Reference manual for data base on Nevada water-rights permits
Cartier, K.D.; Bauer, E.M.; Farnham, J.L.
1995-01-01
The U.S. Geological Survey and Nevada Division of Water Resources have cooperatively developed and implemented a data-base system for managing water-rights permit information for the State of Nevada. The Water-Rights Permit data base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Manage-ment System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, three ancillary tables, and five lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.
B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan
2012-01-01
In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeralâintermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...
Predicting water table response to rainfall events, central Florida.
van Gaalen, J F; Kruse, S; Lafrenz, W B; Burroughs, S M
2013-01-01
A rise in water table in response to a rainfall event is a complex function of permeability, specific yield, antecedent soil-water conditions, water table level, evapotranspiration, vegetation, lateral groundwater flow, and rainfall volume and intensity. Predictions of water table response, however, commonly assume a linear relationship between response and rainfall based on cumulative analysis of water level and rainfall logs. By identifying individual rainfall events and responses, we examine how the response/rainfall ratio varies as a function of antecedent water table level (stage) and rainfall event size. For wells in wetlands and uplands in central Florida, incorporating stage and event size improves forecasting of water table rise by more than 30%, based on 10 years of data. At the 11 sites studied, the water table is generally least responsive to rainfall at smallest and largest rainfall event sizes and at lower stages. At most sites the minimum amount of rainfall required to induce a rise in water table is fairly uniform when the water table is within 50 to 100 cm of land surface. Below this depth, the minimum typically gradually increases with depth. These observations can be qualitatively explained by unsaturated zone flow processes. Overall, response/rainfall ratios are higher in wetlands and lower in uplands, presumably reflecting lower specific yields and greater lateral influx in wetland sites. Pronounced depth variations in rainfall/response ratios appear to correlate with soil layer boundaries, where corroborating data are available. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
How well do testate amoebae transfer functions relate to high-resolution water-table records?
NASA Astrophysics Data System (ADS)
Holden, Joseph; Swindles, Graeme; Raby, Cassandra; Blundell, Antony
2014-05-01
Testate amoebae (TA) community composition records from peat cores are often used to infer past water-table conditions on peatland sites. However, one of the problems is that validation of water-table depths used in such work typically comes from a one-off water-table measurement or a few measurements of water-table depth from the testate amoebae sample extraction point. Furthermore, one value of water-table depth is produced by the transfer function reconstruction, with sample-specific errors generated through a statistical resampling approach. However, we know that water tables fluctuate in peatlands and are dynamic. Traditional TA water-table data may not adequately capture a mean value from a site, and may not account for water-table dynamics (e.g. seasonal or annual variability) that could influence the TA community composition. We analysed automatically logged (at least hourly, mainly 15-min) peatland water-table data from 72 different dipwells located across northern Sweden, Wales and the Pennine region of England. Each location had not been subject to recent management intervention. A suite of characteristics of water-table dynamics for each point were determined. At each point surface samples were extracted and the TA community composition was determined. Our results show that estimated water-table depth based on the TA community transfer functions poorly represents the real mean or median water tables for the study sites. The TA approach does, however, generally identify sites that have water tables that are closer to the surface for a greater proportion of the year compared to sites with deeper water tables for large proportions of the year. However, the traditional TA approach does not differentiate between sites with similar mean (or median) water-table depths yet which have quite different water table variability (e.g. interquartile range). We suggest some ways of improving water-table metrics for use in Holocene peatland hydrology reconstructions.
NASA Astrophysics Data System (ADS)
Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.
2018-05-01
Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.
A time series approach to inferring groundwater recharge using the water table fluctuation method
NASA Astrophysics Data System (ADS)
Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.
2005-01-01
The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.
Data Tables - Environments and Contaminants - Drinking Water Contaminants
This document contains a table of the estimated percentage of children ages 0 to 17 years served by community water systems that did not meet all applicable health-based drinking water standards, 1993-2009.
Reference manual for data base on Nevada well logs
Bauer, E.M.; Cartier, K.D.
1995-01-01
The U.S. Geological Survey and Nevada Division of Water Resources are cooperatively using a data base for are cooperatively using a data base for managing well-log information for the State of Nevada. The Well-Log Data Base is part of an integrated system of computer data bases using the Ingres Relational Data-Base Management System, which allows efficient storage and access to water information from the State Engineer's office. The data base contains a main table, two ancillary tables, and nine lookup tables, as well as a menu-driven system for entering, updating, and reporting on the data. This reference guide outlines the general functions of the system and provides a brief description of data tables and data-entry screens.
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
NASA Astrophysics Data System (ADS)
Yoshida, N.; Oki, T.
2016-12-01
Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.
Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li
2010-01-01
A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...
NASA Astrophysics Data System (ADS)
Koshigai, Masaru; Marui, Atsunao
Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.
Northern part, Ten Mile and Taunton River basins
Williams, John R.; Willey, Richard E.
1967-01-01
This report is one of two prepared by the Geological Survey for the Water Resources Commission. The principal purpose of this report is to make available the basic data on which the other, a map showing availability of ground water, is based. This basic-data report also can be used by engineers, planners, and others interested in or responsible for water-resources planning to determine the materials to be encountered (tables 3 and 4) and the yields which may be obtained from wells and test holes (tables 1 and 2) in the stratified sand and gravel that are the principal source of ground water and in bedrock. Partial and complete chemical analyses (tables 7 and 8) of these test holes and of some privately-owned wells provide information on the general quality of the water for domestic and other uses. A tabulation of existing municipal supplies, their capacity, production (table 5), and chemical quality of the water (table 6) may be used for regional planning purposes. Water-level measurements (figure 1) can be used to determine the annual fluctuations of the water table in certain types of materials. Seismic work (table 9) in the Canoe River valley, Norton, and test drilling with a power augur (tables 2 and 4) were done for the Geological Survey as part of the investigation.
Barlow, Paul M.; Moench, Allen F.
1999-01-01
The computer program WTAQ calculates hydraulic-head drawdowns in a confined or water-table aquifer that result from pumping at a well of finite or infinitesimal diameter. The program is based on an analytical model of axial-symmetric ground-water flow in a homogeneous and anisotropic aquifer. The program allows for well-bore storage and well-bore skin at the pumped well and for delayed drawdown response at an observation well; by including these factors, it is possible to accurately evaluate the specific storage of a water-table aquifer from early-time drawdown data in observation wells and piezometers. For water-table aquifers, the program allows for either delayed or instantaneous drainage from the unsaturated zone. WTAQ calculates dimensionless or dimensional theoretical drawdowns that can be used with measured drawdowns at observation points to estimate the hydraulic properties of confined and water-table aquifers. Three sample problems illustrate use of WTAQ for estimating horizontal and vertical hydraulic conductivity, specific storage, and specific yield of a water-table aquifer by type-curve methods and by an automatic parameter-estimation method.
Rosenberry, Donald O.; Winter, Thomas C.
1997-01-01
Data from a string of instrumented wells located on an upland of 55 m width between two wetlands in central North Dakota, USA, indicated frequent changes in water-table configuration following wet and dry periods during 5 years of investigation. A seasonal wetland is situated about 1.5 m higher than a nearby semipermanent wetland, suggesting an average ground water-table gradient of 0.02. However, water had the potential to flow as ground water from the upper to the lower wetland during only a few instances. A water-table trough adjacent to the lower semipermanent wetland was the most common water-table configuration during the first 4 years of the study, but it is likely that severe drought during those years contributed to the longevity and extent of the water-table trough. Water-table mounds that formed in response to rainfall events caused reversals of direction of flow that frequently modified the more dominant water-table trough during the severe drought. Rapid and large water-table rise to near land surface in response to intense rainfall was aided by the thick capillary fringe. One of the wettest summers on record ended the severe drought during the last year of the study, and caused a larger-scale water-table mound to form between the two wetlands. The mound was short in duration because it was overwhelmed by rising stage of the higher seasonal wetland which spilled into the lower wetland. Evapotranspiration was responsible for generating the water-table trough that formed between the two wetlands. Estimation of evapotranspiration based on diurnal fluctuations in wells yielded rates that averaged 3–5 mm day−1. On many occasions water levels in wells closer to the semipermanent wetland indicated a direction of flow that was different from the direction indicated by water levels in wells farther from the wetland. Misinterpretation of direction and magnitude of gradients between ground water and wetlands could result from poorly placed or too few observation wells, and also from infrequent measurement of water levels in wells.
Churchill, A.C.; Turetsky, Merritt R.; McGuire, A. David; Hollingsworth, Teresa N.
2014-01-01
Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on plant species abundance and ecosystem primary production in an Alaskan fen by manipulating the water table in field treatments to mimic either sustained flooding (raised water table) or drought (lowered water table) conditions for 6 years. We found that water table treatments altered plant species abundance by increasing sedge and grass cover in the raised water table treatment and reducing moss cover while increasing vascular green area in the lowered water table treatment. Gross primary productivity was lower in the lowered treatment than in the other plots, although there were no differences in total biomass or vascular net primary productivity among the treatments. Overall, our results indicate that vegetation abundance was more sensitive to variation in water table than total biomass and vascular biomass accrual. Finally, in our experimental peatland, drought had stronger consequences for change in vegetation abundance and ecosystem function than sustained flooding.
Carbon cycling responses to a water table drawdown and decadal vegetation changes in a bog
NASA Astrophysics Data System (ADS)
Talbot, J.; Roulet, N. T.
2009-12-01
The quantity of carbon stored in peat depends on the imbalance between production and decomposition of organic matter. This imbalance is mainly controlled by the wetness of the peatland, usually described by the water table depth. However, long-term processes resulting from hydrological changes, such as vegetation succession, also play a major role in the biogeochemistry of peatlands. Previous studies have looked at the impact of a water table lowering on carbon fluxes in different types of peatlands. However, most of these studies were conducted within a time frame that did not allow the examination of vegetation changes due to the water table lowering. We conducted a study along a drainage gradient resulting from the digging of a drainage ditch 85 years ago in a portion of the Mer Bleue bog, located near Ottawa, Canada. According to water table reconstructions based on testate amoeba, the drainage dropped the water table by approximately 18 cm. On the upslope side of the ditch, the water table partly recovered and the vegetation changed only marginally. However, on the downslope side of the ditch, the water table stayed persistently lower and trees established (Larix and Betula). The importance of Sphagnum decreased with a lower water table, and evergreen shrubs were replaced by deciduous shrubs. The water table drop and subsequent vegetation changes had combined and individual effects on the carbon functioning of the peatland. Methane fluxes decreased because of the water table lowering, but were not affected by vegetation changes, whereas respiration and net ecosystem productivity were affected by both. The carbon storage of the system increased because of an increase in plant biomass, but the long-term carbon storage as peat decreased. The inclusion of the feedback effect that vegetation has on the carbon functioning of a peatland when a disturbance occurs is crucial to simulate the long-term carbon balance of this ecosystem.
NASA Astrophysics Data System (ADS)
Teramoto, Elias Hideo; Chang, Hung Kiang
2017-03-01
Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.
Relation between ground water and surface water in Brandywine Creek basin, Pennsylvania
Olmsted, F.H.; Hely, A.G.
1962-01-01
The relation between ground water and surface water was studied in Brandywine Creek basin, an area of 287 square miles in the Piedmont physiographic province in southeastern Pennsylvania. Most of the basin is underlain by crystalline rocks that yield only small to moderate supplies of water to wells, but the creek has an unusually well-sustained base flow. Streamflow records for the Chadds Ford, Pa., gaging station were analyzed; base flow recession curves and hydrographs of base flow were defined for the calendar years 1928-31 and 1952-53. Water budgets calculated for these two periods indicate that about two-thirds of the runoff of Brandywine Creek is base flow--a significantly higher proportion of base flow than in streams draining most other types of consolidated rocks in the region and almost as high as in streams in sandy parts of the Coastal Plain province in New Jersey and Delaware. Ground-water levels in 16 observation wells were compared with the base flow of the creek for 1952-53. The wells are assumed to provide a reasonably good sample of average fluctuations of the water table and its depth below the land surface. Three of the wells having the most suitable records were selected as index wells to use in a more detailed analysis. A direct, linear relation between the monthly average ground-water stage in the index wells and the base flow of the creek in winter months was found. The average ground-water discharge in the basin for 1952-53 was 489 cfs (316 mgd), of which slightly less than one-fourth was estimated to be loss by evapotranspiration. However, the estimated evapotranspiration from ground water, and consequently the estimated total ground-water discharge, may be somewhat high. The average gravity yield (short-term coefficient of storage) of the zone of water-table fluctuation was calculated by two methods. The first method, based on the ratio of change in ground-water storage as calculated from a witner base-flow recession curve is seasonal change in ground-water stage in the observation wells, gave values of about 7 percent using 16 wells) and 7 1/2 percent (using 3 index wells). The second method, in which the change in ground water storage is based on a hypothetical base-flow recession curve (derived from the observed linear relation between ground-water stage in the index wells and base flow), gave a value of about 10 1/2 percent. The most probable value of gravity yield is between 7 1/2 and 10 percent, but this estimate may require modification when more information on the average magnitude of water-table fluctuation and the sources of base flow of the creek become available. Rough estimates were made of the average coefficient of transmissibility of the rocks in the basin by use of the estimated total ground-water discharge for the period 1952-53, approximate values of length of discharge areas, and average water-table gradients adjacent to the discharge areas. The estimated average coefficient of transmissibility for 1952-53 is roughly 1,000 gpd per foot. The transmissibility is variable, decreasing with decreasing ground-water stage. The seeming inconsistency between the small to moderate ground-water yield to wells and the high yield to streams is explained in terms of the deep permeable soils, the relatively high gravity yield of the zone of water-table fluctuation, the steep water-table gradients toward the streams, the relatively low transmissibility of the rocks, and the rapid decreases in gravity yield below the lower limit of water-table fluctuation. It is concluded that no simple relation exists between the amount of natural ground-water discharge in an area and all the proportion of this discharge that can be diverted to wells.
1987-09-01
these wetlands. Because of the generally low relief at the Base, several manmade drainage ditches have been constructed to improve surface water ...northerly boundary (Hickock, 1985). Within the Marshall Formation, the water table or piezometric surface con- forms somewhat to the land surface. The...34hills" in the water table underlie hills seen on land. The " lows " in the water table coincide with low areas on land (Vanlier, 1966). Thus, the
NASA Astrophysics Data System (ADS)
Johnson, T.; Hammond, G. E.; Versteeg, R. J.; Zachara, J. M.
2013-12-01
The Hanford 300 Area, located adjacent to the Columbia River in south-central Washington, USA, is the site of former research and uranium fuel rod fabrication facilities. Waste disposal practices at site included discharging between 33 and 59 metric tons of uranium over a 40 year period into shallow infiltration galleries, resulting in persistent uranium contamination within the vadose and saturated zones. Uranium transport from the vadose zone to the saturated zone is intimately linked with water table fluctuations and river water intrusion driven by upstream dam operations. As river stage increases, the water table rises into the vadose zone and mobilizes contaminated pore water. At the same time, river water moves inland into the aquifer, and river water chemistry facilitates further mobilization by enabling uranium desorption from contaminated sediments. As river stage decreases, flow moves toward the river, ultimately discharging contaminated water at the river bed. River water specific conductance at the 300 Area varies around 0.018 S/m whereas groundwater specific conductance varies around 0.043 S/m. This contrast provides the opportunity to monitor groundwater/river water interaction by imaging changes in bulk conductivity within the saturated zone using time-lapse electrical resistivity tomography. Previous efforts have demonstrated this capability, but have also shown that disconnecting regularization constraints at the water table is critical for obtaining meaningful time-lapse images. Because the water table moves with time, the regularization constraints must also be transient to accommodate the water table boundary. This was previously accomplished with 2D time-lapse ERT imaging by using a finely discretized computational mesh within the water table interval, enabling a relatively smooth water table to be defined without modifying the mesh. However, in 3D this approach requires a computational mesh with an untenable number of elements. In order to accommodate the water table boundary in 3D, we propose a time-lapse warping mesh inversion, whereby mesh elements that traverse the water table are modified to generate a smooth boundary at the known water table position, enabling regularization constraints to be accurately disconnected across the water table boundary at a given time. We demonstrate the approach using a surface ERT array installed adjacent to the Columbia River at the 300 Area, consisting of 352 electrodes and covering an area of approximately 350 m x 350 m. Using autonomous data collection, transmission, and filtering tools coupled with high performance computing resources, the 4D imaging process is automated and executed in real time. Each time lapse survey consists of approximately 40,000 measurements and 4 surveys are collected and processed per day from April 1st , 2013 to September 30th, 2013. The data are inverted on an unstructured tetrahedral mesh that honors LiDAR-based surface topography and is comprised of approximately 905,000 elements. Imaging results show the dynamic 4D extent of river water intrusion, and are validated with well-based fluid conductivity measurements at each monitoring well within the imaging domain.
NASA Astrophysics Data System (ADS)
Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng
2018-03-01
The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.
Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area
Snyder, Daniel T.
2008-01-01
Reliable information on the configuration of the water table in the Portland metropolitan area is needed to address concerns about various water-resource issues, especially with regard to potential effects from stormwater injection systems such as UIC (underground injection control) systems that are either existing or planned. To help address these concerns, this report presents the estimated depth-to-water and water-table elevation maps for the Portland area, along with estimates of the relative uncertainty of the maps and seasonal water-table fluctuations. The method of analysis used to determine the water-table configuration in the Portland area relied on water-level data from shallow wells and surface-water features that are representative of the water table. However, the largest source of available well data is water-level measurements in reports filed by well constructors at the time of new well installation, but these data frequently were not representative of static water-level conditions. Depth-to-water measurements reported in well-construction records generally were shallower than measurements by the U.S. Geological Survey (USGS) in the same or nearby wells, although many depth-to-water measurements were substantially deeper than USGS measurements. Magnitudes of differences in depth-to-water measurements reported in well records and those measured by the USGS in the same or nearby wells ranged from -119 to 156 feet with a mean of the absolute value of the differences of 36 feet. One possible cause for the differences is that water levels in many wells reported in well records were not at equilibrium at the time of measurement. As a result, the analysis of the water-table configuration relied on water levels measured during the current study or used in previous USGS investigations in the Portland area. Because of the scarcity of well data in some areas, the locations of select surface-water features including major rivers, streams, lakes, wetlands, and springs representative of where the water table is at land surface were used to augment the analysis. Ground-water and surface-water data were combined for use in interpolation of the water-table configuration. Interpolation of the two representations typically used to define water-table position - depth to the water table below land surface and elevation of the water table above a datum - can produce substantially different results and may represent the end members of a spectrum of possible interpolations largely determined by the quantity of recharge and the hydraulic properties of the aquifer. Datasets of depth-to-water and water-table elevation for the current study were interpolated independently based on kriging as the method of interpolation with parameters determined through the use of semivariograms developed individually for each dataset. Resulting interpolations were then combined to create a single, averaged representation of the water-table configuration. Kriging analysis also was used to develop a map of relative uncertainty associated with the values of the water-table position. Accuracy of the depth-to-water and water-table elevation maps is dependent on various factors and assumptions pertaining to the data, the method of interpolation, and the hydrogeologic conditions of the surficial aquifers in the study area. Although the water-table configuration maps generally are representative of the conditions in the study area, the actual position of the water-table may differ from the estimated position at site-specific locations, and short-term, seasonal, and long-term variations in the differences also can be expected. The relative uncertainty map addresses some but not all possible errors associated with the analysis of the water-table configuration and does not depict all sources of uncertainty. Depth to water greater than 300 feet in the Portland area is limited to parts of the Tualatin Mountains, the foothills of the Cascade Range, and muc
Water Table Uncertainties due to Uncertainties in Structure and Properties of an Unconfined Aquifer.
Hauser, Juerg; Wellmann, Florian; Trefry, Mike
2018-03-01
We consider two sources of geology-related uncertainty in making predictions of the steady-state water table elevation for an unconfined aquifer. That is the uncertainty in the depth to base of the aquifer and in the hydraulic conductivity distribution within the aquifer. Stochastic approaches to hydrological modeling commonly use geostatistical techniques to account for hydraulic conductivity uncertainty within the aquifer. In the absence of well data allowing derivation of a relationship between geophysical and hydrological parameters, the use of geophysical data is often limited to constraining the structural boundaries. If we recover the base of an unconfined aquifer from an analysis of geophysical data, then the associated uncertainties are a consequence of the geophysical inversion process. In this study, we illustrate this by quantifying water table uncertainties for the unconfined aquifer formed by the paleochannel network around the Kintyre Uranium deposit in Western Australia. The focus of the Bayesian parametric bootstrap approach employed for the inversion of the available airborne electromagnetic data is the recovery of the base of the paleochannel network and the associated uncertainties. This allows us to then quantify the associated influences on the water table in a conceptualized groundwater usage scenario and compare the resulting uncertainties with uncertainties due to an uncertain hydraulic conductivity distribution within the aquifer. Our modeling shows that neither uncertainties in the depth to the base of the aquifer nor hydraulic conductivity uncertainties alone can capture the patterns of uncertainty in the water table that emerge when the two are combined. © 2017, National Ground Water Association.
Water-Table Levels and Gradients, Nevada, 1947-2004
Lopes, Thomas J.; Buto, Susan G.; Smith, J. LaRue; Welborn, Toby L.
2006-01-01
In 1999, the U.S. Environmental Protection Agency began a program to protect the quality of ground water in areas other than ground-water protection areas. These other sensitive ground water areas (OSGWA) are areas that are not currently, but could eventually be, used as a source of drinking water. The OSGWA program specifically addresses existing wells that are used for underground injection of motor-vehicle waste. To help determine whether a well is in an OSGWA, the Nevada Division of Environmental Protection needs statewide information on depth to water and the water table, which partly control the susceptibility of ground water to contamination and contaminant transport. This report describes a study that used available maps and data to create statewide maps of water-table and depth-to-water contours and surfaces, assessed temporal changes in water-table levels, and characterized water-table gradients in selected areas of Nevada. A literature search of published water-table and depth-to-water contours produced maps of varying detail and scope in 104 reports published from 1948 to 2004. Where multiple maps covered the same area, criteria were used to select the most recent, detailed maps that covered the largest area and had plotted control points. These selection criteria resulted in water-table and depth-to-water contours that are based on data collected from 1947 to 2004 being selected from 39 reports. If not already available digitally, contours and control points were digitized from selected maps, entered into a geographic information system, and combined to make a statewide map of water-table contours. Water-table surfaces were made by using inverse distance weighting to estimate the water table between contours and then gridding the estimates. Depth-to-water surfaces were made by subtracting the water-table altitude from the land-surface altitude. Water-table and depth-to-water surfaces were made for only 21 percent of Nevada because of a lack of information for 49 of 232 basins and for most consolidated-rock hydrogeologic units. Depth to water is commonly less than 50 feet beneath valley floors, 50 to 500 feet beneath alluvial fans, and more than 500 feet in some areas such as north-central and southern Nevada. In areas without water-table information, greasewood and mapped ground-water discharge areas are good indicators of depth to water less than 100 feet. The average difference between measured depth to water and depth to water estimated from surfaces was 90 feet. More recent and detailed information may be needed than that presented in this report to evaluate a specific site. Temporal changes in water-table levels were evaluated for 1,981 wells with 10 or more years between the first depth-to-water measurement and last measurement made since 1990. The greatest increases in depth to water occurred where the first measurement was less than 200 feet, where the time between first and last measurements was 40 years or less, and for wells between 100 and 600 feet deep. These characteristics describe production wells where ground water is fairly shallow in recently developing areas such as the Las Vegas and Reno metropolitan areas. In basins with little pumping, 90 percent of the changes during the past 100 years are within ?20 feet, which is about the natural variation in the water table due to changes in the climate and recharge. Gradients in unconsolidated sediments of the Great Basin are generally steep near mountain fronts, shallow beneath valley floors, and depend on variables such as the horizontal hydraulic conductivity of adjacent consolidated rocks and recharge. Gradients beneath alluvial fans and valley floors at 58 sites were correlated with selected variables to identify those variables that are statistically related. Water-table measurements at three sites were used to characterize the water table between the valley floor and consolidated rock. Water-table gradients beneath alluvial fan
NASA Astrophysics Data System (ADS)
Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.
2017-01-01
Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.
Noble, J.E.; Bush, P.W.; Kasmarek, M.C.; Barbie, D.L.
1996-01-01
In 1989, the U.S. Geological Survey, in cooperation with the Harris-Galveston Coastal Subsidence District, began a field study to determine the depth to the water table and to estimate the rate of recharge in outcrops of the Chicot and Evangeline aquifers near Houston, Texas. The study area comprises about 2,000 square miles of outcrops of the Chicot and Evangeline aquifers in northwest Harris County, Montgomery County, and southern Walker County. Because of the scarcity of measurable water-table wells, depth to the water table below land surface was estimated using a surface geophysical technique, seismic refraction. The water table in the study area generally ranges from about 10 to 30 foot below land surface and typically is deeper in areas of relatively high land-surface altitude than in areas of relatively low land- surface altitude. The water table has demonstrated no long-term trends since ground-water development began, with the probable exception of the water table in the Katy area: There the water table is more than 75 feet deep, probably due to ground-water pumpage from deeper zones. An estimated rate of recharge in the aquifer outcrops was computed using the interface method in which environmental tritium is a ground-water tracer. The estimated average total recharge rate in the study area is 6 inches per year. This rate is an upper bound on the average recharge rate during the 37 years 1953-90 because it is based on the deepest penetration (about 80 feet) of postnuclear-testing tritium concentrations. The rate, which represents one of several components of a complex regional hydrologic budget, is considered reasonable but is not definitive because of uncertainty regarding the assumptions and parameters used in its computation.
Teramoto, Elias Hideo; Chang, Hung Kiang
2017-03-01
Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion. Copyright © 2017 Elsevier B.V. All rights reserved.
Leeth, David C.
1999-01-01
Neogene and Quaternary sediments constitute the surficial aquifer beneath the study area; in descending order from youngest to oldest these include-the Quaternary undifferentiated surficial sand and Satilla Formation; the Pliocene(?) Cypresshead Formation; and the middle Miocene Coosawhatchie Formation. Beneath the surficial aquifer, the upper Brunswick aquifer consists of part of the lower Miocene Marks Head Formation. The surficial aquifer is divided into three water-bearing zones on the basis of lithologic and geophysical properties of sediments, hydraulic-head differences between zones, and differences in ground-water chemistry. The shallowest zone-the water-table zone-consists of medium to fine sand and clayey sand and is present from land surface to a depth of about 77 feet. Below the water-table zone, the confined upper water-bearing zone consists of medium to very coarse sand and is present from a depth of about 110 to 132 feet. Beneath the upper water-bearing zone, the confined lower water-bearing zone consists of coarse sand and very fine gravel and is present from a depth of about 195 to 237 feet. Hydraulic separation is suggested by differences in water chemistry between the water-table zone and upper water-bearing zone. The sodium chloride type water in the water-table zone differs from the calcium bicarbonate type water in the upper water-bearing zone. Hydraulic separation also is indicated by hydraulic head differences of more than 6.5 feet between the water-table zone and the upper water-bearing zone. Continuous and synoptic water-level measurements in the water-table zone, from October 1995 to April 1997, indicate the presence of a water-table high beneath and adjacent to the former landfill-the surface of which varies about 5 feet with time because of recharge and discharge. Water-level data from clustered wells also suggest that restriction of vertical ground-water flow begins to occur at an altitude of about 5 to 10 feet below sea level (35 to 40 feet below land surface) in the water-table zone because of the increasing clay content of the Cypresshead Formation.
O'Reilly, Andrew M.
2004-01-01
A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.
A significant nexus: Geographically isolated wetlands influence landscape hydrology
NASA Astrophysics Data System (ADS)
McLaughlin, Daniel L.; Kaplan, David A.; Cohen, Matthew J.
2014-09-01
Recent U.S. Supreme Court rulings have limited federal protections for geographically isolated wetlands (GIWs) except where a "significant nexus" to a navigable water body is demonstrated. Geographic isolation does not imply GIWs are hydrologically disconnected; indeed, wetland-groundwater interactions may yield important controls on regional hydrology. Differences in specific yield (Sy) between uplands and inundated GIWs drive differences in water level responses to precipitation and evapotranspiration, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. These reversals are predicted to buffer surficial aquifer dynamics and thus base flow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we connected models of soil moisture, upland water table, and wetland stage to simulate hydrology of a low-relief landscape with GIWs, and explored the influences of total wetland area, individual wetland size, climate, and soil texture on water table and base flow variation. Increasing total wetland area and decreasing individual wetland size substantially decreased water table and base flow variation (e.g., reducing base flow standard deviation by as much as 50%). GIWs also decreased the frequency of extremely high and low water tables and base flow deliveries. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the importance of small GIWs to regional hydrology. Our results suggest that GIWs buffer dynamics of the surficial aquifer and stream base flow, providing an indirect but significant nexus to the regional hydrologic system.
Water Table Depth and Growth of Young Cottonwood
W. M. Broadfoot
1973-01-01
Planted cottonwood grew best when the water table was about 2 feet deep, whether the tree was planted on soil with a high water table or the water table was raised 1 year after planting. Growth over a 1- foot-deep water table was about the same as over no water table, but a surface water table restricted growth of cuttings planted in the water, and killed trees planted...
NASA Astrophysics Data System (ADS)
Hughes, P. D. M.; Mauquoy, D.; van Bellen, S.; Roland, T. P.; Loader, N.; Street-Perrott, F. A.; Daley, T.
2017-12-01
The deep ombrotrophic peat bogs of Chile are located throughout the latitudes dominated by the southern westerly wind belt. The domed surfaces of these peatlands make them sensitive to variability in summer atmospheric moisture balance and the near-continuous accumulation of deep peat strata throughout the Holocene to the present day means that these sites provide undisturbed archives of palaeoclimatic change. We have reconstructed late-Holocene bog water table depths - which can be related to changes in the regional balance of precipitation to evaporation (P-E) - from a suite of peat bogs located in three areas of Tierra del Feugo, Chile, under the main path of the SWWB. Water-table depths were reconstructed from sub-fossil testate amoebae assemblages using a conventional transfer function to infer past water-table depths, based on taxonomic classification of tests but also an innovative trait-based transfer function to infer the same parameter. Water table reconstructions derived from the two methods were consistent within sites. They show that mire water tables have been relatively stable in the last 2000 years across Tierra del Feugo. Higher water table levels, most probably indicating increased effective precipitation, were found between c. 1400 and 900 cal. BP., whereas a consistent drying trend was reconstructed across the region in the most recent peat strata. This shift may represent a pronounced regional decrease in precipitation and/or a change to warmer conditions linked to strengthening of the SWWB. However, other factors such as recent thinning of the ozone layer over Tierra del Fuego could have contributed to recent shifts in some testate amoebae species.
A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Wang, Dan; Wang, Heng; Wang, Jun-Zhi; Zhang, Hong; Zhang, Zhi-Yuan; Zhao, Ke-Yu
2018-01-01
The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.
THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,
WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.
NASA Astrophysics Data System (ADS)
Jeong, Jina; Park, Eungyu; Shik Han, Weon; Kim, Kue-Young; Suk, Heejun; Beom Jo, Si
2018-07-01
A generalized water table fluctuation model based on precipitation was developed using a statistical conceptualization of unsaturated infiltration fluxes. A gamma distribution function was adopted as a transfer function due to its versatility in representing recharge rates with temporally dispersed infiltration fluxes, and a Laplace transformation was used to obtain an analytical solution. To prove the general applicability of the model, convergences with previous water table fluctuation models were shown as special cases. For validation, a few hypothetical cases were developed, where the applicability of the model to a wide range of unsaturated zone conditions was confirmed. For further validation, the model was applied to water table level estimations of three monitoring wells with considerably thick unsaturated zones on Jeju Island. The results show that the developed model represented the pattern of hydrographs from the two monitoring wells fairly well. The lag times from precipitation to recharge estimated from the developed system transfer function were found to agree with those from a conventional cross-correlation analysis. The developed model has the potential to be adopted for the hydraulic characterization of both saturated and unsaturated zones by being calibrated to actual data when extraneous and exogenous causes of water table fluctuation are limited. In addition, as it provides reference estimates, the model can be adopted as a tool for surveilling groundwater resources under hydraulically stressed conditions.
WaterWatch - Maps, graphs, and tables of current, recent, and past streamflow conditions
Jian, Xiaodong; Wolock, David; Lins, Harry F.
2008-01-01
WaterWatch (http://water.usgs.gov/waterwatch/) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.
Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables
NASA Astrophysics Data System (ADS)
Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.
2018-01-01
Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.
Water levels in observation wells in Nebraska during 1955
Keech, C.F.
1956-01-01
The objective of the dbservation-well program in Nebraska is to provide an evaluation of the status of the ground-water supplies. Many uses for water-.level data are known but not all potential uses can be forseen. Among the important uses are the following:To indicate the status of ground water in storage or in transit and the availability of supplies.To show the trend of ground-water supplies and the outlook for the future.To estimate or forcast the base flow of streams.To indicate areas in which the water level is approaching too close to the land surface (water-logging) or is receding toward economic limits of lift or tow rd impairment by water of poor quality.To provide long-term vidence for evaluating the effectiveness of land-management and water...0 nservation programs in relation to water conservation actually of ected, and for use in basin or "watershed" studies.To provide longterm ontinuous records to serve as a framework to which short-term records collected during intensive investigation may be related.The water level in an observation well functions as a gage to indicate the position of the water table o The water table is defined as the upper surface of the zone of saturation except where that surface is formed by overlying impermeable materials. The water table is also the boundary between the zone of saturation and the zone of aeration. It is not a level surface but is a sloping surface that has many irregularities, and it often conforms in a general way to the land surface. The irregularities are caused by several factors. In places where the recharge to the ground-water reservoir is exceptionally large, the water-table may rise to form a mound from which the water slowly spreads. Depressions or troughs in the water table indicate places where the ground water is discharging, as along streams that are below the normal level of the water table, or indicate places where water is being withdrawn by wells or vegetation.The several factors that influence the water table vary in fact and amount from time to time because of changes in weather and the water requirements of vegetation and man; thus, the water table is nearly always rising or falling.The fluctuations of the water table are shown by the changes in water levels in wells. Thus, the rate and amount of the fluctuation of the water table can be ascertained by observing the water levels in wells, and the magnitude of the several factors effecting the position of the water table can be interpreted by analyzing the water—level data.Water-level measurements are given, in this report, in feet below the land surface at the well site. Water levels that are above land surface are preceded by a plus (+) sign, whereas those below land surface have no sign but are understood to be minus (-). The words "land-surface datum" are abbreviated "lsd" in tables of this report.The altitude above mean sea level (msl) of the land surface at many of the well sites has been determined and is included in the tables of this report.Lower case letters which appear in the table of water level measurements indicate the following: 6', nearby well pumped recently; f, dry; g, measured by outside agency; and j, frozen.Twenty-.six observation wells in Nebraska are equipped with recording gages. Each recording gage produces a continuous graph of water-level fluctuations in the well. Only the lowest water level on the last day of record in each month, as recorded by the gage, is given in this report; the complete record is on file in the office of the U. S. Geological Survey in Lincoln, Nebr.
Jepsen, Steven M.; Koch, Joshua C.; Rose, Joshua R.; Voss, Clifford I.; Walvoord, Michelle Ann
2012-01-01
A series of ground-based observations were made between September 2010 and August 2011 near Twelvemile Lake, 19 kilometers southwest of Fort Yukon, Alaska, for use in ongoing hydrological analyses of watersheds in this region of discontinuous permafrost. Measurements include depth to ground ice, depth to water table, soil texture, soil moisture, soil temperature, and water pressure above the permafrost table. In the drained basin of subsiding Twelvemile Lake, we generally find an absence of newly formed permafrost and an undetectable slope of the water table; however, a sloping water table was observed in the low-lying channels extending into and away from the lake watershed. Datasets for these observations are summarized in this report and can be accessed by clicking on the links in each section or from the Downloads folder of the report Web page.
Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart
2009-01-01
The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.
Borchert, William B.
1987-01-01
This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)
Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model
NASA Astrophysics Data System (ADS)
Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.
2017-12-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.
NASA Astrophysics Data System (ADS)
Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael
2014-05-01
Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.
Schilling, K.E.
2009-01-01
Groundwater recharge is an important component to hydrologic studies but is known to vary considerably across the landscape. The purpose of this study was to examine 4 years of water-level behavior in a transect of four water-table wells installed at Walnut Creek, Iowa, USA to evaluate how groundwater recharge varied along a topographic gradient. The amount of daily water-table rise (WTR) in the wells was summed at monthly and annual scales and estimates of specific yield (Sy) were used to convert the WTR to recharge. At the floodplain site, Sy was estimated from the ratio of WTR to total rainfall and in the uplands was based on the ratio of baseflow to WTR. In the floodplain, where the water table is shallow, recharge occurred throughout the year whenever precipitation occurred. In upland areas where the water table was deeper, WTR occurred in a stepped fashion and varied by season. Results indicated that the greatest amount of water-table rise over the 4-year period was observed in the floodplain (379 mm), followed by the upland (211 mm) and sideslopes (122 mm). Incorporating spatial variability in recharge in a watershed will improve groundwater resource evaluation and flow and transport modeling. ?? Springer-Verlag 2008.
"Periodic-table-style" paper device for monitoring heavy metals in water.
Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei
2015-03-03
If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.
NASA Astrophysics Data System (ADS)
Acharya, S.; Mylavarapu, R.; Jawitz, J. W.
2012-12-01
In shallow unconfined aquifers, the water table usually shows a distinct diurnal fluctuation pattern corresponding to the twenty-four hour solar radiation cycle. This diurnal water table fluctuation (DWTF) signal can be used to estimate the groundwater evapotranspiration (ETg) by vegetation, a method known as the White [1932] method. Water table fluctuations in shallow phreatic aquifers is controlled by two distinct storage parameters, drainable porosity (or specific yield) and the fillable porosity. Yet, it is implicitly assumed in most studies that these two parameters are equal, unless hysteresis effect is considered. The White based method available in the literature is also based on a single drainable porosity parameter to estimate the ETg. In this study, we present a modification of the White based method to estimate ETg from DWTF using separate drainable (λd) and fillable porosity (λf) parameters. Separate analytical expressions based on successive steady state moisture profiles are used to estimate λd and λf, instead of the commonly employed hydrostatic moisture profile approach. The modified method is then applied to estimate ETg using the DWTF data observed in a field in northeast Florida and the results are compared with ET estimations from the standard Penman-Monteith equation. It is found that the modified method resulted in significantly better estimates of ETg than the previously available method that used only a single, hydrostatic-moisture-profile based λd. Furthermore, the modified method is also used to estimate ETg even during rainfall events which produced significantly better estimates of ETg as compared to the single λd parameter method.
Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope
NASA Astrophysics Data System (ADS)
Logsdon, S. D.; Schilling, K. E.
2007-12-01
Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Lateral groundwater flow can cause a large rise in water table at toeslope and depressional landscape positions. As plants transpire, water can move up into the root zone from the water table and wet soil below the root zone. Roots can utilize water in the capillary fringe. The purpose of this study was to interface automated measurements of soil water content and water table depth for determining the importance of drainage and upward movement. In 2006 soil water and water table depth were monitored at three positions: shoulder, backslope, and toeslope. Neutron access tubes were manually monitored to 2.3 m depth, and automated soil moisture was measured using CS616 probes installed at 0.3, 0.5, 0.7, and 0.9 m depth. Water table depths were monitored manually and automated, but the automated measurements failed during the season at two sites. In 2007, similar measurements were made at one toeslope position, but the CS616 probes were installed at nine depths and better quality automated well depth equipment was used. The 2006 data revealed little landscape position effect on daytime soil water loss on a wetter date; however, on a dry day just before a rain, daytime water loss was greatest for the toeslope positon and least for the shoulder position. After a period of intense rain, a rapid and significant water table rise occurred at the toeslope position but little water table rise occurred at the other landscape positions. The rapid toeslope water table rise was likely caused by lateral groundwater flow whereas minor water table rise at the other positions was likely due to preferential flow since the soil had not wet up below 0.6 m. Use of automated equipment has improved our understanding of the relations of soil water to water table fluctuations in an agricultural field.
NASA Astrophysics Data System (ADS)
Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan
2007-05-01
Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Schlaffer, Stefan
2015-04-01
The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.
40 CFR Appendix - Tables to Part 132
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT... Tables to Part 132 Table 1—Acute Water Quality Criteria for Protection of Aquatic Life in Ambient Water... FR 35286, June 2, 2000] Table 2—Chronic Water Quality Criteria for Protection of Aquatic Life in...
Method to predict seasonal high ground water table (SHGWT) [summary].
DOT National Transportation Integrated Search
2017-04-01
To help assure stability and long-term performance of pavement, a roadways base layer must : remain dry and be higher than the seasonal high groundwater table (SHGWT). Otherwise, the : roadways foundation can be weakened during certain times of...
Design and Verification of an Inexpensive Ultrasonic Water Depth Sensor Using Arduino
NASA Astrophysics Data System (ADS)
Mihevc, T. M.; Rajagopal, S.
2012-12-01
A system that combines the arduino micro-controller, a Parallax PING Ultrasonic distance sensor and a secure digital card to log the data is developed to help monitor water table depths in multiple settings. Traditional methods of monitoring water table depths involve the use of a pressure transducer and expensive data loggers that cost upward of 1000. The present system is built for less than 100, with the caveat that the accuracy of the measurements is 1cm. In this laboratory study, we first build the arduino based system to monitor water table depths in a piezometer and compare these measurements to those made by a pressure transducer. Initial results show that the depth measurements are accurate in comparison to actual tape measurements. Results from this benchmarking experiment will be presented at the meeting.
Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun
2014-02-01
During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I. cylindrica, and facilitate the restoration of P. australis-dominated marsh plant community.
A computer program for predicting recharge with a master recession curve
Heppner, Christopher S.; Nimmo, John R.
2005-01-01
Water-table fluctuations occur in unconfined aquifers owing to ground-water recharge following precipitation and infiltration, and ground-water discharge to streams between storm events. Ground-water recharge can be estimated from well hydrograph data using the water-table fluctuation (WTF) principle, which states that recharge is equal to the product of the water-table rise and the specific yield of the subsurface porous medium. The water-table rise, however, must be expressed relative to the water level that would have occurred in the absence of recharge. This requires a means for estimating the recession pattern of the water-table at the site. For a given site there is often a characteristic relation between the water-table elevation and the water-table decline rate following a recharge event. A computer program was written which extracts the relation between decline rate and water-table elevation from well hydrograph data and uses it to construct a master recession curve (MRC). The MRC is a characteristic water-table recession hydrograph, representing the average behavior for a declining water-table at that site. The program then calculates recharge using the WTF method by comparing the measured well hydrograph with the hydrograph predicted by the MRC and multiplying the difference at each time step by the specific yield. This approach can be used to estimate recharge in a continuous fashion from long-term well records. Presented here is a description of the code including the WTF theory and instructions for running it to estimate recharge with continuous well hydrograph data.
NASA Astrophysics Data System (ADS)
Dobson, R.; Schroth, M. H.; Zeyer, J.
2006-12-01
Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel are among the most common soil and groundwater contaminants. Dissolution and subsequent advective transport of LNAPL components can negatively impact downgradient water supplies, while biodegradation is commonly thought to be an important sink for this class of contaminants. Water-table fluctuations, either naturally occurring or intentionally induced, may affect LNAPL component transport and biodegradation in aquifers. We present a laboratory investigation of the effect of water-table fluctuations on the dissolution and biodegradation of a multi-component LNAPL in a pair of similar model aquifers, one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of LNAPL contamination and an increase in the volume of water passing through the contaminated zone. Effluent concentrations of dissolved LNAPL components were higher and those of dissolved nitrate were lower in the aquifer model where a fluctuation had been induced. Thus, water table fluctuation led to enhanced LNAPL dissolution as well as enhanced biodegradation activity. The increase in biodegradation observed after fluctuation was of lesser magnitude than the increase in LNAPL dissolution, such that water-table fluctuations might be expected to result in increased exposure of downgradient receptors to dissolved LNAPL components. Conversely, the potential for free-phase LNAPL migration was reduced following a water-table fluctuation, as LNAPL entrapment by the rising water table reduced the amount of free phase LNAPL. Lateral migration of LNAPL following emplacement was observed in the model aquifer where no fluctuation occurred, but not in the model aquifer where a water-table fluctuation was induced.
Water table dynamics in undisturbed, drained and restored blanket peat
NASA Astrophysics Data System (ADS)
Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.
2011-05-01
SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.
Senior, Lisa A.; Garges, John A.
1989-01-01
The altitude of the water levels in the Triassic sandstones and shales in northeastern Chester County is shown on a map at a scale of 1:24,000. The map is based on water levels in 173 non-pumping drilled and dug wells measured in 1956 and 1965, and on the altitude of two springs that were flowing in November and December 1987. Water level altitudes are contoured at an interval of 20 ft. The surface defined by the contoured water levels may approximately represent the water table. Water table altitudes range from 379 ft to less than 80 ft above sea level. (USGS)
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Wang, D.
2016-12-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: 1) the soil is saturated at the land surface; and 2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
NASA Astrophysics Data System (ADS)
Hooshyar, Milad; Wang, Dingbao
2016-08-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: (1) the soil is saturated at the land surface; and (2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
NASA Astrophysics Data System (ADS)
Thekkemeppilly Sivakumar, I.; Steenhuis, T. S.; Walter, M. F.; Ghosh, S.; Salvi, K. A.
2015-12-01
Intensified groundwater irrigation is a major factor that contributes to water table decline. This phenomenon has been documented in many parts of the world. This study investigates trends in water table in response to agriculture intensification to meet increasing food demand, water management practices and climate change. A shallow-aquifer model based on the extended Thornthwaite-Mather procedure is used to predict groundwater levels in response to precipitation, evapotranspiration, and groundwater pumping for irrigation. Krishna district in the state of Andhra Pradesh in southern India which has a sub-humid, monsoon climate and Calicut district of Kerala state with a wet tropical monsoon climate have been chosen as sites for this study. The effect of increasing food demand by a growing population is investigated by increasing the number of crops per year from one to three. We consider three climate scenarios and two water management practices in this study. The three climate scenarios are the ones those envisaged by the Intergovernmental Panel for Climate Change (IPCC). The two water management practices considered are the traditional flooded agriculture and the system of rice intensification method which does not use total flooding. The results show that single crop agriculture in Krishna district is sustainable for all climate scenarios and water management practices with a maximum depth to water table around 6 - 7 m at the end of dry season and the water table recovers to the surface most of the time. Increasing crop production with two or three crops per year with groundwater irrigation is unsustainable with the water table levels dropping potentially to 200 - 1000 m at the end of 21st century. We found that climate change and better irrigation water management practices affected ground water levels only minimally compared to the growing more than one crop per year. Our study leads to the conclusion that ground water irrigated rice can only be sustainable when crop evaporation is less then precipitation and in order to meet increasing food demands the rice yield per unit water should be improved.
Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...
2015-08-01
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim; Versteeg, Roelof; Thomle, Jon
Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, L.S.; Bauder, J.W.; Phelps, S.D.
2006-04-15
Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplexmore » spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.« less
Hopkins, H.T.; Fisher, G.T.; McGreevy, L.J.
1986-01-01
The water table in the alluvium of the Zekiah Swamp Run valley in southern Maryland is above stream level during most of the year and the alluvial aquifer contributes water to the stream. During the summer, however, high evapotranspiration sometimes lowers the water table below the stream level. Water then moves from the stream to the alluvium and, at times, reaches of the stream become dry. Pumping from the confined aquifers has caused water levels to decline several tens of ft, which has increased the downward gradient between the water-table aquifer and the underlying confined aquifers. Three synoptic surveys of base flow show areal and temporal variations in stream discharge, pH, specific conductance, dissolved oxygen, and temperature. April 1984 base flows were high (141 cu ft/sec, at the Route 6 gage) because of high precipitation during March. July 1983 base flows were low (2.35 cu ft/sec at the Route 6 gage) and showed significant loss of streamflow because of high antecedent evapotranspiration. Estimates of inflow and outflow of the Zekiah Swamp Run basin above Route 6 during the 1984 water year include: Precipitation, 50.21 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; stream outflow, 20.10 in; shallow groundwater underflow, 0.1 in; and evapotranspiration, 33 in. A streamflow budget of a 5.1 mi area of the valley of Zekiah Swamp Run between Routes 5 and 6, during the April 1984 survey and a loss of almost 5 cu ft during the July 1983 survey. (Author 's abstract)
Nystrom, Elizabeth A.; Burns, Douglas A.
2011-01-01
TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.
NASA Astrophysics Data System (ADS)
Gribovszki, Zoltán
2018-05-01
Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.
Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner
2011-03-01
We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).
James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.
2010-01-01
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.
40 CFR Appendix - Tables to Part 132
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Tables to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Application of part 132 requirements in Great Lakes States and Tribes. Pt. 132, Tables Tables to Part 132 Table 1—Acute Water Quality...
He, Yupu; Yang, Shihong; Wang, Yijiang
2014-01-01
The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha−1, respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields. PMID:24741349
He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang
2014-01-01
The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.
Effect of sequential release of NAPLs on NAPL migration in porous media
NASA Astrophysics Data System (ADS)
Bang, Woohui; Yeo, In Wook
2016-04-01
NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of porous media. To study the effect of subsequent release of NAPLs, as soon as LNAPL was released to porous medium with 1 mm of glass beads, being buoyant above water table, water table was lowered, which left residuals along the path of LNAPL. DNAPL was subsequently released. DNAPL was breaking through the water table now, which was opposed to only DNAPL release case. This study indicates that sequential release of NAPLs can leads to different migration characteristics of NAPLs, compared with the release of single phase NAPL into porous media.
Beaver Mediated Water Table Dynamics in Mountain Peatlands
NASA Astrophysics Data System (ADS)
Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.
2016-12-01
Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.
Fisher, Jason C.
2013-01-01
Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells can be removed from the USGS-INL network before the water table map degradation accelerates. The optimal network designs indicate the robustness of the network design tool. Observation wells were removed from high well-density areas of the network while retaining the spatial pattern of the existing water-table map.
NASA Astrophysics Data System (ADS)
Bouaamlat, I.; Larabi, A.; Faouzi, M.
2014-12-01
The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the TOS, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 28 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a "buffer" during the drought periods.
NASA Astrophysics Data System (ADS)
Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.
2012-12-01
High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat cores are being assayed monthly from June - October for two oxidase enzyme activities (phenol oxidase, peroxidase) and four hydrolase enzyme activities (β-glucosidase, chitinase, cellobiohydrolase, and acid-phosphatase). Early season assays (June and July) where water table treatments did not significantly vary showed trends of decreasing oxidase activities while hydrolase activities increased. These preliminary results show no significant differences between vegetation treatments but as the season progresses (August - October), water table levels between high and low treatments will continue to experience greater dissimilarities. These water table declines within sedge and ericaceous shrub communities may have opposing effects on rhizosphere extracellular enzyme activities indicating plant communities may significantly influence belowground carbon storage mechanisms in ways not previously considered in peatland ecosystems.
The UK Nitrate Time Bomb (Invited)
NASA Astrophysics Data System (ADS)
Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.
2013-12-01
The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts between policy makers, environmentalists and industry.
Improvements to a global-scale groundwater model to estimate the water table across New Zealand
NASA Astrophysics Data System (ADS)
Westerhoff, Rogier; Miguez-Macho, Gonzalo; White, Paul
2017-04-01
Groundwater models at the global scale have become increasingly important in recent years to assess the effects of climate change and groundwater depletion. However, these global-scale models are typically not used for studies at the catchment scale, because they are simplified and too spatially coarse. In this study, we improved the global-scale Equilibrium Water Table (EWT) model, so it could better assess water table depth and water table elevation at the national scale for New Zealand. The resulting National Water Table (NWT) model used improved input data (i.e., national input data of terrain, geology, and recharge) and model equations (e.g., a hydraulic conductivity - depth relation). The NWT model produced maps of the water table that identified the main alluvial aquifers with fine spatial detail. Two regional case studies at the catchment scale demonstrated excellent correlation between the water table elevation and observations of hydraulic head. The NWT water tables are an improved water table estimation over the EWT model. In two case studies the NWT model provided a better approximation to observed water table for deep aquifers and the improved resolution of the model provided the capability to fill the gaps in data-sparse areas. This national model calculated water table depth and elevation across regional jurisdictions. Therefore, the model is relevant where trans-boundary issues, such as source protection and catchment boundary definition, occur. The NWT model also has the potential to constrain the uncertainty of catchment-scale models, particularly where data are sparse. Shortcomings of the NWT model are caused by the inaccuracy of input data and the simplified model properties. Future research should focus on improved estimation of input data (e.g., hydraulic conductivity and terrain). However, more advanced catchment-scale groundwater models should be used where groundwater flow is dominated by confining layers and fractures.
NASA Astrophysics Data System (ADS)
Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.
2005-12-01
Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate with drought events in the testate amoeba record and the alkane abundance ratio record. These biogeochemical proxies can be used in paleohydrological studies of ombrotrophic bogs and provide a new and complimentary source of data from these underutilized paleoclimate archives.
Winograd, I.J.; Szabo, B. J.
1986-01-01
The distribution of vein calcite, tufa, and other features indicative of paleo-groundwater discharge, indicates that during the early to middle Pleistocene, the water table at Ash Meadows, in the Amargosa Desert, Nevada, and at Furnace Creek Wash, in east-central Death Valley, California, was tens to hundreds of meters above the modern water table, and that groundwater discharge occurred up to 18 km up-the-hydraulic gradient from modern discharge areas. Uranium series dating of the calcitic veins permits calculation of rates of apparent water table decline; rates of 0.02 to 0.08 m/1000 yr are indicated for Ash meadows and 0.2 to 0.6 m/1000 yr for Furnace Creek Wash. The rates for Furnace Creek Wash closely match a published estimate of vertical crustal offset for this area, suggesting that tectonism is a major cause for the displacement observed. In general, displacements of the paleo-water table probably reflect a combination of: (a) tectonic uplift of vein calcite and tufa, unaccompanied by a change in water table altitude; (b) decline in water table altitude in response to tectonic depression of areas adjacent to dated veins and associated tufa; (c) decline in water table altitude in response to increasing aridity caused by major uplift of the Sierra Nevada and Transverse Ranges during the Quaternary; and (d) decline in water altitude in response to erosion triggered by increasing aridity and/or tectonism. A synthesis of geohydrologic, neotectonic, and paleoclimatologic information with the vein-calcite data permits the inference that the water table in the south-central Great Basin progressively lowered throughout the Quaternary. This inference is pertinent to an evaluation of the utility of thick (200-600 m) unsaturated zones of the region for isolating solidified radioactive wastes from the hydrosphere for hundreds of millenia. Wastes buried a few tens to perhaps 100 m above the modern water table--that is above possible water level rises due to future pluvial climates--are unlikely to be inundated by a rising water table in the foreseeable geologic future. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Kirk-lawlor, N. E.; Edwards, E. C.
2012-12-01
In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would be the case if only the benefits and costs of groundwater extraction were considered. This hole-in-the-bathtub model can motivate managers to consider the costs of the loss of such flows, which may be very costly (in terms of loss of environmental services, loss of access to surface water, etc.). Alternatively, the decision to maintain the water table at an elevation that sustains a threshold-dependent outflow may cause income loss from the imposition of lower groundwater extraction rates. Weighing the benefits of maintaining threshold-dependent flows (including non-market benefits) with the net benefits of increased extraction is an important step in a prudent water management framework. To illustrate the usefulness of the modified model in a joint economic-hydrologic context, we provide a short case study of the Ojos de San Pedro area of the Rio Loa Basin in northern Chile. Evidence indicates that a wetland and lacustrine environment and a village dependent on that environment disappeared due to water extraction for industrial use. We demonstrate how the key features of the model provide important insight in understanding the tradeoffs that were made in this case.
Will it rise or will it fall? Managing the complex effects of urbanization on base flow
Bhaskar, Aditi; Beesley, Leah; Burns, Matthew J.; Fletcher, T. D.; Hamel, Perrine; Oldham, Carolyn; Roy, Allison
2016-01-01
Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Research shows a variable response of stream base flow to urbanization, with base flow or water tables rising in some locations, falling in others, or elsewhere remaining constant. The variable baseflow response is due to the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps as a consequence of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. This paper addresses this management need by presenting a decision support tool. The tool considers the natural vulnerability of the landscape, together with aspects of urban development in predicting the likelihood and direction of baseflow change. Where the tool identifies a likely increase or decrease it guides managers toward strategies that can reduce or increase groundwater recharge, respectively. Where the tool finds an equivocal result, it suggests a detailed water balance be performed. The decision support tool is embedded within an adaptive-management framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water table height, and monitor baseflow responses to urbanization. We trial our framework using two very different case studies: Perth, Western Australia, and Baltimore, Maryland, USA. Together, these studies show how pre-development water table height, climate and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interact such that urbanization has overall led to rising base flow (Perth) and falling base flow (Baltimore). Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban freshwaters.
Using stochastic dynamic programming to support catchment-scale water resources management in China
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2013-04-01
A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used to assess the performance of alternative development scenarios and infrastructure projects successfully in the case study region.
NASA Astrophysics Data System (ADS)
Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.
2012-04-01
Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS-Institut du Végétal, mainly wheat and maize) is a poorly permeable medium loamy over clay soil, with possible local shallow water tables, slopes around 3% and mild and rainy winter while summer is cool and wet (temperate, oceanic climate). GSA allowed us to interpret the results from the multivariate Monte-Carlo uncertainty analysis and gain insights on the management and placement of the buffer systems.
Water table variability and runoff generation in an eroded peatland, South Pennines, UK
NASA Astrophysics Data System (ADS)
Daniels, S. M.; Agnew, C. T.; Allott, T. E. H.; Evans, M. G.
2008-10-01
SummaryHydrological monitoring in an eroded South Pennine peatland shows that persistent and frequent water table drawdowns occur at gully edge locations, defining a deeper and thicker acrotelm than is observed in intact peatlands (an erosional acrotelm). Antecedent water table elevation is a key control on the hydrological response to precipitation events, in particular runoff percent, the timing of peak discharges and maximum water table elevations. Significant discharge is generated whilst water table elevations are relatively low at gully edge locations, and this has a strong influence on flow pathways. Four characteristics of runoff response are recognised: (i) the rapid development of macropore/pipe flow at the start of the storm; (ii) peat rewetting, water table elevation increase and continued macropore/pipe flow; (iii) maximum water table elevations and peak stream discharge with throughflow occurring within the erosional acrotelm and rapid flow through the subsurface macropore/pipe network; (iv) rapidly declining water table elevations and stream flow following the cessation of rainfall. Gully edge peats provide a key linkage between the hillslope hydrological system and channel flow so that their influence on the hydrological functioning of the peatlands is disproportionate to their aerial extent within the catchment. Future climate change may lead to further degradation of the bogs and a reinforcement of the importance of erosion gullies to runoff generation and water quality.
The design of a research water table
NASA Technical Reports Server (NTRS)
Fike, R. L.; Kinney, R. B.; Perkins, H. C.
1973-01-01
A complete design for a research water table is presented. Following a brief discussion of the analogy between water and compressible-gas flows (hydraulic analogy), the components of the water table and their function are described. The major design considerations are discussed, and the final design is presented.
Kilpatrick, John M.
1996-01-01
To improve understanding of the hydrologic characteristics of the shallow aquifer in the vicinity of the Management Systems Evaluation Area site near Shelton, Nebraska, water levels were measured in approximately 130 observation wells in both June and September 1991. Two water-table maps and a water-level-change map were drawn on the basis of these measurements. In addition, historical data from U.S. Geological Survey computer files and published reports were used to determine the approximate configuration of the water table in 1931 and to draw one short-term and two-long term water- level hydrographs. Comparison of the three water- table maps indicates general similarities. The average horizontal hydraulic gradient in the shallow aquifer is about 7.5 feet per mile, and the flow direction is to the east-northeast. The water table declined 2 to 10 feet between June and September 1991, with the greatest decline occurring in a wedge-shaped area south of the Wood River and north of the Platte River. The 1991 water-table configurations appear to indicate that the aquifer either was discharging to the Platte River in this reach or there was little flow between the river and the aquifer. Comparison of the 1931 and 1991 water-table maps indicates that, except for short-term variations, the water-table configuration changed little during this 61-year period. Two long-term water-level hydrographs confirm this conclusion, indicating that the shallow aquifer in this area has been in long-term, dynamic equilibrium.
NASA Astrophysics Data System (ADS)
Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong
2018-01-01
Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.
Ground-water quality in east-central New Jersey, and a plan for sampling networks
Harriman, D.A.; Sargent, B.P.
1985-01-01
Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)
Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.
2005-01-01
Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.
Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.
2012-01-01
Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.
NASA Astrophysics Data System (ADS)
Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.
2007-12-01
Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole catchment hydrologic response.
NASA Astrophysics Data System (ADS)
Wang, Weihua; Wu, Tonghua; Zhao, Lin; Li, Ren; Zhu, Xiaofan; Wang, Wanrui; Yang, Shuhua; Qin, Yanhui; Hao, Junmin
2018-05-01
Thawing permafrost on the Qinghai-Tibet Plateau (QTP) has great impacts on the local hydrological process by way of causing ground ice to thaw. Until now there is little knowledge on ground ice hydrology near permafrost table under a warming climate. This study applied stable tracers (isotopes and chloride) and hydrograph separation model to quantify the sources of ground ice near permafrost table in continuous permafrost regions of the central QTP. The results indicated that the ground ice near permafrost table was mainly supplied by active layer water and permafrost water, accounting for 58.9 to 87.0% and 13.0 to 41.1%, respectively, which implying that the active layer was the dominant source. The contribution rates from the active layer to the ground ice in alpine meadow (59 to 69%) was less than that in alpine steppe (70 to 87%). It showed well-developed hydrogeochemical depth gradients, presenting depleted isotopes and positive chemical gradients with depth within the soil layer. The effects of evaporation and freeze-out fractionation on the soil water and ground ice were evident. The results provide additional insights into ground ice sources and cycling near permafrost table in permafrost terrain, and would be helpful for improving process-based detailed hydrologic models under the occurring global warming.
NASA Astrophysics Data System (ADS)
Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.
2017-12-01
Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funk, D.W.; Pullmann, E.R.; Peterson, K.M.
1994-09-01
Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less
NASA Astrophysics Data System (ADS)
Bochenska, T.; Limisiewicz, P.; Loprawski, L.
1995-03-01
In regions of intense mining, shortages of water are common. Increased water demand is normally associated with industry in mining areas, and mine unwatering has negative effects on the natural groundwater balance. The study area occupies 3,300 square kilometers within the copper mining region of Lubin-Glogow, southwestern Poland. Pumping of groundwater to drain mines has created a cone of depression that underlies 2,500 square kilometers. The lowering of potentiometric surfaces has occurred in deep aquifers, which are isolated from the surface by thick confining units (loams and clays). Changes of hydraulic head in the shallow aquifer have not previously been observed. In this study, the authors analyzed the water-table changes in the shallow aquifer. The statistical analysis of the water table was based on two sets of water-level measurements in about 1,200 farm wells during dry seasons. The first set was done in the fall of 1986, the second in the fall of 1991. In addition to these measurements, multi-seasonal observations were made by the mining survey in several tens of wells. During five years, the head declined an average of 0.4 meter. Locally, the lowering was as great as five meters. The regional decline of head resulted in a loss of water resources about 2×108 cubic meters. Regionally, this loss is not directly related to the dewatering of copper mines. Locally, however, mining activity strongly influences the water table. The general trend of the decline is probably an effect of decreasing precipitation.
Woodward, D.; Menges, C.M.
1991-01-01
Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base dune sand/top alluvium suggests a buried paleodrainage network trending westward to southwestward away from the Oman Mountains. These paleodrainages, now buried by dune sand, probably contain alluvial fill and are logical targets for groundwater exploration. ?? 1991.
Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius
2013-01-01
The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is highly transferable, using easily generated or readily available data. The capabilities of the tool are demonstrated using data from the lower Wood River Valley adjacent to Upper Klamath and Agency Lakes in southern Oregon.
York, J.P.; Person, M.; Gutowski, W.J.; Winter, T.C.
2002-01-01
Aquifer-atmosphere interactions can be important in regions where the water table is shallow (<2 m). A shallow water table provides moisture for the soil and vegetation and thus acts as a source term for evapotranspiration to the atmosphere. A coupled aquifer-land surface-atmosphere model has been developed to study aquifer-atmosphere interactions in watersheds, on decadal timescales. A single column vertically discretized atmospheric model is linked to a distributed soil-vegetation-aquifer model. This physically based model was able to reproduce monthly and yearly trends in precipitation, stream discharge, and evapotranspiration, for a catchment in northeastern Kansas. However, the calculated soil moisture tended to drop to levels lower than were observed in drier years. The evapotranspiration varies spatially and seasonally and was highest in cells situated in topographic depressions where the water table is in the root zone. Annually, simulation results indicate that from 5-20% of groundwater supported evapotranspiration is drawn from the aquifer. The groundwater supported fraction of evapotranspiration is higher in drier years, when evapotranspiration exceeds precipitation. A long-term (40 year) simulation of extended drought conditions indicated that water table position is a function of groundwater hydrodynamics and cannot be predicted solely on the basis of topography. The response time of the aquifer to drought conditions was on the order of 200 years indicating that feedbacks between these two water reservoirs act on disparate time scales. With recent advances in the computational power of massively parallel supercomputers, it may soon become possible to incorporate physically based representations of aquifer hydrodynamics into general circulation models (GCM) land surface parameterization schemes. ?? 2002 Elsevier Science Ltd. All rights reserved.
Holmberg, Michael J.
2017-05-15
The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response of the alluvium to varying environmental and anthropogenic conditions, the percentage of area of the lower Arkansas Valley showing an absolute change of 3 feet or less was calculated for each of the six water-table altitude change maps. For fall water-table altitude change maps, the periods between 2002 and 2008, 2008 and 2015, and 2002 and 2015 showed that 86.5 percent, 85.2 percent, and 66.3 percent of the study area, respectively, showed a net change of 3 feet or less. In the spring water-table altitude change maps these periods showed a net change of 3 feet or less in 94.4 percent, 96.1 percent, and 90.2 percent of the study area, respectively. While the estimated change in water-table altitude was slightly greater and more variable in fall-to-fall comparisons, these high percentages of area with relatively small net changes indicated that, at least in comparisons of the years presented, there was not a large amount of fluctuation in the altitude of the water table.The saturated thickness in the lower Arkansas Valley was between 25 and 50 feet in 34.4 to 35.9 percent of the study area, depending on the season and year. Between 30.2 and 35.6 percent of the area showed saturated thicknesses between 0 and 25 feet. Less than 1 percent of the area showed a saturated thickness greater than 200 feet in all mapped seasons and years.
Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.
2013-01-01
Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite oxidation rates near WP1. However, this mechanism could be important in the case of a shallow dynamic water table and more abundant/reactive sulfides in the shallow subsurface. Data from WP1 and numerical modeling results are thus consistent with the falling water table hypothesis, and illustrate fundamental processes linking climate and sulfide weathering in mineralized watersheds.
Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition
NASA Astrophysics Data System (ADS)
Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.
2016-12-01
We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.
NASA Astrophysics Data System (ADS)
Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong
2018-06-01
Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can serve as an alternative approach predicting water table depth, especially in areas where hydrogeological data are difficult to obtain.
Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska
Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.
1975-01-01
Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.
Water resources of Webster Parish
Prakken, Lawrence B.; Griffith, Jason M.
2011-01-01
In 2005, about 9.52 million gallons per day (Mgal/d) of water were withdrawn in Webster Parish, Louisiana (fig. 1), including about 9.33 Mgal/d from groundwater sources and 0.19 Mgal/d from surface-water sources1 (table 1). Publicsupply use accounted for about 70 percent of the total water withdrawn. Other categories of use included industrial, rural domestic, livestock, general irrigation, and aquaculture (table 2). Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in Webster Parish decreased substantially from 1970 to 1980; surface-water withdrawals for industrial use decreased from about 37 to 0 Mgal/d because of a paper mill closure in 1979. From 1980 to 2000, total water withdrawals in the parish ranged from 7 to 8 Mgal/d (fig. 2). This fact sheet summarizes basic information on the water resources of Webster Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.
1991-12-01
850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS TABLE G5 TENSILE RESULTS FOR IN905XL FORGING COMPANY TEST...HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH STEP 4 - 230F FOR 24 HRS 12 TABLE G6 COMPRESSION RESULTS FOR IN905XL FORGING COMPANY TEST...LONG 58.0 11.4 DYNAMICS (*) (*): HEAT TREATED TO THE FOLLOWING SCHEDULE: STEP 1 - 850F FOR 2 HRS STEP 2 - 665F FOR 2 HRS STEP 3 - WARM WATER QUENCH
Rettman, Paul
1981-01-01
The delineation of the water table in the alluvium of the Colorado River is fairly well defined, and 10-feet contour intervals may be interpreted with confidence in the area called ' potential lignite-mining area. ' The water table in the bedrock aquifers is more difficult to delineate with the available data; therefore, the contours are only estimates of the position of the water table in the hilly bedrock area adjacent to the Colorado River alluvium.
Gordon, Debbie W.; Torak, Lynn J.
2016-03-08
Groundwater levels and specific-conductance measurements showed the dependence of freshwater resources on rainfall to recharge the water-table zone of the surficial aquifer system and to influence groundwater flow on Jekyll Island. The unseasonably dry conditions during November 2012 to April 2013 induced saline water infiltration to the water-table zone from the marshland separating the Jekyll River from the island. A strong correlation (R2 = 0.97) of specific conductance to chloride concentration in water samples from wells installed in the water-table zone provided support for the determination of seasonal directions of groundwater flow by confirming salinity changes in the water-table zone. Unseasonably wet conditions during the late spring to August caused groundwater-flow reversals in some areas. The high dependence of the water-table zone in the surficial aquifer system on precipitation to replenish the aquifer with freshwater underscored the importance of monitoring groundwater levels, water quality, and water use to identify aquifer-discharge conditions that have the potential to promote seawater encroachment and degrade freshwater resources on Jekyll Island.
Environmental Health Standards for Human Spacecraft
NASA Technical Reports Server (NTRS)
James John T.
2010-01-01
The discussion of air and water quality standards includes evidence-based standards, factors unique to spaceflight, effects from exposures to combinations of compounds, contingency versus nominal standards, tables of ISO standards for air quality (ppm) and water quality (mg/L), and updating of standards.
Phillips, P.J.; Shedlock, R.J.
1993-01-01
The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 ??g 1-1), and low bicarbonate concentrations (2 mg l4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system. ?? 1993.
EPA Office of Water (OW): SDWIS - HUC12 Densities for Public Surface Water and Groundwater Sources
Public Water System location points, based on information from the Safe Drinking Water Act Information System (SDWIS/Federal) for a 2010 third quarter (SDWIS_2010Q3) baseline period, were applied to relate system latitude and longitude coordinates (LatLongs) to Watershed Boundary Dataset subwatershed polygons (HUC12s). This HUC12 table can be mapped through setting up appropriate table relationships on the attribute HUC_12 with the HUC12 GIS layer that is part of EPA's Reach Address Database (RAD) Version 3. At the present time, the RAD Version 3 contains HUC12 polygons for the conterminous United States (CONUS), Hawaii, Puerto Rico, and the U.S. Virgin Islands (materials for Alaska or for other territories and dependencies are not available as of February, 2010). The records in this table are based on a special QUERY created by the EPA Office of Ground Water and Drinking Water (OGWDW) from the primary SDWIS/FED information to provide a robust point representation for a PWS system. PWS points are selected based on the following prioritization: 1. If the system has a treatment plant with LatLongs and MAD codes; 2. If the system has a treatment plant with LatLongs but without MAD codes; 3. If the system has a well with LatLongs and MAD codes; 4. If the system has a well with LatLongs but without MAD codes; 5. If the system has an intake with LatLongs and MAD codes; 6. If the system has an intake with LatLongs but without MAD codes; 7. If the system has any source
Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Srigutomo, Wahyu; Trimadona; Agustine, Eleonora
2016-08-01
Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.
The complex relationships between methane emissions and water table at an ombrotrophic bog
NASA Astrophysics Data System (ADS)
Humphreys, Elyn; Roulet, Nigel; Moore, Tim
2017-04-01
Broad spatial and temporal variations in methane emissions from peatlands have been related to many variables including water table position, temperature and vegetation characteristics and functioning. In general, wetter peatlands tend to have greater methane emissions. However, over shorter periods of time and space, the relationship between water table and methane emissions can reverse, show hysteresis or be absent entirely. These relationships are investigated at the Mer Bleue Bog, a temperate ombrotrophic bog near Ottawa, Canada. Six years of concurrent growing season eddy covariance and automated chamber fluxes reveal the expected broad patterns. During the wettest growing season, the water table remained within 40 cm of the bog's hummock surfaces. Methane emissions were upwards of 20 to 45 mg C m-2 d-1 and exceeded the emission rates from two drier growing seasons which saw periods where the water table dropped to nearly 80 cm below the hummock surface. In those periods, methane emission rates declined to about 5 mg C m-2 d-1 or less. Lawn plots with aerenchymatous Eriophorum vegetation and high water tables had greatest emissions (exceeding 200 mg C m-2 d-1) compared to hummock plots vegetated by ericaceous shrubs, which had emissions rates similar to those measured by eddy covariance. However, within a growing season, hysteresis and inverse relationships between water table and methane emissions were observed at both ecosystem and chamber plot scales. These included periods between rainfall events where methane emissions increased while the water table deepened. The potential roles of methane production, consumption, storage and transport processes on these patterns will be discussed.
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2015-08-01
We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Hokanson, K. J.; Devito, K.; Mendoza, C. A.
2017-12-01
The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.
Holistic irrigation water management approach based on stochastic soil water dynamics
NASA Astrophysics Data System (ADS)
Alizadeh, H.; Mousavi, S. J.
2012-04-01
Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. The area suffers from the water scarcity problem and therefore the trade-off between the level of deficit and economical profit should be assessed. Based on the results, while the maximum net benefit has been obtained for the stress-avoidance (SA) irrigation policy, the highest water profitability, defined by economical net benefit gained from unit irrigation water volume application, has been resulted when only about 60% of water used in the SA policy is applied.
Transport of E. coli in a sandy soil as impacted by depth to water table.
Stall, Christopher; Amoozegar, Aziz; Lindbo, David; Graves, Alexandria; Rashash, Diana
2014-01-01
Septic systems are considered a source of groundwater contamination. In the study described in this article, the fate of microbes applied to a sandy loam soil from North Carolina coastal plain as impacted by water table depth was studied. Soil materials were packed to a depth of 65 cm in 17 columns (15-cm diameter), and a water table was established at 30, 45, and 60 cm depths using five replications. Each day, 200 mL of an artificial septic tank effluent inoculated with E. coli were applied to the top of each column, a 100-mL sample was collected at the water table level and analyzed for E. coli, and 100 mL was drained from the bottom to maintain the water table. Two columns were used as control and received 200 mL/day of sterilized effluent. Neither 30 nor 45 cm of unsaturated soil was adequate to attenuate bacterial contamination, while 60 cm of separation appeared to be sufficient. Little bacterial contamination moved with the water table when it was lowered from 30 to 60 cm.
Risk assessment of groundwater level variability using variable Kriging methods
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos A.
2015-04-01
Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49. Kitanidis, P. K. (1997). Introduction to geostatistics, Cambridge: University Press.
NASA Astrophysics Data System (ADS)
Deirmendjian, Loris; Loustau, Denis; Augusto, Laurent; Lafont, Sébastien; Chipeaux, Christophe; Poirier, Dominique; Abril, Gwenaël
2018-02-01
We studied the export of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from forested shallow groundwater to first-order streams, based on groundwater and surface water sampling and hydrological data. The selected watershed was particularly convenient for such study, with a very low slope, with pine forest growing on sandy permeable podzol and with hydrology occurring exclusively through drainage of shallow groundwater (no surface runoff). A forest plot was instrumented for continuous eddy covariance measurements of precipitation, evapotranspiration, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO2 fluxes. Shallow groundwater was sampled with three piezometers located in different plots, and surface waters were sampled in six first-order streams; river discharge and drainage were modeled based on four gauging stations. On a monthly basis and on the plot scale, we found a good consistency between precipitation on the one hand and the sum of evapotranspiration, shallow groundwater storage and drainage on the other hand. DOC and DIC stocks in groundwater and exports to first-order streams varied drastically during the hydrological cycle, in relation with water table depth and amplitude. In the groundwater, DOC concentrations were maximal in winter when the water table reached the superficial organic-rich layer of the soil. In contrast, DIC (in majority excess CO2) in groundwater showed maximum concentrations at low water table during late summer, concomitant with heterotrophic conditions of the forest plot. Our data also suggest that a large part of the DOC mobilized at high water table was mineralized to DIC during the following months within the groundwater itself. In first-order streams, DOC and DIC followed an opposed seasonal trend similar to groundwater but with lower concentrations. On an annual basis, leaching of carbon to streams occurred as DIC and DOC in similar proportion, but DOC export occurred in majority during short periods of the highest water table, whereas DIC export was more constant throughout the year. Leaching of forest carbon to first-order streams represented a small portion (approximately 2 %) of the net land CO2 sink at the plot. In addition, approximately 75 % of the DIC exported from groundwater was not found in streams, as it returned very fast to the atmosphere through CO2 degassing.
Guymon, Gary L.; Yen, Chung-Cheng
1990-01-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
NASA Astrophysics Data System (ADS)
Guymon, Gary L.; Yen, Chung-Cheng
1990-07-01
The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.
2007-04-16
area by the Proposed Action alternative. 2. There will be no significant impact on the flora, fauna, endangered species, or natural resources in the...result in significant impacts to the quality of the human or natural environment. Accordingly, a finding of no significant impact is warranted for...Table 3-2. Air Pollutant Concentration Standards ..................... ............................ ............ ..... 39 Table 6-1. Individuals
Silva, A C; Higuchi, P; van den Berg, E
2010-08-01
In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.
Water and nitrogen management effects on water and nitrogen fluxes in Florida Flatwoods.
Hendricks, Gregory S; Shukla, Sanjay
2011-01-01
The effects of water and fertilizer best management practices (BMPs) have not been quantified for groundwater nitrogen (N) beneath seepage irrigated vegetable fields with shallow water table environments. This effect was evaluated by a 3-yr study conducted in the Flatwoods of south Florida for watermelon ( cv. Mardi Gras and Tri-X 313) and tomato ( cv. BHN 586) using three treatments of water and inorganic fertilizer N (N) rates: (i) high fertilizer and water rates with seepage irrigation (HR), (ii) recommended fertilizer and water rates (BMP) with seepage irrigation (RR); and (iii) RR with subsurface drip irrigation (RR-SD). These treatments were implemented on six hydraulically isolated plots. The N rate treatments for high (HR) and recommended (RR and RR-SD) were based on a grower survey and BMP recommendations, respectively. Water applied, water table depth, and soil moisture content were regularly monitored for each treatment. Plant, soil, and groundwater N sampling and analyses were conducted for each season of the 3-yr study. The average water applied in HR (187 cm) was greater than RR (172 cm) and RR-SD (94 cm). Soil N maintained in crop beds for HR was significantly higher than RR and RR-SD. Soil solution analyses showed that N leached beneath HR (112 mg L) was greater ( = 0.053) than RR (76 mg L) and RR-SD (88 mg L). Shallow groundwater concentrations of dissolved inorganic nitrogen (NH-N + NO-N) were higher ( = 0.02) in HR (37 mg L) compared with RR (15 mg L) and RR-SD (19 mg L). Decreased N and water table levels can improve groundwater quality by reducing N leachate in shallow water table environments with seepage irrigated vegetable production systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Estimating steady-state evaporation rates from bare soils under conditions of high water table
Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.
1970-01-01
A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.
Hydrology and simulation of ground-water flow in the Aguadilla to Rio Camuy area, Puerto Rico
Tucci, Patrick; Martinez, M.I.
1995-01-01
The aquifers of the Aguadilla to Rio Camuy area, in the northwestern part of Puerto Rico, are the least developed of those on the north coast, and relatively little information is available concerning the ground-water system. The present study, which was part of a comprehensive appraisal of the ground-water resources of the North Coast Province, attempts to interpret the hydrology of the area within the constraints of available data. The study area consists of an uplifted rolling plain that is 200 to 400 feet above sea level and a heavily forested, karst upland. The only major streams in the area are the Rfo Camuy and the Rio Guajataca. Most water used in the area is obtained from Lago de Guajataca, just south of the study area, and ground-water use is minimal (less than 5 million gallons per day). Sedimentary rocks of Tertiary age, mainly limestone and calcareous clays, comprise the aquifers of the Aguadilla to Rio Camuy area. The rocks generally dip from 4 to 7 degrees to the north, and the total sedimentary rock sequence may be as much as 6,000 feet thick near the Atlantic coast. Baseflows for the Rio Camuy are 58 cubic feet per second near Bayaney and 72 cubic feet per second near Hatillo. The ground-water discharge to the Rio Camuy between these stations is estimated to be 15 cubic feet per second, or 2.6 cubic feet per second per linear mile. The flow of the Rio Guajataca is regulated by the Guajataca Dam at Lago de Guajataca. Ground-water discharge to the Rio Guajataca between the dam and the coast is estimated to be about 17 cubic feet per.second, based on the average ground-water discharge per linear mile estimated for the Rio Camuy. Both water-table and artesian aquifers are present in the Aguadilla to Rio Camuy area; how-ever, most ground water occurs within the watertable aquifer, which was the primary focus of this study. The top of the confining unit, below the water-table aquifer, generally is within the unnamed upper member of the Cibao Formation; however, it is within the Los Puertos Formation in the eastern part of the study area. The water-table aquifer primarily is composed of rocks of the Aymam6n Limestone and the Los Puertos Formation. The estimated saturated thickness of the water-table aquifer ranges from zero at the southern limit of the aquifer to more than 600 feet south of Isabela. Hydraulic conductivity of the Aymam6n Limestone, based on specific-capacity test data for seven wells, ranges from about 1 to about 25 feet per day and averages 7.5 feet per day. Hydraulic conductivity of the Los Puertos Formation, based on specific-capacity test data for four wells, generally was less than 7 feet. per day. The average hydraulic-conductivity value for both the Aymam6n Limestone and the Los Puertos Formation, based on specific-capacity test data, is estimated to be about 6.0 feet per day. These hydraulic-conductivity values are much less than average values for the water-table aquifer reported for other parts of the North Coast Province. Transmissivity values, based on the average hydraulic-conductivity value for the aquifer derived from specific-capacity tests, range from zero to about 4,000 feet squared per day; however, these values were adjusted upward during model calibration. Ground water generally moves from the highlands in the south toward the sea to the north and west, and locally, to streams. A major groundwater divide extends from the southeastern corner of the study area to the northwest, and separates flow north and east into the study area from flow to the southwest toward the Rio Culebrinas. Nearly all recharge to the aquifer is from infiltration of rainfall into the karst uplands. Discharge from the aquifer primarily occurs as leakage to streams and to the sea, and to a lesser degree as flow to wells. A two-layer, three-dimensional, steady-state, numerical model was constructed to simulateground-water flow in the water-table aquifer between Aguadilla and the R/o Camuy area. A basic a
An interoperability experiment for sharing hydrological rating tables
NASA Astrophysics Data System (ADS)
Lemon, D.; Taylor, P.; Sheahan, P.
2013-12-01
The increasing demand on freshwater resources is requiring authorities to produce more accurate and timely estimates of their available water. Calculation of continuous time-series of river discharge and storage volumes generally requires rating tables. These approximate relationships between two phenomena, such as river level and discharge, and allow us to produce continuous estimates of a phenomenon that may be impractical or impossible to measure directly. Standardised information models or access mechanisms for rating tables are required to support sharing and exchange of water flow data. An Interoperability Experiment (IE) is underway to test an information model that describes rating tables, the observations made to build these ratings, and river cross-section data. The IE is an initiative of the joint World Meteorological Organisation/Open Geospatial Consortium's Hydrology Domain Working Group (HydroDWG) and the model will be published as WaterML2.0 part 2. Interoperability Experiments (IEs) are low overhead, multiple member projects that are run under the OGC's interoperability program to test existing and emerging standards. The HydroDWG has previously run IEs to test early versions of OGC WaterML2.0 part 1 - timeseries. This IE is focussing on two key exchange scenarios: Sharing rating tables and gauging observations between water agencies. Through the use of standard OGC web services, rating tables and associated data will be made available from water agencies. The (Australian) Bureau of Meteorology will retrieve rating tables on-demand from water authorities, allowing the Bureau to run conversions of data within their own systems. Exposing rating tables and gaugings for online analysis and educational purposes. A web client will be developed to enable exploration and visualization of rating tables, gaugings and related metadata for monitoring points. The client gives a quick view into available rating tables, their periods of applicability and the standard deviation of observations against the relationship. An example of this client running can be seen at the link provided. The result of the IE will form the basis for the standardisation of WaterML2.0 part 2. The use of the standard will lead to increased transparency and accessibility of rating tables, while also improving general understanding of this important hydrological concept.
NASA Astrophysics Data System (ADS)
Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.
2004-12-01
Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. Plant diversity surveys reveal differences in the total density of herbaceous growth and species distribution between the floodplain above and below the knickpoint. Results from >100 plots show that there is more leaf litter, less exposed ground, and a decrease in floodplain species cover in the incised portion of the floodplain. The changes in flood frequency and water table elevation appear to have allowed one invasive species, Japanese stilt grass (Microstegium vimineum), to become dominant in the floodplain understory, displacing native wetland species.
Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.
2013-12-01
25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.
40 CFR 63.1086 - How must I monitor for leaks to cooling water?
Code of Federal Regulations, 2012 CFR
2012-07-01
... exchange system or any combinations of heat exchangers such that, based on the rate of cooling water at the... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each heat exchanger for the HAP in Table 1 to this subpart (either total or speciated) or other...
40 CFR 63.1086 - How must I monitor for leaks to cooling water?
Code of Federal Regulations, 2013 CFR
2013-07-01
... exchange system or any combinations of heat exchangers such that, based on the rate of cooling water at the... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each heat exchanger for the HAP in Table 1 to this subpart (either total or speciated) or other...
40 CFR 63.1086 - How must I monitor for leaks to cooling water?
Code of Federal Regulations, 2014 CFR
2014-07-01
... exchange system or any combinations of heat exchangers such that, based on the rate of cooling water at the... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each heat exchanger for the HAP in Table 1 to this subpart (either total or speciated) or other...
40 CFR 63.1086 - How must I monitor for leaks to cooling water?
Code of Federal Regulations, 2011 CFR
2011-07-01
... exchange system or any combinations of heat exchangers such that, based on the rate of cooling water at the... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each heat exchanger for the HAP in Table 1 to this subpart (either total or speciated) or other...
The use of SKYLAB in the study of productivity along the eastern shelf waters of the United States
NASA Technical Reports Server (NTRS)
Marshall, H. G.; Bowker, D. E.
1976-01-01
Data sampling from the Rappahannock River and Assateague Island areas are discussed correlating Skylab and ground based measurements. At all sampling stations, information was obtained on composition and density of phytoplankton, total chlorophyll, salinity and water temperature. The results of the water analysis are presented in tables.
Barometric fluctuations in wells tapping deep unconfined aquifers
Weeks, Edwin P.
1979-01-01
Water levels in wells screened only below the water table in unconfined aquifers fluctuate in response to atmospheric pressure changes. These fluctuations occur because the materials composing the unsaturated zone resist air movement and have capacity to store air with a change in pressure. Consequently, the translation of any pressure change at land surface is slowed as it moves through the unsaturated zone to the water table, but it reaches the water surface in the well instantaneously. Thus a pressure imbalance is created that results in a water level fluctuation. Barometric effects on water levels in unconfined aquifers can be computed by solution of the differential equation governing the flow of gas in the unsaturated zone subject to the appropriate boundary conditions. Solutions to this equation for two sets of boundary conditions were applied to compute water level response in a well tapping the Ogallala Formation near Lubbock, Texas from simultaneous microbarograph records. One set of computations, based on the step function unit response solution and convolution, resulted in a very good match between computed and measured water levels. A second set of computations, based on analysis of the amplitude ratios of simultaneous cyclic microbarograph and water level fluctuations, gave inconsistent results in terms of the unsaturated zone pneumatic properties but provided useful insights on the nature of unconfined-aquifer water level fluctuations.
Elk browsing increases aboveground growth of water-stressed willows by modifying plant architecture.
Johnston, Danielle B; Cooper, David J; Hobbs, N Thompson
2007-12-01
In the northern elk wintering range of Yellowstone National Park, USA, wolf (Canis lupus) removal allowed elk (Cervus elaphus) to overbrowse riparian woody plants, leading to the exclusion of beaver (Castor canadensis) and a subsequent water table decline in many small stream valleys. Reduced elk browsing following wolf reintroduction may or may not facilitate willow (Salix sp.) recovery in these areas. To determine if the effect of elk browsing on willow interacts with that of beaver abandonment, we manipulated elk browsing and the water table in a factorial experiment. Under the condition of an ambient (low) water table, elk browsing increased shoot water potential (Psis), photosynthesis per unit leaf area (A), stomatal conductance per unit leaf area (gs), and aboveground current annual growth (CAG) by 50%. Elk browsing occurred entirely during dormancy and did not affect total plant leaf area (L). Improved water balance, photosynthetic rate, and annual aboveground productivity in browsed willows appeared to be due to morphological changes, such as increased shoot diameter and decreased branching, which typically increase plant hydraulic conductivity. An elevated water table increased Psis, A, gs, CAG, and L, and eliminated or lessened the positive effect of browsing on CAG for most species. Because low water tables create conditions whereby high willow productivity depends on the morphological effects of annual elk browsing, removing elk browsing in areas of water table decline is unlikely to result in vigorous willow stands. As large willow standing crops are required by beaver, a positive feedback between water-stressed willow and beaver absence may preclude the reestablishment of historical conditions. In areas with low water table, willow restoration may depend on actions to promote the re-establishment of beaver in addition to reducing elk browsing.
Land Retirement as a Habitat Restoration Tool
NASA Astrophysics Data System (ADS)
Singh, P. N.; Wallender, W. W.
2007-12-01
Use of intensive irrigation in arid and semi-arid areas usually leads to gradual salination of the soil leading to crop yield decline. The salination problem is mitigated by applying irrigation in excess of crop requirements, which leaches the excess salt load to the groundwater. Insufficient natural or man made drainage to dispose off this saline recharge to the groundwater leads to a gradual rise in the water table and eventual encroachment upon the root zone. This may ultimately make the land unfit for any economically productive activity. The abandoned land may even lead to desertification with adverse environmental consequences. In drainage basins with no surface outflow (sometimes called closed basins), land retirement has been proposed as a management tool to address this problem. Land retirement essentially entails intentionally discontinuing irrigation of selected farmlands with the expectation that the shallow water table beneath those lands should drop and the root zone salinity level should decrease. In the San Joaquin Valley of California, intensive irrigation in conjunction with a shallow underlying layer of clay, known as the Corcoran clay layer and absence of a drainage system caused the root zone to become highly saline and the shallow water table to rise. Land retirement would remove from production those farmlands contributing the poorest quality subsurface drain water. Based on numerical models results, it was expected that with land retirement of substantial irrigated lands with poor drainage characteristics, beneath which lies shallow groundwater with high salt load, the shallow water table beneath those lands should drop. A part of the retired lands could also be used for wildlife habitat. A potential negative side of the land retirement option that has to be considered is that in certain enabling evapotranspiration, soil and water table conditions, water will be drawn upwards and evaporated, leaving a deposit of salts on the surface and in the root zone. Salt on the surface may then be wind blown to adjacent areas creating a potential environmental hazard. Using field results from the U.S. Department of the Interior Land Retirement Demonstration Project at the Tranquillity site located in western Fresno County, principles of mass balance in a fixed control volume, the HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, and PEST, a model-independent parameter optimizer, we have investigated the processes of soil water and salinity movement in the root zone and the deep vadose zone. Various combinations of evapotranspiration, soil water retention properties, water table condition and top and bottom boundary condition were tested. We show that certain Land Retirement scenarios decrease shallow water table and soil water salinity and enhance development of native plants as a means to facilitate habitat restoration for certain combination of soil and bottom boundary condition. Other combinations are not sustainable.
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.; ...
2017-04-18
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebestyen, Stephen D.; Norby, Richard J.; Hanson, Paul J.
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPPmore » in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. Here, the model also suggested that variability in internal resistance to CO 2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a “soil” layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum “canopy” properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).« less
NASA Astrophysics Data System (ADS)
Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.
2017-05-01
Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).
Linking Water Table Dynamics to Carbon Cycling in Artificial Soil Column Incubations
NASA Astrophysics Data System (ADS)
Geertje, Pronk; Adrian, Mellage; Tatjana, Milojevic; Fereidoun, Rezanezhad; Cappellen Philippe, Van
2016-04-01
The biogeochemistry of wetlands soils is closely tied to their hydrology. Water table fluctuations that cause flooding and drying of these systems may lead to enhanced degradation of organic matter and release of greenhouse gasses (e.g. CO2, CH4) to the atmosphere. However, predicting the influence of water table fluctuations on the biogeochemical functioning of soils requires an understanding of the interactions of soil hydrology with biogeochemical and microbial processes. To determine the effects of water table dynamics on carbon cycling, we are carrying out state-of-the-art automated soil column experiments with fully integrated monitoring of hydro-bio-geophysical process variables under both constant and oscillating water table conditions. An artificial, homogeneous mixture consisting of minerals and organic matter is used to provide a well-defined starting material. The artificial soils are composed of quartz sand, montmorillonite, goethite and humus from a forested riparian zone, from which we also extracted the microbial inoculum added to the soil mixture. The artificial soils are packed into 60 cm high, 7.5 cm wide columns. In the currently ongoing experiment, three replicate columns are incubated while keeping the water table constant water at mid-depth, while another three columns alternate between drained and saturated conditions. Micro-sensors installed at different depths below the soil surface record time-series redox potentials (Eh) varying between oxidizing (~+700 mV) and reducing (~-200 mV) conditions. Continuous O2 levels throughout the soil columns are monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Pore waters are collected periodically with MicroRhizon samplers from different depths, and analyzed for pH, EC, dissolved inorganic and organic carbon and ion/cation compositions. These measurements allow us to track the changes in pore water geochemistry and relate them to differences in carbon cycling between the contrasting water table regimes. Particular attention is given to the mobilization and redistribution of iron from the initially homogeneously distributed goethite. In addition, small solid-phase samples are collected monthly from the saturated and unsaturated zones of the soil columns to characterize the microbial communities and changes in soil microstructure and organo-mineral associations. Headspace gas measurements are used to derive the effluxes of CO2 and CH4 during the experiment. Together, the experimental data will provide a comprehensive picture of the early development of the soil and the accompanying establishment of biogeochemical gradients under dynamic hydrological conditions. They will allow us to relate the degradation of soil organic matter and greenhouse gas emissions to the saturation conditions and redox chemistry under controlled conditions. The experiment is in progress with an expected total duration of 6 months.
Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire
2013-01-01
To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.
2009-04-01
In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya river basins. The temporally-variable inundation extent simulated by the VIC model is compared to 25 km resolution inundation products developed from combined QuikSCAT, AMSR-E and MODIS data sets covering the time period from 2002 onward. The seasonal variation in methane emissions associated with sub-grid variability in water table extent is explored between 1948 and 2006. This work was carried out at Purdue University, at the University of Washington, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA.
Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin
2014-12-01
Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka
2010-11-01
Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.
Lines, Gregory C.
1999-01-01
The health of native riparian vegetation and its relation to hydrologic conditions were studied along the Mojave River mainly during the growing seasons of 1997 and 1998. The study concentrated on cottonwood?willow woodlands (predominantly Populus fremontii and Salix gooddingii) and mesquite bosques (predominantly Prosopis glandulosa). Tree-growth characteristics were measured at 16 cottonwood?willow woodland sites and at 3 mesquite bosque sites. Density of live and dead trees, tree diameter and height, canopy density, live-crown volume, leaf-water potential, leaf-area index, mortality, and reproduction were measured or noted at each site. The sites included healthy and reproducing woodlands and bosques, stressed woodlands and bosques with no reproduction, and woodlands and bosques with high mortality. Tree roots were studied at seven sites to determine the vertical distribution of the root system and their relation to the water table at healthy, stressed, and high-mortality cottonwood?willow woodlands. In the six trenches that were dug for this study in May 1997, no cottonwood roots were observed that reached the water table. The root systems of healthy trees typically ended 1 to 2 feet above the water table. At sites with high mortality, the main root mass was commonly 7 to 8 feet above the water table. Water-table depth was monitored at each of the study sites. In addition, volumetric soil moisture and soil-water potential were monitored at varying depths at three cottonwood?willow woodland study sites and at two mesquite bosque sites. Ground, soil, river, lake, and plant (xylem sap) water were analyzed for concentrations of stable hydrogen and oxygen isotopes to determine the source of water used by the trees. On the basis of the root-distribution, soil- and leaf-water potential, and isotope data, it was concluded that cottonwood, willow, and mesquite trees mainly rely on ground water for their perennial sustained supply of water. The trees mainly utilize ground water that has moved upward from the water table into the capillary fringe and into unsaturated soil nearer to land surface. Most precipitation (average is 4 to 6 inches per year) is lost by evaporation and by transpiration of shallow-rooted xeric plants, and very little reaches the root zone of trees along the Mojave River. Water-table depth had no strong correlation to many individual tree-growth characteristics, such as density, diameter, height, and live-crown volume. However, leaf-area index (corrected for stem area) of both healthy and stressed cottonwood?willow woodlands had a highly significant statistical relation to water-table depth, and a curvilinear regression model was defined. As in cottonwood?willow woodlands, leaf-area index of mesquite bosques also decreased with increased water-table depth. However, because of the small number of sites, no significant statistical relation could be defined for mesquite bosques. Because it can be accurately measured repeatedly at the same locations, leaf-area index (corrected for stem area) is recommended as the primary growth characteristic that should be monitored. Future vegetation changes along the Mojave River can be quantified using the sites established for this study. Mortality was as high as 39 percent in healthy cottonwood?willow woodlands, but mortality of 50 to 100 percent was common where water-table depth was greater than about 7 feet or in areas where permanent water-table declines greater than about 5 feet had occurred. At a healthy mesquite bosque where the water-table depth ranged from about 8 to 11 feet, mortality was about 20 percent. Where the water table had been lowered an additional 10 to 25 feet by pumping, mortality of the mesquite was extremely high (80 to 99 percent). On the basis of observations of plant reproduction, it was concluded that established cottonwood?willow woodlands probably will reproduce, mainly by root sprouting of mature trees, if the water-t
Importance of unsaturated zone flow for simulating recharge in a humid climate
Hunt, R.J.; Prudic, David E.; Walker, J.F.; Anderson, M.P.
2008-01-01
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.
Groundwater Controls on Vegetation Composition and Patterning in Mountain Meadows
NASA Astrophysics Data System (ADS)
Loheide, S. P.; Lowry, C.; Moore, C. E.; Lundquist, J. D.
2010-12-01
Mountain meadows are groundwater dependent ecosystems that are hotspots of biodiversity and productivity in the Sierra Nevada of California. Meadow vegetation relies on shallow groundwater during the region’s dry summer growing season. Vegetation composition in this environment is influenced both by 1) oxygen stress that occurs when portions of the root zone are saturated and anaerobic conditions are created that limit root respiration and 2) water stress that occurs when the water table drops and water-limited conditions are created in the root zone. A watershed model that explicitly accounts for snowmelt processes was linked to a fine resolution groundwater flow model of Tuolumne Meadows in Yosemite National Park, CA to simulated spatially distributed water table dynamics. This linked hydrologic model was calibrated to observations from a well observation network for 2006-2008, and validated using data from 2009. A vegetation survey was also conducted at the site in which the three dominant species were identified at more than 200 plots distributed across the meadow. Nonparametric multiplicative regression was performed to create and select the best models for predicting vegetation dominance based on simulated hydrologic regime. The hydrologic niche of three vegetation types representing wet, moist, and dry meadow vegetation communities was best described using both 1) a sum exceedance value calculated as the integral of water table position above a threshold of oxygen stress and 2) a sum deceedance value calculated as the integral of water table position below a threshold of water stress. This linked hydrologic and vegetative modeling framework advances our ability to predict the propagation of human-induced climatic and land-use/-cover changes through the hydrologic system to the ecosystem.
Water tables constrain height recovery of willow on Yellowstone's northern range.
Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson
2008-01-01
Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery of tall willow stands. Because tall willow stems are important elements of habitat for beaver, mitigating water table decline may be necessary in these areas to promote recovery of historical willow-beaver mutualisms.
NASA Astrophysics Data System (ADS)
Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.
2013-12-01
Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of wetlands to buffer water table variation is most pronounced along a 'sweet spot' where P and ET are relatively balanced. High P and low ET yielded consistently high water tables with wetlands acting predominantly as sinks (i.e., little switching behavior), while low P and high ET scenarios limited wetland inundation. On the other hand, when both P and ET were moderate, the SD of the regional water table was reduced by nearly 50% for landscapes with 30% wetland area distributed over ~1 ha watersheds. Additionally, we found these buffering effects to be stronger in coarser soils compared with finer soils. Considering the strong influence of regional water table on downstream surface water systems, loss of isolated wetland area or mitigation of this loss at the expense of wetland density (i.e., large mitigation banks to replace small distributed systems) has the potential to significantly impact downstream water bodies. Isolated wetlands buffer surficial aquifer dynamics by providing water storage capacitance at the landscape scale and ultimately exert hydraulic regulation of regional surface waters through an indirect, but significant nexus.
Raised Water Tables Affect Southern Hardwood Growth
W. M. Broadfoot
1973-01-01
In natural stands near Demopolis Lock and Dam Reservoir in Alabama, the average growth in tree radius increased about 50 percent in the 5 years after the water table was raised from an indefinite depth to within reach of the tree roots. In natural stands near the Jim Woodruff Reservoir in Florida, radial growth of trees also increased markedly after the water table was...
Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship
NASA Astrophysics Data System (ADS)
Viswanathan, M. N.
1984-02-01
The determination of recharge levels of unconfined aquifers, recharged entirely by rainfall, is done by developing a model for the aquifer that estimates the water-table levels from the history of rainfall observations and past water-table levels. In the present analysis, the model parameters that influence the recharge were not only assumed to be time dependent but also to have varying dependence rates for various parameters. Such a model is solved by the use of a recursive least-squares method. The variable-rate parameter variation is incorporated using a random walk model. From the field tests conducted at Tomago Sandbeds, Newcastle, Australia, it was observed that the assumption of variable rates of time dependency of recharge parameters produced better estimates of water-table levels compared to that with constant-recharge parameters. It was observed that considerable recharge due to rainfall occurred on the very same day of rainfall. The increase in water-table level was insignificant for subsequent days of rainfall. The level of recharge very much depends upon the intensity and history of rainfall. Isolated rainfalls, even of the order of 25 mm day -1, had no significant effect on the water-table levels.
NASA Astrophysics Data System (ADS)
Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.
2017-12-01
Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, G.S.; Trudeau, D.A.; Savard, C.S.
The underground nuclear testing program of the US Department of Energy (USDOE) takes place at the Nevada Test Site (NTS), about 65 mi north-west of Las Vegas, Nevada. Underground nuclear tests at Yucca Flat, one of the USDOE test areas at NTS, have affected hydrologic conditions, including groundwater levels. The purpose of this map report, prepared in cooperation with USDOE, is to present selected water-level data collected from wells and test holes through December 1991, and to show potentiometric contours representing 1991 water-table conditions in the Yucca Flat area. The more generic term, potentiometric contours, is used herein rather thanmore » ``water-table contours`` because the hydrologic units contributing water to wells and test holes may not accurately represent the water table. The water table is that surface in an unconfined water body at which the pressure is atmospheric. It is defined by the altitude at which non- perched ground water is first found in wells and test holes. Perched ground water is defined as unconfined ground water separated from an underlying body of ground water by an unsaturated zone. This map report updates information on water levels in some wells and test holes and the resulting water-table contours in rocks of Cenozoic and Paleozoic age shown by Doty and Thordarson for 1980 conditions.« less
Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion
NASA Astrophysics Data System (ADS)
Kennedy, J.; Macy, J. P.
2017-12-01
The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.
Development of a simulation of the surficial groundwater system for the CONUS
NASA Astrophysics Data System (ADS)
Zell, W.; Sanford, W. E.
2016-12-01
Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.
NASA Astrophysics Data System (ADS)
Fan, Junliang; Ostergaard, Kasper T.; Guyot, Adrien; Fujiwara, Stephen; Lockington, David A.
2016-11-01
Exotic pine plantations have replaced large areas of the native forests for timber production in the subtropical coastal Australia. To evaluate potential impacts of changes in vegetation on local groundwater discharge, we estimated groundwater evapotranspiration (ETg) by the pine plantation using diurnal water table fluctuations for the dry season of 2012 from August 1st to December 31st. The modified White method was used to estimate the ETg, considering the night-time water use by pine trees (Tn). Depth-dependent specific yields were also determined both experimentally and numerically for estimation of ETg. Night-time water use by pine trees was comprehensively investigated using a combination of groundwater level, sap flow, tree growth, specific yield, soil matric potential and climatic variables measurements. Results reveal a constant average transpiration flux of 0.02 mm h-1 at the plot scale from 23:00 to 05:00 during the study period, which verified the presence of night-time water use. The total ETg for the period investigated was 259.0 mm with an accumulated Tn of 64.5 mm, resulting in an error of 25% on accumulated evapotranspiration from the groundwater if night-time water use was neglected. The results indicate that the development of commercial pine plantations may result in groundwater losses in these areas. It is also recommended that any future application of diurnal water table fluctuation based methods investigate the validity of the zero night-time water use assumption prior to use.
Interpolations of groundwater table elevation in dissected uplands.
Chung, Jae-won; Rogers, J David
2012-01-01
The variable elevation of the groundwater table in the St. Louis area was estimated using multiple linear regression (MLR), ordinary kriging, and cokriging as part of a regional program seeking to assess liquefaction potential. Surface water features were used to determine the minimum water table for MLR and supplement the principal variables for ordinary kriging and cokriging. By evaluating the known depth to the water and the minimum water table elevation, the MLR analysis approximates the groundwater elevation for a contiguous hydrologic system. Ordinary kriging and cokriging estimate values in unsampled areas by calculating the spatial relationships between the unsampled and sampled locations. In this study, ordinary kriging did not incorporate topographic variations as an independent variable, while cokriging included topography as a supporting covariable. Cross validation suggests that cokriging provides a more reliable estimate at known data points with less uncertainty than the other methods. Profiles extending through the dissected uplands terrain suggest that: (1) the groundwater table generated by MLR mimics the ground surface and elicits a exaggerated interpolation of groundwater elevation; (2) the groundwater table estimated by ordinary kriging tends to ignore local topography and exhibits oversmoothing of the actual undulations in the water table; and (3) cokriging appears to give the realistic water surface, which rises and falls in proportion to the overlying topography. The authors concluded that cokriging provided the most realistic estimate of the groundwater surface, which is the key variable in assessing soil liquefaction potential in unconsolidated sediments. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Simulation of wetlands forest vegetation dynamics
Phipps, R.L.
1979-01-01
A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu
2007-03-01
Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu
2007-01-01
Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain‐fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ∼90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater‐fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain‐fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade‐offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065
Yu, Shen; Ehrenfeld, Joan G.
2010-01-01
Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID:19643908
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.
Effect of water table dynamics on land surface hydrologic memory
NASA Astrophysics Data System (ADS)
Lo, Min-Hui; Famiglietti, James S.
2010-11-01
The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Sagayama, Hiroyuki; Hamaguchi, Genki; Toguchi, Makiko; Ichikawa, Mamiko; Yamada, Yosuke; Ebine, Naoyuki; Higaki, Yasuki; Tanaka, Hiroaki
2017-10-01
Total daily energy expenditure (TEE) and physical activity level (PAL) are important for adequate nutritional management in athletes. The PAL of table tennis has been estimated to about 2.0: it is categorized as a moderateactivity sport (4.0 metabolic equivalents [METs]) in the Compendium of Physical Activities. However, modern table tennis makes high physiological demands. The aims of the current study were to examine (1) TEE and PAL of competitive table tennis players and (2) the physiological demands of various types of table tennis practice. In Experiment 1, we measured TEE and PAL in 10 Japanese college competitive table tennis players (aged 19.9 ± 1.1 years) using the doubly labeled water (DLW) method during training and with an exercise training log and self-reported energy intake. TEE was 15.5 ± 1.9 MJ·day -1 (3695 ± 449 kcal·day -1 ); PAL was 2.53 ± 0.25; and the average training duration was 181 ± 38 min·day -1 . In Experiment 2, we measured METs of five different practices in seven college competition players (20.6 ± 1.2 years). Three practices without footwork were 4.5-5.2 METs, and two practices with footwork were 9.5-11.5 METs. Table tennis practices averaged 7.1 ± 3.2 METS demonstrating similarities with other vigorous racket sports. In conclusion the current Compendium of Physical Activities underestimates the physiological demands of table tennis practice for competition; the estimated energy requirement should be based on DLW method data.
How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment
Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank
2014-01-01
Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565
Diameter growth and phenology of trees on sites with high water tables
D.C. McClurkin
1965-01-01
On a site where the water table always was within the root zone, thinning had little effect on diameter growth of white ash or sweetgum but increased the growth of baldcypress. Thinning did not extend durating of growth into the fall, nor was growth related to seasonal fluctuations in the water table. In ash and sweetgum, growth initiation seemed related to soil...
M.R. Turetsky; C.C. Treat; M. Waldrop; J.M. Waddington; J.W. Harden; A.D. McGuire
2008-01-01
Growing season CH4 fluxes were monitored over a two year period following the start of ecosystem-scale manipulations of water table position and surface soil temperatures in a moderate rich fen in interior Alaska. The largest CH4 fluxes occurred in plots that received both flooding (raised water table position) and soil...
Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov
2015-01-01
Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...
Forecast model for a water table control system in cranberry production
NASA Astrophysics Data System (ADS)
Racine, Cintia; José Gumiere, Silvio; Paniconi, Claudio; Dupuis, Christian; Lafond, Jonathan; Scudeler, Carlotta; Camporese, Matteo
2017-04-01
Water table control is gaining popularity in cranberry production. Cranberry plants require specific soil moisture conditions to enhance crop yields. In fact, water table control systems installed in the fields allow the plants to respond efficiently to the daily demand for evapotranspiration by capillarity rise and also regulate the soil water excess in drainage conditions. The scope of this study is to develop a forecast hydrological model at the field scale, able to simulate water level for water table control operations. In this work, the finite element CATHY (CATchment Hydrology) model associated with sequential data assimilation with an ensemble Kalman filter (EnKF) method will be used to simulated the soil water dynamics and perform model calibration in real-time. The study is conducted in cranberry fields located in Québec, Canada. During the last five years, these fields were extensive characterized regarding hydrological, pedological, and geological processes. Data collected from LIDAR and Ground Penetrating Radar (GPR) surveys and in-situ soil sampling have been used to define the domain geometry and initial soil properties. First results are promising and in agreement the in-situ water table measurements.
Hydrologic information for land-use planning; Fairbanks vicinity, Alaska
Nelson, Gordon L.
1978-01-01
The flood plain on the Chena and Tanana Rivers near Fairbanks, Alaska, has abundant water in rivers and in an unconfined alluvial aquifer. The principal source of ground water is the Tanana River, from which ground water flows northwesterly to the Chena River. Transmissivity of the aquifer commonly exceed 100 ,000 sq ft. The shallow water table (less than 15 ft below land surface), high hydraulic conductivity of the sediments and cold soil give the flood plain a high susceptibility to pollution by onsite sewerage systems. The Environmental Protection Agency recommended maximum concentrations for drinking water may be exceeded in surface water for manganese and bacteria and in ground water for iron, manganese, and bacteria. Residents of the uplands obtain water principally from a widely-distributed fractured schist aquifer. The aquifer is recharged by local infiltration of precipitation and is drained by springs on the lower slopes and by ground-water flow to alluvial aquifers of the valleys. The annual base flow from basins in the uplands ranged from 3,000 to 100,000 gallons per acre; the smallest base flows occur in basins nearest the city of Fairbanks. The thick silt cover and great depth to the water table give much of the uplands a low susceptibility to pollution by onsite sewage disposal. Ground water is locally high in nitrate, arsenic, iron , and manganese. (Woodard-USGS)
Garza, Sergio
1980-01-01
This map shows the altitude of the water table in the alluvial and Wilcox aquifers in the vicinity of Richland and Tehuacana Creeks and the Trinity River, Tex., in December 1979. The water-table contours were constructed on the basis of water-level control derived from an inventory of shallow wells in the area, topographic maps, and field locations of numerous small springs and seeps. (USGS)
NASA Astrophysics Data System (ADS)
Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier
2017-08-01
The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.
Survey - Monomethylhydrazine Propellant/Material Compatibility
1977-07-01
MMH, UDMH . Crack growth susceptibility is related to contamination levels of water and carbon dioxide. VII. CONCLUSIONS Based upon the findings of the...per liter Density , grams per 0.870 to 9.874 milliliter at 25’C (770F) Table 2. Monomethylhydrazine Propellant Survey Requirements Constituent, Property...0 en ~ 14 Table 6. Summiary of Properties of 6 Monome-thylhydra7ine Propellant6 Chemical name: methyihydrazine Chemical formula : CH 3N2H 3 Formula
Design highwater clearances for highway pavements appendix : volume II, appendix, August 2008.
DOT National Transportation Integrated Search
2008-08-01
High groundwater table exerts detrimental effects on the roadway base and the whole pavement. Base clearance guidelines have been developed to prevent water from entering the pavement system in order to reduce its detrimental effects. In these guidel...
Design highwater clearances for highway pavements : volume I, final report, August 2008.
DOT National Transportation Integrated Search
2008-08-01
High groundwater table exerts detrimental effects on the roadway base and the whole pavement. Base : clearance guidelines have been developed to prevent water from entering the pavement system in order to : reduce its detrimental effects. In these gu...
Environmental factors controlling methane emissions from peatlands in northern Minnesota
NASA Technical Reports Server (NTRS)
Dise, Nancy B.; Gorham, Eville; Verry, Elon S.
1993-01-01
The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.
Szabo, B. J.; Kolesar, Peter T.; Riggs, A.C.; Winograd, I.J.; Ludwig, K. R.
1994-01-01
The petrographic and morphologic differences between calcite precipitated below, at, or above the present water table and uranium-series dating were used to reconstruct a chronology of water-table fluctuation for the past 120,000 yr in Browns Room, a subterranean air-filled chamber of Devils Hole fissure adjacent to the discharge area of the large Ash Meadows groundwater flow system in southern Nevada. The water table was more than 5 m above present level between about 116,000 and 53,000 yr ago, fluctuated between about +5 and +9 m during the period between about 44,000 and 20,000 yr ago, and declined rapidly from +9 to its present level during the past 20,000 yr. Because the Ash Meadows groundwater basin is greater than 12,000 km2 in extent, these documented water-table fluctuations are likely to be of regional significance. Although different in detail, water-level fluctuation recorded by Browns Room calcites generally correlate with other Great Basin proxy palcoclimatic data.
Soren, Julian
1976-01-01
A rising water table following cessation of public-supply pumping has been causing basement flooding and building-foundation damage in the East New York section of Brooklyn, Kings County, Long Island, N.Y., since 1975. The water table in the central part of the area rose from a low of about 12 feet (3.7 meters) below sea level in 1936 to about 8 to 10 feet (2.4 to 3 meters) above sea level in March 1976. Public-supply pumping in Brooklyn ceased in 1947 and ceased in 1974 in the adjacent Woodhaven section of Queens County. A further water-table rise of about 2 feet (0.6 meter) is anticipated in the next several years in the central part of the East New York area, and the ultimate water-table height could be as much as about 15 feet (4.6 meters) above sea level. Relief from the flooding by dewatering operations is complicated by problems with disposal of pumped-out ground water. (Woodard-USGS)
Hydrostratigraphy of a Sand Aquifer from Combined ERT and GPR
NASA Astrophysics Data System (ADS)
Papadimitrios, K. S.; Ferris, G.; Bank, C.
2015-12-01
Overlapping resistivity and ground-penetrating radar transects were collected on a shallow sand aquifer. The study area covers about 150 by 150 m, and the water table depth in that area ranges from as shallow as 30 cm to over 2m. Electric resistivity tomography shows layers of resistances which we relate to the vadose zone (above 1200 Ohm.m), the saturated zone (approx. 300 Ohm.m), and underlying aquitard (above 1200 Ohm.m, made of glacial till). The resistivity sections fail to capture the topography of the sand-till boundary seen in collected radargrams (e.g., from 80 to 120 ns over a 30 m horizontal distance). Converting radar travel times to thickness of the aquifer requires knowledge of water table depth as well as radar velocity in both the saturated and unsaturated sands. Water table depth can be taken from resistivity pseudosections as well as local piezometers. Radar velocities can be estimated based on the properties of the local sand and assuming 100% saturation. In merging the results from the two datasets we are able to map local hydrostratigraphy and aquifer geometry.
Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma
Havens, J.S.
1984-01-01
The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.
Transport of volatile organic compounds across the capillary fringe
McCarthy, Kathleen A.; Johnson, Richard L.
1993-01-01
Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs
NASA Astrophysics Data System (ADS)
Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.
2017-12-01
Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.
Evaluation of a distributed catchment scale water balance model
NASA Technical Reports Server (NTRS)
Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.
1993-01-01
The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.
41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE ...
41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE SAW (L TO R)-LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V
2017-01-01
The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.
Garn, H.S.
1988-01-01
The Pecos River near Hagerman in Chaves County, New Mexico, historically has been a gaining stream. In 1938, the slope of the water table in the shallow alluvial aquifer near Hagerman was toward the Pecos River. By 1950, a large water-table depression had formed in the alluvial aquifer southwest of Hagerman. Continued enlargement of this depression could reverse the direction of groundwater flow to the Pecos River. Water levels were measured during 1981-85 in wells along a section extending from the Pecos River to a point within the depression. Although the water-table depression has not caused a perennial change in direction of groundwater flow, it has caused a seasonal reversal in the slope of the water table between the river and the depression during the growing season when pumpage from the shallow aquifer is the greatest. (USGS)
Excess growing-season water limits lowland black spruce productivity
NASA Astrophysics Data System (ADS)
Dymond, S.; Kolka, R. K.; Bolstad, P. V.; Gill, K.; Curzon, M.; D'Amato, A. W.
2015-12-01
The annual growth of many tree species is limited by water availability, with growth increasing as water becomes less scarce. In lowland bogs of northern Minnesota, however, black spruce (Picea mariana) is often exposed to excess water via high water table elevations. These trees grow in thick deposits of organic mucky peat and often have shallow rooting systems to avoid the complete submersion of roots in water. While it is generally believed that black spruce decrease growth rates with rising water table elevations, this hypothesis has not been tested in situ. We used a unique, 50-year record of daily bog water table elevations at the Marcell Experimental Forest (MEF) in northern Minnesota to investigate the relationship between climate and black spruce productivity. Nine 1/20th ha circular plots were established in five different bogs and tree height, diameter-at-breast-height (DBH), and crown class were recorded. Additionally, two perpendicular cores were collected on all trees greater than 10 cm diameter-at-breast-height. Tree cores were sanded, mounted, cross-dated, and de-trended according to standard dendrochronological procedures. Ring width measurements were correlated with precipitation, temperature, and water table elevation using package BootRes in R to determine the climatic variables most associated with stand level productivity. Across the different plots, we found that early growing season water table elevation (May and June) was negatively correlated with both individual and stand-level black spruce growth (p < 0.01), while growth was positively correlated with March temperatures (p < 0.01). No significant relationships existed between black spruce growth and monthly precipitation. If summer water table elevations in these peatland ecosystems rise as is anticipated with more extreme precipitation events due to climate change, we could see an overall decrease in the stand level productivity of black spruce.
NASA Astrophysics Data System (ADS)
Treat, C. C.; Turetsky, M.; Harden, J.; McGuire, A.
2006-12-01
Peatlands cover only 3-5 % of the world's land surface but store 30 % of the world's soil carbon (C) pool. Peatlands currently are thought to function globally as a net sink for atmospheric CO2, sequestering approximately 76 Tg (1012 g) C yr-1. However, peatlands also function as a net source of atmospheric CH4. Approximately 25% of the 270 Tg CH4 yr-1 emitted from natural sources are emitted from northern wetlands. Methane production (methanogenesis) and consumption (methane oxidation) in peatlands are sensitive to both fluctuations in soil moisture and temperature. Boreal regions already are experiencing rapid changes in climate, including longer and drier growing seasons and the degradation of permafrost. Changes in peat environments in response to these climate changes could have significant implications for CH4 emissions to the atmosphere, and thus the radiative forcing of high latitude regions. In 2005, we initiated a large scale in situ climate experiment in a moderately rich fen near the Bonanza Creek LTER site in central Alaska (APEX: www.apex.msu.edu). The goal of our project is to understand vegetation and C cycling processes under altered water table and soil thermal regimes. We established three water table plots (control, raised, lowered), each about 120 m2 in area, using drainage ditches to lower the water table by 5-10 cm and solar powered pumps to raise the water table by about 5-15 cm. Within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. We used static chambers and gas chromatography to quantify methane fluxes at each water table x soil warming plot through the growing seasons of 2005 and 2006. Additionally, we quantified seasonal CH4 fluxes along an adjacent moisture gradient that included four distinct soil moisture and vegetation zones, including a moderately rich fen (APEX site), an emergent macrophyte marsh, a shrubby permafrost fen, and a black spruce permafrost forest. Our results thus far show that methane fluxes varied by a warming x water table interaction across our experimental treatments (Proc Mixed SAS Repeated Measures ANOVA; F2,8=4.07; p=0.05), with the largest methane fluxes in the warm, wet peatland plots and the lowest methane fluxes in the unwarmed, dry peatland plots. Sites along the moisture gradient transitioned from methane sources in the rich fen site (APEX plots) to small sinks of CH4 in the permafrost forest under drying soil moisture conditions. Our soil climate manipulations allow us to quantify interactions among biogeophysical variables that control CH4 emissions from peatlands. Our coupled experimental and gradient based measurements allow us to explore controls on microbial populations and methane emissions across a wider range of terrestrial boreal environments. This work so far shows that methane cycling in interior Alaskan ecosystems is extremely sensitive to soil climate conditions, and that the fate of methane emissions from high latitudes will be affected primarily by changes in precipitation and soil drainage that control water table position in peatlands and permafrost ecosystems.
Martins, Luciana; Tavares, Marcos
2018-04-12
Two new species in the genera Thyone and Havelockia are described and illustrated based upon specimens collected from off the southeastern Brazilian coast. Thyone florianoi sp. nov. is characterized by having two pillared body wall tables with four-holed discs and introvert with multilocular tables. Thyone crassidisca is recorded herein for the first time from the South Atlantic Ocean (Brazil). Havelockia mansoae sp. nov. is distinctive in having two pillared body wall tables with four-holed discs and introvert with plates. This is the first record of the genus Havelockia from Brazilian waters.
Modeling water table dynamics in managed and restored peatlands
NASA Astrophysics Data System (ADS)
Cresto Aleina, Fabio; Rasche, Livia; Hermans, Renée; Subke, Jens-Arne; Schneider, Uwe; Brovkin, Victor
2016-04-01
European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC-M model for the assessment of the environmental impact of peatland restoration.
Komor, S.C.
1994-01-01
Savage Fen is a wetlands complex at the base of north-facing bluffs in the Minnesota River Valley. The complex includes 27.8 hectares of calcareous fen that host rare calciphile plants whose populations are declining in Minnesota. Water and sediment compositions in the calcareous fen were studied to gain a better understanding of the hydrologie System that sustains the rare vegetation. Groundwater in the fen is a calcium-magnesium-bicarbonate type with circumneutral pH values. The groundwater composition is the resuit of interactions among water, dissolved and gaseous carbon species, carbonates, and ion exchangers. Shallow groundwater is distinguished from deep groundwater by smaller concentrations of chloride, sulfate, magnesium, and sodium, and larger concentrations of calcium, bicarbonate, hydrogen sulfide, and ammonium. Magnesian calcite is the prevalent carbonate in unconsolidated sedimentary fill beneath the fen and is an important source and sink for dissolved calcium, magnesium, and inorganic carbon. Calcite concentrations just below the water table are small because aerobic and anaerobic oxidation of organic matter increase the partial pressure of carbon dioxide (PCO2), decrease pH, and cause calcite to dissolve. Thick calcite accumulations just above the water table, in the root zone of calciphile plants, result from water table fluctuations and attendant changes in PCO2. Groundwater beneath Savage Fen recharges in lakes and ponds south of the fen and upwells to the surface within the fen. Water at the water table is a mixture of upwelling groundwater and water near the surface that flows downslope from higher elevations in the fen. Changes in oxygen and hydrogen isotope compositions of shallow groundwater indicate that the proportion of upwelling groundwater in shallow groundwater decreases downgradient in the calcareous fen. Encroachment of reed grasses into the calcareous fen may reflect human-caused disturbances in the recharge area.
Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan
1993-10-01
5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water
Water table tests of proposed heat transfer tunnels for small turbine vanes
NASA Technical Reports Server (NTRS)
Meitner, P. L.
1974-01-01
Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.
| |----------|--------|----------------------------------------------------------| | | | | | GFSCLS1 | A60243 | TABLE A ENTRY - GFSMODEL MESSAGES | | | | | | HEADR | 362001 | TABLE D ENTRY - PROFILE COORDINATES | | PROFILE | 362002 | TABLE D ENTRY - PROFILE DATA | | CLS1 | 362003 | TABLE D ENTRY - SURFACE | TABLE B ENTRY - SNOW WATER EQUIVALENT | | LCLD | 020051 | TABLE B ENTRY - AMOUNT OF LOW CLOUD | | MCLD
40 CFR 132.3 - Adoption of criteria.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a site... water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific....3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY...
Water table in rocks of Cenozoic and Paleozoic age, 1980, Yucca Flat, Nevada Test Site, Nevada
Doty, G.C.; Thordarson, William
1983-01-01
The water table at Yucca Flat, Nevada Test Site, Nevada, occurs in rocks of Paleozoic age and in tuffs and alluvium of Cenozoic age and ranges in altitude from about 2,425 feet to about 3,500 feet. The configuration of the water table is depicted by contours with intervals of 25 to 500 feet. Control for the map consists of water-level information from 61 drill holes, whose locations and age of geologic units penetrated are shown by symbols on the map. (USGS)
A study on the influence of tides on the water table conditions of the shallow coastal aquifers
NASA Astrophysics Data System (ADS)
Singaraja, C.; Chidambaram, S.; Jacob, Noble
2018-03-01
Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.
Ecohydrological controls over water budgets in floodplain meadows
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David
2013-04-01
Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.
Seasonal variability of near surface soil water and groundwater tables in Florida : phase II.
DOT National Transportation Integrated Search
2008-01-01
The seasonal high groundwater table (SHGWT) is a critical measure for design projects requiring : surface water permits including roadway design and detention or retention pond design. Accurately : measuring and, more importantly, predicting water ta...
Wieczorek, Michael
2014-01-01
This digital data release consists of seven data files of soil attributes for the United States and the District of Columbia. The files are derived from National Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are percent sand, silt, and clay (AVG_SAND, AVG_SILT, and AVG_CLAY). The soil characteristics in the WTDEP table are the annual minimum water table depth (WTDEP_MIN), available water storage in the 0-25 cm soil horizon (AWS025), the minimum water table depth for the months April, May and June (WTDEPAMJ), the available water storage in the first 25 centimeters of the soil horizon (AWS25), the dominant drainage class (DRCLSD), the wettest drainage class (DRCLSWET), and the hydric classification (HYDCLASS), which is an indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of a given MUKEY. (See Entity_Description for more detail). The tables were created with a set of arc macro language (aml) and awk (awk was created at Bell Labsin the 1970s and its name is derived from the first letters of the last names of its authors – Alfred Aho, Peter Weinberger, and Brian Kernighan) scripts. Send an email to mewieczo@usgs.gov to obtain copies of the computer code (See Process_Description.) The methods used are outlined in NRCS's "SSURGO Data Packaging and Use" (NRCS, 2011). The tables can be related or joined to the gSSURGO rasters of MUKEYs by the item 'MUKEY.' Joining or relating the tables to a MUKEY grid allows the creation of grids of area- and depth-weighted soil characteristics. A 90-meter raster of MUKEYs is provided which can be used to produce rasters of soil attributes. More detailed resolution rasters are available through NRCS via the link above.
Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies
NASA Astrophysics Data System (ADS)
Westbrook, C.; Mercer, J.
2016-12-01
Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.
The Impact of Water Table Drawdown and Drying on Subterranean Aquatic Fauna in In-Vitro Experiments
Stumpp, Christine; Hose, Grant C.
2013-01-01
The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda) under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity. PMID:24278111
NASA Astrophysics Data System (ADS)
Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen
2018-01-01
Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
HAWQS is a web-based interactive water quantity and quality modeling system that provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, graphs and raw output data; and a user guide.
HAWQS is a web-based interactive water quantity and quality modeling system that provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, graphs and raw output data; and a user guide.
NASA Astrophysics Data System (ADS)
Vasconcelos, Vitor Vieira; Koontanakulvong, Sucharit; Suthidhummajit, Chokchai; Junior, Paulo Pereira Martins; Hadad, Renato Moreira
2017-03-01
A sustainable strategy for conjunctive water management must include information on the temporal and spatial availability of this natural resource. Because of water shortages in the dry seasons, farmers on the Upper Plain of the Chao Phraya River basin, Thailand, are increasingly using groundwater to meet their irrigation needs. To evaluate the possibilities of conjunctive water management in the area, the spatial-temporal changes in the water table of the Younger Terrace Aquifer were investigated. First, a regional geomorphological map based on field surveys, remote sensing and previous environmental studies was developed. Then, the well data were analyzed in relation to rainfall, streamflow, yield and pumpage, and the data were interpolated using geostatistical techniques. The results were analyzed via integrated zoning based on color theory as applied to multivariate visualization. The analysis results indicate areas that would be more suitable for groundwater extraction in a conjunctive management framework with regard to the natural hydrogeological processes and the effects of human interaction. The kriging results were compared with the geomorphological map, and the geomorphological areas exhibit distinct hydrogeological patterns. The western fans exhibit the best potential for the expansion of conjunctive use, whereas the borders of the northern fans exhibit the lowest potential.
2013-06-01
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...System Permanent Easement (acres) ................................................. 15 Table 3.4: Comparison of Construction and Operation ...cultural, transportation and socioeconomic effects associated with the proposed construction and operation of an alternate water supply system and
Ground-water data, Sevier Desert, Utah
Mower, Reed W.; Feltis, Richard D.
1964-01-01
This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-64 by the U.S. Geological survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Sevier Desert, in Juab and Millard Counties, Utah. The interpretive material will be published in a companion report by R. W. Mower and R. D. Feltis.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figures. From table 1 he can note such things as depth, diameter, water level, yield, use of water, temperature of water, and depth of perforations. By comparing the depth of perforations with the drillers' logs in table 3 he can note the type of material that yields water to the wells. Table 2 and figure 2 show the historic fluctuations and trends of water levels in the vicinity. From table 4 he can note the chemical quality of the water from wells in the vicinity. Table 5 shows the amount of water discharged during 1951-63 from the pumped irrigation, public supply, and industrial wells. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the state Engineer. If the State Engineer believes unappropriated water is available, the application may be approved after minimum statutory requirements have been satisfied.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.
Dileanis, Peter D.; Groeneveld, David P.
1989-01-01
A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.
Wyatt, Kevin H; Turetsky, Merritt R; Rober, Allison R; Giroldo, Danilo; Kane, Evan S; Stevenson, R Jan
2012-07-01
The role of algae in the metabolism of northern peatlands is largely unknown, as is how algae will respond to the rapid climate change being experienced in this region. In this study, we examined patterns in algal productivity, nutrients, and dissolved organic carbon (DOC) during an uncharacteristically wet summer in an Alaskan rich fen. Our sampling was conducted in three large-scale experimental plots where water table position had been manipulated (including both drying and wetting plots and a control) for the previous 4 years. This study allowed us to explore how much ecosystem memory of the antecedent water table manipulations governed algal responses to natural flooding. Despite no differences in water table position between the manipulated plots at the time of sampling, algal primary productivity was consistently higher in the lowered water table plot compared to the control or raised water table plots. In all plots, algal productivity peaked immediately following seasonal maxima in nutrient concentrations. We found a positive relationship between algal productivity and water-column DOC concentrations (r (2) = 0.85, P < 0.001). Using these data, we estimate that algae released approximately 19% of fixed carbon into the water column. Algal exudates were extremely labile in biodegradability assays, decreasing by more than 55% within the first 24 h of incubation. We suggest that algae can be an important component of the photosynthetic community in boreal peatlands and may become increasingly important for energy flow in a more variable climate with more intense droughts and flooding.
STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA
NASA Technical Reports Server (NTRS)
McGee, T. J.; Twigg, L.; Sumnicht, G.; Whiteman, D.; Leblanc, T.; Voemel, H.; Gutman, S.
2010-01-01
During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed.
Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia
2017-06-01
Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.
NASA Astrophysics Data System (ADS)
Bouaamlat, I.; Larabi, A.; Faouzi, M.
2013-12-01
The geographical location of Tafilalet oasis system (TOS) in the south of the valley of Ziz (Morocco) offers him a particular advantage on the plane of water potential. The surface water which comes from humid regions of the High Atlas and intercepted by a dam then converged through the watercourse of Ziz towards the plain of the TOS, have created the conditions for the formation of a water table relatively rich with regard to the local climatic conditions (arid climate with recurrent drought). Because of this situation, the region has one of the largest palms of North Africa. Thus there is an agricultural activity that is practiced in a 21 irrigation areas whose size rarely exceeds 2,000 hectare. Given the role of the water table in the economic development of the region, a hydrogeological study was conducted to understand the impact of artificial recharge and recurrent droughts on the development of the groundwater reserves of TOS. In this study, a three-dimensional model of groundwater flow was developed for the Tafilalet oasis system aquifer, to assist the decision makers as a "management tool" in order to assess alternative schemes for development and exploitation of groundwater resources based on the variation of artificial recharge and drought, using for the first time the Modflow code. This study takes into account the most possible real hydrogeological conditions and using the geographical information system (GIS) for the organisation and treatment of data and applying a multidisciplinary approach combining geostatistical and hydrogeological modeling. The results from this numerical investigation of the TOS aquifer shows that the commissioning of the dam to control the flows of extreme flood and good management of water releases, has avoided the losses of irrigation water and consequently the non-overexploitation of the groundwater. So that with one or two water releases per year from the dam of flow rate more than 14 million m3/year it is possible to reconstruct the volume of water abstracted by wells. The idea of lowering water table by pumping wells is not exactly true, as well the development of groundwater abstraction has not prevented the wound of water table in these last years, the pumping wells accompanied more than it triggers the lowering of water table and it is mainly the succession of dry periods causing the decreases of the piezometric level. This situation confirms the important role that groundwater plays as a 'buffer' during the drought periods.
NASA Astrophysics Data System (ADS)
Cardarelli, E.; Bargar, J.; Dam, W. L.; Francis, C.
2016-12-01
The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.
NASA Astrophysics Data System (ADS)
Cochepin, B.; Munier, I.; MADE, B.
2017-12-01
The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.
NASA Astrophysics Data System (ADS)
Lauvernet, Claire; Muñoz-Carpena, Rafael
2018-01-01
Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in the modeled system response, reducing the typical predominance of saturated hydraulic conductivity on infiltration under deep water table conditions. This study demonstrates that when present, the WT should be considered as a key hydrologic factor in buffer design and evaluation as a water quality mitigation practice.
Leeth, David C.
2002-01-01
In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two samples from Site 16. Hypothesis testing, using the Wilcoxon rank-sum test (also known as the Mann-Whitney test), indicates no statistical difference between ground-water constituent concentrations from Sites 5 and 16, and background concentrations. Hypothesis testing, however, indicates the concentration of barium in background ground-water samples is greater than in ground-water samples collected at Site 16.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, D.M.
1997-01-01
The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that weremore » not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.« less
Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.
2005-01-01
Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.
Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-12-01
Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.
Mobility Analyses of Standard- and High-Mobility Tactical Support Vehicles (HIMO Study)
1976-02-01
l, APPENDIX G: PARTICIPANTS IN SCENARIO EXERCISES ... ....... Gl I ?S LIST OF TABLES Table Page I Summary of Vehicle Caracteristics and Some...15 1 :1010 2 :1111 Organid silts and clays ( plastic ) >7-30 0 11212 1 1 1313Peat (nou plastic ) _._>_3_0 0 .1414 Li Groups with Different Materiai in 0...diameter LL = Liquid limit PI - Plasticity index Drainage potential classified by occurrence of water table as follows: Class 0 Water table occurs at
Dileanis, Peter D.; Groeneveld, D.P.
1988-01-01
A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)
Human Health Benchmarks for Pesticides
Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.
Saline-water intrusion related to well construction in Lee County, Florida
Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.
1977-01-01
Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride concentration in water from the water table aquifer ranged from 200 to 590 mg/L as a result of intrusion. In areas adjacent to tidal-water bodies, the water table aquifer contains water that is very saline, Where the wells in such areas have been constructed with metal casings, the metal corrodes when exposed to the saline water, and many ultimately develop holes. This permits saline water to leak into the well where the water level in the well is lower than the water table. The intrusion of saline water from the water-table aquifer into the upper part of the Hawthorn Formation is a major problem in parts of Cape Coral. Withdrawal of water from the upper part of the Hawthorn Formation has caused water levels to decline below the lowest annual position of the water table, so that downward leakage is perennial. In some coastal areas, wells that tap the upper part of the Hawthorn Formation contain water whose chloride concentration is as much as 9,500 mg/L. Upward leakage of saline water from the deep artesian aquifers and downward leakage of saline water from the water-table aquifer can be prevented by proper well construction.
A Review of Centrifugal Testing of Gasoline Contamination and Remediation
Meegoda, Jay N.; Hu, Liming
2011-01-01
Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced. PMID:21909320
A review of centrifugal testing of gasoline contamination and remediation.
Meegoda, Jay N; Hu, Liming
2011-08-01
Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.
Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.
2013-01-01
To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.
NASA Astrophysics Data System (ADS)
Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida
2014-05-01
In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.
An analytical solution for predicting the transient seepage from a subsurface drainage system
NASA Astrophysics Data System (ADS)
Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling
2016-05-01
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.
Use of soil moisture probes to estimate ground water recharge at an oil spill site
Delin, G.N.; Herkelrath, W.N.
2005-01-01
Soil moisture data collected using an automated data logging system were used to estimate ground water recharge at a crude oil spill research site near Bemidji, Minnesota. Three different soil moisture probes were tested in the laboratory as well as the field conditions of limited power supply and extreme weather typical of northern Minnesota: a self-contained reflectometer probe, and two time domain reflectometry (TDR) probes, 30 and 50 cm long. Recharge was estimated using an unsaturated zone water balance method. Recharge estimates for 1999 using the laboratory calibrations were 13 to 30 percent greater than estimates based on the factory calibrations. Recharge indicated by the self-contained probes was 170 percent to 210 percent greater than the estimates for the TDR probes regardless of calibration method. Results indicate that the anomalously large recharge estimates for the self-contained probes are not the result of inaccurate measurements of volumetric moisture content, but result from the presence of crude oil, or bore-hole leakage. Of the probes tested, the 50 cm long TDR probe yielded recharge estimates that compared most favorably to estimates based on a method utilizing water table fluctuations. Recharge rates for this probe represented 24 to 27 percent of 1999 precipitation. Recharge based on the 30 cm long horizontal TDR probes was 29 to 37 percent of 1999 precipitation. By comparison, recharge based on the water table fluctuation method represented about 29 percent of precipitation. (JAWRA) (Copyright ?? 2005).
Hydrologic relations between lakes and aquifer in a recharge area near Orlando, Florida
Lichtler, William F.; Hughes, G.H.; Pfischner, F.L.
1976-01-01
The three lakes investigated in Orange County, Florida, gain water from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydraulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake and ground-water level is the same on all sides of the lake--with regard to each aquifer--and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Hector, B.; Cohard, J. M.; Séguis, L.
2015-12-01
In West Africa, the drought initiated in the 70's-80's together with intense land-use change due to increasing food demand produced very contrasted responses on water budgets of the critical zone (CZ) depending on the lithological and pedological contexts. In Sahel, streamflow increased, mostly due to increasing hortonian runoff from soil crusting, and so did groundwater storage. On the contrary, in the more humid southern Sudanian area, streamflow decreased and no clear signal has been observed concerning water storage in this hard-rock basement area. There, Bas-fonds are fundamental landscape features. They are seasonally water-logged valley bottoms from which first order streams originate, mostly composed of baseflow. They are a key feature for understanding streamflow generation processes. They also carry an important agronomic potential due to their moisture and nutrient availability. The role of Bas-fond in streamflow generation processes is investigated using a physically-based coupled model of the CZ, ParFlow-CLM at catchment scale (10km²). The model is evaluated against classical hydrological measurements (water table, soil moisture, streamflow, fluxes), acquired in the AMMA-CATCH observing system for the West African monsoon, but also hybrid gravity data which measure integrated water storage changes. The bas-fond system is shown to be composed of two components with different time scales. The slow component is characterized by the seasonal and interannual amplitude of the permanent water table, which is disconnected from streams, fed by direct recharge and lowered by evapotranspiration, mostly from riparian areas. The fast component is characterized by thresholds in storage and perched and permanent water tables surrounding the bas-fond during the wet season, which are linked with baseflow generation. This is a first step toward integrating these features into larger scale modeling of the critical zone for evaluating the effect of precipitation intensification and land use changes scenarios in the area.
NASA Astrophysics Data System (ADS)
Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick
2013-03-01
Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are suitable for a screening-level analysis.
Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.
2016-05-25
In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea-level rises, partially fixing the local water table altitude.The region has a generally thick vadose zone with a mean of about 38 feet; areas with depths to water of 5 feet or less, as estimated from light detection and ranging (lidar) data from 2011 and simulated water table altitudes, currently [2011] occur over about 24.9 square miles, or about 8.4 percent of the total land area of the Sagamore and Monomoy flow lenses, generally in low-lying coastal areas and inland near ponds and streams. Excluding potentially submerged areas, an additional 4.5, 9.8, and 15.9 square miles would have shallow depths to water (5 feet or less) for projected sea-level rises of 2, 4, and 6 feet above levels in 2011. The additional areas with shallow depths to water generally occur in the same areas as the areas with current [2011] depths to water of 5 feet or less: low-lying coastal areas and near inland surface water features. Additional areas with shallow depths to water for the largest sea-level rise prediction (6 feet) account for about 5.7 percent of the total land area, excluding areas likely to be inundated by seawater. The numerous surface water drainages will dampen the response of the water table to sea-level rise. This dampening, combined with the region’s thick vadose zone, likely will mitigate the potential for groundwater inundation in most areas. The potential does exist for groundwater inundation in some areas, but the effects of sea-level rise on depths to water and infrastructure likely will not be substantial on a regional level.
NASA Astrophysics Data System (ADS)
Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.
2016-12-01
Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the same redox activity. We report these results in the context of previous observations of higher methane fluxes from the raised water table plot. Taken together, these findings provide the mechanistic details needed to understand residual error in modeling efforts of anaerobic carbon evasion (methane and carbon dioxide) in boreal wetlands.
R-Area Reactor 1993 annual groundwater monitoring report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells inmore » the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50{mu}g/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells.« less
NASA Astrophysics Data System (ADS)
Bowles, C. J.; Lawrence, R. L.; Noll, C.; Hancock, G. S.
2005-12-01
Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that stream incision has lowered floodplain water tables and decreased the overbank flow frequency. The monitored stream is a tributary to the James River draining 1.3 km2 of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one meter high knickpoint at a rate of ~1.5 m/yr, primarily during high flow events. We installed 63 wells in six stream-perpendicular transects as well as a cluster of wells around the knickpoint to assess water table elevations beneath the floodplain adjacent to the incising stream. Two transects are located 30 and 50 m upstream of the knickpoint in the unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream in the incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table changes. Erosion pins were installed and channel cross-sections surveyed to determine streambed stability. Significant differences are observed in bank morphology and groundwater flow above vs. below the knickpoint. Above the knickpoint, the banks are stable, ~3 m wide, and ~0.3 m deep, and widen and deepen slightly toward the knickpoint. The water table is relatively flat and is 0.2-0.4 m below the floodplain surface, and groundwater contours suggest flow is parallel to the stream direction. The water table responds immediately to precipitation events, and rises to the floodplain surface in significant rainfall events. Immediately downstream of the knickpoint, channel width increases by about a meter, and stream depth increases to ~1.5 meters. The water table immediately below the knickpoint possesses a steep gradient, and is up to one meter below the floodplain surface. Groundwater flow is redirected toward the stream. Moving downstream banks continue to widen, and the channel is up to 8 m wide and ~1.3 m deep ~100 m below the current knickpoint position. In the most downstream transects, the water table slopes gently toward the stream and remains ~1 m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs frequently, while below the knickpoint the majority of storm flow is contained within the incised channel and occupation of the floodplain is rare. The impact of incision to the riparian water table is dramatic, with a lowered water table and redirection of groundwater flow toward the stream. The incision is driven by suburbanization upstream of this riparian corridor, and has likely reduced the ability of this protected riparian system to improve the water quality of the suburban runoff that passes through it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Truex, Michael J.; Vermeul, Vincent R.
2014-08-19
The use of shear thinning fluids (STFs) containing xanthan is a potential enhancement for emplacing a solute amendment near the water table and within the capillary fringe. Most research to date related to STF behavior has involved saturated and confined conditions. A series of flow cell experiments were conducted to investigate STF emplacement in variable saturated homogeneous and layered heterogeneous systems. Besides flow visualization using dyes, amendment concentrations and pressure data were obtained at several locations. The experiments showed that injection of STFs considerably improved the subsurface distribution near the water table by mitigating preferential flow through higher permeability zonesmore » compared to no-polymer injections. The phosphate amendment migrated with the xanthan SFT without retardation. Despite the high viscosity of the STF, no excessive mounding or preferential flow were observed in the unsaturated zone. The STOMP simulator was able to predict the experimentally observed fluid displacement and amendment concentrations reasonably well. Cross flow between layers could be interpreted as the main mechanism to transport STFs into lower permeability layers based on the observed pressure gradient and concentration data in layers of differing hydraulic conductivity.« less
3. DETAIL OF STONEWORK ON ARCH, WATER TABLE AND DENTILS ...
3. DETAIL OF STONEWORK ON ARCH, WATER TABLE AND DENTILS ON EAST ELEVATION LOOKING NORTHWEST. - Original Airport Entrance Overpass, Spanning original Airport Entrance Road at National Airport, Arlington, Arlington County, VA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolidis, N.R.
1988-01-01
In order to plan for the restoration of native wetland plant communities at a 105 ha mined peatbog in southeastern Wisconsin, studies of the hydrogeology and of the ecology of an invading exotic shrub species, fen buckthorn (Rhamnus frangula) were undertaken. A network of shallow wells, piezometers, and surface water gages were monitored monthly between September 1985 and September 1987 to delineate lateral and vertical directions of groundwater flow, fluctuations and depths of water table, and groundwater flow rates. Results indicate that groundwater recharge occurred in the active mining area and groundwater discharge occurred in most of the other areasmore » of the site. Summer depth to water table was more than 50cm in some areas suggesting that water levels should be raised to crease favorable sedge meadow habitat. In order to test the proposal of installing water control berms in the drainage ditches to raise water levels at the site, a groundwater flow model was constructed for low flow conditions which typically occur in late summer. The results of the steady state simulations indicated that water levels will be raised an average of approximately 12 cm. This values is at least 40 cm less than the proposed increases in the mined areas. Although the increase in water table elevation would enhance soil moisture conditions, other alternatives such as landscaping and natural modifications may also raise water levels and therefore need to be investigated. The rates of aboveground growth of fen buckthorn stems were estimated for the 1986 and 1987 growing season using regression equations based on measurements of biomass and stem diameter.« less
Wetland tree transpiration modified by river-floodplain connectivity
Allen, Scott T.; Krauss, Ken W.; Cochran, J. Wesley; King, Sammy L.; Keim, Richard F.
2016-01-01
Hydrologic connectivity provisions water and nutrient subsidies to floodplain wetlands and may be particularly important in floodplains with seasonal water deficits through its effects on soil moisture. In this study, we measured sapflow in 26 trees of two dominant floodplain forest species (Celtis laevigata and Quercus lyrata) at two hydrologically distinct sites in the lower White River floodplain in Arkansas, USA. Our objective was to investigate how connectivity-driven water table variations affected water use, an indicator of tree function. Meteorological variables (photosynthetically active radiation and vapor pressure deficit) were the dominant controls over water use at both sites; however, water table variations explained some site differences. At the wetter site, highest sapflow rates were during a late-season overbank flooding event, and no flood stress was apparent. At the drier site, sapflow decreased as the water table receded. The late-season flood pulse that resulted in flooding at the wetter site did not affect the water table at the drier site; accordingly, higher water use was not observed at the drier site. The species generally associated with wetter conditions (Q. lyrata) was more positively responsive to the flood pulse. Flood water subsidy lengthened the effective growing season, demonstrating ecological implications of hydrologic connectivity for alleviating water deficits that otherwise reduce function in this humid floodplain wetland.
NASA Astrophysics Data System (ADS)
Jahangeer, F.; Gupta, P. K.; Yadav, B. K.
2017-12-01
Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The findings of the study help to enhance the understanding of the sustainable soil-water resources management and agricultural practices.
NASA Astrophysics Data System (ADS)
Zhu, Y.; Ren, L.; Lü, H.
2017-12-01
On the Huaibei Plain of Anhui Province, China, winter wheat (WW) is the most prominent crop. The study area belongs to transitional climate, with shallow water table. The original climate change is complex, in addition, global warming make the climate change more complex. The winter wheat growth period is from October to June, just during the rainless season, the WW growth always depends on part of irrigation water. Under such complex climate change, the rainfall varies during the growing seasons, and water table elevations also vary. Thus, water tables supply variable moisture change between soil water and groundwater, which impact the irrigation and discharge scheme for plant growth and yield. In Huaibei plain, the environmental pollution is very serious because of agricultural use of chemical fertilizer, pesticide, herbicide and etc. In order to protect river water and groundwater from pollution, the irrigation and discharge scheme should be estimated accurately. Therefore, determining the irrigation and discharge scheme for winter wheat under climate change is important for the plant growth management decision-making. Based on field observations and local weather data of 2004-2005 and 2005-2006, the numerical model HYDRUS-1D was validated and calibrated by comparing simulated and measured root-zone soil water contents. The validated model was used to estimate the irrigation and discharge scheme in 2010-2090 under the scenarios described by HadCM3 (1970 to 2000 climate states are taken as baselines) with winter wheat growth in an optimum state indicated by growth height and LAI.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.
1978-01-01
The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.
NASA Astrophysics Data System (ADS)
Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.
2011-12-01
The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.
Konkayan, Mongkol; Limchoowong, Nunticha; Sricharoen, Phitchan; Chanthai, Saksit
2016-01-01
A simple, rapid, and sensitive malachite green-based spectrophotometric method for the selective trace determination of an iodate has been developed and presented for the first time. The reaction mixture was specifically involved in the liberation of iodine in the presence of an excess of iodide in an acidic condition following an instantaneous reaction between the liberated iodine and malachite green dye. The optimum condition was obtained with a buffer solution pH of 5.2 in the presence of 40 mg L -1 potassium iodide and 1.5 × 10 -5 M malachite green for a 5-min incubation time. The iodate contents in some table-salt samples were in the range of 26 to 45 mg kg -1 , while those of drinking water, tap water, canal water, and seawater samples were not detectable (< 96 ng mL -1 of limits of detection, LOQ) with their satisfied method of recoveries of between 93 and 108%. The results agreed with those obtained using ICP-OES for comparison.
Selection criteria for wastewater treatment technologies to protect drinking water.
von Sperling, M
2000-01-01
The protection of water bodies used as sources for drinking water is intimately linked to the adoption of adequate technologies for the treatment of the wastewater generated in the catchment area. The paper presents a general overview of the main technologies used for the treatment of domestic sewage, with a special emphasis on developing countries, and focussing on the main parameters of interest, such as BOD, coliforms and nutrients. A series of tables, figures and charts that can be used for the preliminary selection of treatment technologies is presented. The systems analysed are: stabilisation ponds, activated sludge, trickling filters, anaerobic systems and land disposal. Within each system, the main process variants are covered. Two summary tables are presented, one for quantitative analysis, including easily usable information based on per capita values (US$/cap, Watts/cap, m2 area/cap, m3 sludge/cap), and another for a qualitative comparison among the technologies, based on a one-to-five-star scoring system. The recent trend in tropical countries in the use of UASB (Upflow Anaerobic Sludge Blanket) reactors is also discussed.
Effects of Climate on Co-evolution of Weathering Profiles and Hillscapes
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Rajaram, H.; Anderson, S. P.
2017-12-01
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. It has recently been proposed that differences in the depths and patterns of weathering between landscapes in Colorado's Front Range and South Carolina's piedmont can be attributed to the state of stress in the rock imposed by the magnitude and orientation the regional stresses with respect to the ridgelines (St. Claire et al., 2016). We argue for the importance of the climate, and in particular, in temperate regions, the amount of recharge. We employ numerical models of hillslope evolution between bounding erosional channels, in which the degree of rock weathering governs the rate of transformation of rock to soil. As the water table drapes between the stream channels, fresh rock is brought into the weathering zone at a rate governed by the rate of incision of the channels. We track the chemical weathering of rock, represented by alteration of feldspar to clays, which in turn requires calculation of the concentration of reactive species in the water along hydrologic flow paths. We present results from analytic solutions to the flow field in which travel times can be efficiently assessed. Below the water table, flow paths are hyperbolic, taking on considerable lateral components as they veer toward the bounding channels that serve as drains to the hillslope. We find that if water is far from equilibrium with respect to weatherable minerals at the water table, as occurs in wet, slowly-eroding landscapes, deep weathering can occur well below the water table to levels approximating the base of the bounding channels. In dry climates, on the other hand, the weathering zone is limited to a shallow surface - parallel layer. These models capture the essence of the observed differences in depth to fresh rock in both wet and dry climates without appeal to the state of stress in the rock.
A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog
NASA Astrophysics Data System (ADS)
Worrall, F.; Dixon, S.; Evans, M.
2014-12-01
This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.
NASA Astrophysics Data System (ADS)
Haynes, C. Vance
1991-05-01
At the Murray Springs Clovis site in southeastern Arizona, stratigraphic and geomorphic evidence indicates that an abnormally low water table 10,900 yr B.P. was followed soon thereafter by a water-table rise accompanied by the deposition of an algal mat (the black mat) that buried mammoth tracks, Clovis artifacts, and a well. This water-table fluctuation correlates with pluvial lake fluctuations in the Great Basin during and immediately following Clovis occupation of that region. Many elements of Pleistocene megafauna in North America became extinct during the dry period. Oxygen isotope records show a marked decrease in δ18O correlated with the Younger Dryas cold-dry event of northern Europe which ended 10,750 yr B.P., essentially the same time as the water table began to rise in southeastern Arizona. Clovis hunters may have found large game animals easier prey when concentrated at water holes and under stress. If so, both climate and human predation contributed to Pleistocene extinction in America.
Hurwitz, S.; Kipp, K.L.; Ingebritsen, S.E.; Reid, M.E.
2003-01-01
The position of the water table within a volcanic edifice has significant implications for volcano hazards, geothermal energy, and epithermal mineralization. We have modified the HYDROTHERM numerical simulator to allow for a free-surface (water table) upper boundary condition and a wide range of recharge rates, heat input rates, and thermodynamic conditions representative of continental volcano-hydrothermal systems. An extensive set of simulations was performed on a hypothetical stratovolcano system with unconfined groundwater flow. Simulation results suggest that the permeability structure of the volcanic edifice and underlying material is the dominant control on water table elevation and the distribution of pressures, temperatures, and fluid phases at depth. When permeabilities are isotropic, water table elevation decreases with increasing heat flux and increases with increasing recharge, but when permeabilities are anisotropic, these effects can be much less pronounced. Several conditions facilitate the ascent of a hydrothermal plume into a volcanic edifice: a sufficient source of heat and magmatic volatiles at depth, strong buoyancy forces, and a relatively weak topography-driven flow system. Further, the plume must be connected to a deep heat source through a pathway with a time-averaged effective permeability ???1 ?? 10-16 m2, which may be maintained by frequent seismicity. Topography-driven flow may be retarded by low permeability in the edifice and/or the lack of precipitation recharge; in the latter case, the water table may be relatively deep. Simulation results were compared with observations from the Quaternary stratovolcanoes along the Cascade Range of the western United States to infer hydrothermal processes within the edifices. Extensive ice caps on many Cascade Range stratovolcanoes may restrict recharge on the summits and uppermost flanks. Both the simulation results and limited observational data allow for the possibility that the water table beneath the stratovolcanoes is relatively deep.
Water Table and Soil Gas Emission Responses to Disturbance in Northern Forested Wetlands
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Van Grinsven, M. J.; Bolton, N. W.; Shannon, J.; Davis, J.; Wagenbrenner, J. W.; Sebestyen, S. D.; Kolka, R. K.
2014-12-01
Exotic pest infestations are increasingly common throughout North American forests. In forested wetlands, disturbance events may alter nutrient, carbon, and hydrologic pathways. Recently, ash (Fraxinus spp.) forests in North Central and Eastern North America have been exposed to the exotic emerald ash borer (EAB) (Burprestidae: Agrilus planipennis), and the rapid and extensive expansion of EAB populations since 2001 may soon eliminate most existing ash stands. Limited research has focused on post-establishment ecosystem impacts of an EAB disturbance, and to our knowledge, there are no studies that have evaluated the coupled response of black ash (Fraxinus nigra) wetland water tables, soil temperatures, and soil gas emissions to an EAB infestation. We present preliminary results that detail those responses to a simulated EAB disturbance. Water table position, soil temperature, and soil gas emissions (CO2 and CH4) were monitored in nine black ash wetlands in the Upper Peninsula of Michigan for three years, including one year of pre-treatment and two years of post-treatment data-collection. An EAB disturbance was simulated by girdling (Girdle) or felling (Clearcut) all black ash trees with diameters of 2.5 cm or greater within the wetland, and each treatment was applied to three sites. The results indicate that wetland water tables were insensitive to treatment effects, soil temperatures were significantly higher in the Clearcut treatment, soil gas flux was significantly higher in the Clearcut treatment, and the rate of soil gas flux was strongly regulated by water table position and temperature. No significant treatment effects were detected in the Girdle treatment during the first post-treatment year. Because water tables were insensitive to treatment, we concluded that water tables did not independently generate a soil gas flux response despite their strong regulatory influence. Furthermore, we concluded that the response of soil temperature to disturbance was largely the reason why elevated soil gas flux rates were observed in the Clearcut treatment.
NASA Astrophysics Data System (ADS)
Singer, M. B.; Sargeant, C. I.; Vallet-Coulomb, C.; Evans, C.; Bates, C. R.
2014-12-01
Water availability to riparian trees in lowlands is controlled through precipitation and its infiltration into floodplain soils, and through river discharge additions to the hyporheic water table. The relative contributions of both water sources to the root zone within river floodplains vary through time, depending on climatic fluctuations. There is currently limited understanding of how climatic fluctuations are expressed at local scales, especially in 'critical zone' hydrology, which is fundamental to the health and sustainability of riparian forest ecosystems. This knowledge is particularly important in water-stressed Mediterranean climate systems, considering climatic trends and projections toward hotter and drier growing seasons, which have the potential to dramatically reduce water availability to riparian forests. Our aim is to identify and quantify the relative contributions of hyporheic (discharge) water v. infiltrated precipitation to water uptake by riparian Mediterranean trees for several distinct hydrologic years, selected to isolate contrasts in water availability from these sources. Our approach includes isotopic analyses of water and tree-ring cellulose, mechanistic modeling of water uptake and wood production, and physically based modeling of subsurface hydrology. We utilize an extensive database of oxygen isotope (δ18O) measurements in surface water and precipitation alongside recent measurements of δ18O in groundwater and soil water and in tree-ring cellulose. We use a mechanistic model to back-calculate source water δ18O based on δ18O in cellulose and climate data. Finally, we test our results via 1-D hydrologic modeling of precipitation infiltration and water table rise and fall. These steps enable us to interpret hydrologic cycle variability within the 'critical zone' and their potential impact on riparian trees.
Methods to predict seasonal high water table (SHGWT) : final report.
DOT National Transportation Integrated Search
2017-04-03
The research study was sectioned into 5 separate tasks. Task 1 included defining the seasonal high ground water table (SHGWT); describing : methods and techniques used to determine SHGWTs; identify problems associated with estimating SHGWT conditions...
Flow in a discrete slotted nozzle with massive injection. [water table tests
NASA Technical Reports Server (NTRS)
Perkins, H. C.
1974-01-01
An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.
Modeling Subsurface Hydrology in Floodplains
NASA Astrophysics Data System (ADS)
Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.
2018-03-01
Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.
A Procedure for Evaluating Subpotable Water Reuse Potential at Army Fixed Facilities.
1981-11-01
characteristic of phosphate waste waters from fume scrubbers. + Flue gas desulfurization sludge liquors. 75 Table B5 Base Housing Water Supply Quality (Also...ENGINEERING RESEARCH LABORATORY 4A762720A896-B-008 P.O. Box 4005, Champaign, IL 61820 1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE November 1981 13...NUMBER OF PAGES 102 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of til, report) UNCLASSIFIED 15
Laboratory Characterization of Talley Brick
2011-08-01
specimen’s wet, bulk, or “as-tested” density. Results from these determinations are provided in Table 1. Measurements of posttest water content1...ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density of 2.89 Mg/m3, values of dry... Posttest Axial P Radial P Axial S Radial S Wet Water Dry Degree of ’Wave ’Wave ’Wave \\Vave Test Density Conte-nt, Density, Porosity, Saturation
Relationships between water table and model simulated ET
Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang
2013-01-01
This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...
Soil property changes during loblolly pine production
R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir; Christine D. Blanton
2006-01-01
Three watersheds, each approximately 25 ha, were instrumented to measure and record drainage rate, water table depth, rainfall and meteorological data. Data continuously collected on the site since 1988 include response of hydrologic and water quality variables for nearly all growth stages of a Loblolly pine plantation. Data for drainage outflow rates and water table...
Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer
Moench, Allen F.
1995-01-01
A Laplace transform solution is presented for flow to a well in a homogeneous, water-table aquifer with noninstanta-neous drainage of water from the zone above the water table. The Boulton convolution integral is combined with Darcy's law and used as an upper boundary condition to replace the condition used by Neuman. Boulton's integral derives from the assumption that water drained from the unsaturated zone is released gradually in a manner that varies exponentially with time in response to a unit decline in hydraulic head, whereas the condition used by Newman assumes that the water is released instantaneously. The result is a solution that reduces to the solution obtained by Neuman as the rate of release of water from the zone above the water table increases. A dimensionless fitting parameter, γ, is introduced that incorporates vertical hydraulic conductivity, saturated thickness, specific yield, and an empirical constant α1, similar to Boulton's α. Results show that theoretical drawdown in water-table piezometers is amplified by noninstantaneous drainage from the unsaturated zone to a greater extent than drawdown in piezometers located at depth in the saturated zone. This difference provides a basis for evaluating γ by type-curve matching in addition to the other dimensionless parameters. Analysis of drawdown in selected piezometers from the published results of two aquifer tests conducted in relatively homogeneous glacial outwash deposits but with significantly different hydraulic conductivities reveals improved comparison between the theoretical type curves and the hydraulic head measured in water-table piezometers.
NASA Astrophysics Data System (ADS)
Dinsmore, P.; Prepas, E.; Putz, G.; Smith, D.
2008-12-01
The Forest Watershed and Riparian Disturbance (FORWARD) Project has collected data on weather, soils, vegetation, streamflow and stream water quality under relatively undisturbed conditions, as well as after experimental forest harvest, in partnership with industrial forest operations within the Boreal Plain and Boreal Shield ecozones of Canada. Research-based contributions from FORWARD were integrated into our Boreal Plain industry partner's 2007-2016 Detailed Forest Management Plan. These contributions consisted of three components: 1) A GIS watershed and stream layer that included a hydrological network, a Digital Elevation Model, and Strahler classified streams and watersheds for 1st- and 3rd-order watersheds; 2) a combined soil and wetland GIS layer that included maps and associated datasets for relatively coarse mineral soils (which drain quickly) and wetlands (which retain water), which were the key features that needed to be identified for the FORWARD modelling effort; and 3) a lookup table was developed that permits planners to determine runoff coefficients (the variable selected for hydrological modelling) for 1st-order watersheds, based upon slope, vegetation and soil attributes in forest polygons. The lookup table was populated with output from the deterministic Soil and Water Assessment Tool (SWAT), adapted for boreal forest vegetation with a version of the plant growth model, ALMANAC. The runoff coefficient lookup table facilitated integration of predictions of hydrologic impacts of forest harvest into planning. This pilot-scale effort will ultimately be extended to the Boreal Shield study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennewein, Stephen Peter
Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed ( Arundo donax), elephant grass ( Pennisetum Purpureum), energycane ( Saccharum spp.), and sugarcane ( Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the watermore » table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and energycane. Aerenchyma presence and volume increased under higher water tables with elephant grass having the greatest aerenchyma production. Because of the high yields and stalk populations in energycane and elephant grass for all crop stages seen in this study, these two genotypes show potential for bioenergy production in the EAA, but field trials are recommended to confirm this.« less
Garrido, Marco; Silva, Paola; Acevedo, Edmundo
2016-01-01
Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species.
Garrido, Marco; Silva, Paola; Acevedo, Edmundo
2016-01-01
Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the “Pampa del Tamarugal”, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species. PMID:27064665
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
NASA Astrophysics Data System (ADS)
Enku, Temesgen; Melesse, Assefa; Ayana, Essaya; Tilahun, Seifu; Abate, Mengiste; Steenhuis, Tammo
2017-04-01
Given the increasing demand for water resources and the need for better management of regional water resources, it is essential to quantify the groundwater use by phreatophytes in tropical monsoon climates. Phreatophytes, like eucalyptus plantations are reported to be a groundwater sink and it could significantly affect the regional groundwater resources. In our study, the consumptive groundwater use of a closed eucalyptus plantation was calculated based on the diurnal water table fluctuations observed in monitoring wells for two dry monsoon phases in the Fogera plain, northwest of Ethiopia. Automated recorders were installed to monitor the hourly groundwater table fluctuations. The groundwater table fluctuates from maximum at early in the morning to minimum in the evening daily and generally declined linearly during the dry phase averaging 3.1 cm/day during the two year period under the eucalyptus plantations. The hourly eucalypts transpiration rate over the daylight hours follows the daily solar irradiance curve for clear sky days. It is minimal during the night and reaches maximum of 1.65mm/hour at mid-day. The evapotranspiration from the groundwater by eucalyptus plantations during the dry phases was estimated at about 2300mm from October 1 to 31 May, in 2015 compared to about 900mm without eucalyptus trees. The average daily evapotranspiration was 9.6mm. This is almost twice of the reference evapotranspiration in the area and 2.5 times the actual rate under fallow agricultural fields. Thus, water resources planning and management in the region needs to consider the effect of eucalyptus plantations on the availability of groundwater resources in the highlands of Ethiopia. Key words: Eucalyptus, Evapotranspiration, Groundwater, Ethiopia, Lake Tana
Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.
2009-01-01
The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Erin L.; Johnson, Timothy C.; Greenwood, William J.
2013-03-29
The Hanford 300 Area is located adjacent to the Columbia River in south-central Washington State, USA, and was a former site for nuclear fuel processing operations. Waste disposal practices resulted in persistent unsaturated zone and groundwater contamination, the primary contaminant of concern being uranium. Uranium behavior at the site is intimately linked with river stage driven groundwater-river water exchange such that understanding the nature of river water intrusion into the 300 Area is critical for predicting uranium desorption and transport. In this paper we use time-lapse electrical resistivity tomography (ERT) to image the inland intrusion of river during high stagemore » conditions. We demonstrate a modified time-lapse inversion approach, whereby the transient water table elevation is explicitly modeled by removing regularization constraints across the water table boundary. This implementation was critical for producing meaningful imaging results. We inverted approximately 1200 data sets (400 per line over 3 lines) using high performance computing resources to produce a time-lapse sequence of changes in bulk conductivity caused by river water intrusion during the 2011 spring runoff cycle over approximately 125 days. The resulting time series for each mesh element was then analyzed using common time series analysis to reveal the timing and location of river water intrusion beneath each line. The results reveal non-uniform flows characterized by preferred flow zones where river water enters and exits quickly with stage increase and decrease, and low permeability zones with broader bulk conductivity ‘break through’ curves and longer river water residence times. The time-lapse ERT inversion approach removes the deleterious effects of changing water table elevation and enables remote and spatial continuous groundwater-river water exchange monitoring using surface based ERT arrays under conditions where groundwater and river water conductivity are in contrast.« less
Nutrient transport and transformation beneath an infiltration basin
Sumner, D.M.; Rolston, D.E.; Bradner, L.A.
1998-01-01
Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.
A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil.
Neto, Dagmar C; Chang, Hung K; van Genuchten, Martinus Th
2016-01-01
Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study. © 2015, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Pugh, C.; Reed, D. E.; Desai, A. R.; Sulman, B. N.
2016-12-01
Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a drought-induced declining water table at a shrub wetland in northern Wisconsin coincided with increased ecosystem respiration (ER) and gross ecosystem productivity (GEP) (Sulman et al. 2009). Since then, however, the average water table level at this site has begun to increase, thus allowing a unique opportunity to explore how wetland carbon storage is impacted by water table recovery. With the addition of three more years of eddy covariance observations post recovery and new methane flux observations, we found that water table level no longer had a significant correlation with GEP, ER, or methane flux. Air temperature, however, had a strong correlation with all three. Average methane flux stayed relatively constant under 14 °C, before increasing an order of magnitude from 3.7 nmol m-2 s-1 in April to 36 nmol m-2 s-1 in July. These results suggest that, over decadal timescales, temperature, rather than water level, is a stronger limiting factor for both aerobic and anaerobic respiration in shrub fen wetlands. Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a drought-induced declining water table at a shrub wetland in northern Wisconsin coincided with increased ecosystem respiration (ER) and gross ecosystem productivity (GEP) (Sulman et al. 2009). Since then, however, the average water table level at this site has begun to increase, thus allowing a unique opportunity to explore how wetland carbon storage is impacted by water table recovery. With the addition of three more years of eddy covariance observations post recovery and new methane flux observations, we found that water table level no longer had a significant correlation with GEP, ER, or methane flux. Air temperature, however, had a strong correlation with all three. Average methane flux stayed relatively constant under 14 °C, before increasing an order of magnitude from 3.7 nmol m-2 s-1 in April to 36 nmol m-2 s-1 in July. These results suggest that, over decadal timescales, temperature, rather than water level, is a stronger limiting factor for both aerobic and anaerobic respiration in shrub fen wetlands.
NASA Astrophysics Data System (ADS)
Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro
2018-02-01
Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.
Busciolano, Ronald J.
2002-01-01
The three main water-bearing units on Long Island, New York--the upper glacial aquifer (water table) and the underlying Magothy and Lloyd aquifers--are the sole source of water supply for more than 3 million people. Water-table and potentiometric-surface altitudes were contoured from water-level measurements made at 394 observation, public-supply, and industrial-supply wells during March-April 2000. In general, water-level altitudes in the upper glacial, Magothy, and Lloyd aquifers were lower throughout most parts of Long Island than those measured during March-April 1997. Changes in altitude during this period ranged from an increase of about 6 feet in the Magothy aquifer in southwestern Nassau County to a decrease of more than 8 feet in the upper glacial aquifer in eastern Suffolk County.
Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.
2014-01-01
Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.
NASA Astrophysics Data System (ADS)
Martinez-de la Torre, Alberto; Miguez-Macho, Gonzalo
2017-04-01
We investigate the memory introduced in soil moisture fields by groundwater long timescales of variation in the semi-arid regions of the Iberian Peninsula with the LEAFHYDRO soil-vegetation-hydrology model, which includes a dynamic water table fully coupled to soil moisture and river flow via 2-way fluxes. We select a 10-year period (1989-1998) with transitions from wet to dry to again wet long lasting conditions and we carry out simulations at 2.5 km spatial resolution forced by ERA-Interim and a high-resolution precipitation analysis over Spain and Portugal. The model produces a realistic water table that we validate with hundreds of water table depth observation time series (ranging from 4 to 10 years) over the Iberian Peninsula. Modeled river flow is also compared to observations. Over shallow water table regions, results highlight the groundwater buffering effect on soil moisture fields over dry spells and long-term droughts, as well as the slow recovery of pre-drought soil wetness once climatic conditions turn wetter. Groundwater sustains river flow during dry summer periods. The longer lasting wet conditions in the soil when groundwater is considered increase summer evapotranspiration, that is mostly water-limited. Our results suggest that groundwater interaction with soil moisture should be considered for climate seasonal forecasting and climate studies in general over water-limited regions where shallow water tables are significantly present and connected to land surface hydrology.
US EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS
The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...
Ground-water resources of the North Beach Peninsula, Pacific County, Washington
Tracy, James V.
1977-01-01
The anticipated water demand of 425 million gallons per year for the North Brach Peninsula, Pacific County, Wash., can be met by properly developing the ground-water supplies of the area 's water-table aquifer. Of the approximately 77 inches of annual precipitation on the peninsula, an estimated 23 inches is lost to evapotranspiration, and approximately 36 inches is discharged by the water-table aquifer into the ocean and bay. The remaining water either runs off the surface or is leaked to a deeper aquifer that ultimately discharges to the ocean. At least 12 inches of the water that discharges naturally through the aquifer is available for additional development. This quantity of water is approximately equivalent to 860,000 gallons per day. Wells spaced at least 1,000 feet apart along the major axis of the peninsula and pumped at average rates of no more than 80 gallons per minute could ensure that water-level declines do not exceed 6 feet near the wells and 1 foot at the shoreline, thereby preventing seawater intrusion. Lowering of the water table may be beneficial in reducing waterlogging problems, but care must be taken not to lower the levels near cranberry bogs, which require a shallow water table. Treatment of the otherwise good quality water for iron may be required, as about 75 percent of the well water sampled from the aquifer had iron concentrations in excess of limits recommended by the U.S. Environmental Protection Agency. (Woodard-USGS)
Young, H.W.; Parliman, D.J.; Jones, Michael L.
1992-01-01
The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.
Speiran, G.K.
1985-01-01
A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)
Investigation of remote sensing to detect near-surface groundwater on irrigated lands
NASA Technical Reports Server (NTRS)
Ryland, D. W.; Schmer, F. A.; Moore, D. G.
1975-01-01
The application of remote sensing techniques was studied for detecting areas with high water tables in irrigated agricultural lands. Aerial data were collected by the LANDSAT-1 satellite and aircraft over the Kansas/Bostwick Irrigation District in Republic and Jewell Counties, Kansas. LANDSAT-1 data for May 12 and August 10, 1973, and aircraft flights (midday and predawn) on August 10 and 11, 1973, and June 25 and 26, 1974, were obtained. Surface and water table contour maps and active observation well hydrographs were obtained from the Bureau of Reclamation for use in the analysis. Results of the study reveal that LANDSAT-1 data (May MSS band 6 and August MSS band 7) correlate significantly (0.01 level) with water table depth for 144 active observation wells located throughout the Kansas/Bostwick Irrigation District. However, a map of water table depths of less than 1.83 meters prepared from the LANDSAT-1 data did not compare favorably with a map of seeped lands of less than 1.22 m (4 feet) to the water table. Field evaluation of the map is necessary for a complete analysis. Analysis of three fields on a within or single-field basis for the 1973 LANDSAT-1 data also showed significant correlation results.
Mapping water table depth using geophysical and environmental variables.
Buchanan, S; Triantafilis, J
2009-01-01
Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.
Chi, Zeyong; Xie, Xianjun; Pi, Kunfu; Wang, Yanxin; Li, Junxia; Qian, Kun
2018-05-08
Given the long-term potential risk of arsenic (As)-contaminated agricultural soil to public health, the redistribution of iron (Fe) and immobilization of As within the unsaturation zone during irrigation and consequent water table fluctuations were studied via a column experiment and corresponding geochemical modeling. Experimental results show that As and Fe accumulated significantly at the top of the column during irrigation. A tremendous increase in As and Fe accumulation rates exists after water table recovery. It was deduced that Fe(II) and As(III) were oxidized directly by O 2 at the period of low water table. But the production of hydroxyl radical (OH) was promoted at the period of high water table due to the oxidation of adsorbed Fe(II). The generated OH further accelerate the oxidation of Fe(II) and As(III). Moreover, the combination of As and Fe is more stronger at the top of the column due to the transformation of combined states of As from surface complexation into surface precipitation with the growth of Fe(III) minerals. This study details the processes and mechanisms of As and Fe immobilization within the unsaturation zone during different irrigation periods and accordingly provides some insights to mitigate As accumulation in topsoil. Copyright © 2018 Elsevier B.V. All rights reserved.
1990-04-01
is its conjugate base. This equilibrium is analogous to the autoionisation of water : 2HO 4= HsO+ + OH- Compositions of N < 0.50 are said to be basic...0.66 10.1 water 0.8903 glycerol 942 TABLE II. Kinematic viscosities at 25°C for MEIC-AICII melts at various compositions. 7 Water and glycerol are...drybox with a circulating helium atmosphere maintained at loes than 15 ppm total oxygen and water content. Reagents 10 were ued as received. Gas
Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS
Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros
2015-01-01
Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830
Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.
Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros
2015-01-01
Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.
40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
NASA Astrophysics Data System (ADS)
Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.
2018-06-01
Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing climate.
Seismoelectric couplings in a poroelastic material containing two immiscible fluid phases
NASA Astrophysics Data System (ADS)
Jardani, A.; Revil, A.
2015-08-01
A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible fluid phases, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian fluids, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each fluid phase. These effective charge densities can be related directly to the permeability and saturation of each fluid phase. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.
John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross
2017-01-01
Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...
Potential groundwater contribution to Amazon evapotranspiration
NASA Astrophysics Data System (ADS)
Fan, Y.; Miguez-Macho, G.
2010-07-01
Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia). The water table can potentially sustain a capillary flux of >2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.
Artificial recharge through a thick, heterogeneous unsaturated zone
Izbicki, J.A.; Flint, A.L.; Stamos, C.L.
2008-01-01
Thick, heterogeneous unsaturated zones away from large streams in desert areas have not previously been considered suitable for artificial recharge from ponds. To test the potential for recharge in these settings, 1.3 ?? 10 6 m3 of water was infiltrated through a 0.36-ha pond along Oro Grande Wash near Victorville, California, between October 2002 and January 2006. The pond overlies a regional pumping depression 117 m below land surface and is located where thickness and permeability of unsaturated deposits allowed infiltration and saturated alluvial deposits were sufficiently permeable to allow recovery of water. Because large changes in water levels caused by nearby pumping would obscure arrival of water at the water table, downward movement of water was measured using sensors in the unsaturated zone. The downward rate of water movement was initially as high as 6 m/d and decreased with depth to 0.07 m/d; the initial time to reach the water table was 3 years. After the unsaturated zone was wetted, water reached the water table in 1 year. Soluble salts and nitrate moved readily with the infiltrated water, whereas arsenic and chromium were less mobile. Numerical simulations done using the computer program TOUGH2 duplicated the downward rate of water movement, accumulation of water on perched zones, and its arrival at the water table. Assuming 10 ?? 10 6 m3 of recharge annually for 20 years, a regional ground water flow model predicted water level rises of 30 m beneath the ponds, and rises exceeding 3 m in most wells serving the nearby urban area.
Stopping-power and mass energy-absorption coefficient ratios for Solid Water.
Ho, A K; Paliwal, B R
1986-01-01
The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration.
Hult, M.F.
1984-01-01
The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less.
NASA Astrophysics Data System (ADS)
Rezagui, D.; Bouhoun, M. Daddi; Boutoutaou, D.; Djaghoubi, A.
2016-07-01
Saharan soils are often faced with several problems of development, taking account the hydro-edaphic constraints, mainly of hydric types by water table, mechanical by gypso-calcareous crusts and saline by irrigation waters and upwelling of water table. Our work consists in doing a soil characterization of a palm grove in Ouargla in order to study the constraints hydro-halomorphes. The results show that irrigation water by two plies of Senonian and Mioplcène had a high salinity with a value of 2.83 and 5.10 dS.m-1 respectively. The conduct of irrigation is traditional random of submersion type. The palm grove has a poor drainage with a level of water table 156.67±15.71 cm and salinity of 31.37±34.04 dS.m-1. The drains are open type and their maintenance is not regular. This situation of management of irrigation-drainage promotes the upwelling of water table and the waterlogging in soils. The study of soil profiles shows the existence of mechanical obstruction of gypso-calcareous crusts which limit the entrenchment of the date palms and the leaching of salts. Soil salinity is excessive in profiles with a range of 8.98 ± 4.58 dS.m-1. This accumulation of salts is due to the dynamic ascending and descending of salts respectively under the effect of upwelling of water table and leaching by irrigation. The salinization, the upwelling of water table and the presence of gypso-calcareous crusts recorded in Ouargla testify to a degradation hydro-halomorphe and mechanic of soil which constitute the major constraints in the management of system irrigation-drainage and sustainable agricultural development of the palm groves of the basin of Ouargla. Some hydro-agricultural planning are necessary to apply in the oasis to improve the hydro-mechanical properties of soils in order to reduce their degradation.
Representing northern peatland microtopography and hydrology within the Community Land Model
Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; ...
2015-11-12
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less
Representing northern peatland microtopography and hydrology within the Community Land Model
Shi, X.; Thornton, P. E.; Ricciuto, D. M.; ...
2015-02-20
Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less
Cravotta,, Charles A.
1991-01-01
Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous solubility of O2 is not limiting, and oxidation of pyrite by O2 and Fe3+ accounts for most SO42- and Fe2+ observed in acidic ground water. However, in a system closed to O2, such as in the saturated zone, O2 solubility is limiting; hence, ferric oxidation of pyrite is a reasonable explanation for the observed elevated SO42- with increasing depth below the water table.
Growth and nutrient status of black spruce seedlings as affected by water table depth
Miroslaw M. Czapowskyj; Robert V. Rourke; Walter J. Grant; Walter J. Grant
1986-01-01
The objective of this study was to determine the effect of different soil water table levels on growth, biomass production, and nutrient accumulation in black spruce seedlings growing under greenhouse conditions over three growing seasons after transplanting.
Rodrigues, A; Nguyen, G; Li, Y; Roy Choudhury, K; Kirsch, D; Das, S; Yoshizumi, T
2012-06-01
To verify the accuracy of TG-61 based dosimetry with MOSFET technology using a tissue-equivalent mouse phantom. Accuracy of mouse dose between a TG-61 based look-up table was verified with MOSFET technology. The look-up table followed a TG-61 based commissioning and used a solid water block and radiochromic film. A tissue-equivalent mouse phantom (2 cm diameter, 8 cm length) was used for the MOSFET method. Detectors were placed in the phantom at the head and center of the body. MOSFETs were calibrated in air with an ion chamber and f-factor was applied to derive the dose to tissue. In CBCT mode, the phantom was positioned such that the system isocenter coincided with the center of the MOSFET with the active volume perpendicular to the beam. The absorbed dose was measured three times for seven different collimators, respectively. The exposure parameters were 225 kVp, 13 mA, and an exposure time of 20 s. For a 10 mm, 15 mm, and 20 mm circular collimator, the dose measured by the phantom was 4.3%, 2.7%, and 6% lower than TG-61 based measurements, respectively. For a 10 × 10 mm, 20 × 20 mm, and 40 × 40 mm collimator, the dose difference was 4.7%, 7.7%, and 2.9%, respectively. The MOSFET data was systematically lower than the commissioning data. The dose difference is due to the increased scatter radiation in the solid water block versus the dimension of the mouse phantom leading to an overestimation of the actual dose in the solid water block. The MOSFET method with the use of a tissue- equivalent mouse phantom provides less labor intensive geometry-specific dosimetry and accuracy with better dose tolerances of up to ± 2.7%. © 2012 American Association of Physicists in Medicine.
Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06
Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.
2011-01-01
The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components of the hydrologic cycle in the Pinelands. In the Pinelands, recharge replenishes the aquifer system and contributes to groundwater flow, most of which moves to wetlands and surface water where natural discharge occurs. Some groundwater flow is intercepted by supply wells. Recharge rates generally are highest during the non-growing season and are inversely related to evapotranspiration. Analysis of subsurface hydraulic gradients, water-table fluctuations, and streamflow variability indicates a strong linkage between groundwater and wetlands, lakes and streams. Gradient analysis indicates that most wetlands are in groundwater discharge areas, but some wetlands are in groundwater recharge areas. The depth to the water table ranges from zero at surface-water features up to about 10 meters in topographically high areas. Depth to water fluctuates seasonally, and the magnitude of these fluctuations generally increases with distance from surface water. Variations in the permeability of the soils and sediments of the aquifer system strongly affect patterns of water movement through the subsurface and the interaction of groundwater with wetlands, lakes and streams. Mean annual streamflow during 2004-06 ranged from 83 to 106 percent of the long-term mean annual discharge, indicating that the data-collection period can be considered representative of average conditions. Measurements of groundwater levels, stream stage, and stream discharge and locations of start-of-flow are illustrated in basin-wide maps of water-table altitude, depth to the water table, and stream base flow during the period. Water-level data collected along 15 hydrologic transects that span the range of environments from uplands through wetlands to surface water were used to determine hydraulic gradients, potential flow directions, and areas of recharge and discharge. These data provide information about the localized interactions of groundwater with wetlands and surface water. Wetlands were categorized with r
Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain
Yabusaki, Steven B.; Wilkins, Michael J.; Fang, Yilin; ...
2017-02-20
Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplainmore » aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Furthermore, depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.« less
NASA Astrophysics Data System (ADS)
Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir
2013-07-01
The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.
Mason, James L.; Atwood, John W.; Buettner, Priscilla S.
1985-01-01
This report contains well data collected from 1979 to 1983 in a part of the Great Basin in western Utah (fig. 1). The area is characterized by a series of generally north-trending mountain ranges separated by alluviumfilled basins that are partially filled with sedimentary deposits eroded from the adjacent mountains and lacustrine sediments deposited by Lake Bonneville. Most of the intermountain basins are elongated in the northward direction, but some are almost equidimensional.This report was prepared as part of the Great Basin Regional AquiferSystem Analysis (RASA) program. The report is intended to make well data from the MX-missile siting study readily available to water-resource managers and the general public. It includes well data obtained in areas for which little or no such data have been published previously. Well-drilling and well-completion data were compiled by Ertec, Inc. (formerly Fugro National, Inc.) under contract with the U. S. Air Force. Those data along with aquifer test data, geophysical logs, and drillers1 or geologists1 logs were obtained from Ertec, Inc. under an agreement with the U.S. Air Force. The authors thank the officials of both Ertec, Inc. and the U.S. Air Force for their helpful cooperation. The U.S. Geological Survey obtained accurate locations of the test wells (pi. 1) and accurate water-level measurements in those wells (table 1). Chemical analyses of water samples collected from several of the test wells drilled in the Sevier Desert have been published in a report by Enright and Holmes (1982, table 5).Test drilling for the MX-missile siting study consisted of two parts, the verification phase and the water-resources phase. The verification jhase was designed to obtain information necessary for the design and construction of the MX-basing system. Numerous small diameter wells were bored with depths ranging from 92 to 205 feet. Two-inch diameter JVC casing with the bottom 20 feet perforated was installed in each borehole. The water-resources phase was designed to determine ground-water availibility and to estimate the effects of ground-water withdrawals required for the construction of the MX-basing system. Six large-diameter production test wells were drilled along with associated small-diameter observation wells. Depths ranged from 310 to 1,399 feet. Lithologic logs for selected production test wells or associated observation wells are listed in table 2. Geophysical logs and aquifer test data are available in the files of the U. S. Geological Survey, as indicated in table 1.
Laboratory Characterization of Type N Mortar
2009-03-01
and test results are documented in Chapter 2. Comparative plots and anal- yses of the experimental results are presented in Chapter 3. A summary is...determinations are provided in Table 1. Measurements of posttest water content1 were conducted in accordance with procedures given in American Society for...Testing and Materials (ASTM) D 2216 (ASTM 2005d). Based on the appropriate values of posttest water content, wet density, and an assumed grain density
NASA Astrophysics Data System (ADS)
Lenhard, R. J.; Rayner, J. L.; Davis, G. B.
2017-10-01
A model is presented to account for elevation-dependent residual and entrapped LNAPL above and below, respectively, the water-saturated zone when predicting subsurface LNAPL specific volume (fluid volume per unit area) and transmissivity from current and historic fluid levels in wells. Physically-based free, residual, and entrapped LNAPL saturation distributions and LNAPL relative permeabilities are integrated over a vertical slice of the subsurface to yield the LNAPL specific volumes and transmissivity. The model accounts for effects of fluctuating water tables. Hypothetical predictions are given for different porous media (loamy sand and clay loam), fluid levels in wells, and historic water-table fluctuations. It is shown the elevation range from the LNAPL-water interface in a well to the upper elevation where the free LNAPL saturation approaches zero is the same for a given LNAPL thickness in a well regardless of porous media type. Further, the LNAPL transmissivity is largely dependent on current fluid levels in wells and not historic levels. Results from the model can aid developing successful LNAPL remediation strategies and improving the design and operation of remedial activities. Results of the model also can aid in accessing the LNAPL recovery technology endpoint, based on the predicted transmissivity.
INFLUENCE OF STRATIGRAPHY ON A DIVING MTBE PLUME AND ITS CHARACTERIZATION: A CASE STUDY
Conventional conceptual models applied at petroleum release sites are often based on assumptions of vertical contaminant migration through the vadose zone followed by horizontal, downgradient transport at the water table with limited, if any, additional downward migration. Howev...
100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.
The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected tomore » eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.« less
2013-10-01
measurements for cellulose and PMMA thin- films . ..13 v List of Tables Table 1. Recorded optical data for nanocellulose in water...applications beyond thin films . In particular, the effects of nanocellulose fibers in higher concentrations, processed in different solvents, and...Optical Properties of Nanocellulose Dispersions in Water, Dimethylformamide and Poly(Methyl Methacrylate) by James F. Snyder, Joshua Steele
46 CFR 180.200 - Survival craft-general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in Table 180.200(c). Table 180.200(c) Route Survival craft requirements Oceans (a) cold water 1—100...(b). Coastwise (a) wood vsls in cold water. (i) 67% IBA—§ 180.204(a)(1). (ii) w/subdivision—100% LF... 20 miles from a harbor of safe refuge) (a) wood vsls in cold water.(i) 67% IBA—§ 180.205(a)(1). (ii...
The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...
NASA Astrophysics Data System (ADS)
Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.
2017-12-01
Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.
Water budgets for major streams in the Central Valley, California, 1961-77
Mullen, J.R.; Nady, Paul
1985-01-01
A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)
Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.
2007-01-01
A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples of a method for applying the MCRS over land without microwave data yield similar differences with the surface retrievals. By combining the MCRS with other techniques that focus primarily on optically thin cirrus over low water clouds, it will be possible to more fully assess the IWP in all conditions over ocean except for precipitating systems.
NASA Astrophysics Data System (ADS)
Millar, N.; O'Donnell, J. A.; Turetsky, M. R.
2005-12-01
High latitudes are expected to experience some of the most dramatic effects of climate change in the near future. This is already evident from existing permafrost and air temperature records in Alaska. Peatlands are a major component of boreal landscapes and store massive reservoirs of soil organic carbon (C) and nitrogen (N), yet the vulnerability of these organic matter stocks to climate change is poorly understood. While some field studies have focused on N cycling in bogs, little is known about N inputs and transformations within boreal fens. We recently initiated a large scale manipulation of soil temperature and water table in a moderately rich fen situated near the Bonanza Creek LTER site, outside Fairbanks, Alaska (the Alaska Peatland Experiment or APEX; www.apex.msu.edu). As part of this experiment, we hypothesized that water table height regulates microbial reduction - oxidation (redox) reactions in organic soils. This may alter the potential for nitrification and denitrification, and therefore, concentrations of ammonium (NH4+), and nitrate (NO3-), and fluxes of nitrous oxide (N2O) in fen ecosystems. Denitrification however, may be limited by low NO3- concentrations in this fen, which is dominated by a mix of herbaceous species, brown mosses, and Sphagnum. We also hypothesized that warming would increase N transformation rates by stimulating heterotrophic microbial activity, leading to variation in N mineralization rates and N availability. We established three water table plots (control, raised, lowered), each about 120 m2 in area. Water table levels at the lowered and raised plots were manipulated using drainage ditches and solar powered pumping techniques, respectively, and were kept at between 5-10 cm below and at 5 cm above the control plot. At 3 of the 6 sub plots within each water table plot, we constructed replicate open top chambers (OTCs) to passively increase surface temperatures by about 1 ° C. In the first season of measurements at the APEX, our initial results suggest that higher water table levels increase atmospheric N2O concentrations above the soil surface (400 ± 3 and 380 ± 7 ppbv, at raised and lowered water table level, respectively). We also measured lower dissolved N2O concentrations in soil water (37 and 4 ppbv at raised and lowered water table level, respectively at 100 cm depth). Here, we will present interactions between thermal and moisture regimes in the experimental fen in relation to N balance, by quantifying concentrations of various N species (e.g., NH4+, NO3-, N2O, TDN, DON, DIN) in the soil, water and atmosphere. This work will help define the role of N availability and N transformations in boreal peatland ecosystems in feedbacks to global climate change.
Kontominas, M G; Goulas, A E; Badeka, A V; Nerantzaki, A
2006-06-01
Overall migration from a wide range of commercial plastics-based netting materials destined to be used as either meat or vegetable packaging materials into the fatty food simulant isooctane or the aqueous simulant distilled water, respectively, was studied. In addition, sensory tests of representative netting materials were carried out in bottled water in order to investigate possible development of off-odour/taste and discoloration in this food simulant as a result of migration from the netting material. Sensory tests were supplemented by determination of the volatile compounds' profile in table water exposed to the netting materials using SPME-GC/MS. Test conditions for packaging material/food simulant contact and method of overall migration analysis were according to European Union Directives 90/128 (EEC, 1990) and 2002/72 (EEC, 2002). The results showed that for both PET and polyethylene-based netting materials, overall migration values into distilled water ranged between 11.5 and 48.5 mg l(-1), well below the upper limit (60 mg l(-1)) for overall migration values from plastics-packaging materials set by the European Union. The overall migration values from netting materials into isooctane ranged between 38.0 and 624.0 mg l(-1), both below and above the European Union upper limit for migration. Sensory tests involving contact of representative samples with table water under refluxing (100 degrees C/4 h) conditions showed a number of the netting materials produced both off-odour and/or taste as well as discoloration of the food simulant rendering such materials unfit for the packaging of foodstuffs in applications involving heating at elevated temperatures. GC/MS analysis showed the presence of numerous volatile compounds being produced after netting materials/water contact under refluxing conditions. Although it is extremely difficult to establish a clear correlation between sensory off-odour development and GC/MS volatile compounds' profile, it may be postulated that plastics oxidation products such as hexanal, heptanal, octanal and 2,6 di-tert-butylquinone may contribute to off-odour development using commercially bottled table water as a food simulant. Likewise, compounds such as carbon disulfide, [1,1'-biphenyl]-2-ol and propanoic acid, 2 methyl 1-(1,1-dimethyl)-2-methyl-1,3-propanediyl ester probably originating from cotton and rubber components of netting materials may also contribute to off-odour/taste development.
Jones, B.F.
1982-01-01
The mineralogy of matrix fines in alluvium from borehole Ullg, expl. 1, north of Frenchman Flat, Nevada Test Site, has been examined for evidence of past variations in water table elevation. Although greater abundance of zeolite and slightly more expanded basal spacings in smectite clays suggest effects of increased hydration of material up to 50 m above the present water table, these differences might also be related to provenance of environment of deposition. The relative uniformity of clay hydration properties in the 50 meters above the current water table suggest long-term stability near the present level. (USGS)
NASA Astrophysics Data System (ADS)
Drakopoulou, E.; Cowan, G. A.; Needham, M. D.; Playfer, S.; Taani, M.
2018-04-01
The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applying these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.
Halford, K.J.
1998-01-01
As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective contributing areas ranged from 70 to 200 years.
Effects of environmental change on groundwater recharge in the Desert Southwest
Phillips, Fred M.; Walvoord, Michelle Ann; Small, Eric E.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.
2004-01-01
Climate and other environmental conditions have varied in the past, and will almost certainly vary significantly in the near future. The response of groundwater recharge to changes in environmental conditions is thus a matter of active concem for water-resources management. The major mechanisms for this response of recharge are three-fold. First, changes in vegetation communities can shift the water balance at the base of the root zone, increasing or decreasing the amount of recharge. Second, variations in the amount of runoff can affect channel recharge. Finally, shifts in the seasonality of precipitation can strongly affect the fraction that is evapotranspired back into the atmosphere and thus affect the amount that becomes recharge. Increases in recharge (defined as the water flux across the water table) may in some cases significantly increase fluxes through regional aquifers, but in other cases, depending on the hydrogeology, may only result in increased streamflow or evapotranspiration within the recharge area. Basins with relatively low maximum elevations, deep water tables, thin soils, and highly permeable recharge areas experience the largest recharge response to increases in precipitation. The relatively well-known paleoenvironmental history of the American Southwest can be compared with various lines of evidence for changes in recharge. These lines of evidence include timing of speleothem formation, chloride profiles in thick vadose zones, changes in water table shown by subsurface calcite precipitation, and expanded groundwater discharge areas. This evidence indicates that the wettest periods of the past 25 ka, which were generally between 20 and 13 ka, were also periods of enhanced vadose zone fluxes and aquifer discharge. Climate-driven changes in recharge appear to have been substantially mediated through changes in vegetation. This evidence for strong recharge response to past environmental changes indicates that expected future climate and environmental change will also cause changes in recharge. The ability to adequately predict future changes in recharge will depend on developing process-based numerical models that can simulate coupled climate/vegetation/ vadose zone processes and incorporate the outputs into groundwater/surface water models that can resolve processes at scales ranging from the hillslope to the basin.
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
DOT National Transportation Integrated Search
1999-01-01
This research project was undertaken to examine the practicality and adequacy of the FDOT specifications regarding compaction methods for pipe trench backfills under high water table. Given the difficulty to determine density and to attain desired de...
Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.
2010-01-01
Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.
Recharge and groundwater models: An overview
Sanford, W.
2002-01-01
Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream base-flow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14.
Aquifer response to stream-stage and recharge variations. I. Analytical step-response functions
Moench, A.F.; Barlow, P.M.
2000-01-01
Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.Laplace transform step-response functions are presented for various homogeneous confined and leaky aquifer types and for anisotropic, homogeneous unconfined aquifers interacting with perennial streams. Flow is one-dimensional, perpendicular to the stream in the confined and leaky aquifers, and two-dimensional in a plane perpendicular to the stream in the water-table aquifers. The stream is assumed to penetrate the full thickness of the aquifer. The aquifers may be semi-infinite or finite in width and may or may not be bounded at the stream by a semipervious streambank. The solutions are presented in a unified manner so that mathematical relations among the various aquifer configurations are clearly demonstrated. The Laplace transform solutions are inverted numerically to obtain the real-time step-response functions for use in the convolution (or superposition) integral. To maintain linearity in the case of unconfined aquifers, fluctuations in the elevation of the water table are assumed to be small relative to the saturated thickness, and vertical flow into or out of the zone above the water table is assumed to occur instantaneously. Effects of hysteresis in the moisture distribution above the water table are therefore neglected. Graphical comparisons of the new solutions are made with known closed-form solutions.
Complete Bouguer gravity map of the Medicine Lake Quadrangle, California
Finn, C.
1981-01-01
A mathematical technique, called kriging, was programmed for a computer to interpolate hydrologic data based on a network of measured values in west-central Kansas. The computer program generated estimated values at the center of each 1-mile section in the Western Kansas Groundwater Management District No. 1 and facilitated contouring of selected values that are needed in the effective management of ground water for irrigation. The kriging technique produced objective and reproducible maps that illustrated hydrologic conditions in the Ogallala aquifer, the principal source of water in west-central Kansas. Maps of the aquifer, which use a 3-year average, included the 1978-80 water-table altitudes, which ranged from about 2,580 to 3,720 feet; the 1978-80 saturated thicknesses, which ranged from about 0 to 250 feet; and the percentage changes in saturated thickness from 1950 to 1978-80, which ranged from about a 50-percent increase to a 100-percent decrease. A map showing errors of estimate also was provided as a measure of reliability for the 1978-80 water-table altitudes. Errors of estimate ranged from 2 to 24 feet. (USGS)
Hydrogeology of the Hawaiian islands
Gingerich, Stephen B.; Oki, Delwyn S.; Cabrera, Maria del Carmen; Lambán, Luis Javier; Valverde, Margarida
2011-01-01
Volcanic-rock aquifers are the most extensive and productive aquifers in the Hawaiian Islands. These aquifers contain different types of groundwater systems depending on the geologic setting in which they occur. The most common groundwater systems include coastal freshwater-lens systems in the dike-free flanks of the volcanoes and dike-impounded systems within the dike-intruded areas of the volcanoes. In some areas, a thick (hundreds of meters) freshwater lens may develop because of the presence of a coastal confining unit, or caprock, that impedes the discharge of groundwater from the volcanic-rock aquifer, or because the permeability of the volcanic rocks forming the aquifer is low. In other areas with low groundwater-recharge rates and that lack a caprock, the freshwater lens may be thin or brackish water may exist immediately below the water table. Dike-impounded groundwater systems commonly have high water levels (hundreds of meters above sea level) and contribute to the base flow of streams where the water table intersects the stream. Recent numerical modeling studies have enhanced the conceptual understanding of groundwater systems in the Hawaiian Islands.
Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.
Sundh, I; Nilsson, M; Granberg, G; Svensson, B H
1994-05-01
The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.
Storms and Water Usage; Swine Flu
ERIC Educational Resources Information Center
Edwards, C. C.; Muttiah, Daniel
2009-01-01
This article offers a contemporary, authentic application of quantitative reasoning based on media clips. Students analyze items from the media to answer mathematical questions related to the article. Volumes, economics, and growth rates of a pandemic are featured in the two clips presented. (Contains 4 figures and 1 table.)
HYDRAULIC ANALYSIS OF BASE-FLOW AND BANK STORAGE IN ALLUVIAL STREAMS
This paper presents analytical solutions, which describe the effect of time-variable net recharge (net accretion to water table) and bank storage in alluvial aquifers on the sustenance of stream flows during storm and inter-storm events. The solutions relate the stream discharge,...
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.
2014-12-01
Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence
2014-05-01
Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.
2002-03-01
groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium
Powers, Michael H.; Burton, Bethany L.
2007-01-01
As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.
Modeling falling groundwater tables in major cities of the world
NASA Astrophysics Data System (ADS)
Sutanudjaja, E.; Erkens, G.
2015-12-01
Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.
Modeling falling groundwater tables in major cities of the world
NASA Astrophysics Data System (ADS)
Sutanudjaja, Edwin; Erkens, Gilles
2016-04-01
Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.
Barlow, P.M.; Wagner, B.J.; Belitz, K.
1996-01-01
The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.
Wilson, Richard P.; Owen-Joyce, Sandra J.
2002-01-01
During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.
18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...
18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...
18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...
18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...
USDA-ARS?s Scientific Manuscript database
Draining the Florida Everglades for agricultural use has led to land subsidence and increase phosphorus loads to the southern Everglades, environmental concerns which can be limited by controlling water table depth. The resulting anaerobic conditions in saturated soils may lead to increased denitrif...
18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...
1995-06-01
ground water temperature readings. Temperature affects the types and growth rates of bacteria that can be supported in the ground water environment...vaies for hydrogeologic conditions similar to those found at the site. The results of this study suggest that dissolved-phase BTEX contamination...OC information to help substantiate the overall site conditions . Please 0 address. Response: Sample depth designations have been clarified in Table
NASA Astrophysics Data System (ADS)
Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.
2015-04-01
As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. Based on various methods used to numerically solve algebraic equations representing groundwater flow and contaminant mass transport, numerical models are mainly divided into Finite Difference-based and Finite Element-based models. The present study aims at evaluating the performance of a finite difference-based (MODFLOW-MT3DMS), a finite element-based (FEFLOW) and a hybrid finite element and finite difference (Princeton Transport Code-PTC) groundwater numerical models simulating groundwater flow and nitrate mass transport in the alluvial aquifer of Trizina region in NE Peloponnese, Greece. The calibration of groundwater flow in all models was performed using groundwater hydraulic head data from seven stress periods and the validation was based on a series of hydraulic head data for two stress periods in sufficient numbers of observation locations. The same periods were used for the calibration of nitrate mass transport. The calibration and validation of the three models revealed that the simulated values of hydraulic heads and nitrate mass concentrations coincide well with the observed ones. The models' performance was assessed by performing a statistical analysis of these different types of numerical algorithms. A number of metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash Sutcliffe Model Efficiency (NSE) and Reliability Index (RI) were used allowing the direct comparison of models' performance. Spatiotemporal Kriging (STRK) was also applied using separable and non-separable spatiotemporal variograms to predict water table level and nitrate concentration at each sampling station for two selected hydrological stress periods. The predictions were validated using the respective measured values. Maps of water table level and nitrate concentrations were produced and compared with those obtained from groundwater and mass transport numerical models. Preliminary results showed similar efficiency of the spatiotemporal geostatistical method with the numerical models. However data requirements of the former model were significantly less. Advantages and disadvantages of the methods performance were analysed and discussed indicating the characteristics of the different approaches.
Improved Hydrology over Peatlands in a Global Land Modeling System
NASA Technical Reports Server (NTRS)
Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk
2018-01-01
Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In addition, a comparison of evapotranspiration and soil moisture estimates over peatlands will be presented, albeit only with limited ground-based validation data. We will discuss strengths and weaknesses of the new model by focusing on time series of specific validation sites.
NASA Astrophysics Data System (ADS)
Kim, H.; Rempe, D. M.; Bishop, J. K.; Dietrich, W.; Fung, I.; Wood, T. J.
2012-12-01
The spatial and temporal pattern of groundwater chemistry in the seasonally perched groundwater systems that develop in the weathered bedrock zone under hillslopes have rarely been documented, yet chemical evolution of water here dictates the runoff chemistry to streams in many places. Here we exploit an intensively instrumented hillslope to document water well chemistry at three wells and adjacent stream. We have been sampling groundwater at daily frequency since October 2008 on a forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. The site is typical of California's coastal Mediterranean climate. The groundwater samples have been collected from a depth near the boundary between the weathered and fresh bedrock at three locations along the hillslope: Well 1 (bottom of hillslope), Well 3 (mid-slope), and Well 10 (near the ridge). Bulk rainwater and throughfall samples were collected at a meadow across the hillslope and at the middle of the slope, respectively, as well. Near the ridge (Well 10), during the first significant rainstorms of 2009 (133mm/42.5hours) and 2010 (220mm/42hours), when the water table changed only 0.32m and 0.66m, respectively, the concentration of Ca, Mg, and Na started to increase rapidly compared to the dry season (e.g. 2-6 μM vs 0.02-0.2μM [Mg]/day). However, during these same storms, K concentration sharply increased to 50-60 μM and decreased to 20-30μM, synchronizing with the water table responses. Throughfalls of these storms had at least 10 fold lower Ca, Mg, and Na concentrations than the well water while they had 10 fold higher K compared to the pre-event groundwater values. When the total seasonal cumulative rainfall exceeds 600 mm, the Well 10 solute concentration was diluted nearly 3 fold (e.g. [Mg] 0.3 mM vs. 0.1 mM) and the water table was raised significantly (2-6 meters). Throughout the rainy season, Well10 retained its diluted chemistry signature and on average the water table remained elevated as subsequent rainstorms repeatedly recharged the system. Well10 solute concentration slowly increased at the end of the rainy season when the water table fell. In contrast, at the foot of the hill slope, even though the water table was responsive to each rainfall event, its water chemistry developed a strong dilution signatures only during the intense rainstorms (total rainfall > 70mm); the solute concentration decreased (e.g. [Mg] = 0.1mM) during the rising limb of the well hydrograph and recovered back to its pre-event value (e.g. [Mg] = 0.3mM) during the falling limb of the well hydrograph. During small storms, the solute concentration of Well 1 either did not change or slightly increased. Mid-slope showed similar behavior to Well 1. The Well 3 solute concentration was diluted about 3 fold (e.g. [Mg] 0.3mM to 0.1mM) as the water table rose and increased as the water table receded. However unlike Well 1, the water chemistry of Well 3 did not recover to its pre-event composition at any point during the rainy season and the recovery rate was slower than that of Well 1. These water chemistry observations provide insight into the dynamics of water movement within the fractured, weathered bedrock zone, and point to both vertical and lateral mixing processes that influence the chemical evolution of waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauder, J.W.; Browning, L.S.; Phelps, S.D.
2008-07-01
The study reported here investigated capacity of Atriplex lentiformis (Torr.) S. Wats. (Quail bush), Atriplex X aptera A. Nels. (pro sp.) (Wytana four-wing saltbush), and Hordeum marinum Huds. (seaside barley) to produce biomass and crude protein and take up cations when irrigated with moderately saline-sodic water, in the presence of a shallow water table. Water tables were established at 0.38, 0.76, and 1.14m below the surface in sand-filled columns. The columns were then planted to the study species. Study plants were irrigated for 224 days; irrigation water was supplied every 7 days equal to water lost to evapotranspiration (ET) plusmore » 100mL (the volume of water removed in the most previous soil solution sampling). Water representing one of two irrigation sources was used: Powder River (PR) or coalbed natural gas (CBNG) wastewater. Biomass production did not differ significantly between water quality treatments but did differ significantly among species and water table depth within species. Averaged across water quality treatments, Hordeum marinum produced 79% more biomass than A. lentiformis and 122% more biomass than Atriplex X aptera, but contained only 11% crude protein compared to 16% crude protein in A. lentiformis and 14% crude protein in Atriplex X aptera. Atriplex spp. grown in columns with the water table at 0.38m depth produced more biomass, took up less calcium on a percentage basis, and took up more sodium on a percentage basis than when grown with the water table at a deeper depth. Uptake of cations by Atriplex lentiformis was approximately twice the uptake of cations by Atriplex X aptera and three times that of H. marinum. After 224 days of irrigation, crop growth, and cation uptake, followed by biomass harvest, EC and SAR of shallow groundwater in columns planted to A. lentiformis were less than EC and SAR of shallow ground water in columns planted to either of the other species.« less
An empirical approach to modeling methylmercury concentrations in an Adirondack stream watershed
Burns, Douglas A.; Nystrom, Elizabeth A.; Wolock, David M.; Bradley, Paul M.; Riva-Murray, Karen
2014-01-01
Inverse empirical models can inform and improve more complex process-based models by quantifying the principal factors that control water quality variation. Here we developed a multiple regression model that explains 81% of the variation in filtered methylmercury (FMeHg) concentrations in Fishing Brook, a fourth-order stream in the Adirondack Mountains, New York, a known “hot spot” of Hg bioaccumulation. This model builds on previous observations that wetland-dominated riparian areas are the principal source of MeHg to this stream and were based on 43 samples collected during a 33 month period in 2007–2009. Explanatory variables include those that represent the effects of water temperature, streamflow, and modeled riparian water table depth on seasonal and annual patterns of FMeHg concentrations. An additional variable represents the effects of an upstream pond on decreasing FMeHg concentrations. Model results suggest that temperature-driven effects on net Hg methylation rates are the principal control on annual FMeHg concentration patterns. Additionally, streamflow dilutes FMeHg concentrations during the cold dormant season. The model further indicates that depth and persistence of the riparian water table as simulated by TOPMODEL are dominant controls on FMeHg concentration patterns during the warm growing season, especially evident when concentrations during the dry summer of 2007 were less than half of those in the wetter summers of 2008 and 2009. This modeling approach may help identify the principal factors that control variation in surface water FMeHg concentrations in other settings, which can guide the appropriate application of process-based models.
Stemflow-induced processes of soil water storage
NASA Astrophysics Data System (ADS)
Germer, Sonja
2013-04-01
Compared to stemflow production studies only few studies deal with the fate of stemflow at the near-stem soil. To investigate stemflow contribution to the root zone soil moisture by young and adult babassu palms (Attalea speciosa Mart.), I studied stemflow generation, subsequent soil water percolation and root distributions. Rainfall, stemflow and perched water tables were monitored on an event basis. Perched water tables were monitored next to adult palms at two depths and three stem distances. Dye tracer experiments monitored stemflow-induced preferential flow paths. Root distributions of fine and coarse roots were related to soil water redistribution. Average rainfall-collecting area per adult palm was 6.4 m², but variability between them was high. Funneling ratios ranged between 16-71 and 4-55 for adult and young palms, respectively. Nonetheless, even very small rainfall events of 1 mm can generate stemflow. On average, 9 liters of adult palm stemflow were intercepted and stemflow tended to decrease for-high intensity rainfall events. Young babassu palms funneled rainfall via their fronds, directly to their subterranean stems. The funneling of rainfall towards adult palm stems, in contrast, led to great stemflow fluxes down to the soil and induced initial horizontal water flows through the soil, leading to perched water tables next to palms, even after small rainfall events. The perched water tables extended, however, only a few decimeters from palm stems. After perched water tables became established, vertical percolation through the soil dominated. To my knowledge, this process has not been described before, and it can be seen as an addition to the two previously described stemflow-induced processes of Horton overland flow and fast, deep percolation along roots. This study has demonstrated that Babassu palms funnel water to their stems and subsequently store it in the soil next to their stems in areas where coarse root length density is very high. This might partly explain the competitive position of babassu palms on pastures or secondary forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.T. McLean
2005-06-01
This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and stormmore » water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the DOE DWDCG. Tables were then created for each analyte that listed the PRSs average value by storm water station allowing a tabular view of the mapped data. The final table that was created listed the number of high erosion PRSs and regular PRSs over background values that were contained in each watershed. An overall relationship between the high erosion PRSs or the regular PRSs and the storm water stations was not identified through the methods used in this research. However, the Arc Hydro data models created for this analysis were used to track possible sources of contamination found through sampling at the storm water gaging stations. This geometric network tracing was used to identify possible relationships between the storm water stations and the PRSs. The methods outlined for the geometric network tracing could be used to find other relationships between the sites. A cursory statistical analysis was performed which could be expanded and applied to the data sets generated during this research to establish a broader relationship between the PRSs and storm water stations.« less
Subsurface architecture of two tropical alpine desert cinder cones that hold water
NASA Astrophysics Data System (ADS)
Leopold, Matthias; Morelli, Amanda; Schorghofer, Norbert
2016-06-01
Basaltic lava is generally porous and cannot hold water to form lakes. Here we investigate two impermeable cinder cones in the alpine desert of Maunakea volcano, Hawaii. We present the results of the first ever geophysical survey of the area around Lake Waiau, the highest lake on the Hawaiian Islands, and establish the existence of a second body of standing water in a nearby cinder cone, Pu`upōhaku (~4000 m above sea level), which has a sporadic pond of water. Based on unpublished field notes from Alfred Woodcock (*1905-†2005) spanning the years 1966-1977, more recent observations, and our own geophysical survey using electric resistivity tomography, we find that perched groundwater resides in the crater perennially to a depth of 2.5 m below the surface. Hence, Pu`upōhaku crater hosts a previously unrecognized permanent body of water, the highest on the Hawaiian Islands. Nearby Lake Waiau is also perched within a cinder cone known as Pu`uwaiau. Among other hypotheses, permafrost or a massive block of lava were discussed as a possible cause for perching the water table. Based on our results, ground temperatures are too high and specific electric resistivity values too low to be consistent with either ice-rich permafrost or massive rock. Fine-grained material such as ash and its clay-rich weathering products are likely the impermeable material that explains the perched water table at both study sites. At Pu`uwaiau we discovered a layer of high conductivity that may constitute a significant water reservoir outside of the lake and further be responsible for perching the water toward the lake.
On the origin of saline soils at Blackspring Ridge, Alberta, Canada
NASA Astrophysics Data System (ADS)
Stein, Richard; Schwartz, Franklin W.
1990-09-01
Problems of soil salinity occur at Blackspring Ridge, Alberta, in four different settings. The most seriously affected area is at the base of the ridge where salinity appears as severe salt crusting on the surface, salt-tolerant vegetation, and areas of poor or no crop production. Blackspring Ridge is a structural bedrock high that is underlain by Upper Cretaceous sediment of the Horseshoe Canyon Formation. Bedrock is overlain by fluvial, glacial, lacustrine, and aeolian sediment. Piezometric data indicate that groundwater is recharged on and along the upper flanks of Blackspring Ridge and discharges in southern parts of a lacustrine plain that surrounds the ridge. Hydraulic conductivity data, water-level fluctuations, stable isotopes, and hydrochemical data indicate that the fractured near-surface bedrock and overlying thin-drift sediment constitute a zone of active groundwater flow within which salts are generated and transported. Water discharging from this shallow system evaporates and forms saline areas at the base of the ridge. The most seriously affected areas on the lacustrine plain coincide with places where the water table is less than 1.5m from the ground surface. A high water table occurs locally because of the changing topology of geologic units, and lows in the topographic surface that focus groundwater and surface water flows. Some proportion of the shallow groundwater salinized by evaporation is also transported down the flow system where it mixes with unevaporated water. Surface water, from snowmelt and precipitation events, dissolves salt that was deposited at the surface by evaporating groundwater and redistributes the salt to areas of lower elevation.
A graph decomposition-based approach for water distribution network optimization
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.
2013-04-01
A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.
Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico
Welder, G.E.
1983-01-01
This report describes the geohydrology of the Roswell ground-water basin and shows the long-term hydrostatic-head changes in the aquifers. The Roswell ground-water basin consists of a carbonate artesian aquifer overlain by a leaky confining bed, which, in turn is overlain by an alluvial water-table aquifer. The water-table aquifer is hydraulically connected to the Pecos River. Ground-water pumpage from about 1,500 wells in the basin was about 378,000 acre-feet in 1978. Irrigation use on about 122,000 acres accounted for 95 percent of that pumpage.
Water resources of Washington Parish, Louisiana
White, Vincent E.; Prakken, Lawrence B.
2016-06-13
In 2010, about 34.55 million gallons per day (Mgal/d) of water were withdrawn in Washington Parish, including about 28.10 Mgal/d from groundwater sources and 6.44 Mgal/d from surface-water sources1 (table 1). Withdrawals for industrial use accounted for about 52 percent (17.80 Mgal/d) of the total water withdrawn (table 2). Other categories of use included public supply, rural domestic, irrigation, and livestock. Water-use data collected at 5-year intervals from 1960 to 2010 (fig. 2) indicated that water withdrawals peaked in 1975 at about 51.9 Mgal/d.
NASA Astrophysics Data System (ADS)
Osman, Yassin Z.; Bruen, Michael P.
2002-07-01
Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.
Moran, Edward H.; Solin, Gary L.
2006-01-01
The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'
Selected basin characteristics and water-quality data of the Minnesota River basin
Winterstein, T.A.; Payne, G.A.; Miller, R.A.; Stark, J.R.
1993-01-01
Selected basin characteristics and water-quality dam for the Minnesota River Basin are presented in this report as 71 maps, 22 graphs, and 8 tables. The data were compiled as part of a four-year study to identify non-point sources of pollution and the effect of this pollution on water quality. The maps were prepared from geographic information system data bases. Federal, State, and local agencies, and colleges and universities collected and assembled these data as part of the Minnesota River Assessment Project.
Effects of unsaturated zone on ground-water mounding
Sumner, D.M.; Rolston, D.E.; Marino, M.A.
1999-01-01
The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water, or the interception of the basin floor by the capillary fringe.
40 CFR Table 3 to Subpart Ooo of... - Fugitive Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Fugitive Emission Limits 3 Table 3 to... Mineral Processing Plants Pt. 60, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 60—Fugitive Emission...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 3 to Subpart Ooo of... - Fugitive Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Fugitive Emission Limits 3 Table 3 to... Mineral Processing Plants Pt. 60, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 60—Fugitive Emission...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...
40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...
40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a b c Grams/liter coating (minus water and...
40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...
40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...
NASA Astrophysics Data System (ADS)
Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet
2018-05-01
Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.
NASA Astrophysics Data System (ADS)
Lai, Wencong; Ogden, Fred L.; Steinke, Robert C.; Talbot, Cary A.
2015-03-01
We have developed a one-dimensional numerical method to simulate infiltration and redistribution in the presence of a shallow dynamic water table. This method builds upon the Green-Ampt infiltration with Redistribution (GAR) model and incorporates features from the Talbot-Ogden (T-O) infiltration and redistribution method in a discretized moisture content domain. The redistribution scheme is more physically meaningful than the capillary weighted redistribution scheme in the T-O method. Groundwater dynamics are considered in this new method instead of hydrostatic groundwater front. It is also computationally more efficient than the T-O method. Motion of water in the vadose zone due to infiltration, redistribution, and interactions with capillary groundwater are described by ordinary differential equations. Numerical solutions to these equations are computationally less expensive than solutions of the highly nonlinear Richards' (1931) partial differential equation. We present results from numerical tests on 11 soil types using multiple rain pulses with different boundary conditions, with and without a shallow water table and compare against the numerical solution of Richards' equation (RE). Results from the new method are in satisfactory agreement with RE solutions in term of ponding time, deponding time, infiltration rate, and cumulative infiltrated depth. The new method, which we call "GARTO" can be used as an alternative to the RE for 1-D coupled surface and groundwater models in general situations with homogeneous soils with dynamic water table. The GARTO method represents a significant advance in simulating groundwater surface water interactions because it very closely matches the RE solution while being computationally efficient, with guaranteed mass conservation, and no stability limitations that can affect RE solvers in the case of a near-surface water table.
Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China
NASA Astrophysics Data System (ADS)
Olsson, L.; Ye, S.; Yu, X.; Wei, M.; Krauss, K. W.; Brix, H.
2015-08-01
Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, Northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4 sources emitting 1.2-6.1 g CH4 m-2 yr-1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature, soil organic carbon and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m-2 h-1) at soil temperatures < 18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m-2 h-1) probably because methanogens were out-competed by sulphate-reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.
Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China
NASA Astrophysics Data System (ADS)
Olsson, L.; Ye, S.; Yu, X.; Wei, M.; Krauss, K. W.; Brix, H.
2015-02-01
Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4 sources emitting 1.2-6.1 g CH4 m-2 y-1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m-2 h) at soil temperatures <18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m-2 h-1) probably because methanogens were outcompeted by sulphate reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.
The role of groundwater in hydrological processes and memory
NASA Astrophysics Data System (ADS)
Lo, Min-Hui
The interactions between soil moisture and groundwater play important roles in controlling Earth's climate, by changing the terrestrial water cycle. However, most contemporary land surface models (LSMs) used for climate modeling lack any representation of groundwater aquifers. In this dissertation, the effects of water table dynamics on the National Center for Atmospheric Research (NCAR) Community Land Model (CLM) and Community Atmosphere Model (CAM) hydrology and land-atmosphere simulations are investigated. First, a simple, lumped unconfined aquifer model is incorporated into the CLM, in which the water table is interactively coupled to the soil moisture through groundwater recharge fluxes. The recent availability of GRACE water storage data provides a unique opportunity to constrain LSMs simulations of terrestrial hydrology. A multi-objective calibration framework using GRACE and streamflow data is developed. This approach improves parameter estimation and reduces the uncertainty of water table simulations in the CLM. Next, experiments are conducted with the off-line CLM to explore the effects of groundwater on land surface memory. Results show that feedbacks of groundwater on land surface memory can be positive, negative, or neutral depending on water table dynamics. The CAM-CLM is further utilized to investigate the effects of water table dynamics on spatial-temporal variations of precipitation. Results indicate that groundwater can increase short-term (seasonal) and long-term (interannual) memory of precipitation for some regions with suitable groundwater table depth. Finally, lower tropospheric water vapor is increased due to the presence of groundwater in the model. However, the impact of groundwater on the spatial distribution of precipitation is not globally homogeneous. In the boreal summer, tropical land regions show a positive (negative) anomaly over the Northern (Southern) Hemisphere. The increased tropical precipitation follows the climatology of the convective zone rather than that of evapotranspiration. In contrast, evapotranspiration is the major contribution to the increased precipitation in the transition climatic zone (e.g., Central North America), where the land and atmosphere are strongly coupled. This dissertation reveals the highly nonlinear responses of precipitation and soil moisture to the groundwater representation in the model, and also underscores the importance of subsurface hydrological memory processes in the climate system.
Mirus, Benjamin B.; Nimmo, J.R.
2013-01-01
The impact of preferential flow on recharge and contaminant transport poses a considerable challenge to water-resources management. Typical hydrologic models require extensive site characterization, but can underestimate fluxes when preferential flow is significant. A recently developed source-responsive model incorporates film-flow theory with conservation of mass to estimate unsaturated-zone preferential fluxes with readily available data. The term source-responsive describes the sensitivity of preferential flow in response to water availability at the source of input. We present the first rigorous tests of a parsimonious formulation for simulating water table fluctuations using two case studies, both in arid regions with thick unsaturated zones of fractured volcanic rock. Diffuse flow theory cannot adequately capture the observed water table responses at both sites; the source-responsive model is a viable alternative. We treat the active area fraction of preferential flow paths as a scaled function of water inputs at the land surface then calibrate the macropore density to fit observed water table rises. Unlike previous applications, we allow the characteristic film-flow velocity to vary, reflecting the lag time between source and deep water table responses. Analysis of model performance and parameter sensitivity for the two case studies underscores the importance of identifying thresholds for initiation of film flow in unsaturated rocks, and suggests that this parsimonious approach is potentially of great practical value.
Parks, William Scott; Graham, D.D.; Lowery, J.F.
1981-01-01
Eight deep wells are being monitored in the Memphis, Tenn., area to detect any changes in the chemical character of water moving through the Memphis Sand towards major pumping centers. These wells are strategically located so as to intercept groundwater enroute through the Memphis Sand from the outcrop-recharge area. Although water quality analyses are available for many wells in the shallow water-table aquifer, no specific investigation has been made to characterize the quality of the water in this aquifer from which the Memphis Sand also receives part of its recharge. This investigation is to determine the chemical character of groundwater in the shallow water-table aquifer at selected localities in the Memphis area. Methods used to install eight shallow wells at abandoned dump sites containing chemical and/or industrial waste are described. Water samples from the eight shallow wells and two deep wells in the Memphis Sand were collected and analyzed. Results of the analysis are presented and the locations of the wells and dumps are shown on maps. (USGS)
Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.
2016-10-21
Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.
HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis
Sloto, Ronald A.; Crouse, Michele Y.
1996-01-01
HYSEP is a computer program that can be used to separate a streamflow hydrograph into base-flow and surface-runoff components. The base-flow component has traditionally been associated with ground-water discharge and the surface-runoff component with precipitation that enters the stream as overland runoff. HYSEP includes three methods of hydrograph separation that are referred to in the literature as the fixed interval, sliding-interval, and local-minimum methods. The program also describes the frequency and duration of measured streamflow and computed base flow and surface runoff. Daily mean stream discharge is used as input to the program in either an American Standard Code for Information Interchange (ASCII) or binary format. Output from the program includes table,s graphs, and data files. Graphical output may be plotted on the computer screen or output to a printer, plotter, or metafile.
Hydrologic Tests at Characterization Wells R-9i, R-13, R-19, R-22, and R-31, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.G.McLin; W.J. Stone
2004-06-01
Hydrologic information is essential for environmental efforts at Los Alamos National Laboratory. Testing at new characterization wells being drilled to the regional aquifer (''R wells'') to improve the conceptual hydrogeologic model of the Pajarito Plateau is providing such information. Field tests were conducted on various zones of saturation penetrated by the R wells to collect data needed for determining hydraulic properties. This document provides details of the design and execution of testing as well as an analysis of data for five new wells: R-9i, R-13, R-19, R-22, and R-31. One well (R-13) was evaluated by a pumping test and themore » rest (R-9i, R-19, R-22, and R-31) were evaluated by injection tests. Characterization well R-9i is located in Los Alamos Canyon approximately 0.3 mi west of the Route 4/Route 502 intersection. It was completed at a depth of 322 ft below ground surface (bgs) in March 2000. This well was constructed with two screens positioned below the regional water table. Both screens were tested. Screen 1 is completed at about 189-200 ft bgs in fractured basalt, and screen 2 is completed at about 270-280 ft bgs in massive basalt. Specific capacity analysis of the screen 1 data suggests that the fractured basalt has a transmissivity (T) of 589 ft{sup 2}/day and corresponds to a hydraulic conductivity (K) of 7.1 ft/day based on a saturated thickness of 83 ft. The injection test data from the massive basalt near screen 2 were analyzed by the Bouwer-Rice slug test methodology and suggest that K is 0.11 ft/day, corresponding to a T of about 2.8 ft{sup 2}/day based on a saturated thickness of 25 ft. Characterization well R-13 is located in Mortandad Canyon just west of the eastern Laboratory boundary. It was completed at a depth of 1029 ft bgs in February 2002. This well was constructed with one 60-ft long screen positioned about 125 ft below the regional water table. This screen is completed at about 958-1019 ft bgs and straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous units. The specific capacity analysis of a 12 minute pumping test indicates that the Puye fanglomerates near the R-13 screen have a T of 5269 ft{sup 2}/day and correspond to a hydraulic conductivity (K) of 17.6 ft/day based on a saturated thickness of 300 ft. Characterization well R-19 is located east of firing site IJ in Technical Area (TA) 36 on the mesa between Three-mile and Potrillo Canyons. It was completed at a depth of 1885 ft bgs in April 2000. This well was constructed with two screens positioned above the regional water table and five screens positioned below the regional water table. Only the bottom two screens were tested. Screen 6 is completed at about 1727-1734 ft bgs in Puye fanglomerate, and screen 7 is completed at about 1832-1849 ft bgs in Puye fanglomerate. Specific capacity analysis of the screen 6 data suggests that T is about 6923 ft{sup 2}/day and corresponds to a K of 18.6 ft/day based on a saturated thickness of 373 ft. Specific capacity analysis of the screen 7 data suggests that T is about 8179 ft{sup 2}/day and corresponds to a K of 22.0 ft/day based on a saturated thickness of 373 ft. Characterization well R-22 is located on Mesita del Buey between Canada del Buey and Pajarito Canyons immediately east of Material Disposal Area (MDA) G in TA-54. It was completed at a depth of 1489 ft bgs in October 2000. This well was constructed with five screens positioned at or below the regional water table; however, only screens 2-5 were tested. Screen 1 is completed at the regional water table at about 872-914 ft bgs in Cerros del Rio basalt. Screen 2 is completed at about 947-989 ft bgs in Cerros del Rio basalt. Screen 3 is completed at about 1272-1279 ft bgs in Puye fanglomerate. Screen 4 is completed at about 1378-1452 ft bgs in older basalt. Screen 5 is completed at about 1447-1452 ft bgs in older fanglomerate. Bouwer-Rice analyses of the injection-test recovery data suggest K values of 0.04, 0.32, 0.54, and 0.27 ft/day for screens 2, 3, 4, and 5, respectively. These values correspond to T values of 2.8, 15.8, 26.5, and 11.6 ft{sup 2}/day, respectively, for screens 2, 3, 4, and 5. These analyses are based on saturated thicknesses of 69.5 ft, 49.4 ft, 49.0 ft, and 43.0 ft, respectively. Characterization well R-31 is located at TA-39 in the north fork of lower Ancho Canyon. It was completed at a depth of 1103 ft bgs in April 2000. This well was constructed with one screen positioned above the regional water table, and four screens position at or below the regional water table.« less
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501-1 - Coal seams above the water table.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...
Sugarcane Responses to Water-Table Depth and Periodic Flood
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum spp.) is routinely exposed to periodic floods and shallow water tables in Florida’s Everglades Agricultural Area (EAA). The purpose of this study was to examine the yields and juice quality of four sugarcane cultivars (CP 88-1762, CP 89-2143, CP 89-2376, and CP 96-1252) maintain...
30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permissible electric face equipment; coal seams... Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory Provision] On and after March 30, 1974, all electric face equipment, other than equipment referred to in...
29 CFR 1910.110 - Storage and handling of liquefied petroleum gases.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) Containers used with systems embodied in paragraphs (d), (e), (g), and (h) of this section... unit of weight for containers with a water capacity of 300 pounds or less. (h) With marking indicating... Table H-23. Table H-23 Water capacity per container Minimum distances Containers Underground Aboveground...
29 CFR 1910.110 - Storage and handling of liquefied petroleum gases.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (i) Containers used with systems embodied in paragraphs (d), (e), (g), and (h) of this section... unit of weight for containers with a water capacity of 300 pounds or less. (h) With marking indicating... Table H-23. Table H-23 Water capacity per container Minimum distances Containers Underground Aboveground...
Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain
Lee, Terrie M.
2000-01-01
The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.
Rising Water Storage in the Niger River basin: Clues and Cause
NASA Astrophysics Data System (ADS)
Werth, S.
2016-12-01
Heavily populated west African regions along the Niger River are affected by climate and land cover changes, altering the distribution of water resources. To maintain a reliable water supply in the region, water management authorities require knowledge of hydrological changes at various spatial and temporal scales. Local and regional studies reported rising water tables over the last decades as a consequence of complex responses on land use change in the Sahel zone. The spatial extend of this responses is not well understood, as of yet. Thus, this study provides an in-depth investigation of long-term changes in the water storages of Niger River basin and its sub-regions by analyzing more than a decade of satellite based gravity data from the Gravity Recovery And Climate Change (GRACE) satellites. Soil moisture data from four global hydrological models serve to separate freshwater resources (WR) from GRACE-based terrestrial water storage variations. Surface water variations from a global water storage model and trends from altimetry data were applied to separate the groundwater component from WR trends. Errors of all datasets are taken into account. Trends in WR are positive, except for the tropical Upper Niger with negative trends. For the Niger basin, a rise in GW stocks was detected. On the subbasin scale, GW changes are positive for the Sahelian Middle Niger and the Benue. The findings confirm previous observations of water tables in the Sahel and tropical zones, indicating that reported effects of land use change are relevant on large, i.e. basin and subbasin, scales. Our results have implications for Niger water management strategies. While areas with rising water storage are stocking a comfortable backup to mitigate possible future droughts and to deliver water to remote areas with no access to rivers or reservoirs. Increasing groundwater recharges may be accompanied by a reduction in water quality. This study helps to inform authority's decision to address risks for affected communities.
Physiological and morphological response patterns of Populus deltoides to alluvial groundwater
Cooper, D.J.; D'Amico, D.R.; Scott, M.L.
2003-01-01
We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (gs) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, gs and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Chen, Xingyuan; Murray, Chris
In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less
Zachara, John M.; Chen, Xingyuan; Murray, Chris; ...
2016-03-04
In this study, a well-field within a uranium (U) plume in the groundwater-surface water transition zone was monitored for a 3 year period for water table elevation and dissolved solutes. The plume discharges to the Columbia River, which displays a dramatic spring stage surge resulting from snowmelt. Groundwater exhibits a low hydrologic gradient and chemical differences with river water. River water intrudes the site in spring. Specific aims were to assess the impacts of river intrusion on dissolved uranium (U aq), specific conductance (SpC), and other solutes, and to discriminate between transport, geochemical, and source term heterogeneity effects. Time seriesmore » trends for U aq and SpC were complex and displayed large temporal and well-to-well variability as a result of water table elevation fluctuations, river water intrusion, and changes in groundwater flow directions. The wells were clustered into subsets exhibiting common behaviors resulting from the intrusion dynamics of river water and the location of source terms. Hot-spots in U aq varied in location with increasing water table elevation through the combined effects of advection and source term location. Heuristic reactive transport modeling with PFLOTRAN demonstrated that mobilized U aq was transported between wells and source terms in complex trajectories, and was diluted as river water entered and exited the groundwater system. While U aq time-series concentration trends varied significantly from year-to-year as a result of climate-caused differences in the spring hydrograph, common and partly predictable response patterns were observed that were driven by water table elevation, and the extent and duration of river water intrusion.« less
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades
1995-06-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
NASA Astrophysics Data System (ADS)
Modi, V.; Fishman, R.
2010-12-01
Groundwater irrigation, while critical for food production and rural livelihood in many developing countries, is often unsustainable. India, the world’s largest consumer of groundwater, mostly for irrigation, is a prime example: data suggests water tables are falling in the most of its productive regions. Because of the long-term consequences for the viability and efficiency of agriculture, it is important to know how far water tables might fall and what will eventually stabilize them: will it be a reduction in water use and increases in water use efficiency (a sustainable path) or more pessimistically, an energy ‘crunch’ or the hydrological ‘bottom’. Using national-level data, we document an alarming trend of non-decreasing water withdrawals supported by increasing energy use and little, if any, improvement in efficiency. We also study in detail a particular hot spot of advanced depletion that presents a grave warning signal of how far things can go if allowed to proceed on their present course. In our study area, water tables have been falling rapidly for three decades now and reach as much as 200m, with the astounding consequence that energy use for pumping, subsidized by the state, is now worth more than the income farmers generate from its use. Despite this, the large potential for water savings in agriculture there is still unexploited. We discuss policy measures that can prevent other parts of the country from following the same disastrous trajectory.
The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.
2011-12-01
Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.
Stochastic analysis of unsaturated steady flows above the water table
NASA Astrophysics Data System (ADS)
Severino, Gerardo; Scarfato, Maddalena; Comegna, Alessandro
2017-08-01
Steady flow takes place into a three-dimensional partially saturated porous medium where, due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above the water table. The simple expressions (most of which in closed form) of the second-order moments pertaining to the FVs allow one to follow the transitional behavior from the zone close to the water table (where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In particular, it is shown how the stationary limits (and the distance from the water table at which stationarity is attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure head ><Ψ>> has been also computed, and it is expressed as <Ψ>=Ψ0>(1+ψ>), being ψ a characteristic heterogeneity function which modifies the zero-order approximation Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e., close (near field) and away (far field) from the water table, are derived into a very general manner, whereas the transitional behavior of ψ between the near/far field can be determined after specifying the shape of the various input soil properties. Besides the theoretical interest, results of the present paper are useful for practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the vadose zone close to the water table) which is generally very difficult to access by direct inspection.
Flow to a well in a water-table aquifer: An improved laplace transform solution
Moench, A.F.
1996-01-01
An alternative Laplace transform solution for the problem, originally solved by Neuman, of constant discharge from a partially penetrating well in a water-table aquifer was obtained. The solution differs from existing solutions in that it is simpler in form and can be numerically inverted without the need for time-consuming numerical integration. The derivation invloves the use of the Laplace transform and a finite Fourier cosine series and avoids the Hankel transform used in prior derivations. The solution allows for water in the overlying unsaturated zone to be released either instantaneously in response to a declining water table as assumed by Neuman, or gradually as approximated by Boulton's convolution integral. Numerical evaluation yields results identical with results obtained by previously published methods with the advantage, under most well-aquifer configurations, of much reduced computation time.
Ground-water appraisal of the Pineland Sands area, central Minnesota
Helgesen, J.O.
1977-01-01
Results of model analysis show that present development (withdrawals totaling 3.3 cubic feet per second) has no significant effect on the aquifer system. Simulations of hypothetical withdrawals of 60 to 120 cubic feet per second resulted in computed water-table declines as great as 12 feet in places. Most pumpage is derived from intercepted base flow to streams, thus reducing streamflow. Similarly, some lake levels can be expected to decline in response to nearby intensive development.
Lenhard, R J; Rayner, J L; Davis, G B
2017-10-01
A model is presented to account for elevation-dependent residual and entrapped LNAPL above and below, respectively, the water-saturated zone when predicting subsurface LNAPL specific volume (fluid volume per unit area) and transmissivity from current and historic fluid levels in wells. Physically-based free, residual, and entrapped LNAPL saturation distributions and LNAPL relative permeabilities are integrated over a vertical slice of the subsurface to yield the LNAPL specific volumes and transmissivity. The model accounts for effects of fluctuating water tables. Hypothetical predictions are given for different porous media (loamy sand and clay loam), fluid levels in wells, and historic water-table fluctuations. It is shown the elevation range from the LNAPL-water interface in a well to the upper elevation where the free LNAPL saturation approaches zero is the same for a given LNAPL thickness in a well regardless of porous media type. Further, the LNAPL transmissivity is largely dependent on current fluid levels in wells and not historic levels. Results from the model can aid developing successful LNAPL remediation strategies and improving the design and operation of remedial activities. Results of the model also can aid in accessing the LNAPL recovery technology endpoint, based on the predicted transmissivity. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation - Copyright 2017. Published by Elsevier B.V. All rights reserved.
RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.
Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip
2012-01-01
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
The Stream Table in Physical Geography Instruction.
ERIC Educational Resources Information Center
Wikle, Thomas A.; Lightfoot, Dale R.
1997-01-01
Outlines a number of activities to be conducted with a stream table (large wooden box filled with sediment and designed for water to pass through) in class. Activities illustrate such fluvial processes as stream meandering, erosion, transportation, and deposition. Includes a diagram for constructing a stream table. (MJP)
High-resolution seismic reflection survey at Dover AFB: A comparison of three seismic sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardimona, S.; Kadinsky-Cade, K.; Miller, R.
1996-11-01
In June of 1995, the Earth Sciences Division of the Air Force Phillips Lab, with survey equipment from the University of Delaware and assisted by the Kansas Geological Survey and Elohi Geophysics, conducted a geophysical site characterization of the SERDP-funded Groundwater Remediation Field Lab (GRFL) located at Dover AFB, Delaware and administered by Applied Research Associates for USAF Armstrong Lab. Seismic data were collected in order to (1) compare the results using three different compressional sources and (2) cover the field site well enough to characterize the seismic response of the shallow subsurface. This paper will focus primarily on themore » first of these two goals. Seismic data were collected along three north-south profiles set 10 meters apart, each profile with a different compressional source: a 5.5kg sledgehammer, a 12-gauge firing rod from Betsy Seisgun Inc. shooting 150 grain blanks, and a portable piezoelectrically driven vibrator, developed by Elohi Geophysics, operating with a 90Hz-450Hz sweep. An east-west cross line was collected using the sledgehammer source in order to tie the three profiles together. A laser theodolite provided station location and elevation control. The primary targets were the water table (that had been marked on maps at a depth of about 3 meters) and a sand-clay interface at about 15 meters depth. We collected 24-channel CMP data using a half meter spacing of both source and 100Hz geophones. Field C after initial walkaway noise testing with each source did not show any one source to be outstanding A practical early result of the seismic survey showed the water table to be at just over 10 meters. We have associated the strongest reflection event with the water-table interface. Seismic data comparison in this study is based on spectral content, total energy and signal-to-noise ratios, as well as a discussion of coherency of the primary reflection event at the water table.« less
Modelling methane fluxes from managed and restored peatlands
NASA Astrophysics Data System (ADS)
Cresto Aleina, F.; Rasche, L.; Hermans, R.; Subke, J. A.; Schneider, U. A.; Brovkin, V.
2015-12-01
European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration. Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC-M model for the assessment of the environmental impact of peatland restoration.
Methane Emissions From Western Siberian Wetlands: Heterogeneity and Sensitivity to Climate Change
NASA Astrophysics Data System (ADS)
Bohn, T. J.; Lettenmaier, D. P.; Podest, E.; McDonald, K. C.; Sathulur, K.; Bowling, L. C.; Friborg, T.
2007-12-01
Prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for prediction of wetland methane emissions at regional scales, we have coupled the Variable Infiltration Capacity macroscale hydrological model (VIC) with the Biosphere-Energy-Transfer- Hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on topographic wetness index. Using landcover classifications derived from L-band satellite synthetic aperture radar imagery, we simulated methane emissions for the Chaya River basin in western Siberia, an area that includes the Bakchar Bog, for a retrospective baseline period of 1980-1999, and evaluated their sensitivity to increases in temperature of 0-5 °C and increases in precipitation of 0-15%. The interactions of temperature and precipitation, through their effects on the water table depth, play an important role in determining methane emissions from these wetlands. The balance between these effects varies spatially, and their net effect depends in part on sub- grid topographic heterogeneity. Higher temperatures alone increase methane production in saturated areas, but cause those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raises water tables and expands the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation, to represent the climate conditions likely in western Siberia at the end of this century, results in roughly a doubling of annual methane emissions. This work was carried out at the University of Washington, at Purdue University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.
2015-12-01
A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.
McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.
2003-01-01
The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.
Significance testing testate amoeba water table reconstructions
NASA Astrophysics Data System (ADS)
Payne, Richard J.; Babeshko, Kirill V.; van Bellen, Simon; Blackford, Jeffrey J.; Booth, Robert K.; Charman, Dan J.; Ellershaw, Megan R.; Gilbert, Daniel; Hughes, Paul D. M.; Jassey, Vincent E. J.; Lamentowicz, Łukasz; Lamentowicz, Mariusz; Malysheva, Elena A.; Mauquoy, Dmitri; Mazei, Yuri; Mitchell, Edward A. D.; Swindles, Graeme T.; Tsyganov, Andrey N.; Turner, T. Edward; Telford, Richard J.
2016-04-01
Transfer functions are valuable tools in palaeoecology, but their output may not always be meaningful. A recently-developed statistical test ('randomTF') offers the potential to distinguish among reconstructions which are more likely to be useful, and those less so. We applied this test to a large number of reconstructions of peatland water table depth based on testate amoebae. Contrary to our expectations, a substantial majority (25 of 30) of these reconstructions gave non-significant results (P > 0.05). The underlying reasons for this outcome are unclear. We found no significant correlation between randomTF P-value and transfer function performance, the properties of the training set and reconstruction, or measures of transfer function fit. These results give cause for concern but we believe it would be extremely premature to discount the results of non-significant reconstructions. We stress the need for more critical assessment of transfer function output, replication of results and ecologically-informed interpretation of palaeoecological data.
Optimization of irrigation water in stone fruit and table grapes
NASA Astrophysics Data System (ADS)
de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro
2017-04-01
In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit fresh weight, yield and quality of the harvest were also measured. The irrigation applied in CTL during the 2015-16 was 6770, 7691, 6673, 6774 and 7020 m3 ha-1 year-1 while the decrease in irrigation in RDIs was 28, 40, 12, 34 and 25% for nectarine, peach, apricot, paraguayan and table grapes, respectively. The plant water status indicators used were sensitive to water deficit and showed moderate water stress in RDI. The water deficit affected, to a greater or lesser extent, the vegetative growth of the crop. On the other hand, the yield and fruit quality parameters (size, firmness, total soluble solids, acidity and maturity index) at harvest were not affected by the deficit irrigation. In this way, the water use efficiency increased significantly in RDI treatments. From the information obtained in the demonstration plots irrigation recommendations were made to the farmers of the irrigation community through the project web page. Farmers in the irrigation community are using this information to manage irrigation on their farms, thus improving the profitability of their crops. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).
A simple model of variable residence time flow and nutrient transport in the chalk
NASA Astrophysics Data System (ADS)
Jackson, Bethanna M.; Wheater, Howard S.; Mathias, Simon A.; McIntyre, Neil; Butler, Adrian P.
2006-10-01
SummaryA basic problem of modelling flow and transport in Chalk catchments arises from the existence of a deep unsaturated zone, with complex interactions between flow in fractures and water held in the fine pores of the rock matrix. The response of the water table to major infiltration episodes is rapid (of the order of days). However, chemical signals are strongly damped, suggesting that this water is of varying age, with a corresponding mixed history of nutrient loading. Clearly this effect should be represented in any model of nutrients in Chalk systems. The applicability of simplified physically-based model formulations to represent the dual response in an integrated way has been investigated by a variety of researchers, but it has been shown that these approximations break down in application to the Chalk. Mathias et al. [Mathias, S., Butler, A.P., Jackson, B.M., Wheater, H.S., this issue. Characterising flow in the Chalk unsaturated zone. In: Wheater, H.S., Peach, D., Neal, C, editors, Hydrology on LOCAR in the Pang/Lambourn, special issue of J. Hydrol, doi:10.1016/j.jhydrol.2006.04.010] present a dual permeability model that explains the observed response, but such complex formulations are not readily incorporated in catchment-scale nutrient models. This paper reviews previous approaches to modelling the Chalk and then presents a pragmatic approach, with transport of solute and water through the unsaturated zone treated separately, and combined at the water table. Varying residence times are included through considering the distance between the water table and the soil surface, and the history of nutrient application at the surface. If an average rate of downwards migration of the nutrients is assumed, it is possible to derive a travel time distribution of nitrate transport to the water table using a DTM (digital terrain model) map of elevation and information on groundwater levels. This distribution can then be implemented through difference equations. The rationale behind the model and the resulting algorithm is described, and the algorithm then applied to a hypothetical case study of nutrient loading located in the Lambourn, a groundwater-dominated Chalk catchment in Southern England. Simulated groundwater concentrations are very similar in magnitude and variability to observed Chalk groundwater series, suggesting that this simple conceptual model may well be able to capture the dominant responses of nutrient transport through the Chalk.
Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina
Speiran, G.K.; Belval, D.L.
1985-01-01
This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)
NASA Astrophysics Data System (ADS)
Rezaei, Abolfazl; Mohammadi, Zargham
2017-10-01
The safe groundwater yield plays a major role in the appropriate management of groundwater systems, particularly in (semi-)arid areas like Iran. This study incorporates both the water balance equation and the water table fluctuation to estimate the annual safe yield of the unconfined aquifer in the eastern part of the Kaftar Lake, an Iranian semiarid region. Firstly, the water balance year 2002-03, owing same water table elevation at the beginning and year-end, was chosen from the monthly representative groundwater hydrograph of the aquifer to be taken into account as a basic water year for determining the safe yield. Then the ratio of the total groundwater pumping to the annual groundwater recharge in the selected water balance year together with the quantity of total recharge occurred in the wet period (October to May) of the year of interest were applied to evaluate the annual safe yield at the initiation of the dry period (June to September) of the year of interest. Knowing the annual safe groundwater withdrawal rate at the initiation of each dry period could be helpful to decision makers in managing groundwater resources conservation. Analysis results indicate that to develop a safe management strategy in the aquifer; the ratio of the annual groundwater withdrawal to the annually recharged volume should not exceed 0.69. In the water year 2003-04 where the ratio is equal to 0.52, the water table raised up (about 0.48 m) while the groundwater level significantly declined (about 1.54 m) over the water year 2007-08 where the ratio of the annual groundwater withdrawal to the annually recharged volume (i.e., 2.76) is larger than 0.69.
Groundwater Recharge Assessment in a Remote Region of Colombia Through Citizen Science
NASA Astrophysics Data System (ADS)
Gomez, A. M.; Wise, E.; Riveros-Iregui, D.
2017-12-01
Understanding water dynamic and storage is essential for decision making in hydrology issues. In remote groundwater-dependent regions affected by population displacement and land over exploitation, especially in developing economies, limited data hinders the production of information necessary to formulate and implement effective water management plans. The community science research approach, which seeks to solve scientific questions with the participation of the community at various levels, represents an opportunity in these regions. We present results of a citizen science project developed to improve the conceptualization of groundwater flow path and to estimate the monthly direct recharge to the shallow aquifer in a remote rural region, the Man River watershed, located in one of the last foothills between the Western and Central Andes cordillera in Colombia. This project was conducted by: i) implementing a water level monitoring network aided by the community to collect weekly data from 2007 to 2010; ii) comparing the precipitation data and water table time series to identify the response of the shallow aquifer to the wet season; iii) conceptualizing specific groundwater-surface interactions through water table spatial analysis; and iv) estimating direct groundwater recharge using the Water Table Fluctuation method. Water quality test results were shared with the local community. Results show that groundwater interacts with the main tributaries to the Man River. Two scenarios were identified related to water table temporal behavior: (1) the water table rises during the transition from the dry to the wet season (between March and April), and (2) it increases one month after this transition. In general, groundwater levels descend in November, which is the end of the wet season. The work with the community provided useful insights for interpreting the collected data and allowed for information exchange concerning the groundwater quality and methods for improving the sanitary conditions of the dug wells. This project represents a valuable strategy for adding information to the hydrogeological conceptual model at low cost. It also provides opportunities for the implementation of a more informed water management plan while improving water quality and accessibility at the domestic household level.
Babaskin, D V; Babaskina, L I; Pavlova, A V
2017-12-28
The development of modern technologies in physiotherapy with the use of mineral waters, the expansion of the assortment of the medicinal and medicinal table waters as well as increasing the competitive advantages of domestic products require the more extensive marketing survey of the consumers' preferences in the market of mineral waters. The objective of the present study was the marketing evaluation of the consumers' preference in the segment of medicinal and medicinal table mineral waters in the city of Moscow. The survey involved 697 consumers of medicinal and medicinal table mineral waters. The sampling was carried out by the deterministic quota method. The field research was conducted by means of personal verbal interviews (32%) and the CATI to Web method (phone recruiting and on-line questioning) (68%) with the use of the structured questionnaire. Positioning was carried out making use of the two-dimensional schematic map and scoring assessment on an individual basis with calculation of integrated indicators. The marketing evaluation has demonstrated that the principal motive for purchasing mineral waters in more than 40% of respondents was the treatment and prevention of various diseases including disturbances in the urogenital system as well as digestive and respiratory disorders that appear to be the most frequent reasons for the consumption of mineral waters. The main factors that form the preferences of the consumers as regards the use of a concrete variety of mineral waters were elucidated. Of crucial importance for approximately 40% of the consumers (p<0.01) proved to be their health condition, the medical indications, and the available information about the therapeutic effectiveness of one or another type of mineral waters. Other factors were the quality of mineral water, its cost, the manufacturer and/or place of production, the attractiveness of the packaging, etc. The evaluation of the positioning of the mineral water consumers' preferences made it possible to identify the most preferable products in the group of medicinal mineral waters and in the group of medicinal table mineral waters. The mechanisms governing the formation of the consumers' preferences as regards the use of various mineral waters have been clarified in the course of the present study.
Brown, Delbert Wayne; Rainwater, Frank Hays
1955-01-01
The Middle Loup division of the lower Platte River basin is an area of 650 square miles which includes the Middle Loup River valley from the confluence of the Middle and North Loup Rivers in Howard County, Nebr., to the site of the diversion dam that the U. S. Bureau of Reclamation proposes to construct in Blaine County near Milburn, Nebr. It also includes land in Howard and Sherman Counties designated by the Bureau of Reclamation as the Farwell unit. Irrigable land in this division is present on both sides of the Middle Loup River and along its tributaries. Most of the Middle Loup River valley is already irrigated by the Middle Loup Public Power and Irrigation District, which is strictly an irrigation enterprise. The uplands are not irrigated. Loess, dune sand, gravel, silt, and clay of Pleistocene or Recent age are exposed in the report area. These unconsolidated sediments rest on bedrock consisting of alternating layers of shale, mudstone, sandstone, and limestone, which are essentially fiat lying or slightly warped. The Ogallala formation, of Tertiary (Pliocene) age, immediately underlies the Pleistocene sediments and rests on the Pierre shale of Cretaceous age. Belts of alluvium occupy the Middle Loup River valley and the valleys of the principal streams in the area. The soils, dune sand, and terrace deposits are the most recent deposits. The Ogallala formation is water bearing and is the source of supply for some domestic and livestock wells. The saturated part of the sand and gravel formations of Pleistocene age, which yields water freely to wells, is the most important aquifer in the Middle Loup division. The water generally is under water-table conditions. The yields of properly constructed wells range from a few gallons per minute (gpm) to as much as 1,800 gpm. Some wells tap water in both the sand and gravel of Pleistocene age and in the underlying Ogallala formation. No wells are known to penetrate into formations older than the Ogallala. Fluctuations of the water table indicate changes in the amount of ground water stored in the water-bearing formations. The principal factors controlling the rise of the water table are the amount of precipitation within the area, the quantity of water coming into the area as underflow from the west and northwest, seepage from the Middle Loup River at times when the water surface in the river is higher than the adjoining water table, and the infiltration of irrigation water not utilized by vegetation or lost by runoff or evaporation. The principal factors controlling the decline of the water table are the discharge as effluent seepage into the Middle Loup River and its tributaries, the amount of water pumped from wells, evapotranspiration losses, and the amount of water leaving the area as underflow. Periodic water-level measurements were made in a total of 241 observation wells during the period 1948-50. Hydrographs of three observation wells having a longer period of record (1934-50) indicate that the water table rose slightly from 1934 until 1950 and that it remained nearly constant during the 1950 water year. The configuration of the water table in the Middle Loup division shows that, except north and northwest of Sargent, the Middle Loup River is an effluent, or gaining, stream throughout its entire length in this area. Thus any rise or fall in the ground-water level will increase or decrease the discharge of the river. The river recharges the ground- water reservoir only during periods when it is at flood stage. The depth to the water table from the land surface is governed largely by irregularities in topography. The depth to water is less than 10 feet near the river and increases to as much as 60 feet near the valley margins and the bordering intermediate slopes. In the Far- well unit the depth to water is more than 100 feet and in some parts more than 150 feet. Ground water pumped from wells is the source of supply for the principal municipalities in th
40 CFR 132.3 - Adoption of criteria.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with: (a) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a... chronic water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific... QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.3 Adoption of criteria. The Great Lakes States and...
40 CFR 132.3 - Adoption of criteria.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with: (a) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a... chronic water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific... QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.3 Adoption of criteria. The Great Lakes States and...
40 CFR 132.3 - Adoption of criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with: (a) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a... chronic water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific... QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.3 Adoption of criteria. The Great Lakes States and...
40 CFR 132.3 - Adoption of criteria.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with: (a) The acute water quality criteria for protection of aquatic life in Table 1 of this part, or a... chronic water quality criteria for protection of aquatic life in Table 2 of this part, or a site-specific... QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM § 132.3 Adoption of criteria. The Great Lakes States and...
Chemical Characterization of Simulated Boiling Water Reactor Coolant
1990-05-01
33 Table 3. 1: BCCL Sample Block Design Calculations ........................................... 45 Table 5.1: Gas Absorption...cover gas . The cool, degassed pure water is pumped through a regenerative heat exchanger and then through an electric feedwater heater. The feedwater is...POINTS DWCMRHEAT DOWNOMER---EXCHANGER CHEMICAL GAHP INJECTIOIN PUMP SYSTEM COIVER GAS IN-CLIRE SECTION CAGN TANK RECOMBINER! ______ DEMINERALIZER (Cic
Microtropography and water table fluctuation in a sphagnum mire
E.S. Verry
1984-01-01
A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...
Investigations on Local Seismic Phases and Modeling of Seismic Signals
1993-10-31
basement is 1 km. The water table, wt , is from Doty and Thordarson (1983). It separates the dry, DT, and the wet, WT, tuff levels. Above these volcanic...regional variations of t*(f) in the United States. Geophys. J. R. astr. Soc. 82 , 125-140 Doty, G. C. and W. Thordarson , 1983. Water table in rocks of
White, W.N.
1932-01-01
Fluctuations of water levels in wells, if critically studied, may give much information as to the occurrence, movement, and quantity of available ground water. In some localities the ground-water level has been observed to decline during the day and to rise at night, the decline beginning at about the same hour every morning and the rise at about the same hour every night. This daily decline is due to the withdrawal of ground water from the zone of saturation by plants, and the rise at night is due to upward movement of water under slight artesian pressure from permeable beds of sand and gravel at some depth beneath the water table.
Brahana, J.V.; Bradley, M.W.
1986-01-01
A sand and gravel aquifer about 65 feet thick underlies Wurtsmith Air Force Base in northeastern lower Michigan. The water table ranges in depth from 10 feet to 25 feet below land surface. Mathematical models indicate that ground-water flow ranges from 0.8 feet per day in the eastern part of the Base to 0.3 feet per day in the western part. Trichlorethylene leaked from a buried storage tank in the southeastern part of the Base and moved northeastward in a plume, contaminating Base water-supply wells. Concentrations exceed 1,000 micrograms per liter in the most highly contaminated part of the plume. Purge pumping removed some of the trichloroethylene and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. (USGS)
Estimating soil matric potential in Owens Valley, California
Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.
1988-01-01
Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Daniels, A.; Kane, E. S.; Lilleskov, E. A.; Kolka, R. K.; Chimner, R. A.; Potvin, L. R.; Romanowicz, K. J.
2012-12-01
Northern wetlands, peatlands in particular, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Carbon accumulation in peatlands is the result of retarded decomposition due to low oxygen availability in these water-logged environments. Changes in our planet's climate cycles are altering peatland hydrology and vegetation communities, resulting in changes in their ability to sequester carbon through increases in peat carbon oxidation and mineralization. To date, the consequences of altered hydrology and changes in vegetation communities, and their interactive effects on carbon storage, are not well understood. We have initiated a research plan that assesses the varying roles that water table variation and vegetation communities have on extracellular enzyme activity and labile carbon availability in porewater from an ombrotrophic bog. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content in addressing our hypotheses of responses to climate change drivers. Research on these components will evaluate the relative importance of biology, water table, and their interactive affects on the porewater quality of peatlands. We hypothesized that oxygen availability will strongly influence decomposition in these systems but that this response will largely be mediated by changes in plant community and the enzymes associated with root exudates and mycorrhizae. To date, our data confirm vegetation and water table related patterns. Acetate and propionate concentrations in the sedge-dominated communities dropped significantly with depth and drainage, relative to the control and ericaceous treatments, which likely reflects changes in redox potential owing to physiological differences in sedges which contain aerenchyma cell, and a reduction in the products of anaerobic metabolism. DOC increased in the lowered water table treatments in all vegetation community types. Enzymatic activities have changed in response to water table level and vegetation community. While we have not detected significant levels of peroxidase enzymes in porewater, initial results indicate that hydrolase enzyme activities were higher in the sedge-dominated communities with a lowered water table. Through this research, we are hoping to advance our knowledge of the drivers behind peatland biogeochemistry and how ombrotrophic peat systems may respond to climate change influences.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.
1989-01-01
Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by intercepted recharge.
Responses of riparian cottonwoods to alluvial water table declines
Scott, M.L.; Shafroth, P.B.; Auble, G.T.
1999-01-01
Human demands for surface and shallow alluvial groundwater have contributed to the loss, fragmentation, and simplification of riparian ecosystems. Populus species typically dominate riparian ecosystems throughout arid and semiarid regions of North American and efforts to minimize loss of riparian Populus requires an integrated understanding of the role of surface and groundwater dynamics in the establishment of new, and maintenance of existing, stands. In a controlled, whole-stand field experiment, we quantified responses of Populus morphology, growth, and mortality to water stress resulting from sustained water table decline following in-channel sand mining along an ephemeral sandbed stream in eastern Colorado, USA. We measured live crown volume, radial stem growth, annual branch increment, and mortality of 689 live Populus deltoides subsp. monilifera stems over four years in conjunction with localized water table declines. Measurements began one year prior to mining and included trees in both affected and unaffected areas. Populus demonstrated a threshold response to water table declines in medium alluvial sands; sustained declines ???1 m produced leaf desiccation and branch dieback within three weeks and significant declines in live crown volume, stem growth, and 88% mortality over a three-year period. Declines in live Crown volume proved to be a significant leading indicator of mortality in the following year. A logistic regression of tree survival probability against the prior year's live crown volume was significant (-2 log likelihood = 270, ??2 with 1 df = 232, P < 0.0001) and trees with absolute declines in live crown volume of ???30 during one year had survival probabilities <0.5 in the following year. In contrast, more gradual water table declines of ~0.5 m had no measurable effect on mortality, stem growth, or live crown volume and produced significant declines only in annual branch growth increments. Developing quantitative information on the timing and extent of morphological responses and mortality of Populus to the rate, depth, and duration of water table declines can assist in the design of management prescriptions to minimize impacts of alluvial groundwater depletion on existing riparian Populus forests.
NASA Astrophysics Data System (ADS)
Amos, Richard T.; Ulrich Mayer, K.
2006-09-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH 4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies
NASA Astrophysics Data System (ADS)
Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn
2015-04-01
Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.
Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine
2018-03-01
Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas<0.9m NAVD. However, current simulations do not consider the range of rainfall events that have led to water table elevations>1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.
Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.
Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram
2009-03-01
We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Weights (Pounds) of Outboard Motor and Related Equipment for Various Boat Horsepower Ratings 4 Table 4 to Subpart H of Part 183... or Less Pt. 183, Subpt. H, Table 4 Table 4 to Subpart H of Part 183—Weights (Pounds) of Outboard...
Groundwater flood of a river terrace in southwest Wisconsin, USA
NASA Astrophysics Data System (ADS)
Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas
2014-09-01
Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.
1989-01-01
survey for the southern part of Washoe Ccunty provides data on sane physical and chemical properties of soils . The data deteied to be pertinent to on...base soils is presented in Table 3, Physical and Chemical Properties of Soils Occrring on the NVANG Base in Reno, Nevada. Analyses of surface water and...NVANG Base . . . ...... .. . .. . . 111-6 3. Physical and Chemical Prperties of Soils Occrring on the NVANG Base in Reno, Nevada
NASA Astrophysics Data System (ADS)
Hu, J. C.; Wu, P. C.; Tung, H.; Tsai, M. C.
2017-12-01
In 1968, there were 2,200 wells in the Taipei Basin used for water supply to meet the requirement of high population density. The overuse of ground water lead to the land subsidence rate up to 5 cm/yr. Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin demonstrated temporary fluctuation induced by pumping water for large deep excavation site or engineering usage. The previous study based on precise leveling suggested that the surface deformation was highly associated with the recovery of water level. In 1989, widespread uplift dominated in Taipei basin due to the recovery of ground water Table. In this study, we use 37 high-resolution X-band COSMO-SkyMed radar images from May 2011 to April 2015 to characterize deformation pattern in the period of construction of Mass Rapid Transportation (MRT). We also use 30 wells and 380 benchmarks of precise leveling in Taipei basin to study the correlation of surface deformation and change of ground water table. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, the high water pumping in two major aquifers, Jignme and Wuku Foramtions, before the underground construction for MRT led to inflict surface deformation and no time delay observed for surface deformation during the water pumping. It implies that the poro-elastic effect dominates in major aquifers in Taipei basin.
Olcott, Perry G.
1995-01-01
The State of New York and the six New England States of Maine, Vermont, New Hampshire, Massachusetts, Connecticut, and Rhode Island compose Segment 12 of this Atlas (fig. 1). The seven States have a total land area of about 116,000 square miles (table 1); all but a small area in southwestern New York has been glaciated. Population in the States of Segment 12 totals about 30,408,000 (table 1) and is concentrated in southern and eastern Massachusetts, Connecticut, Rhode Island, and especially New York (fig. 1). The northern part of the segment and the mountainous areas of New York and much of New Hampshire, Vermont, and Maine are sparsely populated. The percentage of population supplied from ground-water sources during 1980 was 54 to 60 percent in Maine, New Hampshire, and Vermont (table 1). Nearly all rural, domestic, and small-community water systems obtain water from wells that are, in comparison with other sources, the safest and the least expensive to install and maintain. Where water demand is great-in the urban areas of New York, Connecticut, Massachusetts, and Rhode Island-sophisticated reservoir, pipeline, and purification systems are economically feasible and are needed to meet demands. Surface water is the principal source of supply in these four States, and ground water was used to supply only 24 to 35 percent of their population during 1980 (table 1).
Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades
1995-01-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
2010-07-01
missionaries arrived circa A.D. 1750 a proto-agriculture culture existed in the region (Travis AFB, 2003b). The Southern Patwin were adversely affected by...water table at the Base is 10 feet below grade (Travis AFB, 2003a). Some topographic relief in the form of very low ridges is provided by
Disposal of high-level nuclear waste above the water table in arid regions
Roseboom, Eugene H.
1983-01-01
Locating a repository in the unsaturated zone of arid regions eliminates or simplifies many of the technological problems involved in designing a repository for operation below the water table and predicting its performance. It also offers possible accessibility and ease of monitoring throughout the operational period and possible retrieval of waste long after. The risks inherent in such a repository appear to be no greater than in one located in the saturated zone; in fact, many aspects of such a repository's performance will be much easier to predict and the uncertainties will be reduced correspondingly. A major new concern would be whether future climatic changes could produce significant consequences due to possible rise of the water table or increased flux of water through the repository. If spent fuel were used as a waste form, a second new concern would be the rates of escape of gaseous iodine-129 and carbon-14 to the atmosphere.
Water accounting for stressed river basins based on water resources management models.
Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro
2016-09-15
Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Parks, W.S.; Mirecki, J.E.
1992-01-01
An investigation was conducted from 1989 to 1991 to collect and interpret hydrogeologic and ground-water-quality data specific to the Shelby County landfill in east Memphis, Tennessee. Eighteen wells were installed in the alluvial and Memphis aquifers at the landfill. Hydrogeologic data collected showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and elsewhere consists predominantly of fine sand and silt with lenses of clay. A water-table map of the landfill vicinity confirms the existence of a depression in the water table north and northeast of the landfill and indicates that ground water flows northeast from the Wolf River passing beneath the landfill toward the depression in the water table. A map of the potentiometric surface of the Memphis aquifer shows that water levels were anomalously high just north of the landfill, indicating downward leakage of water from the alluvial aquifer to the Memphis aquifer. An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table and that contaminants in the alluvial aquifer have migrated downward into the Memphis aquifer. The leachate plume can be characterized by concentrations of certain major and trace inorganic constituents that are 2 to 20 times higher than samples from upgradient and background alluvial aquifer wells. The major and trace constituents that best characterize the leachate plume are total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium. Several of these constituents (specifically dissolved solids, calcium, sodium, and possibly ammonia nitrogen, chloride, barium, and strontium) were detected in elevated concentrations in samples from certain Memphis aquifer wells. Elevated concentrations were detected in samples from the Memphis aquifer beneath the leachate plume where the confining unit is thin or absent. The distribution of halogenated alkanes (specifically dichlorodifluoromethane and trichlorofluoromethane) and halogenated alkenes (specifically 1,2-trans-dichloroethene and vinyl chloride) in samples from wells screened in both the alluvial and Memphis aquifers is similar to the distribution of major and trace inorganic constituents that characterize the leachate plume. The ground-water supply most susceptible to contamination from the Shelby County landfill is the Sheahan well field of the Memphis Light, Gas and Water Division. This well field is about 5 miles downgradient from the landfill in the direction of ground-water flow. Based on an estimated velocity of 0.5 to 1.5 feet per day, ground water would require about 50 to 150 years to travel from the Shelby County landfill to the Sheahan wellfield. Given the time and distance of transport, any contaminants in the ground water would not likely persistto reach this well field because of the effects of various physical, chemical, and biological processes, including dilution and adsorption.
Walter, Donald A.; Masterson, John P.
2003-01-01
The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.
1983-09-01
many broad-based and long- associated with the Upper Mississippi les of such problems include increasing water quality issues, balancing growth 1...farther west. In the pioneer the end of the St. Paul District portion sites (disturbed sites without previous growth where Mississippi River. species of...have a high water table in lower areas. The percolation rate is generally less than 10 minutes per inch. These *soils tend to be acid and low in
Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.
2017-02-13
This report describes a study of the hydrogeology and simulation of groundwater flow for the Canadian River alluvial aquifer in western and central Oklahoma conducted by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board. The report (1) quantifies the groundwater resources of the Canadian River alluvial aquifer by developing a conceptual model, (2) summarizes the general water quality of the Canadian River alluvial aquifer groundwater by using data collected during August and September 2013, (3) evaluates the effects of estimated equal proportionate share (EPS) on aquifer storage and streamflow for time periods of 20, 40, and 50 years into the future by using numerical groundwater-flow models, and (4) evaluates the effects of present-day groundwater pumping over a 50-year period and sustained hypothetical drought conditions over a 10-year period on stream base flow and groundwater in storage by using numerical flow models. The Canadian River alluvial aquifer is a Quaternary-age alluvial and terrace unit consisting of beds of clay, silt, sand, and fine gravel sediments unconformably overlying Tertiary-, Permian-, and Pennsylvanian-age sedimentary rocks. For groundwater-flow modeling purposes, the Canadian River was divided into Reach I, extending from the Texas border to the Canadian River at the Bridgeport, Okla., streamgage (07228500), and Reach II, extending downstream from the Canadian River at the Bridgeport, Okla., streamgage (07228500), to the confluence of the river with Eufaula Lake. The Canadian River alluvial aquifer spans multiple climate divisions, ranging from semiarid in the west to humid subtropical in the east. The average annual precipitation in the study area from 1896 to 2014 was 34.4 inches per year (in/yr).A hydrogeologic framework of the Canadian River alluvial aquifer was developed that includes the areal and vertical extent of the aquifer and the distribution, texture variability, and hydraulic properties of aquifer materials. The aquifer areal extent ranged from less than 0.2 to 8.5 miles wide. The maximum aquifer thickness was 120 feet (ft), and the average aquifer thickness was 50 ft. Average horizontal hydraulic conductivity for the Canadian River alluvial aquifer was calculated to be 39 feet per day, and the maximum horizontal hydraulic conductivity was calculated to be 100 feet per day.Recharge rates to the Canadian River alluvial aquifer were estimated by using a soil-water-balance code to estimate the spatial distribution of groundwater recharge and a water-table fluctuation method to estimate localized recharge rates. By using daily precipitation and temperature data from 39 climate stations, recharge was estimated to average 3.4 in/yr, which corresponds to 8.7 percent of precipitation as recharge for the Canadian River alluvial aquifer from 1981 to 2013. The water-table fluctuation method was used at one site where continuous water-level observation data were available to estimate the percentage of precipitation that becomes groundwater recharge. Estimated annual recharge at that site was 9.7 in/yr during 2014.Groundwater flow in the Canadian River alluvial aquifer was identified and quantified by a conceptual flow model for the period 1981–2013. Inflows to the Canadian River alluvial aquifer include recharge to the water table from precipitation, lateral flow from the surrounding bedrock, and flow from the Canadian River, whereas outflows include flow to the Canadian River (base-flow gain), evapotranspiration, and groundwater use. Total annual recharge inflows estimated by the soil-water-balance code were multiplied by the area of each reach and then averaged over the simulated period to produce an annual average of 28,919 acre-feet per year (acre-ft/yr) for Reach I and 82,006 acre-ft/yr for Reach II. Stream base flow to the Canadian River was estimated to be the largest outflow of groundwater from the aquifer, measured at four streamgages, along with evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I and 3.08 (acre-ft/acre)/yr in Reach II for a 20-year period. For the 40- and 50-year periods, the EPS rate was determined to be 1.34 (acre-ft/acre)/yr in Reach I and 3.08 (acre-ft/acre)/yr in Reach II. Storage changes decreased in tandem with simulated groundwater pumping and were minimal after the first 15 simulated years for Reach I and the first 8 simulated years for Reach II.Groundwater pumping at year 2013 rates for a period of 50 years resulted in a 0.2-percent decrease in groundwater-storage volumes in Reach I and a 0.6-percent decrease in the groundwater-storage volumes in Reach II. The small changes in storage are due to groundwater use by pumping, which composes a small percentage of the total groundwater-flow model budgets for Reaches I and II.A sustained drought scenario was used to evaluate the effects of a hypothetical 10-year drought on water availability. A 10-year period was chosen where the effects of drought conditions would be simulated by decreasing recharge by 75 percent. In Reach I, average simulated stream base flow at the Bridgeport streamgage (07228500) decreased by 58 percent during the hypothetical 10-year drought compared to average simulated stream base flow during the nondrought period. In Reach II, average simulated stream base flows at the Purcell streamgage (07229200) and Calvin streamgage (07231500) decreased by 64 percent and 54 percent, respectively. In Reach I, the groundwater-storage drought scenario resulted in a storage decline of 30 thousand acre-feet, or an average decline in the water table of 1.2 ft. In Reach II, the groundwater-storage drought scenario resulted in a storage decline of 71 thousand acre-feet, or an average decline in the water table of 2.0 ft.
Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA)
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Screaton, Elizabeth J.; Martin, Jonathan B.; Bailly-Comte, Vincent
2012-06-01
The karstic upper Floridan aquifer in north-central Florida (USA) is recharged by both diffuse and allogenic recharge. To understand how recharged water moves within the aquifer, water levels and specific conductivities were monitored and slug tests were conducted in wells installed in the aquifer surrounding the Santa Fe River Sink and Rise. Results indicate that diffuse recharge does not mix rapidly within the aquifer but instead flows horizontally. Stratification may be aided by the high matrix porosity of the eogenetic karst aquifer. Purging wells for sample collection perturbed conductivity for several days, reflecting mixing of the stratified water and rendering collection of representative samples difficult. Interpretive numerical simulations suggest that diffuse recharge impacts the intrusion of allogenic water from the conduit by increasing hydraulic head in the surrounding aquifer and thereby reducing influx to the aquifer from the conduit. In turn, the increase of head within the conduits affects flow paths of diffuse recharge by moving newly recharged water vertically as the water table rises and falls. This movement may result in a broad vertical zone of dissolution at the water table above the conduit system, with thinner and more focused water-table dissolution at greater distance from the conduit.
Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D.
2009-01-01
Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth. ?? 2009 Springer Science+Business Media, LLC.
Almendinger, J.E.; Leete, J.H.
1998-01-01
. Calcareous fens in Minnesota are spring-seepage peatlands with a distinctive flora of rare calciphilic species. Peat characteristics and groundwater geochemistry were determined for six calcareous fens in the Minnesota River Basin to better understand the physical structure and chemical processes associated with stands of rare vegetation. Onset of peat accumulation in three of the fens ranged from about 4,700 to 11,000 14C yrs BP and probably resulted from a combination of climate change and local hydrogeologic conditions. Most peat cores had a carbonate-bearing surface zone with greater than 10% carbonates (average 27%, dry wt basis), an underlying carbonate-depleted zone with 10% or less carbonates (average 4%), and a carbonate-bearing lower zone again with greater than 10% carbonates (average 42%). This carbonate zonation was hypothesized to result from the effect of water-table level on carbonate equilibria: carbonate precipitation occurs when the water table is above a critical level, and carbonate dissolution occurs when the water table is lower. Other processes that changed the major ion concentrations in upwelling groundwater include dilution by rain water, sulfate reduction or sulfide oxidation, and ion adsorption or exchange. Geochemical modeling indicated that average shallow water in the calcareous fens during the study period was groundwater mixed with about 6 to 13% rain water. Carbonate precipitation in the surface zone of calcareous fens could be decreased by a number of human activities, especially those that lower the water table. Such changes in shallow water geochemistry could alter the growing conditions that apparently sustain rare fen vegetation.
NASA Astrophysics Data System (ADS)
Cowling, S. A.
2016-11-01
The role that changes in sea level have on potential carbon-climate feedbacks are discussed as a potential contributing mechanism for terminating glacial periods. Focus will be on coastal wetlands because these systems can be substantially altered by changing sea level and ground water table depth (WTD); in addition to being important moderators of the exchange of nutrients and energy between terrestrial and marine ecosystems. A hypothesis is outlined that describes how the release of carbon from formerly anaerobic wetland soils and sediments can influence climate when sea levels begin to decline. As ground WTD deepens and eventually recedes from the surface, coastal wetland basins may become isolated from their belowground source of water. With their primary source of base flow removed, coastal wetlands likely dried up, promoting decomposition of the carbon compounds buried in their sediments. Depending on the timing of basin isolation and the timing of decomposition, glacial sea level lows could have triggered a relatively large positive carbon feedback on climate warming, just at the time when a new interglacial period is about to begin.
Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen Miller
2014-01-01
Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...
Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov
2015-01-01
Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...
Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov
2017-01-01
Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...
Tank 241-B-108, cores 172 and 173 analytical results for the final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuzum, J.L., Fluoro Daniel Hanford
1997-03-04
The Data Summary Table (Table 3) included in this report compiles analytical results in compliance with all applicable DQOS. Liquid subsamples that were prepared for analysis by an acid adjustment of the direct subsample are indicated by a `D` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a fusion digest are indicated by an `F` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a water digest are indicated by a I.wl. or an `I` in the A column of Table 3. Due to poormore » precision and accuracy in original analysis of both Lower Half Segment 2 of Core 173 and the core composite of Core 173, fusion and water digests were performed for a second time. Precision and accuracy improved with the repreparation of Core 173 Composite. Analyses with the repreparation of Lower Half Segment 2 of Core 173 did not show improvement and suggest sample heterogeneity. Results from both preparations are included in Table 3.« less
Goode, Daniel J.
1998-01-01
The use of environmental tracers in characterization of ground-water systems is investigated through mathematical modeling of ground-water age and atmospheric tracer transport, and by a field study at the Mirror Lake site, New Hampshire. Theory is presented for modeling ground-water age using the advective-dispersive transport equation. The transport equation includes a zero-order source of unit strength, corresponding to the rate of aging, and can accommodate matrix diffusion and other exchange processes. The effect of temperature fluctuations and layered soils on transport of atmospheric gases to the water table is investigated using a one-dimensional numerical model of chlorofluorocarbon (CFC-11) transport. The nonlinear relation between temperature and Henry's Law coefficient (reflecting air/water phase partitioning) can cause the apparent recharge temperature to be elevated above the annual mean temperature where the water table is shallow. In addition, fine-grained soils can isolate the air phase in the unsaturated zone from the atmosphere. At the USGS' Mirror Lake, New Hampshire fractured-rock research site CFC concentrations near the water table are depleted where dissolved oxygen is low. CFC-11 and CFC-113 are completely absent under anaerobic conditions, while CFC-12 is as low as one-third of modern concentrations. Anaerobic biodegradation apparently consumes CFC's near the water table at this site. One area of active degradation appears to be associated with streamflow loss to ground water. Soil gas concentrations are generally close to atmospheric levels, although some spatial correlation is observed between depleted concentrations of CFC-11 and CFC-113 in soil gas and water-table samples. Results of unsaturated-zone monitoring indicate that recharge occurs throughout the year in the watershed, even during summer evapotranspiration periods, and that seasonal temperature fluctuations occur as much as 5 meters below land surface. Application of ground-water age and CFC-11 transport models to the large-scale ground-water system at Mirror Lake illustrates the similarities between age and chemical transport. Generally, bedrock porosities required to match observed apparent ages from CFC concentrations are high relative to porosities measured on cores. Although matrix diffusion has no effect on steady-state age, it can significantly reduce CFC concentrations in fractured rock in which the effective porosity is low.
Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient.
Marcisz, Katarzyna; Lamentowicz, Lukasz; Słowińska, Sandra; Słowiński, Michał; Muszak, Witold; Lamentowicz, Mariusz
2014-10-01
Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal-Wallis test, p=0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer. Copyright © 2014 Elsevier GmbH. All rights reserved.
Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA
Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W.
2007-01-01
Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium. ?? Springer-Verlag 2007.
Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India.
Tripathi, Amarnath; Mishra, Ashok K; Verma, Geetanjali
2016-07-01
Indian states like Punjab and Haryana, epicenters of the Green Revolution, are facing severe groundwater shortages and falling water tables. Recognizing it as a serious concern, the Government of Punjab enacted the Punjab Preservation of Subsoil Water Act in 2009 (or the 2009 act) to slow groundwater depletion. The objective of this study is to assess the impact of this policy on groundwater depletion, using panel data from 1985 to 2011. Results from this study find a robust effect of the 2009 act on reducing groundwater depletion. Our models for pre-monsoon, post-monsoon, and overall periods of analysis find that since implementation of the 2009 act, groundwater tables have improved significantly. Second, our study reveals that higher shares of tube wells per total cropped area and increased population density have led to a significant decline in the groundwater tables. On the other hand, rainfall and the share of area irrigated by surface water have had an augmenting effect on groundwater resources. In the two models, pre-monsoon and post-monsoon, this study shows that seasonality plays a key role in determining the groundwater table in Punjab. Specifically, monsoon rainfall has a very prominent impact on groundwater.
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Wahl, M.; Turnbull, S. J.
2015-12-01
Historically the Midwestern United State was a region dominated by prairie grasses and wetlands. To make use of the rich soils underlying these fertile environments, farmers converted the land to agriculture and currently the Midwest is a region of intensive agricultural production, with agriculture being a predominant land use. The Midwest is a region of gentle slopes, tight soils, and high water tables, and in order to make the lands suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. As part of the Minnesota River Basin Integrated Study we are simulating nested watersheds in a sub-basin of the Minnesota River Basin, Seven Mile Creek, using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis) to simulate water, sediment, and nutrients. Representative of the larger basin, more than 80% of the land in the watershed is dedicated to agricultural practices. From a process perspective, the hydrology is complicated, with snow accumulation and melt, frozen soil, and tile drains all being important processes within the watershed. In this study we attempt to explicitly simulate these processes, including the tile drains, which are simulated as a network of subsurface pipes that collect water from the local water table. Within the watershed, tiles discharge to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. Testing of the methods on smaller basins demonstrates the ability of the model to simulate measured tile flow. At the larger scale, the model demonstrates ability to simulate flow and sediments. Sparse nutrient data limit the assessment of nutrient simulations. The models are being used to asses an array of potential future land use scenarios, including predevelopment and increased agricultural use. Results from these simulations will be presented. Preliminary results indicate that tile drains increase discharge and erosion in the watershed.
The National Study of Water Management during Drought: A Research Assessment
1991-08-01
Planning: June 1990 53 Table 11-6 Effectiveness of Drought Response Measures Implemented in Various Locations 61 Table 11-7 The Structure of Existing...Status of Drought Planning June 1990 52 Figure III-I The Short Term Effects of Severe Drought on the Aggregate Economy 72 Figure 111-2 Rationing in the...Market for Water 73 Figure 111-3 Soil-Water-Plant System 83 Figure 111-4 Farm System 87 Figure 1II-5 Economic Effects of Drought on Navigation 98
Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, northeast China
Olsson, Linda; Ye, Siyuan; Yu, Xueyang; Wei, Mengjie; Krauss, Ken W.; Brix, Hans
2015-01-01
Many factors are known to influence greenhouse gas emissions from coastal wetlands, but it is still unclear which factors are most important under field conditions when they are all acting simultaneously. The objective of this study was to assess the effects of water table, salinity, soil temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda wetlands were net CH4 sinks whereas the Phragmites wetlands and the rice paddy were net CH4sources emitting 1.2–6.1 g CH4 m−2 y−1. The Phragmites wetlands emitted the most CH4 per unit area and the most CH4 relative to CO2. The main controlling factors for the CH4 emissions were water table, temperature and salinity. The CH4 emission was accelerated at high and constant (or managed) water tables and decreased at water tables below the soil surface. High temperatures enhanced CH4 emissions, and emission rates were consistently low (< 1 mg CH4 m−2 h) at soil temperatures <18 °C. At salinity levels > 18 ppt, the CH4 emission rates were always low (< 1 mg CH4 m−2 h−1) probably because methanogens were outcompeted by sulphate reducing bacteria. Saline Phragmites wetlands can, however, emit significant amounts of CH4 as CH4 produced in deep soil layers are transported through the air-space tissue of the plants to the atmosphere. The CH4 emission from coastal wetlands can be reduced by creating fluctuating water tables, including water tables below the soil surface, as well as by occasional flooding by high-salinity water. The effects of water management schemes on the biological communities in the wetlands must, however, be carefully studied prior to the management in order to avoid undesirable effects on the wetland communities.
Sequence stratigraphic distribution of coaly rocks: Fundamental controls and paralic examples
Bohacs, K.; Suter, J.
1997-01-01
Significant volumes of terrigenous organic matter can be preserved to form coals only when and where the overall increase in accommodation approximately equals the production rate of peat. Accommodation is a function of subsidence and base level. For mires, base level is very specifically the groundwater table. In paralic settings, the groundwater table is strongly controlled by sea level and the precipitation/evaporation ratio. Peat accumulates over a range of rates, but always with a definite maximum rate set by original organic productivity and space available below depositional base level (groundwater table). Below a threshold accommodation rate (nonzero), no continuous peats accumulate, due to falling or low groundwater table, sedimentary bypass, and extensive erosion by fluvial channels. This is typical of upper highstand, lowstand fan, and basal lowstand-wedge systems tracts. Higher accommodation rates provide relatively stable conditions with rising groundwater tables. Mires initiate and thrive, quickly filling local accommodation vertically and expanding laterally, favoring accumulation of laterally continuous coals in paralic zones within both middle lowstand and middle highstand systems tracts. If the accommodation increase balances or slightly exceeds organic productivity, mires accumulate peat vertically, yielding thicker, more isolated coals most likely during of late lowstand-early transgressive and late transgressive-early highstand periods. At very large accommodation increases, mires are stressed and eventually inundated by clastics or standing water (as in middle transgressive systems tracts). These relations should be valid for mires in all settings, including alluvial, lake plain, and paralic. The tie to sea level in paralic zones depends on local subsidence, sediment supply, and groundwater regimes. These concepts are also useful for investigating the distribution of seal and reservoir facies in nonmarine settings.
Vertical Gradients in Water Chemistry and Age in the Southern High Plains Aquifer, Texas, 2002
McMahon, P.B.; Böhlke, J.K.; Lehman, T.M.
2004-01-01
The southern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of New Mexico and Texas. Despite the aquifer's importance to the overall economy of the southern High Plains, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the southern High Plains aquifer at two locations (Castro and Hale Counties, Texas) were analyzed for field parameters, major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, and dissolved gases to evaluate vertical gradients in water chemistry and age in the aquifer. Tritium measurements indicate that recent (post-1953) recharge was present near the water table and that deeper water was recharged before 1953. Concentrations of dissolved oxygen were largest (2.6 to 5.6 milligrams per liter) at the water table and decreased with depth below the water table. The smallest concentrations were less than 0.5 milligram per liter. The largest major-ion concentrations generally were detected at the water table because of the effects of overlying agricultural activities, as indicated by postbomb tritium concentrations and elevated nitrate and pesticide concentrations at the water table. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions and mixing with water from the underlying aquifer in rocks of Cretaceous age. The concentration increases primarily were accounted for by dissolved sodium, bicarbonate, chloride, and sulfate. Nitrite plus nitrate concentrations at the water table were 2.0 to 6.1 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer to a maximum concentration of 0.55 milligram per liter as nitrogen. Dissolved-gas and nitrogen-isotope data from the deep wells in Castro County indicate that denitrification occurred in the aquifer, removing 74 to more than 97 percent of the nitrate originally present in recharge. There was no evidence of denitrification in the deep part of the aquifer in Hale County. After correcting for denitrification effects, the background concentration of nitrate in water recharged before 1953 ranged from 0.4 to 3.2 milligrams per liter as nitrogen, with an average of 1.6 milligrams per liter as nitrogen. The d15N composition of background nitrate at the time of recharge was estimated to range from 9.6 to 12.3 per mil. Mass-balance models indicate that the decreases in dissolved oxygen and nitrate concentrations and small increases in major-ion concentrations along flow paths can be accounted for by small amounts of silicate-mineral and calcite dissolution; SiO2, goethite, and clay-mineral precipitation; organic-carbon and pyrite oxidation; denitrification; and cation exchange. Mass-balance models for some wells also required mixing with water from the underlying aquifer in rocks of Cretaceous age to achieve mole and isotope balances. Carbon mass transfers identified in the models were used to adjust radiocarbon ages of water samples recharged before 1953. Adjusted radiocarbon ages ranged from less than 1,000 to 9,000 carbon-14 years before present. Radiocarbon ages were more sensitive to uncertainties in the carbon-14 content of recharge than uncertainties in carbon mass transfers, leading to 1-sigma uncertainties of about ?2,000 years in the adjusted ages. Despite these relatively large uncertainties in adjusted radiocarbon ages, it appears that deep water in the aquifer was considerably older (at least 1,000 years) than water near the water table. There was essentially no change in ground-water age with depth in deeper parts of the aquifer, indicating that water in that
A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies
NASA Astrophysics Data System (ADS)
Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.
2014-12-01
Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.
Isotopic Survey of Lake Davis and the Local Groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, M N; Moran, J E; Singleton, M J
2007-08-21
In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less
NASA Astrophysics Data System (ADS)
Ek, M. B.; Yang, R.
2016-12-01
Skillful short-term weather forecasts, which rely heavily on quality atmospheric initial conditions, have a fundamental limit of about two weeks owing to the chaotic nature of the atmosphere. Useful forecasts at sub-seasonal to seasonal time scales, on the other hand, require well-simulated large-scale atmospheric response to slowly varying lower boundary forcings from both the ocean and land surface. The critical importance of ocean has been recognized, where the ocean indices have been used in a variety of climate applications. In contrast, the impact of land surface anomalies, especially soil moisture and associated evaporation, has been proven notably difficult to demonstrate. The Noah Land Surface Model (LSM) is the land component of NCEP CFS version 2 (CFSv2) used for seasonal predictions. The Noah LSM originates from the Oregon State University (OSU) LSM. The evaporation control in the Noah LSM is based on the Penman-Monteith equation, which takes into account the solar radiation, relative humidity, air temperature, and soil moisture effects. The Noah LSM is configured with four soil layers with a fixed depth of 2 meters and free drainage at the bottom soil layer. This treatment assumes that the soil water table depth is well within the specified range, and also potentially misrepresents the soil moisture memory effects at seasonal time scales. To overcome the limitation, an unconfined aquifer is attached to the bottom of the soil to allow the water table to move freely up and down. In addition, in conjunction with the water table, an alternative Ball-Berry photosynthesis-based evaporation parameterization is examined to evaluate the impact from using a different evaporation control methodology. Focusing on the 2011 and 2012 intense summer droughts in the central US, seasonal ensemble forecast experiments with early May initial conditions are carried out for the two years using an enhanced version of CFSv2, where the atmospheric component of the CFSv2 is coupled to the Noah Multiple-Parameterization (Noah-MP) land model. The Noah-MP has different options for ground water and evaporation control parameterizations. The differences will be presented and results will be discussed.
Sandberg, George W.
1963-01-01
This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-62 by the U.S. Geological Survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Beaver, Escalante, Cedar City, and Parowan Walleys. This report will include records collected subsequent to data published in earlier reports listed in the bibliography. The interpretive material will be published in a companion report by George W. Sandberg.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figure 2. From table 1 he can note such things as diameter, depth, water level, yield, use of water, and depth to aquifers in wells in the vicinity, and from the well logs in table 3 he can note the type of material that yields water to the wells. Table 2 gives several years record of yields and pumping levels of irrigation wells, and in table 4 are the chemical analyses of water from wells and springs. Figure 2 shows the historic fluctuations and trends of water levels in the four valleys. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the State Engineer. During the past several years, however, the State Engineer has rejected new applications to appropriate water in major portions of Beaver Valley, Milford and Beryl-Enterprise districts in Escalante Valley, and Cedar City Valley. Anyone seeking to initiate a new ground-water right in any of these areas should obtain information from the State Engineer's Office in either Salt Lake City or Cedar City to determine the likelihood of approval of the required application.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.
NASA Astrophysics Data System (ADS)
Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.
2017-12-01
Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.
Larson-Higdem, Dana C.; Larson, S.P.; Norvitch, Ralph F.
1975-01-01
Based on available data and estimates of vertical hydraulic conductivity for geologic units, major leakage to the Prairie du Chien-Jordan aquifer is indicated to occur in formation subcrop areas, especially where these areas are. overlain by the most permeable glacial drift.
Long-Term Forest Hydrologic Monitoring in Coastal Carolinas
Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs
2003-01-01
Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...
Regulation of Microbial Herbicide Transformation by Coupled Moisture and Oxygen Dynamics in Soil
NASA Astrophysics Data System (ADS)
Marschmann, G.; Pagel, H.; Uksa, M.; Streck, T.; Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
The key processes of herbicide fate in agricultural soils are well-characterized. However, most of these studies are from batch experiments that were conducted under optimal aerobic conditions. In order to delineate the processes controlling herbicide (i.e., phenoxy herbicide 2-methyl-4-chlorophenoxyacetic acid, MCPA) turnover in soil under variable moisture conditions, we conducted a state-of-the-art soil column experiment, with a highly instrumented automated soil column system, under constant and oscillating water table regimes. In this system, the position of the water table was imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The soil samples were collected from a fertilized, arable and carbon-limited agricultural field site in Germany. The efflux of CO2 was determined from headspace gas measurements as an integrated signal of microbial respiration activity. Moisture and oxygen profiles along the soil column were monitored continuously using high-resolution moisture content probes and luminescence-based Multi Fiber Optode (MuFO) microsensors, respectively. Pore water and solid-phase samples were collected periodically at 8 depths and analyzed for MCPA, dissolved inorganic and organic carbon concentrations as well as the abundance of specific MCPA-degrading bacteria. The results indicated a clear effect of the water table fluctuations on CO2 fluxes, with lower fluxes during imbibition periods and enhanced CO2 fluxes after drainage. In this presentation, we focus on the results of temporal changes in the vertical distribution of herbicide, specific herbicide degraders, organic carbon concentration, moisture content and oxygen. We expect that the high spatial and temporal resolution of measurements from this experiment will allow robust calibration of a reactive transport model for the soil columns, with subsequent identification and quantification of rate limiting processes of MCPA turnover. This will ultimately improve our overall understanding of herbicide fate processes as a function of soil water regime.
A quantitative analysis of hydraulic interaction processes in stream-aquifer systems
Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin
2016-01-01
The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442
NASA Astrophysics Data System (ADS)
Xin, Pei; Wang, Shen S. J.; Shen, Chengji; Zhang, Zeyu; Lu, Chunhui; Li, Ling
2018-03-01
Shallow groundwater interacts strongly with surface water across a quarter of global land area, affecting significantly the terrestrial eco-hydrology and biogeochemistry. We examined groundwater behavior subjected to unimodal impulse and irregular surface water fluctuations, combining physical experiments, numerical simulations, and functional data analysis. Both the experiments and numerical simulations demonstrated a damped and delayed response of groundwater table to surface water fluctuations. To quantify this hysteretic shallow groundwater behavior, we developed a regression model with the Gamma distribution functions adopted to account for the dependence of groundwater behavior on antecedent surface water conditions. The regression model fits and predicts well the groundwater table oscillations resulting from propagation of irregular surface water fluctuations in both laboratory and large-scale aquifers. The coefficients of the Gamma distribution function vary spatially, reflecting the hysteresis effect associated with increased amplitude damping and delay as the fluctuation propagates. The regression model, in a relatively simple functional form, has demonstrated its capacity of reproducing high-order nonlinear effects that underpin the surface water and groundwater interactions. The finding has important implications for understanding and predicting shallow groundwater behavior and associated biogeochemical processes, and will contribute broadly to studies of groundwater-dependent ecology and biogeochemistry.
Rhode Island Water Supply System Management Plan Database (WSSMP-Version 1.0)
Granato, Gregory E.
2004-01-01
In Rhode Island, the availability of water of sufficient quality and quantity to meet current and future environmental and economic needs is vital to life and the State's economy. Water suppliers, the Rhode Island Water Resources Board (RIWRB), and other State agencies responsible for water resources in Rhode Island need information about available resources, the water-supply infrastructure, and water use patterns. These decision makers need historical, current, and future water-resource information. In 1997, the State of Rhode Island formalized a system of Water Supply System Management Plans (WSSMPs) to characterize and document relevant water-supply information. All major water suppliers (those that obtain, transport, purchase, or sell more than 50 million gallons of water per year) are required to prepare, maintain, and carry out WSSMPs. An electronic database for this WSSMP information has been deemed necessary by the RIWRB for water suppliers and State agencies to consistently document, maintain, and interpret the information in these plans. Availability of WSSMP data in standard formats will allow water suppliers and State agencies to improve the understanding of water-supply systems and to plan for future needs or water-supply emergencies. In 2002, however, the Rhode Island General Assembly passed a law that classifies some of the WSSMP information as confidential to protect the water-supply infrastructure from potential terrorist threats. Therefore the WSSMP database was designed for an implementation method that will balance security concerns with the information needs of the RIWRB, suppliers, other State agencies, and the public. A WSSMP database was developed by the U.S. Geological Survey in cooperation with the RIWRB. The database was designed to catalog WSSMP information in a format that would accommodate synthesis of current and future information about Rhode Island's water-supply infrastructure. This report documents the design and implementation of the WSSMP database. All WSSMP information in the database is, ultimately, linked to the individual water suppliers and to a WSSMP 'cycle' (which is currently a 5-year planning cycle for compiling WSSMP information). The database file contains 172 tables - 47 data tables, 61 association tables, 61 domain tables, and 3 example import-link tables. This database is currently implemented in the Microsoft Access database software because it is widely used within and outside of government and is familiar to many existing and potential customers. Design documentation facilitates current use and potential modification for future use of the database. Information within the structure of the WSSMP database file (WSSMPv01.mdb), a data dictionary file (WSSMPDD1.pdf), a detailed database-design diagram (WSSMPPL1.pdf), and this database-design report (OFR2004-1231.pdf) documents the design of the database. This report includes a discussion of each WSSMP data structure with an accompanying database-design diagram. Appendix 1 of this report is an index of the diagrams in the report and on the plate; this index is organized by table name in alphabetical order. Each of these products is included in digital format on the enclosed CD-ROM to facilitate use or modification of the database.
Feinstein, Daniel T.; Buchwald, Cheryl A.; Dunning, Charles P.; Hunt, Randall J.
2006-01-01
A series of databases and an accompanying screening model were constructed by the U.S. Geological Survey, in cooperation with the National Park Service, to better understand the regional ground-water-flow system and its relation to stream drainage in the St. Croix River Basin. The St. Croix River and its tributaries drain about 8,000 square miles in northeastern Minnesota and northwestern Wisconsin. The databases contain information for the entire St. Croix River Basin pertaining to well logs, lithology, thickness of lithologic groups, ground-water levels, streamflow, and well pumpage. Maps and generalized cross sections created from the compiled data show the lithologic groups, extending from the water table to the crystalline bedrock, through which ground water flows. These lithologic groups are: fine-grained unconsolidated deposits; coarse-grained unconsolidated deposits; sandstone bedrock; carbonate bedrock; and other bedrock lithologies including shale, siltstone, conglomerate, and igneous intrusions. The steady-state screening model treats the ground-water-flow system as a single layer with transmissivity zones that reflect the distribution of lithologic groups, and with recharge zones that correspond to general areas of high or low evapotranspiration. The model includes representation of second- and higher-order streams and municipal and other high-capacity production wells. The analytic-element model code GFLOW was used to simulate the regional ground-water flow, the water-table surface across the St. Croix River Basin, and base-flow contributions from ground water to streams. In addition, the model routes tributary base flow through the stream network to the St. Croix River. The parameter-estimation inverse model UCODE was linked to the GFLOW model to select the combination of parameter values best able to match over 5,000 water-level measurements and base-flow estimates at 22 streamflow-gaging stations. Results from the calibrated screening model show ground-water contributing areas for selected stream reaches within the basin. The delineation of these areas is useful to water-resource managers concerned with protection of fisheries and other resources. The model results also identify the areas of the basin where ground-water travel time from the water table to streams and wells is relatively short (less than 50 years). Ninety percent of the simulated ground-water pathlines require travel times between 3 and 260 years. The median pathline distance traversed and the median pathline velocity were 1.7 mi and 177 ft/y, respectively. It is important to recognize the limitations of this screening model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale (hundreds to thousands of feet) flow systems associated with minor water bodies are neglected, and as a result, the model is not useful for simulating typical site-specific problems. Despite its limitations, the model serves as a framework for understanding the regional pattern of ground-water flow and as a starting point for a generation of more targeted and detailed ground-water models that would be needed to address emerging water-supply and water-quality concerns in the St. Croix River Basin.
NASA Astrophysics Data System (ADS)
Xing, Xuguang; Ma, Xiaoyi
2018-06-01
The maximum upward flux ( E max) is a control condition for the development of groundwater evaporation models, which can be predicted through the Gardner model. A high-precision E max prediction helps to improve irrigation practice. When using the Gardner model, it has widely been accepted to ignore parameter b (a soil-water constant) for model simplification. However, this may affect the prediction accuracy; therefore, how parameter b affects E max requires detailed investigation. An indoor one-dimensional soil-column evaporation experiment was conducted to observe E max in the presence of a water table of depth 50 cm. The study consisted of 13 treatments based on four solutes and three concentrations in groundwater: KCl, NaCl, CaCl2, and MgCl2, with concentrations of 5, 30, and 100 g/L (salty groundwater); distilled water was used as a control treatment. Results indicated that for the experimental homogeneous loam, the average E max for the treatments supplied by salty groundwater was larger than that supplied by distilled water. Furthermore, during the prediction of the Gardner-model-based E max, ignoring b and including b always led to an overestimate and underestimate, respectively, compared to the observed E max. However, the maximum upward flux calculated including b (i.e. E bmax) had higher accuracy than that ignoring b for E max prediction. Moreover, the impact of ignoring b on E max gradually weakened with increasing b value. This research helps to reveal the groundwater evaporation mechanism.
Delin, Geoffrey N.; Risser, Dennis W.
2007-01-01
Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.
M.R. Chivers; M.R. Turetsky; J.M. Waddington; J.W. Harden; A.D. McGuire
2009-01-01
Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open...
Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik
2014-01-01
Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...
Evan S. Kane; Merritt R. Turetsky; Jennifer W. Harden; A. David McGuire; James M. Waddington
2010-01-01
Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table...
Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randy Kolka; Carl P. J. Mitchell
2017-01-01
Climate change is likely to significantly affect the hydrology, ecology, and ecosystem function of peatlands, with potentially important but unclear impacts on mercury mobility within and transport from peatlands. Using a full-factorial mesocosm approach, we investigated the potential impacts on mercury mobility of water table regime changes (high and low) and...
John P. Gannon; Scott W. Bailey; Kevin J. McGuire
2014-01-01
A network of shallow groundwater wells in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire, U.S. was used to investigate the hydrologic behavior of five distinct soil morphological units. The soil morphological units were hypothesized to be indicative of distinct water table regimes. Water table fluctuations in the wells were...
Code of Federal Regulations, 2010 CFR
2010-07-01
... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...
Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone
NASA Astrophysics Data System (ADS)
Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew
2016-10-01
Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for: the frequent occurrence of erosionally truncated deformation structures in the Navajo Sandstone; the production of such erosional truncations during bedform climb and aggradation of the accumulation; and the dramatic fluctuations in the water table required to deposit dry eolian sand, deform those deposits under saturated conditions, and then dry the deformed sand to enable deflation.
1986-06-10
Environmental Research Group (ERG) Laboratories of Ann Arbor, Michigan, and a duplicate set sent to OEHL’s laboratory in San Antonio, Texas. The remainder of...sites and well clusters , and the overall sparsity of data points at the base, a water table aquifer potentiometric surface map for the entire base could...L _ MW2-34 The predominant solid wastes disposed at this site were paper and domestic refuse, old wood from demolished structures, general
Woody riparian vegetation response to different alluvial water table regimes
Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.
2000-01-01
Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.
Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.
2013-01-01
This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.
NASA Astrophysics Data System (ADS)
Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.
2015-12-01
This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.