanda L.
2015-07-29
From 2000 to 2010, the population of Puerto Rico decreased 2.6 percent, from 3.8 to 3.7 million residents (U.S. Census Bureau, 2011), and this decrease in population reduced the demand for freshwater. Factors that contributed to a reduction in domestic per capita water use in Puerto Rico include water-rate cost increases, the implementation of low-flow fixture, and domestic conservation programs. Almost 99 percent of the residents in Puerto Rico were served by public-supply water systems in 2010. Public-supply water is provided by the Puerto Rico Aqueduct and Sewer Authority (PRASA) and by non-PRASA systems. Non-PRASA systems include community-operated water systems (water systems that serve rural or suburban housing areas).
Training and Certification of Water Utility Operators in Michigan--1925 to 1978.
ERIC Educational Resources Information Center
Sacks, Richard; Brown, Elgar
1978-01-01
Outlined are the training and certification programs for individuals who operate treatment plants and distribution systems. The commitment to a comprehensive yet flexible program to respond to operator needs is stressed. (CS)
Dishwashing water recycling system and related water quality standards for military use.
Church, Jared; Verbyla, Matthew E; Lee, Woo Hyoung; Randall, Andrew A; Amundsen, Ted J; Zastrow, Dustin J
2015-10-01
As the demand for reliable and safe water supplies increases, both water quality and available quantity are being challenged by population growth and climate change. Greywater reuse is becoming a common practice worldwide; however, in remote locations of limited water supply, such as those encountered in military installations, it is desirable to expand its classification to include dishwashing water to maximize the conservation of fresh water. Given that no standards for dishwashing greywater reuse by the military are currently available, the current study determined a specific set of water quality standards for dishwater recycling systems for U.S. military field operations. A tentative water reuse standard for dishwashing water was developed based on federal and state regulations and guidelines for non-potable water, and the developed standard was cross-evaluated by monitoring water quality data from a full-scale dishwashing water recycling system using an innovative electrocoagulation and ultrafiltration process. Quantitative microbial risk assessment (QMRA) was also performed based on exposure scenarios derived from literature data. As a result, a specific set of dishwashing water reuse standards for field analysis (simple, but accurate) was finalized as follows: turbidity (<1 NTU), Escherichia coli (<50 cfu mL(-1)), and pH (6-9). UV254 was recommended as a surrogate for organic contaminants (e.g., BOD5), but requires further calibration steps for validation. The developed specific water standard is the first for dishwashing water reuse and will be expected to ensure that water quality is safe for field operations, but not so stringent that design complexity, cost, and operational and maintenance requirements will not be feasible for field use. In addition the parameters can be monitored using simple equipment in a field setting with only modest training requirements and real-time or rapid sample turn-around. This standard may prove useful in future development of civilian guidelines. Copyright © 2015 Elsevier B.V. All rights reserved.
33 CFR 150.619 - What are the fall arrest system requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the fall arrest system... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Fall Arrest § 150.619 What are the fall arrest system requirements? (a) The deepwater port operator must ensure that...
33 CFR 150.619 - What are the fall arrest system requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the fall arrest system... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Fall Arrest § 150.619 What are the fall arrest system requirements? (a) The deepwater port operator must ensure that...
33 CFR 150.619 - What are the fall arrest system requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What are the fall arrest system... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Fall Arrest § 150.619 What are the fall arrest system requirements? (a) The deepwater port operator must ensure that...
33 CFR 150.619 - What are the fall arrest system requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What are the fall arrest system... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Fall Arrest § 150.619 What are the fall arrest system requirements? (a) The deepwater port operator must ensure that...
33 CFR 150.619 - What are the fall arrest system requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the fall arrest system... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Fall Arrest § 150.619 What are the fall arrest system requirements? (a) The deepwater port operator must ensure that...
Investing in sustainability at Coral World
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, O.
Now open and operational for several years, Coral World offers a unique environmental model for other tourism-related facilities throughout the Caribbean and beyond. The extensive energy conservation program has yielded a 40 to 50% reduction in energy use and costs. The facility's unique on-site storm water absorption system virtually eliminates silt runoff to the coastal waters. The innovative, highly cost-effective series of renewable energy installations include a photovoltaic-powered restaurant kitchen, solar hot water systems and one of the world's first hydroelectric systems that uses wastewater drainage for turbine source waters. The extensive marine environmental conservation program protects fragile local ecosystemsmore » while also protecting the owners' investment in tourism. By investing aggressively in sustainability, Coral World's owners are reaping the benefits not only in reduced operating costs and improved profitability, but also in increased visitor volume and satisfaction.« less
Modeling energy consumption in membrane bioreactors for wastewater treatment in north Africa.
Skouterisl, George; Arnot, Tom C; Jraou, Mouna; Feki, Firas; Sayadi, Sami
2014-03-01
Two pilot-scale membrane bioreactors were operated alongside a full-sized activated sludge plant in Tunisia in order to compare specific energy demand and treated water quality. Energy consumption rates were measured for the complete membrane bioreactor systems and for their different components. Specific energy demand was measured for the systems and compared with the activated sludge plant, which operated at around 3 kWh m(-3). A model was developed for each membrane bioreactor based on both dynamic and steady-state mass balances, microbial kinetics and stoichiometry, and energy balance. Energy consumption was evaluated as a function of mixed-liquor suspended solids concentration, net permeate fluxes, and the resultant treated water quality. This work demonstrates the potential for using membrane bioreactors in decentralised domestic water treatment in North Africa, at energy consumption levels similar or lower than conventional activated sludge systems, with the added benefit of producing treated water suitable for unrestricted crop irrigation.
Use and availability of continuous streamflow records in Wyoming
Schuetz, J.R.
1986-01-01
This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)
2011-01-01
USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water