Science.gov

Sample records for water tank project

  1. Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108

    SciTech Connect

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-02-01

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy`s Hanford Site. Because of water`s importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (P{sub H2O}) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, P{sub H2O} is the most susceptible to being controlled by the and Hanford Site`s environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes.

  2. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    SciTech Connect

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  3. Space Shuttle External Tank Project status

    NASA Technical Reports Server (NTRS)

    Davis, R. M.

    1980-01-01

    The External Tank Project is reviewed with emphasis on the DDT&E and production phases and the lightweight tank development. It is noted that the DDT&E phase is progressing well with the structural and ground vibration test article programs complete, the propulsion test article program progressing well, and the component qualification and verification testing 92% complete. New tools and facilities are being brought on line to support the increased build rate for the production phase. The lightweight tank, which will provide additional payload in orbit, is progressing to schedule with first delivery in early 1982.

  4. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  5. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  6. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  7. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  10. 49 CFR 230.115 - Feed water tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... off excess water. Suitable covers shall be provided for filling holes. ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall...

  11. RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW WATER STORAGE TANK ON NORTH SIDE OF WATER PUMP HOUSE, TRA-619. INTERIOR. INL NEGATIVE NO. 2489. Unknown Photographer, 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF WATER TANKS AND PIPELINE TO WATER SOURCE. LOOKING NORTHWEST FROM LARGE TAILINGS PILE. THE TANK ON THE LEFT IS A WATER TANK, POSSIBLY ASSOCIATED WITH A WATER SHAFT THAT IS SEEN AS A RAISED SPOT ON THE GROUND JUST TO THE RIGHT OF IT. THE TANK ON THE RIGHT IS IN DIRECT CONNECTION WITH THE PIPELINE CARRYING WATER FROM A NEARBY SPRING IN THE DISTANCE AT CENTER. THE WATER WAS THEN PUMPED UP TO ALL PARTS OF THE MINING OPERATION, INCLUDING THE UPPER MINES ONE MILE NORTH, THE MILL, AND THE CYANIDE PLANT. THE PIPELINE ITSELF IS DISMANTLED, WITH PARTS OF IT MISSING OR SCATTERED ALONG THE GROUND, AS SEEN IN THE CENTER DISTANCE. THE SPRING IS APPROX. A QUARTER MILE DISTANT, AND IS NOT PROMINENT IN THIS PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  13. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List

  14. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  15. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    SciTech Connect

    Hays, C.B.

    1998-01-28

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  16. 7 CFR 2902.12 - Water tank coatings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... tank coatings. By that date, Federal agencies that have the responsibility for drafting or...

  17. Ocean Circulation in a Rotating Tank - An Outreach Project in Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Reckinger, Shanon

    2013-11-01

    A rotating water tank was designed and built by two senior mechanical engineering undergraduates at Fairfield University. The project was part of a year long senior design course. The rotating water tank is used to simulate oceanic and atmospheric phenomenon for classroom or outreach use. The following year, the tank was used for outreach as part of Fairfield University's Broadening Access to Science Education (BASE) camp. BASE camp is a two week residential camp for high school woman interested in scientific research. It is designed to inform and excite students by giving them a hands-on, research-based experience in the sciences, engineering, and mathematics. An all female research team composed of one mechanical engineering faculty member, two engineering undergraduates, and three high school students used the tank to explore ``how the ocean moves.'' This talk will explain the design project and the outreach project in detail, in hopes of inspiring new fluids education and outreach ideas.

  18. Aseismic analysis of the emergency water tank

    SciTech Connect

    Tao, H.Y.; Yu, G.F.

    1995-11-01

    The emergency water tank is one of the important equipments for safety under the accident condition of the PWR. It was specified that this equipment must be able to resist Safe Shutdown Earthquake (SSE). There was a detailed analysis and calculation for this water container by a specially developed computer code (FSI) for the fluid-structure interaction under the earthquake. This paper describes sloshing period and wave height, dynamic pressure distribution on the tank wall and the comparison with Housner`s theory. The typical shell elements stress responses were given also. In addition, the base shear and the turn-over moment were calculated according to the shell element stress and compared with the equivalent static load method. The conclusion can be reached that the calculation results of FSI is credible.

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. 14. MILL NO. 1, STAIRCASE UNDER WATER TANK IN TOWER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. MILL NO. 1, STAIRCASE UNDER WATER TANK IN TOWER, WHICH LEADS DOWN TO ATTIC LEVEL. SUPPORT BEAM FOR TANK IS AT TOP OF PICTURE. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  1. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  2. Single-shell tank interim stabilization project plan

    SciTech Connect

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  3. SU-E-T-118: Analysis of Variability and Stability Between Two Water Tank Phantoms Utilizing Water Tank Commissioning Procedures

    SciTech Connect

    Roring, J; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S

    2015-06-15

    Purpose: The commissioning criteria of water tank phantoms are essential for proper accuracy and reproducibility in a clinical setting. This study outlines the results of mechanical and dosimetric testing between PTW MP3-M water tank system and the Standard Imaging Doseview 3D water tank system. Methods: Measurements were taken of each axis of movement on the tank using 30 cm calipers at 1, 5, 10, 50, 100, and 200 mm for accuracy and reproducibility of tank movement. Dosimetric quantities such as percent depth dose and dose profiles were compared between tanks using a 6 MV beam from a Varian 23EX LINAC. Properties such as scanning speed effects, central axis depth dose agreement with static measurements, reproducibility of measurements, symmetry and flatness, and scan time between tanks were also investigated. Results: Results showed high geometric accuracy within 0.2 mm. Central axis PDD and in-field profiles agreed within 0.75% between the tanks. These outcomes test many possible discrepancies in dose measurements across the two tanks and form a basis for comparison on a broader range of tanks in the future. Conclusion: Both 3D water scanning phantoms possess a high degree of spatial accuracy, allowing for equivalence in measurements regardless of the phantom used. A commissioning procedure when changing water tanks or upon receipt of a new tank is nevertheless critical to ensure consistent operation before and after the arrival of new hardware.

  4. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased...

  5. 7 CFR 2902.12 - Water tank coatings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Water tank coatings. 2902.12 Section 2902.12... Items § 2902.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased...

  6. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased...

  7. 7 CFR 3201.12 - Water tank coatings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Water tank coatings. 3201.12 Section 3201.12... Designated Items § 3201.12 Water tank coatings. (a) Definition. Coatings formulated for use in potable water... agencies, in accordance with this part, will give a procurement preference for qualifying biobased...

  8. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  9. Quality Assurance Project Plan for waste tank vapor characterization

    SciTech Connect

    Suydam, C.D. Jr.

    1993-12-01

    This Quality Assurance Project Plan, WHC-SD-WM-QAPP-013, applies to four separate vapor sampling tasks associated with Phases 1 and 2 of the Tank Vapor Issue Resolution Program and support of the Rotary Mode Core Drilling Portable Exhauster Permit. These tasks focus on employee safety concerns and tank ventilation emission control design requirements. Previous characterization efforts and studies are of insufficient accuracy to adequately define the problem. It is believed that the technology and maturity of sampling and analytical methods can be sufficiently developed to allow the characterization of the constituents of the tank vapor space.

  10. Single-shell tank interim stabilization project plan

    SciTech Connect

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  11. Single Shell Tank (SST) Interim Stabilization Project Plan

    SciTech Connect

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-05-22

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  13. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  14. Optimal sizing of rain water tanks for domestic water conservation

    NASA Astrophysics Data System (ADS)

    Khastagir, Anirban; Jayasuriya, Niranjali

    2010-02-01

    SummaryMelbourne is facing a severe drought having its 12th consecutive below average rainfall year. Water authorities have been forced to impose rigorous water restrictions including voluntary per capita water use targets after more than 20 years of unrestricted water supply. The current severe drought and dwindling water resources have accelerated the use of alternative water sources including domestic rainwater. There is a large variation in average annual rainfall in the Greater Melbourne area ranging from 1050 mm in the east to 450 mm in the west. Hence, there is a significant difference in the tank size required in the west and the east of Melbourne to meet a similar demand and to provide the same supply reliability. The paper presents a novel methodology and a relationship for optimal sizing of rainwater tanks considering the annual rainfall at the geographic location, the demand for rainwater, the roof area (catchment area) and the desired supply reliability. The characteristic of the developed dimensionless curve reflects these variables and paves the way for developing a web based interactive tool for selecting the optimum rainwater tank size.

  15. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  16. Oblique view of Sector Five Compound, looking southwest. Water Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of Sector Five Compound, looking southwest. Water Tank to right, Receiver Building to left, antenna array in background - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Five Water Storage Tank, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  17. 3. VIEW OF WATER TANKS FROM ACCESS ROAD TO HATCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WATER TANKS FROM ACCESS ROAD TO HATCH ADIT. VIEW NORTH. LUCKY TIGER MILL OFFICE (FEATURE B-I) IN DISTANCE. (OCTOBER, 1995) - Nevada Lucky Tiger Mill & Mine, Water Tanks, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained

  19. Uranium in hot water tanks: a source of TENORM.

    PubMed

    DeVol, T A; Woodruff, R L

    2004-12-01

    Uranium deposits were detected inside hot water tanks using gamma-ray spectroscopic techniques and corroborated by the difference in the uranium concentration of the groundwater entering and leaving the hot water tanks. In-situ gamma-ray spectroscopy was performed using a transportable high-purity germanium (HPGe) gamma-ray spectrometer to estimate the mass of uranium in the hot water tanks. Gamma-ray spectroscopic analyses of hot water tanks in four residences with groundwater uranium concentration between 732 and 7,667 mug L revealed an estimated 3.5 to 69 g of uranium in each hot water tank. The uranium deposit within the tanks was indicated by the 143.8, 163.4, and 185.7 keV gamma rays of U and confirmed with the 63.3, 92.3, and 92.8 keV gamma rays of Th as well as the 1,001 keV peak of Pa. An average decrease in uranium concentration of 23% was observed in the groundwater that passed through the hot water tanks. Additionally, once "uranium free" water entered the hot water tanks, the uranium deposits within the tanks resulted in an increase in the uranium concentration in the effluent water. The groundwater had an alkalinity in the range of 46-96 mg L as CaCO3 and a pH range of 7.3-8.1. The accumulation of uranium in these hot water tanks results in them being classified as technologically enhanced naturally occurring radioactive materials (TENORM).

  20. 13. Water treatment plant interior view of tanks in control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Water treatment plant interior view of tanks in control room. View to SW - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  1. 41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. PATTERN STORAGE, GRIND STONE, WATER TANK, SHAFTING, AND TABLE SAW (L TO R)-LOOKING WEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  2. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  3. Opportunistic pathogens relative to physicochemical factors in water storage tanks.

    PubMed

    Al-Bahry, S N; Elshafie, A E; Victor, R; Mahmoud, I Y; Al-Hinai, J A

    2011-06-01

    Household water in Oman, as well as in other countries in the region, is stored in tanks placed on house roofs that can be subjected to physicochemical factors which can promote microbial growth, including pathogens and opportunistic pathogens which pose health risks. Water samples were collected from 30 houses in a heavily populated suburb of Muscat. The tanks used were either glass reinforced plastic (GRP), polyethylene or galvanised iron (GI). Heterotrophic bacteria, coliforms, faecal coliforms and iron sulphur bacteria varied significantly in the three tanks. Yeast and mould count showed significant variations. Isolation of Aeromonas spp., fluorogenic and pathogenic Pseudomonas, Pasteurella, Salmonella, Serratia and Tatumella, and Yersinia and Legionella in biofilms varied in the three tanks. The fungi isolates in the three tanks were Penicillium, Cladosporium and Aspergillus. Nephelometric turbidity unit, threshold odour number and free chlorine varied significantly in the three tanks. True colour unit values did not show a significant difference; however, GRP tanks had algae, autotrophic and pigmented microorganisms. In addition, GI tanks had sediments and corrosion. The results of this investigation are important to evaluate the status of the present household water tanks in countries with high annual temperatures, which may affect public health.

  4. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect

    VAN BEEK, J.E.

    2000-04-19

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  5. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  6. Contingency plan for the Old Hydrofracture Facility Tanks Sluicing Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1998-06-01

    This revised contingency plan addresses potential scenarios involving the release of radioactively contaminated waste from the Old Hydrofracture Facility Tanks Contents Removal project to the environment. The tanks are located at the Oak Ridge National Laboratory. The project involves sluicing the contents of the five underground tanks to mix the sludge and supernatant layers, and pumping the mixture to the Melton Valley Storage Tanks (MVST) for future processing. The sluicing system to be used for the project consists of a spray nozzle designated the {open_quotes}Borehole Miner,{close_quotes} with an associated pump; in-tank submersible pumps to transfer tank contents from the sluice tanks to the recycle tank; high-pressure pumps providing slurry circulation and slurry transport to the MVST; piping; a ventilation system; a process water system; an instrumentation and control system centered around a programmable logic controller; a video monitoring system; and auxiliary equipment. The earlier version of this plan, which was developed during the preliminary design phase of the project, identified eight scenarios in which waste from the tanks might be released to the environment as a result of unanticipated equipment failure or an accident (e.g., vehicular accident). One of those scenarios, nuclear criticality, is no longer addressed by this plan because the tank waste will be isotopically diluted before sluicing begins. The other seven scenarios have been combined into three, and a fourth, Borehole Miner Failure, has been added as follows: (1) underground release from the tanks; (2) aboveground release or spill from the sluicing system, a tank riser, or the transfer pipeline; (3) release of unfiltered air through the ventilation system; and (4) Borehole Miner arm retraction failure. Methods for preventing, detecting, and responding to each release scenario are set out in the plan.

  7. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  8. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  10. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  11. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  12. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    SciTech Connect

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  13. Everett Weinreb, Photographer, April 1989 WATER TANK, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Everett Weinreb, Photographer, April 1989 WATER TANK, LOOKING SOUTHEAST - Irvine Ranch Agricultural Headquarters, Boyd Tenant House, Southeast of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  14. 1. SHOWING RELATION OF FIRE CONTROL BUILDING, WATER TANK, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SHOWING RELATION OF FIRE CONTROL BUILDING, WATER TANK, AND TOWER, LOOKING SOUTH - Boswell Bay White Alice Site, Fire Control Building, Chugach National Forest, Cordova, Valdez-Cordova Census Area, AK

  15. 13. Building 202 exhaust scrubber water detention tank, looking southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building 202 exhaust scrubber water detention tank, looking southeast from bed of Abram Creek. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. Looking east at the boiler water treatment tank located off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the boiler water treatment tank located off the west wall of the boiler house. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  17. VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TWO HEAVY WATER STORAGE TANKS (BEHIND SUPPORT COLUMNS AND STEEL BEAMS), SUB-BASEMENT LEVEL -27’, LOOKING SOUTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  18. VIEW OF SOUTHERNMOST OF TWO HEAVY WATER STORAGE TANKS, LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF SOUTHERN-MOST OF TWO HEAVY WATER STORAGE TANKS, LOCATED BEHIND SUPPORT COLUMN, WITH ADJACENT PIPING, LEVEL -27’, LOOKING WEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  19. 73. Base of water tank located in setback at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. Base of water tank located in setback at southeast corner of blowing engine house. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  20. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  1. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    SciTech Connect

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  2. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect

    VAN BEEK, J.E.

    1999-09-02

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  3. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  4. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRPLANES Fuel Tank Flammability § 26.37 Pending type certification projects: Fuel tank flammability....

  5. Waste Tank Vapor Characterization Project: Annual status report for FY 1995

    SciTech Connect

    Ligotke, M.W.; Fruchter, J.S.; Huckaby, J.L.; Birn, M.B.; McVeety, B.D.; Evans, J.C. Jr.; Pool, K.H.; Silvers, K.L.; Goheen, S.C.

    1995-11-01

    This report compiles information collected during the Fiscal Year 1995 pertaining to the waste tank vapor characterization project. Information covers the following topics: project management; organic sampling and analysis; inorganic sampling and analysis; waste tank vapor data reports; and the waste tanks vapor database.

  6. 45. STEEL RESERVOIR TANKS FOR NEW SPRINGFED WATER SYSTEM INSTALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. STEEL RESERVOIR TANKS FOR NEW SPRING-FED WATER SYSTEM INSTALLED IN 1982. LOCATED IN WAIHANAU VALLEY, THIS REPLACED THE WAIKOLU SYSTEM AND PROVIDES A MORE CONSISTENT AND CLEAN WATER SUPPLY FOR KALAUPAPA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  7. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  8. Safety evaluation for adding water to tank 101-SY

    SciTech Connect

    Clinton, R.

    1994-12-09

    This document provides a new water limit for Tank 241-SY-101. The original limit was set at 9600 gallons. The new limit is now 20,000 gallons. There are various activities that require the use of additional water to the tank. The main activity is the removal of the temporary mixer pump. This requires a large amount of water which will exceed the original limit. Also, other activities such as flushing, adding a viscometer, and adding a void fraction meter requires additional water. The new limit safely incorporates these activities and allows room for more future activities.

  9. Juvenile turtles for mosquito control in water storage tanks.

    PubMed

    Borjas, G; Marten, G G; Fernandez, E; Portillo, H

    1993-09-01

    Juvenile turtles, Trachemys scripta, provided highly effective control of mosquito larvae in cement tanks (pilas) where water was stored for household cleaning. When single turtles were introduced to tanks with histories of high mosquito production, nearly all turtles remained in good health and no mosquito larvae survived to the pupal stage. Families welcome turtles in their water storage containers in Honduras. Humane conditions for turtles can be assured by providing small quantities of table scraps to supplement their diet and by placing a small floating platform in the tank for basking. Although turtles can serve as alternate hosts for Salmonella, available evidence suggests that turtles in tanks should not be a source of human infection. Further confirmation that there is no Salmonella hazard should precede routine use of turtles for mosquito control.

  10. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  11. Observation of EAS using a large water tank

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-08-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  12. Observation of EAS using a large water tank

    NASA Technical Reports Server (NTRS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-01-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  13. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  14. ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ONE MILLION GALLON WATER TANK, PUMP HEADER PIPE (AT LEFT), HEADER BYPASS PIPE (AT RIGHT), AND PUMPHOUSE FOUNDATIONS. Looking northeast - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    SciTech Connect

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.

  16. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.

  17. Water tank installed at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.

  18. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  19. Gunite and associated tanks remediation project recycling and waste minimization effort

    SciTech Connect

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy`s Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars.

  20. Bus water storage tank as a reservoir of Legionella pneumophila.

    PubMed

    Jurčev-Savičević, Anamarija; Bradarić, Nikola; Paić, Vlado Ozic; Mulić, Rosanda; Puntarić, Dinko; Miše, Kornelija

    2014-09-01

    Health concerns associated with Legionnaires' disease have been identified as an area of the increasing public and professional interest. Any natural water or man-made water systems worldwide might be reservoirs of Legionellae. We presented a sporadic, community-acquired case of Legionnaires' disease caused by Legionellapneumophila serogroup 1 in a bus driver who used water for hand and face washing from a bus water storage tank. The history of any other usual place of exposure to Legionellae was negative. The water from the tank was dirty, filled with sediment and leaves, at the temperature of 22 degrees C. The water was heavily contaminated with Legionella pneumophila serogroup 1 isolated from each sample with the concentration of 66,000, 16,000, 42,000, 56,000 and 34,000 CFU/L. The disinfection of the bus water storage tank was made using hyperclorination with 50 mg/L of free residual chlorine. The control sampling one week after the disinfection yielded negative results. So far, there are no recommendations on regular management or disinfection of water in bus storage tanks, but it seems to be reasonable to assume that passengers as well as bus drivers may be exposed to Legionella and therefore at risk of acquiring the infection. These recommendations should include regular empting, rinsing and filling the tank with fresh tap water, at least once a week. Finally, we have to be aware that Legionella bacteria are ubiquitous and any potential mode of producing contaminated aerosol should not be overlooked during an epidemiological field investigation and proposed appropriate measures.

  1. Preliminary Study on Water Filled Tank Perforation by Rod Projectiles

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-Ke; Guo, Zi-Tao; Mu, Zhong-Cheng; Zhang, Wei

    2009-06-01

    The effects of fluid structure interactions resulting from the impact of a fluid filled tank is of the interests for engineers from both the military and civilian field, where hydrodynamic-ram (HRAM) phenomena is well known. And it is believed HRAM is responsible for the vulnerability and the possible catastrophic failure of the whole tank. Thus HRAM is related to the majority concerns on this topic, where the targets were usually assumed to be thin. In order to investigate the influence of water on the crashworthiness of a tank with relatively thick walls, 3 ballistic shots on the water filled tank with two 3 mm 2A12 aluminum plates as front and back target and 4 shots on the tank without any water by 12.7 mm rods were conducted. The failure patterns were indentified from the tests and the difference in the failure mechanism was further studied by a series of detailed numerical simulations on the corresponding tests in hydro-code AUTODYN-2D by using both the coupled Lagrange-Euler technology and the SPH method. And also, the challenge of numerical simulation in this field is addressed.

  2. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Water ballast in fuel oil tanks... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not carry ballast water in a fuel oil tank....

  3. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Water ballast in fuel oil tanks... OIL IN BULK Vessel Operation § 157.33 Water ballast in fuel oil tanks. A new vessel may not carry ballast water in a fuel oil tank....

  4. Analysis of first flush to improve the water quality in rainwater tanks.

    PubMed

    Kus, B; Kandasamy, J; Vigneswaran, S; Shon, H K

    2010-01-01

    Although most Australians receive their domestic supply from reticulated mains or town water, there are vast areas with very low population densities and few reticulated supplies. In many of these areas rainwater collected in tanks is the primary source of drinking water. Heavy metals have recently become a concern as their concentration in rain water tanks was found to exceed recommended levels suitable for human consumption. Rainwater storage tanks also accumulate contaminants and sediments that settle to the bottom. Although not widely acknowledged, small amounts of contaminants such as lead found in rain water (used as drinking water) may have a cumulative and poisonous effect on human health over a life time. This is true for certain factors that underlie many of the chronic illnesses that are becoming increasingly common in contemporary society. The paper reports on a study which is part of a project that aims to develop a cost effective in-line filtration system to improve water quality in rainwater tanks. To enable this, the characteristics of rainwater need to be known. One component of this characterization is to observe the effects of the first flush on a rainwater tank. Samples of the roof runoff collected from an urban residential roof located in the Sydney Metropolitan Area in the initial first few millimetres of rain were analysed. The results show that bypassing the first 2 mm of rainfall gives water with most water quality parameters compliant with the Australian Drinking Water Guidelines (ADWG) standards. The parameters that did not comply were lead and turbidity, which required bypassing approximately the first 5 mm of rainfall to meet ADWG standards. Molecular weight distribution (MWD) analysis showed that the concentration of rainwater organic matter (RWOM) decreased with increasing amount of roof runoff.

  5. 19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. EMPTY SEDIMENTATION TANKS. TOP LAYER OF WATER FLOWS OVER TRIANGULATED CHANNELS AND OUT THE RAISED DUCTS TO FILTRATION PLANT. MOVEABLE BOARDS ON BOTTOM ASSIST IN REMOVING SLUDGE. VIEW LOOKING NORTHEAST. FILTER CONTROL BUILDING AT REAR. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  6. 2. VIEW OF NORTHERN WATER TANK (FEATURE B2), FACING SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF NORTHERN WATER TANK (FEATURE B-2), FACING SOUTH. THE ADIT ROAD IS SHOWN IN THE RIGHT SIDE OF THE PHOTO. - Nevada Lucky Tiger Mill & Mine, Water Tanks, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  7. Functional design criteria, Project W-211, Initial Tank Retrieval Systems. Revision 1

    SciTech Connect

    Rieck, C.A.

    1995-02-07

    This document provides the technical baseline for retrieval of waste from ten double-shell tanks in the SY, AN, AP, AW, AY, and AZ tank farms. In order to retrieve waste from these tanks, systems are needed to mix the sludge with the supernate and pump the waste mixture from the tank. For 101-SY, the existing mitigation pump will be used to mix the waste and Project W-211 will provide for waste removal. The retrieval scope for the other nine tanks includes both the waste mixing and removal functions.

  8. Experimental study on mixing efficiency in water supply rectangular tanks

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Medina, V.; Mujal, A.

    2009-04-01

    Phenomenon of mixing in drinking water storage tanks and reservoirs has a direct effect on the quality of water. Creation of poor mixing zones and volume stratification can have negative effects in public health. The design of a storage tank must consider the conditions of the inlet and outlets, and also their orientation (vertical or horizontal) to prevent the formation of these zones. Experiments done in a reduced scaled-model with a rectangular base and three different inlets (two waterfalls and a pipe inlet) had the objective to decide which of these inlets achieved the best mixing efficiency. Four situations were considered while three entrances, two unsteady: filling and drawing, and two steady with different outlets. Moreover the effects of columns that support the roof of the tank were studied by running the three entrances with and without columns in the four situations. Neglecting the viscous scale effects, the time taken to mix the volume stored depends on the distance between the inlet and the opposite wall as though as its orientation. Taking into account the whole tank columns have a negative effect on mixing efficiency although they divide the flux and create local zones of turbulence around them, increasing local mixing. Using a digital treating image technique the results are found in a quantitative way.

  9. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    SciTech Connect

    BUSSELL, J.H.

    1999-08-02

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

  10. Computational Analysis of Reagent Mixing in Ballast Water Tanks

    DTIC Science & Technology

    2010-05-01

    CH*tributk>n after 50 minutes Double Bottom Tanks Hopper Side Tasks I pper Winf! Tanks Compartment Normalized Tracer Volume Distribution attar 180...minutes Double Bottom Tanks Hopper Side Tanks I pper Wing Tanks Compartment Normalized Tracer Volume Distribution after 120 minutes Double Bottom

  11. Hanford Site organic waste tanks: History, waste properties, and scientific issues. Hanford Tank Safety Project

    SciTech Connect

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46{degree}C, far below the 250 to 380{degree}C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103.

  12. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    SciTech Connect

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  14. PROGRESS IN HANFORDS DOUBLE SHELL TANK (DST) INTEGRITY PROJECT

    SciTech Connect

    BERMAN HS

    2008-01-22

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Paneled by Brookhaven National Laboratory during the late 1990s. These guidelines established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and

  15. Progress in Hanford's Double-Shell Tank Integrity Project

    SciTech Connect

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelines established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot

  16. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    SciTech Connect

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities.

  17. Oak Ridge National Laboratory Gunite and Associated Tanks Stabilization Project-Low-Tech Approach with High-Tech Results

    SciTech Connect

    Brill, A.; Alsup, T.; Bolling, D.

    2002-02-26

    Environmental restoration of the Gunite and Associated Tanks (GAAT) at the Oak Ridge National Laboratory (ORNL) was a priority to the U. S. Department of Energy (DOE) because of their age and deteriorating structure. These eight tanks ranging up to 170,000 gallons in capacity were constructed in 1943 of a Gunite or ''sprayed concrete material'' as part of the Manhattan Project. The tanks initially received highly radioactive waste from the Graphite Reactor and associated chemical processing facilities. The waste was temporarily stored in these tanks to allow for radioactive decay prior to dilution and release into surface waters. Over time, additional wastes from ongoing ORNL operations (e.g., isotope separation and materials research) were discharged to the tanks for storage and treatment. These tanks were taken out of service in the 1970s. Based on the structure integrity of GAAT evaluated in 1995, the worst-case scenario for the tanks, even assuming they are in good condition, is to remain empty. A recently completed interim action conducted from April 1997 through September 2000 removed the tank liquids and residual solids to the extent practical. Interior video surveys of the tanks indicated signs of degradation of the Gunite material. The tanks continued to receive inleakage, which generated a relatively high volume waste stream that required periodic removal, treatment, and disposal. For these reasons, DOE chose in-place stabilization of Tanks W-3 through W-10 as a non-timecritical removal action under Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Tank stabilization activities involved removal of liquid from inleakage and placement of a grout mixture or ''flowable fill'' into the tanks to within 3-ft of the ground surface. Bechtel Jacobs Company, LLC (BJC) awarded Safety and Ecology Corporation (SEC) a subcontract in March 2001 to complete the documentation and fieldwork necessary to achieve tank stabilization in

  18. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  19. Learning about water resources issues in Bangladesh using interactive sand tanks

    NASA Astrophysics Data System (ADS)

    Stute, M.

    2010-12-01

    Poor drinking water quality, e.g. elevated levels of pathogens and arsenic, is a big issue in developing countries, such as Bangladesh. Discussion of the causes and potential solutions of these problems tend to successfully motivate students to engage in an active learning process. Commercially available interactive sand tanks have been used for many years to explore groundwater flow and transport processes by experiential learning, typically in a qualitative way (e.g. Groundwater Model Project, 2010). We have adapted the application of these tanks to help students learn about water resources issues in Bangladesh in qualitative and quantitative ways. The developed learning modules include visualization of groundwater recharge and discharge in a monsoon controlled climate, contamination of groundwater by pathogens, discussion of various theories of arsenic mobilization, the effects of irrigation pumping on arsenic distributions and the benefits and potential pitfalls of using deeper low arsenic aquifers as sources of domestic, industrial and agricultural water. Many of the techniques used in characterizing aquifers in Bangladesh such as slug and pumping tests, push/pull and forced gradient experiments can be explored by the students using the sand tanks. Learning modules have also been developed that address quantitative uses of the sand tanks, e.g. the determination of hydraulic conductivity using Darcy’s law or slug tests, porosity by comparing Darcy and transport velocity and dispersivity by measuring dye breakthrough curves. Groundwater Model Project, University of Wisconsin, Stevens Point, http://www.uwsp.edu/stuorg/awra/h2omodel.html, accessed 8/20/2010

  20. Hanford Tank Safety Project: Minutes of the Tank Waste Science Panel meeting, February 7--8, 1991

    SciTech Connect

    Strachan, D.M.

    1991-06-01

    The Tank Waste Science Panel met February 7--8, 1991, to review the latest data from the analyses of the October 24, 1990, gas release from Tank 241-SY-101 (101-SY) at Hanford; discuss the results of work being performed in support of the Hanford Tank Safety Project; and be briefed on the ferrocyanide issues included in the expanded scope of the Science Panel. The shapes of the gas release curves from the past three events are similar and correlate well with changes in waste level, but the correlation between the released volume of gas and the waste height is not as good. An analysis of the kinetics of gas generation from waste height measurements in Tank 101-SY suggests that the reaction giving rise to the gases in the tank is independent of the gas pressure and independent of the physical processes that give rise to the episodic release of the gases. Tank waste height data were also used to suggest that a floating crust formed early in the history of the tank and that the current crust is being made thicker in the eastern sector of the tank by repeated upheaval of waste slurry onto the surface. The correlation between the N{sub 2}O and N{sub 2} generated in the October release appears to be 1:1, suggesting a single mechanistic pathway. Analysis of other gas generation ratios, however, suggests that H{sub 2} and N{sub 2}O are evolved together, whereas N{sub 2} is from the air. If similar ratios are observed in planned radiolysis experiments are Argonne National Laboratory, radiolysis would appear to be generating most of the gases in Tank 101-SY. Data from analysis of synthetic waste crust using a dynamic x-ray diffractometer suggest that, in air, organics are being oxidized and liberating CO{sub 2} and NO{sub x}. Experiments at Savannah River Laboratory indicate that irradiation of solutions containing NO{sub 3} and organics can produce N{sub 2}O.

  1. Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water.

    PubMed

    Zamalloa, Carlos; Arends, Jan B A; Boon, Nico; Verstraete, Willy

    2013-06-25

    Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas.

  2. Rogue wave observation in a water wave tank.

    PubMed

    Chabchoub, A; Hoffmann, N P; Akhmediev, N

    2011-05-20

    The conventional definition of rogue waves in the ocean is that their heights, from crest to trough, are more than about twice the significant wave height, which is the average wave height of the largest one-third of nearby waves. When modeling deep water waves using the nonlinear Schrödinger equation, the most likely candidate satisfying this criterion is the so-called Peregrine solution. It is localized in both space and time, thus describing a unique wave event. Until now, experiments specifically designed for observation of breather states in the evolution of deep water waves have never been made in this double limit. In the present work, we present the first experimental results with observations of the Peregrine soliton in a water wave tank.

  3. Regrowth in ship's ballast water tanks: Think again!

    PubMed

    Grob, Carolina; Pollet, Bruno G

    2016-08-15

    With the imminent ratification of the International Maritime Organisation's Ballast Water Management Convention, ship owners and operators will have to choose among a myriad of different Ballast Water Treatment Systems (BWTS) and technologies to comply with established discharge standards. However, it has come to our attention that decision-makers seem to be unaware of the problem of regrowth occurring in ballast water tanks after treatment. Furthermore, the information available on the subject in the literature is surprisingly and unfortunately very limited. Herein we summarise previous research findings that suggest that regrowth of bacteria and phytoplankton could occur 18h to 7days and 4 to 20days after treatment, respectively. By highlighting the problem of regrowth, we would like to encourage scientists and engineers to further investigate this issue and to urge ship owners and ship operators to inform themselves on the risks of regrowth associated with the implementation of different BWTS.

  4. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory; Successful Integration & Deployment of Technologies Results in Remediated Underground Storage Tanks

    SciTech Connect

    Billingsley, K.; Bolling, D.

    2002-02-27

    This paper presents an overview of the underground technologies deployed during the cleanup of nine large underground storage tanks (USTs) that contained residual radioactive sludge, liquid low-level waste (LLLW), and other debris. The Gunite Tanks Remediation Project at Oak Ridge National Laboratory (ORNL) was successfully completed in 2001, ending with the stabilization of the USTs and the cleanup of the South Tank Farm. This U.S. Department of Energy (DOE) project was the first of its kind completed in the United States of America. The Project integrated robotic and remotely operated technologies into an effective tank waste retrieval system that safely retrieved more than 348 m3 (92,000 gal) of radioactive sludge and 3.15E+15 Bq (85,000 Ci) of radioactive contamination from the tanks. The Project successfully transferred over 2,385 m3 (630,000 gal) of waste slurry to ORNL's active tank waste management system. The project team avoided over $120 Million in costs and shortened the original baseline schedule by over 10 years. Completing the Gunite Tanks Remediation Project eliminated the risks posed by the aging USTs and the waste they contained, and avoid the $400,000 annual costs associated with maintaining and monitoring the tanks.

  5. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  6. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  7. 33 CFR 157.33 - Water ballast in fuel oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Water ballast in fuel oil tanks. 157.33 Section 157.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Vessel Operation § 157.33...

  8. External tank project new technology plan. [development of space shuttle external tank system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.

  9. Rainwater Harvesting in South India: Understanding Water Storage and Release Dynamics at Tank and Catchment Scales

    NASA Astrophysics Data System (ADS)

    Basu, N. B.; Van Meter, K. J.; Mclaughlin, D. L.; Steiff, M.

    2015-12-01

    Rainwater harvesting, the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional rainwater harvesting systems have fallen into disrepair due to increasing dependence on groundwater. With elevated declines in groundwater resources, there is increased effort at the state and national levels to revive older systems. Critical to the success of such efforts is an improved understanding of how these ancient water-provisioning systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these rainwater harvesting "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water level variations to quantify daily fluxes of groundwater, evapotranspiration, and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28.2 km2. Our results indicate a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflow events (as opposed to outflow) increasing down the cascade of tanks. The presence of tanks in the landscape dramatically alters the catchment water balance, with catchment-scale runoff:rainfall ratios decreasing from 0.29 without tanks to 0.04 - 0.09 with tanks. Recharge:rainfall ratios increase in the presence of tanks, from ~0.17 in catchments without tanks to ~ 0.26 in catchments with tanks. Finally, our results demonstrate how more efficient management of sluice outflows can lead to the tanks meeting a higher fraction of crop water requirements.

  10. Tank Vapor Characterization Project: Annual status report for FY 1996

    SciTech Connect

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

  11. Heat pump water heater and storage tank assembly

    DOEpatents

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  12. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    SciTech Connect

    Soo, P.; Roberts, T.C.

    1995-07-01

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report.

  13. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    NASA Astrophysics Data System (ADS)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  14. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    SciTech Connect

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  15. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  16. SEPTIC TANK SETBACK DISTANCES: A WAY TO MINIMIZE VIRUS CONTAMINATION OF DRINKING WATER

    EPA Science Inventory

    Septic tanks are the most frequently reported causes of contamination in ground-water disease outbreaks associated with the consumption of untreated ground water in the United States. The placement of septic tanks is generally controlled by county-wide or state-wide regulations, ...

  17. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    SciTech Connect

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  18. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    SciTech Connect

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  19. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  20. Headspace vapor characterization of Hanford Waste Tank 241-BX-107: Results from samples collected on November 17, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-BX-107 (Tank BX-107) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5080. Samples were collected by WHC on November 17, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  1. Headspace vapor characterization of Hanford Waste Tank 241-S-108: Results from samples collected on December 6, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; McVeety, B.D.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-S-108 (Tank S-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5086. Samples were collected by WHC on December 6, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  2. Headspace vapor characterization of Hanford Waste Tank 241-A-103: Results from samples collected on November 9, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Evans, J.C.; Thomas, B.L.; Pool, K.H.; Olsen, K.B.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-A-103 (Tank A-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5073. Samples were collected by WHC on November 9, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  3. Headspace vapor characterization of Hanford Waste Tank 241-BY-102: Results from samples collected on November 21, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; Pool, K.H.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-BY-102 (Tank BY-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5081. Samples were collected by YMC on November 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  4. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  5. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  6. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  7. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  8. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  9. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  10. Headspace vapor charterization of Hanford Waste Tank 241-S-110: Results from samples collected on December 5, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; McVeety, B.D.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-S-110 (Tank S-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5085. Samples were collected by WHC on December 5, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  11. Water Pollution. Project COMPSEP.

    ERIC Educational Resources Information Center

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  12. Storage tank with liquid insulator for storing cryogenic fluids using water displacement

    SciTech Connect

    McCabe, J.S.; Stafford, D.C.; Laverman, R.J.

    1980-06-24

    For storing cryogenic liquids such as LNG at or slightly above atmospheric pressure, this design uses a tank with insulated vertical walls and an insulated top located in and surrounded by a body of water in communication with a layer of water inside the tank; the level of the tank contents can thus be controlled using the water-displacement principle. A layer of insulating liquid having a specific gravity lower than water and higher than LNG (or the cryogenic liquid being stored) separates the water and LNG while remaining liquid at the cryogenic temperature; the insulating liquid - pentanes, particularly isopentane, are suitable - must be essentially immiscible with water, LNG, or both. For preventing turbulent mixing of the water and LNG while the tank is being filled or emptied, a float in the form of a closed or open shell made partially or entirely of insulating material extends over the water layer and contains the insulating liquid.

  13. Hydrogen Tank Project Q2 Report - FY 11

    SciTech Connect

    Johnson, Kenneth I.; Alvine, Kyle J.; Skorski, Daniel C.; Nguyen, Ba Nghiep; Kafentzis, Tyler A.; Dahl, Michael E.; Pitman, Stan G.

    2011-05-15

    Quarterly report that represents PNNL's results of HDPE, LDPE, and industrial polymer materials testing. ASTM D638 type 3 samples were subjected to a high pressure hydrogen environment between 3000 and 4000 PSI. These samples were tested using an instron load frame and were analyzed using a proprietary set of excel macros to determine trends in data. The development of an in-situ high pressure hydrogen tensile testing apparatus is discussed as is the stress modeling of the carbon fiber tank exterior.

  14. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  15. External Tank (ET) Foam Thermal/Structural Analysis Project

    NASA Technical Reports Server (NTRS)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  16. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  17. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    SciTech Connect

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  18. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  19. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  20. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    SciTech Connect

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  1. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of

  2. Project W-340 tank 241-C-106 manipulator system closeout summary

    SciTech Connect

    McDaniel, L.B.

    1995-02-01

    This document summarizes the work that was ongoing when Project W-340 was put on hold. Project W-340: Tank 241-C-106 Manipulator Retrieval System, was a candidate FY98 Major System Acquisition. The project was to develop, procure and deploy a Long Reach Manipulator (LRM) waste retrieval system to provide an alternate method to completing the in-tank demonstration of Single Shell Tank waste retrieval technology. The need for enhanced capabilities derives from (1) the inability of the baseline technology to retrieve certain hard waste forms; (2) uncertainty in the quantity of leakage which will be allowed. Numerous studies over the years have identified an arm architecture as a promising retrieval technology to overcome these concerns. The W340 project was intended to further develop and demonstrate this alternative, as part of selecting the best approach for all tanks. Prior to completing the effort, it was determined that an LRM system was too architecture specific and was envisioned to be too expensive for a one time demonstration of retrieval technology. At the time the work was stopped, an effort was underway to broaden the project scope to allow alternatives to an arm-based system.

  3. Environmental projects. Volume 2: Underground storage tanks compliance program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  4. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  5. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    SciTech Connect

    Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.; Johnson, Jeremy M.; Castleberry, Jim L.

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  6. NRHP Eligibility of the Fort Huachuca, Arizona, Elevated Water Tank (Facility 49001) and Reservoir (Facility 22020)

    DTIC Science & Technology

    2016-08-01

    ER D C/ CE RL T R- 16 -1 2 NRHP Eligibility of the Fort Huachuca, Arizona, Elevated Water Tank (Facility 49001) and Reservoir (Facility...engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our...http://acwc.sdp.sirsi.net/client/default. Cover Photo: Elevated water tank (Facility 49001) looking northwest (left), and reservoir (Facility 22020

  7. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  8. Organic Tank Safety Project: Equilibrium moisture determination task fiscal year 1997. Annual progress report

    SciTech Connect

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-09-01

    Twenty waste storage tanks at the U.S. Department of Energy`s Hanford Site are included in the Organic Tank Watch List. The water content in the wastes plays a significant role in preventing propagating or sustainable chemical reactions, and the fuel and energetics independent safety criterion has been determined to be 20 wt % water. To ensure that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory to investigate the effect of water partial pressure (P{sub H2O}) on the water content of organic-bearing or representative wastes. If necessary, the P{sub H2O} could be managed to maintain the water content at an acceptable level or adjust the water content back to an acceptable level. During fiscal year 1997, the effect of P{sub H2O} was tested to determine how organic-bearing wastes will respond if exposed to environmental Hanford water partial pressures or other potential water partial pressures. The samples tested were obtained from Organic Watch List Tanks, tanks that D.A. Reynolds of Lockheed Martin Hanford suspects may contain wastes having significant organic content, or wastes characteristic of organic-bearing wastes. Temperatures at or near maximum tank waste surface temperatures were used in the tests. At 26{degrees}C, the lowest temperature used, the water partial pressures used in the tests ranged from 2 to 22 torr. At 41{degrees}C, the highest temperature used, the water partial pressures used ran ed from 3.5 to 48 torr.

  9. Potential Interference from Wireless Water Tank Transmitters at Goldstone

    NASA Astrophysics Data System (ADS)

    Ho, C.

    2008-02-01

    The Deep Space Network (DSN) facility in the Goldstone, California, area is considering installation of a new type of wireless transmitter (M2400S) within the facility. The transmitters will be used to monitor the water levels in several water tanks. Then these water-level signals will be transmitted to the nearby DSN facilities using transmitters operating in the UHF band (900-MHz) or S-band (2.4-GHz). This study is to evaluate the interference effects from the transmitters in adjacent DSN receiving stations. First we perform a terrain profile analysis to identify if there is a line of sight between each transmitter and the nearby DSN stations. After taking into account terrain shielding using high-resolution data, total propagation losses are calculated along each path. Then we perform the link analysis for each site to identify if the interference power exceeds the protection threshold of DSN receiving stations. As a result, we find that, because there is no bandpass filter installed in the transmitter system, interference power from the new transmitter at S-band will greatly exceed the protection criteria of broadband radio astronomy services (RAS) at S-band, such as Deep Space Station (DSS) 12 and DSS 28, by about 50 dB. The interference may also cause problems on all deep-space research stations at S-band, such as the Mars, Apollo, Venus, and Gemini sites. Without a sharp bandpass filter to suppress the out-of-band emissions in the frequency bands that the DSN station and RAS use, the author recommends not installing this type of transmitter within the Goldstone DSN facility area.

  10. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  11. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT...

  12. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT...

  13. 14 CFR 26.37 - Pending type certification projects: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pending type certification projects: Fuel tank flammability. 26.37 Section 26.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT...

  14. Double Shell Tanks (DST) and Waste Feed Delivery Project Management Quality Affecting Procedures Management Plan

    SciTech Connect

    LUND, D.P.

    2000-09-25

    The purpose of the Double Shell Tanks (DST) and Waste Feed Delivery (WFD) Management Assessment Plan is to define how management assessments within DST h WFD will be conducted. The plan as written currently includes only WFD Project assessment topics. Other DST and WFD group assessment topics will be added in future revisions.

  15. Comparison of biofilm formation and water quality when water from different sources was stored in large commercial water storage tanks.

    PubMed

    van der Merwe, Venessa; Duvenage, Stacey; Korsten, Lise

    2013-03-01

    Rain-, ground- and municipal potable water were stored in low density polyethylene storage tanks for a period of 90 days to determine the effects of long-term storage on the deterioration in the microbial quality of the water. Total viable bacteria present in the stored water and the resultant biofilms were enumerated using heterotrophic plate counts. Polymerase chain reaction (PCR) and Colilert-18(®) tests were performed to determine if the faecal indicator bacteria Escherichia coli was present in the water and in the biofilm samples collected throughout the study. The municipal potable water at the start of the study was the only water source that conformed to the South African Water Quality Guidelines for Domestic Use. After 15 days of storage, this water source had deteriorated microbiologically to levels considered unfit for human consumption. E. coli was detected in the ground- and potable water and ground- and potable biofilms periodically, whereas it was detected in the rainwater and associated biofilms at every sampling point. Imperfections in the UV resistant inner lining of the tanks were shown to be ecological niches for microbial colonisation and biofilm development. The results from the current study confirmed that long-term storage can influence water quality and increase the number of microbial cells associated with biofilms on the interior surfaces of water storage tanks.

  16. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  17. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  18. Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions

    NASA Astrophysics Data System (ADS)

    Wei, Zhi-Jun; Faltinsen, Odd Magnus; Lugni, Claudio; Yue, Qian-Jin

    2015-03-01

    Sloshing-induced slamming in a rectangular tank with centralized slat-screens with high solidity ratios was experimentally studied under nearly two-dimensional shallow-water conditions with large-amplitude harmonic lateral excitation. The main objective was to identify the solidity ratio that provides an optimal suppressing function on the free-surface elevation and slamming pressure on the vertical tank walls with a frequency domain containing the three lowest natural sloshing frequencies in a clean tank with a water depth-to-tank length ratio of h/l = 0.125 and a high forced sway amplitude. The experiments show that the optimal solidity ratio among four considered slat-screens is approximately 0.6-0.7 for the applied filling level and excitation amplitude in the examined forced frequency range. The results have potential applications in areas such as swash bulkhead design and liquefied-cargo tank design in ship and offshore engineering.

  19. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    SciTech Connect

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of

  20. PROCESS WATER BUILDING, TRA605. SUMP TANK PUMP. COMPARE WITH ID33G247. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SUMP TANK PUMP. COMPARE WITH ID-33-G-247. INL NEGATIVE NO. 4378. Unknown Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  1. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    SciTech Connect

    Martin, Todd M.; Boomer, Kayle D.

    2015-01-07

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  2. Project Themis: Water Visualization Study

    DTIC Science & Technology

    2011-09-15

    parameters and design space. Apparatus is discussed, including water flow loop and test section parts, as well as flow measurements, LDV, PLIF, and...release; distribution unlimited Project Themis: Water Visualization Study Allen Bishop AFRL/RZSE 15 Sept 2011 2 About Me • BS & MS Aerospace

  3. Analysis of nonlinear shallow water waves in a tank by concentrated mass model

    NASA Astrophysics Data System (ADS)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro; Yamamura, Satoshi

    2016-06-01

    The sloshing of liquid in a tank is an important engineering problem. For example, liquid storage tanks in industrial facilities can be damaged by earthquakes, and conversely liquid tanks, called tuned liquid damper, are often used as passive mechanical dampers. The water depth is less often than the horizontal length of the tank. In this case, shallow water wave theory can be applied, and the results indicate that the surface waveform in a shallow excited tank exhibits complex behavior caused by nonlinearity and dispersion of the liquid. This study aims to establish a practical analytical model for this phenomenon. A model is proposed that consists of masses, connecting nonlinear springs, connecting dampers, base support dampers, and base support springs. The characteristics of the connecting nonlinear springs are derived from the static and dynamic pressures. The advantages of the proposed model are that nonlinear dispersion is considered and that the problem of non-uniform water depth can be addressed. To confirm the validity of the model, numerical results obtained from the model are compared with theoretical values of the natural frequencies of rectangular and triangular tanks. Numerical results are also compared with experimental results for a rectangular tank. All computational results agree well with the theoretical and experimental results. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear shallow water wave problems.

  4. STS-55 crewmembers repair waste water tank under OV-102's middeck subfloor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Pilot Terence T. Henricks uses a spotlight and pen to point out a possible problem area on a waste water tank in the bilge area below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross records the activity with a video camcorder. The crewmembers are participating in an inflight maintenance (IFM) exercise to counter problems experienced with the waste water tank.

  5. The modified swirl sedimentation tanks for water purification.

    PubMed

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10(-5) to 5.1⋅10(-4) [m(3)/s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks.

  6. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991. Hanford Tank Safety Project

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  7. Project W.A.T.E.R.

    ERIC Educational Resources Information Center

    EnviroTeach, 1992

    1992-01-01

    Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

  8. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    SciTech Connect

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-07-07

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

  9. High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project

    SciTech Connect

    Drake, J. L.; McMahon, C. L.; Meess, D. C.

    2002-02-26

    The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

  10. Tank bromeliad water: Similar or distinct environments for research of bacterial bioactives?

    PubMed Central

    Carmo, F.L.; Santos, H.F.; Peixoto, R.S.; Rosado, A.S.; Araujo, F.V.

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin. PMID:24948929

  11. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  12. Tank waste remediation system characterization project quality policies

    SciTech Connect

    Board, D.C.

    1997-09-24

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  13. Tank waste remediation system characterization project quality policies

    SciTech Connect

    Trible, T.C., Westinghouse Hanford

    1996-07-31

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised on eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer`s quality requirements known as the `RULE`, 10 CFR 830.120, Quality Assurance.

  14. Ground-water quality in selected areas serviced by septic tanks, Dade County, Florida

    USGS Publications Warehouse

    Pitt, William A.; Mattraw, H.C.; Klein, Howard

    1975-01-01

    During 1971-74, the U.S. Geological Survey investigated the chemical, physical, bacteriological, and virological characteristics of the ground water in five selected areas serviced by septic tanks in Dade County, Florida. Periodic water samples were collected from multiple-depth groups of monitor wells ranging in depth from 10 to 60 ft at each of the five areas. Analyses of ground water from base-line water-quality wells in inland areas remote from urban development indicated that the ground water is naturally high in organic nitrogen, ammonia, organic carbon and chemical oxygen demand. Some enrichment of ground water with sodium provided a possible key to differentiating septic-tank effluent from other urban ground-water contaminant sources. High ammonia nitrogen, phosphorus, and the repetitive detection of fecal coliform bacteria were characteristic of two 10-foot monitor wells that consistently indicated the presence of septic-tank effluent in ground water. Dispersion, dilution, and various chemical processes have presumably prevented accumulation of septic-tank effluent at depths greater than 20 ft, as indicated by the 65 types of water analyses used in the investigation. Fecal coliform bacteria were present on one or two occasions in many monitor wells but the highest concentration, 1,600 colonies/100 ml, was related to storm-water infiltration rather than septic-tank discharge. Areal variations in the composition and the hydraulic conductivity of the sand and limestone aquifer had the most noticeable influence on the overall ground-water quality. The ground water in the more permeable limestone in south Dade County near Homestead contained low concentrations of septic-tank related constituents, but higher concentrations of dissolved sulfate and nitrate. The ground water in north Dade County, where the aquifer is less permeable, contained the highest dissolved iron, manganese, COD, and organic carbon.

  15. Recreational vehicle water tanks as a possible source for legionella infections.

    PubMed

    Litwin, Christine M; Asebiomo, Bankole; Wilson, Katherine; Hafez, Michael; Stevens, Valerie; Fliermans, Carl B; Fields, Barry S; Fisher, John F

    2013-01-01

    We investigated recreational vehicle (RV) water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24%) faucets, 1/11 (9%) water tanks from 4/20 (20%) RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6), L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals.

  16. Preliminary safety equipment list for Tank 241-C-106 Manipulator Retrieval System, Project W-340

    SciTech Connect

    Guthrie, R.L.

    1994-09-23

    This document identifies the anticipated safety classification of the estimated major subsystems, based on the projected major functions, that will be used as guidance for the development of the conceptual design of the Manipulator Retrieval System for Tank 241-C-106. This document is intended to be updated as the design of the Manipulator Retrieval System evolves through the conceptual and definitive design phases. The Manipulator Retrieval System is to be capable of removing the hardened sludge heel at the bottom of single shell Tank 241-C-106 and to perform an overall clean out of the tank that leaves a maximum of 360 ft{sup 3} (TPA milestone M-45-00). The thickness of the heel prior to initiation of waste retrieval with the Manipulator Retrieval System is estimated to be 1- to 2-ft. The Manipulator Retrieval System is currently in the pre-conceptual phase with no definitive systems or subsystems. The anticipated retrieval functions for the Manipulator Retrieval System is based on Table 6-2 of WHC-SD-W340-ES-001, Rev. 1. Projected equipment to accomplish these functions were based on the following systems and equipment: Rotary Mode Core Sampling Equipment (WHC-SD-WM-SEL-032); Light Duty Utility Arm System Equipment (WHC-SD-WM-SEL-034); Single Shell Tanks Equipment (WHC-SD-WM-SEL-020).

  17. Modeling water retention of sludge simulants and actual saltcake tank wastes

    SciTech Connect

    Simmons, C.S.

    1996-07-01

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity.

  18. SCALE-MODEL STUDIES OF MIXING IN DRINKING WATER STORAGE TANKS

    EPA Science Inventory

    Storage tanks and reservoirs are commonly used in drinking water distribution systems to equalize pumping requirements and operating pressures, and to provide emergency water for fire-fighting and pumping outages. Poor mixing in these structures can create pockets of older water...

  19. Building Rain Water Tanks and Building Skills: A Case Study of a Women's Organization in Uganda

    ERIC Educational Resources Information Center

    Payne, Deborah; Nakato, Margaret; Nabalango, Caroline

    2008-01-01

    Water collection in rural areas of Uganda is left primarily to women and children. Katosi Women Development Trust, an NGO based in rural Uganda has focused on addressing the gender-linked issue of increased water sources near the home through the construction of rain water collection tanks. In an effort to improve the income of members as well as…

  20. Phase 2 Rebaseline Report for Tank Farm Restoration and Safe Operations Project W-314

    SciTech Connect

    LENTSCH, J.W.

    2000-03-27

    Project W-314, (97-D-402) Tank Farm Restoration and Safe Operations is a multi-year, multiphase project established to upgrade selected 200 East and West Area Tank Farms to support the long-term mission of waste storage, retrieval, and transfer for vitrification. Key drivers for these upgrades include the planned timetable for transfer of waste to the privatized vitrification facility, regulatory compliance requirements (i.e., Washington State and Federal Regulations), and the Tri-Party Agreement (TPA). The previous baseline scope for Project W-314 was established based upon tank farm system assessments performed five to six years ago and was reflected in the previous baseline cost estimate, the Accelerated Replanning Estimate, completed in July 1997. The Accelerated Replanning Estimate splits the project into two phases: Phase 1 provides upgrades necessary to assure reliable waste retrieval and transfer to the anticipated vitrification plant. Phase 2 provides upgrades to selected primary and annulus tank farm ventilation systems that are required for compliant waste transfer, as well as other compliance-based upgrades to existing River Protection Project (WP) facilities and systems. The Accelerated Replanning Estimate provided the basis for Baseline Change Request TWR 97-066, which identified Phases 1 and 2 as $95 million and $206.5 million, respectively. Following completion of the Accelerated Replanning Estimate, several changes occurred that prompted a decision to rebaseline Phase 1, and subsequently Phase 2. Paramount among these was the delay in the Privatization schedule (90% case), lessons learned (in the year since the Accelerated Planning Report had been completed), and the adoption of an alternate waste transfer system route. The rebaselined cost of phase 1, $157 million, was substantially higher than the Accelerated Replanning Estimate for a number of reasons more thoroughly discussed in the Phase 1 Rebaseline Report, HNF-3781, January 1999. Since the

  1. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect

    Jolly, R.C.Jr.; Martin, B.

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  2. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  3. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-12-31

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  4. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  5. Root cause analysis for waste area grouping 1, Batch I, Series 1 Tank T-30 project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    Four inactive liquid low-level waste (LLLW) tanks were scheduled for remedial actions as the Batch L Series I Tank Project during fiscal year (FY) 1995. These tanks are 3001-B, 3004-B, T-30, and 3013. The initial tank remediation project was conducted as a maintenance action. One project objective was to gain experience in remediation efforts (under maintenance actions) to assist in conducting remedial action projects for the 33 remaining inactive LLLW tanks. Batch I, Series 1 project activities resulted in the successful remediation of tanks 3001-B, 3004-B, and 3013. Tank T-30 remedial actions were halted as a result of information obtained during waste characterization activities. The conditions discovered on tank T-30 would not allow completion of tank removal and smelting as originally planned. A decision was made to conduct a root cause analysis of Tank T-30 events to identify and, where possible, correct weaknesses that, if uncorrected, could result in similar delays for completion of future inactive tank remediation projects. The objective of the analysis was to determine why a portion of expected project end results for Tank T-30 were not fully achieved. The root cause analysis evaluates project events and recommends beneficial improvements for application to future projects. This report presents the results of the Batch I, Series root cause analysis results and makes recommendations based on that analysis.

  6. 124. ARAI Reservoir (ARA727), later named water storage tank. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. ARA-I Reservoir (ARA-727), later named water storage tank. Shows plan of 100,000-gallon tank, elevation, image of "danger radiation hazard" sign, and other details. Norman Engineering Company 961-area/SF-727-S-1. Date: January 1959. Ineel index code no. 068-0727-60-613-102779. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. Contingency plan for the Old Hydrofracture Facility tanks sluicing project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-10-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), plans to begin a sluicing (flushing) and pumping project to remove the contents from five inactive, underground storage tanks at the Old Hydrofracture Facility (OHF) at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The tank contents will be transferred to the Melton Valley Storage Tanks, which are part of the active waste treatment system at ORNL. The purpose of the project is to minimize the risk of leaking the highly radioactive material to the environment. The five OHF tanks each contain a layer of sludge and a layer of supernatant. Based on a sampling project undertaken in 1995, the sludge in the tanks has been characterized as transuranic and mixed waste and the supernatants have been characterized as mixed waste. The combined radioactivity of the contents of the five tanks is approximately 29,500 Ci. This contingency plan is based on the preliminary design for the project and describes a series of potential accident/release scenarios for the project. It outlines Energy Systems` preliminary plans for prevention, detection, and mitigation. Prevention/detection methods range from using doubly contained pipelines to alarmed sensors and automatic pump cutoff systems. Plans for mitigation range from pumping leaked fluids from the built-in tank drainage systems and cleaning up spilled liquids to personnel evacuation.

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh heights

  9. Headspace vapor characterization at Hanford Waste Tank 241-A-102: Results from samples collected on November 10, 1995. Tank Vapor Characterization Project

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-A-102 (Tank A-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) (a) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5074. Samples were collected by WHC on November 10, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

  10. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  11. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect

    Hall, L.R.

    1995-05-30

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  12. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  13. Waste Characterization Plan for the Hanford Site single-shell tanks. Appendix D, Quality Assurance Project Plan for characterization of single-shell tanks: Revision 3

    SciTech Connect

    Hill, J.G.; Winters, W.I.; Simpson, B.C.; Buck, J.W.; Chamberlain, P.J.; Hunter, V.L.

    1991-09-01

    This section of the single-shell tank (SST) Waste Characterization Plan describes the quality control (QC) and quality assurance (QA) procedures and information used to support data that is collected in the characterization of SST wastes. The section addresses many of the same topics discussed in laboratory QA project plans (QAPjP) (WHC 1989, PNL 1989) and is responsive to the requirements of QA program plans (QAPP) (WHC 1990) associated with the characterization of the waste in the SSTs. The level of QC for the project depends on how the data is used. Data quality objectives (DQOs) are being developed to support decisions made using this data. It must be recognized that the decisions and information related to this part of the SST program deal with the materials contained within the tank only and not what may be in the environment/area surrounding the tanks. The information derived from this activity will be used to determine what risks may be incurred by the environment but are not used to define what actual constituents are contained within the soil surrounding the tanks. The phases defined within the DQOs on this Waste Characterization Plan follow the general guidance of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) yet are pertinent to analysis of the contents of the tanks and not the environment.

  14. [Diurnal variations in purifying-tanks when use Pontederia cordata treating the Malodorous River water].

    PubMed

    Chen, Jian-jun; Lu, Xiao-ming; Lu, Shao-yong; Jin, Xiang-can; Huang, Min-sheng; Zhang, Yong; Zhao, Feng

    2009-12-01

    Aquatic plants (Ponsederie cordaza) were waked in two purifying-tanks to investigate the effects of illumination intensity and aeration on diurnal variations of Chla, SP, POD of Ponsederia cordaza and pH, DO, COD, NH4+ -N, TP of water from purifying-tanks when treating the malodorous river water at seven different times, another blank purifying-tank was set as a control. Comparative studies and correlation analysis of these different indicators were carried out to improve the plants working efficiency and provide scientific basis for optimal operation of plant purifying-tanks. Results showed that all indicators affected by changes of light, TP shows best correlation coefficient Cr = 0.93, p < 0.01) of physicochemical indicators and SP behaves best correlation coefficient Cr = 0.91 , p < 0.01) of plant physiology indicators in non-aeration purifying-tank;aeration is necessary as diurnal average of DO shows an increase of 0.13 mg/L by treatment of plant meanwhile 1.8 mg/L by plant with aeration,purifying-tanks with aeration got 7.1%, 6.3% higher removing rates of COD, NH4+ -N and 38% less TP removing rate than non-aeration plant purifying-tanks (p < 0.01); with aeration treatment, significant reduction of Chla, SP content (p < 0.05) and increase of POD activity (p < 0.05) observed in plants; the changes of illumination intensity and aeration can significantly affect physiological characteristics of plants and should be considered carefully and need further study when treating malodorous river water by plant purifying-tanks.

  15. Minutes of the Tank Waste Science Panel meeting July 9--1, 1991. Hanford Tank Safety Project

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

  16. Position paper: Live load design criteria for Project W-236A Multi-Function Waste Tank Facility

    SciTech Connect

    Giller, R.A.

    1995-06-09

    The purpose of this paper is to discuss the live loads applied to the underground storage tanks of the Multi Function Waste Tank Facility, and to provide the basis for Project W-236A live load criteria. Project 236A provides encompasses building a Weather Enclosure over the two underground storage tanks at the 200-West area. According to the Material Handling Study, the Groves AT 1100 crane used within the Weather Enclosure will have a gross vehicle weight of 66.5 tons. Therefore, a 100-ton concentrated live load is being used for the planning of the construction of the Weather Enclosure.

  17. Localized weld metal corrosion in stainless steel water tanks

    SciTech Connect

    Strum, M.J.

    1995-05-25

    The rapidly developed leaks within the TFC and TFD tanks (LLNL groundwater treatment facilities) were caused by localized corrosion within the resolidified weld metal. The corrosion was initiated by the severe oxidation of the backsides of the welds which left the exposed surfaces in a condition highly susceptible to aqueous corrosion. The propagation of surface corrosion through the thickness of the welds occurred by localized corrosive attack. This localized attack was promoted by the presence of shielded aqueous environments provided by crevices at the root of the partial penetration welds. In addition to rapid corrosion of oxidized surfaces, calcium carbonate precipitation provided an additional source of physical shielding from the bulk tank environment. Qualification testing of alternate weld procedures showed that corrosion damage can be prevented in 304L stainless steel GTA welds by welding from both sides while preventing oxidation of the tank interior through the use of an inert backing gas such as argon. Corrosion resistance was also satisfactory in GMA welds in which oxidized surfaces were postweld cleaned by wire brushing and chemically passivated in nitric acid. Further improvements in corrosion resistance are expected from a Mo-containing grade of stainless steel such as type 316L, although test results were similar for type 304L sheet welded with type 308L filler metal and type 316L sheet welded with type 316L filler metal.

  18. Thermal stratification of chilled-water slot flows into storage tanks

    SciTech Connect

    Stewart, W.E. Jr.; Cai, L.; Sohn, C.W.

    1994-12-31

    A numerical model was used to simulate the two dimensional flow of chilled water into a storage tank initially filled with warm water. The inlet flow is from a small slot in one vertical wall at the bottom of the tank. The numerical model employs a transient stream function-vorticity formulation to predict the streamline and temperature distributions in the tank as a function of time. Turbulence was modeled using the turbulent kinetic energy and turbulent length scale equations. The model results for a side-slot inlet to the tank reveal that the Archimedes number should be greater than 5 and the Reynolds number should be smaller than 1,000 to ensure thermal stratification of the hot and cold water. When stratification is achieved, the temperature distribution varies only in the vertical direction of the tank, where the water temperature is approximately uniform in the horizontal direction. The numerical results are in reasonably good agreement with some experimental data available in the literature.

  19. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    SciTech Connect

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  20. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project.

  1. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  2. Assessment of microbiological quality of drinking water from household tanks in Bermuda.

    PubMed

    Lévesque, B; Pereg, D; Watkinson, E; Maguire, J S; Bissonnette, L; Gingras, S; Rouja, P; Bergeron, M G; Dewailly, E

    2008-06-01

    Bermuda residents collect rainwater from rooftops to fulfil their freshwater needs. The objective of this study was to assess the microbiological quality of drinking water in household tanks throughout Bermuda. The tanks surveyed were selected randomly from the electoral register. Governmental officers visited the selected household (n = 102) to collect water samples and administer a short questionnaire about the tank characteristics, the residents' habits in terms of water use, and general information on the water collecting system and its maintenance. At the same time, water samples were collected for analysis and total coliforms and Escherichia coli were determined by 2 methods (membrane filtration and culture on chromogenic media, Colilert kit). Results from the 2 methods were highly correlated and showed that approximately 90% of the samples analysed were contaminated with total coliforms in concentrations exceeding 10 CFU/100 mL, and approximately 66% of samples showed contamination with E. coli. Tank cleaning in the year prior to sampling seems to protect against water contamination. If rainwater collection from roofs is the most efficient mean for providing freshwater to Bermudians, it must not be considered a source of high quality drinking water because of the high levels of microbial contamination.

  3. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  4. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    PubMed

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations.

  5. Temperature stratification from thermal diodes in solar hot water storage tank

    SciTech Connect

    Rhee, Jinny; Campbell, Andrew; Mariadass, Adele; Morhous, Branden

    2010-03-15

    In this brief note, we have experimentally measured the temperature stratification in a solar hot water storage tank resulting from a simulated solar heating load. Various modifications using a double chimney device that acts as a thermal diode were examined with the intent of maximizing temperature stratification. The greatest stratification was seen with a unique thermal diode arrangement named the express-elevator design, so-called for the direct hot water path from the bottom third of the tank to the top third. (author)

  6. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that

  7. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-A-101 (Tank A-101) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed in Table 1. Detailed descriptions of the analytical results appear in the text.

  8. Engineer/constructor description of work for Tank 241-SY-102 retrieval system, project W-211, initial tank retrieval systems

    SciTech Connect

    Rieck, C.A.

    1996-02-01

    This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2.

  9. Water quality and zooplankton in tanks with larvae of Brycon Orbignyanus (Valenciennes, 1949).

    PubMed

    Sipaúba-Tavares, L H; Alvarez, E J da S; Braga, F M de S

    2008-02-01

    Due to the importance of water variables conditions and available food in the development and survival of fish larvae, the current research evaluates the effects of two different food treatments (ration + zooplankton and only zooplankton) and water quality in tanks with Brycon orbignyanus larvae. Total water transparency (45 cm) has been mainly associated with short residence time, continuous water flow and shallowness. Dissolved oxygen ranged between 1.32 and 7.00 mg.L(-1) in tanks with ration + zooplankton and between 1.82 and 7.60 mg.L(-1) in tanks with only zooplankton treatments. Nutrients were directly affected by the addition of ration in water, with the exception of nitrite. Ten Rotifera species were found represented by high densities, ranging between 8.7 x 10(5) and 1.3 x 10(6) org.m(-3), throughout the experimental period (January to March/1996). Cladocera had the lowest density in the four tanks under analysis and ranged between 4.7 x 10(4) and 2.1 x 10(5) org.m(-3) for the six species. Diaphanosoma birgei has been classified as the most frequent species. Since ration + zooplankton produced better larvae yield, this treatment is recommended for Brycon orbignyanus larvae.

  10. Tank Vapor Characterization Project -- Headspace vapor characterization of Hanford waste Tank 241-C-107: Results from samples collected on 01/17/96

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-07-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report were obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system with and without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane hydrocarbons (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  11. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    SciTech Connect

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  12. Tank vapor characterization project - headspace vapor characterization of Hanford Waste Tank 241-C-107: Second comparison study results from samples collected on 3/26/96

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  13. Tank vapor characterization project: Headspace vapor characterization of Hanford Waste Tank 241-S-102: Second comparison study results from samples collected on 04/04/96

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.J.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.

  14. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    SciTech Connect

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  15. Effect of processing method on bacterial community recovered from scalder and chiller water tanks in a commercial broiler processing facility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In poultry processing plants, chicken carcasses were processed through a succession of steps including their immersion in scalder and chiller water tanks. Water tank microbiota may impact the microbiological quality of carcasses and the occurrence of pathogens or spoilage bacteria may lead to their ...

  16. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The tank... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank...

  17. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The tank... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank...

  18. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The tank... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank...

  19. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    SciTech Connect

    Schutz, W W; Strachan, D M

    1992-08-01

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observed in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.

  20. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    SciTech Connect

    RIECK, C.A.

    1999-02-23

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization.

  1. Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks.

    PubMed

    Chowdhury, Shakhawat; Rodriguez, Manuel J; Sadiq, Rehan; Serodes, Jean

    2011-01-01

    Disinfection byproducts (DBPs) in municipal supply water are a concern because of their possible risks to human health. Risk assessment studies often use DBP data in water distribution systems (WDS). However, DBPs in tap water may be different because of stagnation of the water in plumbing pipes (PP) and heating in hot water tanks (HWT). This study investigated occurrences and developed predictive models for DBPs in the PP and the HWT of six houses from three municipal water systems in Quebec (Canada) in a year-round study. Trihalomethanes (THMs) in PP and HWT were observed to be 1.4-1.8 and 1.9-2.7 times the THMs in the WDS, respectively. Haloacetic acid (HAAs) in PP and HWT were observed to be variable (PP/WDS = 0.23-2.24; HWT/WDS = 0.53-2.61). Using DBPs occurrence data from these systems, three types of linear models (main factors; main factors, interactions and higher orders; logarithmic) and two types of nonlinear models (three parameters Logistic and four parameters Weibull) were investigated to predict DBPs in the PP and HWT. Significant factors affecting DBPs formation in the PP and HWT were identified through numerical and graphical techniques. The R(2) values of the models varied between 0.77 and 0.96, indicating excellent predictive ability for THMs and HAAs in the PP and the HWT. The models were found to be statistically significant. The models were validated using additional data. These models can be used to predict DBPs increase from WDS (water entry point of house) to the PP and HWT, and could thereby help gain a better understanding of human exposure to DBPs and their associated risks.

  2. PROCESS WATER BUILDING, TRA605. SUMP TANK PUMPS AND THEIR MOTORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. SUMP TANK PUMPS AND THEIR MOTORS WERE SEPARATED FROM EACH OTHER BY SHIELDED WALL. THIS IS ONE OF THE MOTORS. INL NEGATIVE NO. 4370. Unknown Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Town Stems Major Water Losses With New Lines and Storage Tank

    EPA Pesticide Factsheets

    With the help of EPA funding, the Town of Chapmanville in Logan County, WV, has a new drinking water storage tank and distribution lines to replace a system built in the late 1940s that was “leaking like a sieve” and posed a risk to public health.

  4. Evaluation of current industry practices for maintaining tomato dump tank water quality during packinghouse operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States, chlorine is the mainstay disinfectant for produce wash water. In packinghouses, large amounts of accumulating organic matter in dump tanks can cause a dramatic decline in chlorine levels, leaving wash solutions vulnerable to becoming a reservoir for both plant and human pathog...

  5. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  6. Performance Assessment of the Waste Dislodging Conveyance System During the Gunite And Associated Tanks Remediation Project

    SciTech Connect

    Lloyd, P.D.

    2001-02-21

    The Waste Dislodging and Conveyance System (WD and CS) and other components of the Tank Waste Retrieval System (TWRS) were developed to address the need for removal of hazardous wastes from underground storage tanks (USTs) in which radiation levels and access limitations make traditional waste retrieval methods impractical. Specifically, these systems were developed for cleanup of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) at the Oak Ridge National Laboratory (ORNL). The WD and CS is comprised of a number of different components. The three primary hardware subsystems are the Hose Management System (HMS), the Confined Sluicing End-Effector (CSEE), and the Flow Control Equipment and Containment Box (FCE/CB). In addition, a Decontamination Spray Ring (DSR) and a control system were developed for the system. The WD and CS is not a stand-alone system; rather, it is designed for deployment with either a long-reach manipulator like the Modified Light Duty Utility Arm (MLDUA) or a remotely operated vehicle system such as the Houdini{trademark}. The HMS was designed to act as a pipeline for the transfer of dislodged waste; as a hose-positioning and tether-management system; and as a housing for process equipment such as the water-powered jet pump that provides the necessary suction to vacuum slurried waste from the UST. The HMS was designed to facilitate positioning of an end-effector at any point within the 25-ft- or 50-ft-diameter USTs in the GAAT OU.

  7. The global water systems project

    NASA Astrophysics Data System (ADS)

    Hoff, H.; Jaeger, C.; Leveque, C.; Lettenmaier, D.; Lins, H.; Meybeck, M.; Niasse, M.; Vorosmarty, C.

    2003-04-01

    The Global Water System (GWS) plays a central and integrative role in the dynamics of the Earth system. It is a regulator of biogeophysical and biogeochemical processes, and it is also is essential for sustenance of human societies. The GWS is increasingly modified by humans and through climate effects (facets of it have moved well outside the range of natural variability), without adequate understanding of how the system works. For understanding the changes, feedbacks and potentially critical thresholds within the Earth system, and eventually for better managing the GWS, new synthetic knowledge is required. The Global Water System Project (GWSP) is a new activity being undertaken jointly by the World Climate Research Programme (WCRP), International Geophshere-Biosphere Program (IGBP), International Human Dimensions Program (IHP), and Diversitas. It will address the GWS in a comprehensive fashion at the global scale, building upon the emerging new consolidated Earth systems data sets, global monitoring tools, and predictive and coupled modeling capabilities. The central scientific question that motivates the GWSP is: "How are humans changing the global water cycle, the associated biogeochemical cycles, and the biological components of the GWS, and what are the social feedbacks arising from these changes?" GWSP will be structured around three "framing questions": a) What are the relative magnitudes of global-scale changes in the global water system that are attributable to changing human activities, and to environmental factors such as climate variability and change?; b) What are the main mechanisms by which human activities are affecting the global water system; and c) To what extent is the global water system resilient to global change? Examples of issues that might be addressed under each of these questions are provided.

  8. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    SciTech Connect

    Griffin, M.J.; Harris, B.G.

    1993-10-01

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. {times} 15in., and 366 1in. {times} 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. {times} 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget.

  9. The socio-ecohydrology of rainwater harvesting in India: understanding water storage and release dynamics at tank and catchment scales

    NASA Astrophysics Data System (ADS)

    Van Meter, K. J.; Basu, N. B.; McLaughlin, D. L.; Steiff, M.

    2015-11-01

    Rainwater harvesting (RWH), the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to an accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET), and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13-22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to capacity ratio greater than 2. The presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by nearly 75 %, and

  10. River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description

    SciTech Connect

    DOVALLE, O.R.

    1999-12-29

    This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

  11. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    SciTech Connect

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  12. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems.

    PubMed

    Luostarinen, Sari; Sanders, Wendy; Kujawa-Roeleveld, Katarzyna; Zeeman, Grietje

    2007-03-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The results indicated the feasibility of the UASB-septic tank for (pre)treatment of black water at low temperatures with respect to removal of suspended solids and dissolved organic material. Inoculum sludge had little effect on COD(ss) removal, though in the start-up phase some poorly adapted inoculum disintegrated and washed out, thus requiring consideration when designing the process. Removal of COD(dis) was at first negative, but improved as the sludge adapted to low temperature. The UASB-septic tank alone did not comply with Finnish or Dutch treatment requirements and should therefore be considered mainly as a pre-treatment method. However, measuring the requirements as mgCOD l(-1) may not always be the best method, as the volume of the effluent discharged is also an important factor in the final amount of COD entering the receiving water bodies.

  13. Laboratory Class Project: Using a Cichlid Fish Display Tank to Teach Students about Complex Behavioral Systems.

    PubMed

    Nolan, Brian C

    2010-01-01

    Laboratory activities serve several important functions in undergraduate science education. For neuroscience majors, an important and sometimes underemphasized tool is the use of behavioral observations to help inform us about the consequences of changes that are occurring on a neuronal level. To help address this concern, the following laboratory exercise is presented. The current project tested the prediction that the most dominant fish in a tank of cichlids will have gained the most benefits of its position resulting in the greatest growth and hence, become the largest fish. More specifically: (1) is there evidence that a social hierarchy exists among the fish in our tank based on the number of aggressive acts among the four largest fish; (2) if so, does the apparent rank correspond to the size of the fish as predicted by previous studies? Focal sampling and behavior sampling of aggressive acts between fish were utilized in the data collection. Collectively, the data suggest a social dominance hierarchy may be in place with the following rank order from highest to lowest: Fish A > Fish B > Fish D > Fish C. While the largest (Fish A) seems to be at the top, Fish C ended up being ranked lower than Fish D despite the fact that Fish C is larger. Overall, the project was considered a success by the instructor and students. The students offered several suggestions that could improve future versions of this type of project, in particular concerning the process of constructing a poster about the project. The implications of the data and student learning outcomes are discussed.

  14. Hydraulic linkage of a storm water tank to a karst spring (Gallusquelle)

    NASA Astrophysics Data System (ADS)

    Tranter, Morgan; Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2017-03-01

    A significant proportion of the global water supply is ensured by karst aquifers. However, these are often highly vulnerable to contamination. A storm water tank located in the rural karst catchment area of the Gallusquelle spring (Swabian Alb, southwest Germany) about 9.1 km away was identified as a potential source of contamination. A tracer experiment was carried out in order to evaluate this hydraulic connection. For this, 2.5 kg of the fluorescence dye sulforhodamine G was injected directly at the spillway location. The proposed hydraulic connectivity of the storm water tank to the Gallusquelle spring has been confirmed with this experiment. The maximum tracer velocity of 149 m h-1 highlights rapid groundwater flow through karst conduits. The low tracer mass recovery rate of 14.1% is an indication of a retention capacity along the flow path. This was confirmed by a release of withheld tracer triggered by a heavy storm event 16 days after the injection.

  15. Tank waste remediation system year 2000 dedicated file server project HNF-3418 project plan

    SciTech Connect

    SPENCER, S.G.

    1999-04-26

    The Server Project is to ensure that all TWRS supporting hardware (fileservers and workstations) will not cause a system failure because of the BIOS or Operating Systems cannot process Year 2000 dates.

  16. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  17. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  18. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  19. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  20. Attenuation of standing waves in a large water tank using arrays of large tethered encapsulated bubbles.

    PubMed

    Lee, Kevin M; Wilson, Preston S; Wochner, Mark S

    2014-04-01

    The use of bubble resonance effects to attenuate low-frequency underwater sound was investigated experimentally in a large water tank. A compact electromechanical sound source was used to excite standing wave fields at frequencies ranging between 50 and 200 Hz in the tank. The source was then surrounded by a stationary array of tethered encapsulated air bubbles, and reduction in standing wave amplitude by as much as 26 dB was observed. The bubbles consisted of either thin-shelled latex balloons with approximately 5 cm radii or thicker-shelled vinyl boat fenders with 6.9 cm radii. The effects of changing the material and thickness of the bubble shells were found to be in qualitative agreement with predictions from Church's model for sound propagation in a liquid containing encapsulated bubbles [J. Acoust. Soc. Am. 97, 1510-1521 (1995)]. Although demonstrated here for low frequency noise abatement within a tank, which is useful for quieting acoustic test facilities and large tanks used for marine life husbandry, the eventual aim of this work is to use stationary arrays of large tethered encapsulated bubbles to abate low frequency underwater noise from anthropogenic sources in the marine environment.

  1. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  2. STS-55 crewmembers repair waste water tank on OV-102's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Three STS-55 crewmembers participate in an inflight maintenance (IFM) exercise to counter problems experienced with a waste water tank below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 3 (MS3) Bernard A. Harris, Jr, inside the airlock, holds middeck floor access panel MD54G and looks below at Pilot Terence T. Henricks who is in the bilge area. Commander Steven R. Nagel is lying on middeck floor at the left.

  3. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    SciTech Connect

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in

  4. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    SciTech Connect

    Leshikar, G.A.

    1995-06-16

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  5. Statements of work for FY 1996 to 2001 for the Hanford Low-Level Tank Waste Performance Assessment Project

    SciTech Connect

    Mann, F.M.

    1995-06-07

    The statements of work for each activity and task of the Hanford Low-Level Tank Waste Performance Assessment project are given for the fiscal years 1996 through 2001. The end product of this program is approval of a final performance assessment by the Department of Energy in the year 2000.

  6. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  7. Disposable E-Tongue for the Assessment of Water Quality in Fish Tanks

    PubMed Central

    Chang, Chew-Cheen; Saad, Bahruddin; Surif, Misni; Ahmad, Mohd Noor; Shakaff, Ali Yeon Md

    2008-01-01

    A disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %). PMID:27879900

  8. Fecal Indicators and Zoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia

    PubMed Central

    Hodgers, L.; Sidhu, J. P. S.; Toze, S.

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  9. Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia.

    PubMed

    Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  10. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

  11. Dismantlement and removal of Old Hydrofracture Facility bulk storage bins and water tank, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1998-03-01

    The Old Hydrofracture Facility (OHF), located at Oak Ridge National Laboratory (ORNL), was constructed in 1963 to allow experimentation and operations with an integrated solid storage, mixing, and grout injection facility. During its operation, OHF blended liquid low-level waste with grout and used a hydrofracture process to pump the waste into a deep low-permeable shale formation. Since the OHF Facility was taken out of service in 1980, the four bulk storage bins located adjacent to Building 7852 had deteriorated to the point that they were a serious safety hazard. The ORNL Surveillance and Maintenance Program requested and received permission from the US Department of Energy to dismantle the bins as a maintenance action and send the free-released metal to an approved scrap metal vendor. A 25,000-gal stainless steel water tank located at the OHF site was included in the scope. A fixed-price subcontract was signed with Allied Technology Group, Inc., to remove the four bulk storage bins and water tank to a staging area where certified Health Physics personnel could survey, segregate, package, and send the radiologically clean scrap metal to an approved scrap metal vendor. All radiologically contaminated metal and metal that could not be surveyed was packaged and staged for later disposal. Permissible personnel exposure limits were not exceeded, no injuries were incurred, and no health and safety violations occurred throughout the duration of the project. Upon completion of the dismantlement, the project had generated 53,660 lb of clean scrap metal (see Appendix D). This resulted in $3,410 of revenue generated and a cost avoidance of an estimated $100,000 in waste disposal fees.

  12. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted.

  13. Oil filaments produced by an impeller in a water stirred tank

    NASA Astrophysics Data System (ADS)

    Sanjuan-Galindo, Rene; Soto, Enrique; Ascanio, Gabriel; Zenit, Roberto

    2010-11-01

    Oil dispersions in aqueous media produced in stirred tanks are part of many industrial processes. The oil drops size and dispersion stability are determined by the impeller geometry, stirring velocity and the physicochemical properties of the mixture. A critical parameter is the total interfacial area which is increased as the drop size is decreased. The mechanism that disperses the oil and generates the drops has not been completely explained. In the present work, castor oil (1% v/v, viscosity 500mPa) and water are stirred with a Scaba impeller in a flat bottom cylindrical tank. The process was recorded with high-speed video and the Reynolds number was fixed to 24,000. Before the stirring, the oil is added at the air water interface. At the beginning of the stirring, the oil is suctioned at the impeller shaft and incorporated into the flow ejected by the impeller. In this region, the flow is turbulent and exhibits velocity gradients that elongate the oil phase. Viscous thin filaments are generated and expelled from the impeller. Thereafter, the filaments are elongated and break to form drops. This process is repeated in all the oil phase and drops are incorporated into the dispersion. Two main zones can be identified in the tank: the impeller discharge characterized by high turbulence and the rest of the flow where low velocity gradients appear. In this region surface forces dominate the inertial ones, and drops became spheroidal.

  14. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    SciTech Connect

    Minteer, D.J.

    1995-01-23

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.

  15. Sporadic Legionnaires' disease: the role of domestic electric hot-water tanks.

    PubMed

    Dufresne, S F; Locas, M C; Duchesne, A; Restieri, C; Ismaïl, J; Lefebvre, B; Labbé, A C; Dion, R; Plante, M; Laverdière, M

    2012-01-01

    Sporadic community-acquired legionellosis (SCAL) can be acquired through contaminated aerosols from residential potable water. Electricity-dependent hot-water tanks are widely used in the province of Quebec (Canada) and have been shown to be frequently contaminated with Legionella spp. We prospectively investigated the homes of culture-proven SCAL patients from Quebec in order to establish the proportion of patients whose domestic potable hot-water system was contaminated with the same Legionella isolate that caused their pneumonia. Water samples were collected in each patient's home. Environmental and clinical isolates were compared using pulsed-field gel electrophoresis. Thirty-six patients were enrolled into the study. Legionella was recovered in 12/36 (33%) homes. The residential and clinical isolates were found to be microbiologically related in 5/36 (14%) patients. Contaminated electricity-heated domestic hot-water systems contribute to the acquisition of SCAL. The proportion is similar to previous reports, but may be underestimated.

  16. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  17. SINGLE-SHELL TANK INTEGRITY PROJECT ANALYSIS OF RECORD-PRELIMINARY MODELING PLAN FOR THERMAL AND OPERATING LOADS

    SciTech Connect

    RAST RS; RINKER MW; BAPANAALLI SK; DEIBLER JE; GUZMAN-LEONG CE; JOHNSON KI; KARRI NK; PILLI SP; SANBORN SE

    2010-10-22

    This document is a Phase I deliverable for the Single-Shell Tank Analysis of Record effort. This document is not the Analysis of Record. The intent of this document is to guide the Phase II detailed modeling effort. Preliminary finite element models for each of the tank types were developed and different case studies were performed on one or more of these tank types. Case studies evaluated include thermal loading, waste level variation, the sensitivity of boundary effects (soil radial extent), excavation slope or run to rise ratio, soil stratigraphic (property and layer thickness) variation at different farm locations, and concrete material property variation and their degradation under thermal loads. The preliminary analysis document reviews and preliminary modeling analysis results are reported herein. In addition, this report provides recommendations for the next phase of the SST AOR project, SST detailed modeling. Efforts and results discussed in this report do not include seismic modeling as seismic modeling is covered by a separate report. The combined results of both static and seismic models are required to complete this effort. The SST AOR project supports the US Department of Energy's (DOE) Office of River Protection (ORP) mission for obtaining a better understanding of the structural integrity of Hanford's SSTs. The 149 SSTs, with six different geometries, have experienced a range of operating histories which would require a large number of unique analyses to fully characterize their individual structural integrity. Preliminary modeling evaluations were conducted to determine the number of analyses required for adequate bounding of each of the SST tank types in the Detailed Modeling Phase of the SST AOR Project. The preliminary modeling was conducted in conjunction with the Evaluation Criteria report, Johnson et al. (2010). Reviews of existing documents were conducted at the initial stage of preliminary modeling. These reviews guided the topics that were

  18. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  19. Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water.

    PubMed

    North, Gretchen B; Lynch, Frank H; Maharaj, Franklin D R; Phillips, Carly A; Woodside, Walter T

    2013-01-01

    Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculature and other anatomical and morphological traits. Plants of the tank bromeliad Guzmania lingulata were investigated in a lowland tropical forest in Costa Rica and a shaded glasshouse in Los Angeles, CA, USA. Stomatal conductance to water vapor and leaf anatomical variables related to hydraulic conductance were measured for both groups. Tracheid diameters and numbers of vascular bundles (veins) were used with the Hagen-Poiseuille equation to calculate axial hydraulic conductance. Measurements of leaf hydraulic conductance using the evaporative flux method were also made for glasshouse plants. Values for axial conductance and leaf hydraulic conductance were used in a model based on leaky cable theory to estimate the conductance of the radial pathway from the vein to the leaf surface and to assess the relative contributions of both axial and radial pathways. In keeping with low stomatal conductance, low stomatal density, low vein density, and narrow tracheid diameters, leaf hydraulic conductance for G. lingulata was quite low in comparison with most other angiosperms. Using the predicted axial conductance in the leaky cable model, the radial resistance across the leaf mesophyll was predicted to predominate; lower, more realistic values of axial conductance resulted in predicted radial resistances that were closer to axial resistance in their impact on total leaf resistance. Tracer dyes suggested that water uptake through the tank region of the leaf was not limiting. Both dye movement and the leaky cable model indicated that the leaf blade of G. lingulata was structurally and

  20. Water Integration Project Science Strategies White Paper

    SciTech Connect

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  1. Relevance of hydrological variables in water-saving efficiency of domestic rainwater tanks: Multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Andrade, Leonardo Rosa; Maia, Adelena Gonçalves; Lucio, Paulo Sérgio

    2017-02-01

    This research investigated the relevance of four hydrological variables in the performance of a domestic rainwater harvesting (DRWH) system. The hydrological variables investigated are average annual rainfall (P), precipitation concentration degree (PCD), antecedent dry weather period (ADWP), and ratio of dry days to rainy days (nD/nR). Principal component analyses are used to group the water-saving efficiency into a select set of variables, and the relevance of the hydrological variables in a water-saving efficiency system was studied using canonical correlation analysis. The P associated with PCD, ADWP, or nD/nR attained a better correlation with water-saving efficiency than single P. We conclude that empirical models that represent a large combinations of roof-surface areas, rainwater-tank sizes, water demands, and rainfall regimes should also consider a variable for precipitation temporal variability, and treat it as an independent variable.

  2. Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.

    PubMed

    Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W

    2014-01-01

    One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.

  3. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks.

  4. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  5. ICPP water inventory study project summary report

    SciTech Connect

    Richards, B.T.

    1994-01-01

    The Idaho Chemical Processing Plant (ICPP) Water inventory Study was initiated in September 1993 with the formation of a joint working group consisting of representatives from DOE-ID, State of Idaho INEL Oversight Program, US Geological Survey, and INEL employees to investigate three issues that had been identified by the INEL Oversight Program at ICPP: (1) the water inventory imbalance at ICPP, (2) the source of water infiltrating into the Tank Farm vault sumps, and (3) the source of water providing potential recharge to perched water bodies underlying ICPP. These issues suggested that water was being lost from the ICPP distribution system. The INEL Oversight Program was concerned that the unaccounted for water at ICPP could be spreading contaminants that have been released over the past 40 years of operations of ICPP, possibly to the Snake River Plain Aquifer. This report summarizes the findings of each of the component investigations that were undertaken to resolve each of the three issues. Concerns about the risk of spreading contaminants will be resolved as part of the Remedial Investigation/Feasibility Study being undertaken at ICPP in compliance with the Federal Facility Agreement and Consent Order between DOE-H), EPA, and the State of Idaho. This report will be a key input to that study.

  6. SELECTED WATER DECONTAMINATION RESEARCH PROJECT

    EPA Science Inventory

    The Water Environment Federation (WEF), through funding from the U.S. Environmental Protection Agency (EPA) and the Agency's Office of Research and Development (ORD), will host the first of three regional water sector stakeholder workshops March 15-17, 2005 at the Phoenix Marriot...

  7. Kazachstania rupicola sp. nov., a yeast species isolated from water tanks of a bromeliad in Brazil.

    PubMed

    Safar, Silvana Vilas Boas; Gomes, Fátima C O; Marques, Andréa R; Lachance, Marc-André; Rosa, Carlos A

    2013-03-01

    Two isolates of a novel yeast species were obtained from water tanks (phytotelmata) of the bromeliad Vriesea minarum collected in a tableland ('campo rupestre') ecosystem in Brazil. The sequences of the D1/D2 domains of the large-subunit rRNA gene showed that this species is related to Kazachstania exigua and others, from which it differs by 8-10 nucleotide substitutions. The novel species Kazachstania rupicola sp. nov. is proposed to accommodate these isolates. The type strain is UFMG-BRO-80(T) ( = CBS 12684(T)  = CBMAI 1466(T)).

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  9. Dynamic remediation test of polluted river water by Eco-tank system.

    PubMed

    Xiao, Jibo; Wang, Huiming; Chu, Shuyi; Wong, Ming-Hung

    2013-01-01

    Dynamic remediation of river water polluted by domestic sewage using an aquatic plants bed-based Eco-tank system was investigated. Over a period of 18 days, the test demonstrated that average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total phosphorus (TP) were as low as 17.28, 0.23 and 0.03 mg/L, respectively, under the hydraulic retention time (HRT) of 8.7 d. The average removal efficiencies in terms of COD, NH4(+)-N and TP could reach 71.95, 97.96 and 97.84%, respectively. The loss of both NH4(+)-N and TP was mainly ascribed to the uptake by plants. Hydrocotyle leucocephala was effective in promoting the dissolved oxygen (DO) level, while Pistia stratiotes with numerous fibrous roots was significantly effective for the removal of organic compounds. The net photosynthetic rate, stomatal conductance, transpiration rate and biomass accumulation rate of Myriophyllum aquaticum were the highest among all tested plants. Thus, the Eco-tank system could be considered as an alternative approach for the in situ remediation of polluted river water, especially nutrient-laden river water.

  10. Observation of a hierarchy of up to fifth-order rogue waves in a water tank.

    PubMed

    Chabchoub, A; Hoffmann, N; Onorato, M; Slunyaev, A; Sergeeva, A; Pelinovsky, E; Akhmediev, N

    2012-11-01

    We present experimental observations of the hierarchy of rational breather solutions of the nonlinear Schrödinger equation (NLS) generated in a water wave tank. First, five breathers of the infinite hierarchy have been successfully generated, thus confirming the theoretical predictions of their existence. Breathers of orders higher than five appeared to be unstable relative to the wave-breaking effect of water waves. Due to the strong influence of the wave breaking and relatively small carrier steepness values of the experiment these results for the higher-order solutions do not directly explain the formation of giant oceanic rogue waves. However, our results are important in understanding the dynamics of rogue water waves and may initiate similar experiments in other nonlinear dispersive media such as fiber optics and plasma physics, where the wave propagation is governed by the NLS.

  11. Effects of septic-tank effluent on ground-water quality in northern Williamson County and southern Davidson County, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1991-01-01

    An investigation of the potential contamination of ground water from septic tank systems blasted in bedrock in Williamson and Davidson Counties, Tennessee, was conducted during 1988-89. Water samples were collected from domestic and observation wells, springs, and surface-water sites in a residential subdivision in the northern part of Williamson County near Nashville. The subdivision has a high density of septic-tank field lines installed into blasted bedrock Water samples also were collected from a well located in an area of Davidson County where field lines were installed in 5 feet of soil. Samples were analyzed for major inorganic constituents, nutrients, total organic carbon, optical brighteners, and bacteria. Although results of analyses of water samples from wells indicate no effect of septic-tank effluent on ground-water quality at these sites, water from two springs located downgradient from the subdivision had slightly larger concentrations of nitrite plus nitrate (2.2 and 2.7 milligrams per liter N), and much larger concentrations of fecal coliform and fecal streptococci bacteria (2,000 to 3,200 and 700 to 900 colonies per 100 milliliters of sample, respectively), than other wells and springs sampled during 1988. Water from one of these springs contained optical brighteners, which indicates that septic-tank effluent is affecting ground-water quality.

  12. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  13. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  14. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  15. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Port Puget Sound. Captain of the Port Puget Sound will cause notice of the enforcement of the tank ship... ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and... Sound and adjacent waters, Washington (a) Notice of enforcement or suspension of enforcement. The...

  16. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  17. Sampling and analysis of water from Upper Three Runs and its wetlands near Tank 16 and the Mixed Waste Management Facility

    SciTech Connect

    Dixon, K.L.; Cummins, C.L.

    1994-06-01

    In April and September 1993, sampling was conducted to characterize the Upper Three Runs (UTR) wetland waters near the Mixed Waste Management Facility to determine if contaminants migrating from MWMF are outcropping into the floodplain wetlands. For the spring sampling event, 37 wetlands and five stream water samples were collected. Thirty-six wetland and six stream water samples were collected for the fall sampling event. Background seepline and stream water samples were also collected for both sampling events. All samples were analyzed for RCRA Appendix IX volatiles, inorganics appearing on the Target Analyte List, tritium, gamma-emitting radionuclides, and gross radiological activity. Most of the analytical data for both the spring and fall sampling events were reported as below method detection limits. The primary exceptions were the routine water quality indicators (e.g., turbidity, alkalinity, total suspended solids, etc.), iron, manganese, and tritium. During the spring, cadmium, gross alpha, nonvolatile beta, potassium-40, ruthenium-106, and trichloroethylene were also detected above the MCLs from at least one location. A secondary objective of this project was to identify any UTR wetland water quality impacts resulting from leaks from Tank 16 located at the H-Area Tank Farm.

  18. Water Resources Impacts on Tribal Irrigation Projects

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  19. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals.

    PubMed

    Macintosh, K A; Jordan, P; Cassidy, R; Arnscheidt, J; Ward, C

    2011-12-15

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TPL(-1) (0.018 mg TRPL(-1)) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km(-2) to 4.6 km(-2) and 13.8 km(-2) to 17.2 km(-2) and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

  20. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  1. Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.

  2. Evaluation of Hanford Tank Supernatant Availability for Technetium Management Project Studies in FY16

    SciTech Connect

    Rapko, Brian M.

    2015-09-30

    This report examines the need for actual Hanford tank waste solutions to support tasks in the Technetium Management Program in fiscal year (FY) 2016. One key need is to identify both samples where a majority of the soluble technetium is present as pertechnetate and samples where it is not. The total amount of tank supernatant needed from any given tank waste supernatant was determined by polling the tasks leaders for their technology testing needs in FY16 and then arbitrarily ascribing a 10% process loss associated with consolidation and the Cs-137 removal needed to reduce the dose to a level suitable for testing in radiological fumehoods. These polling results identified a need for approximately 2.1 to 3.6 kg of any particular targeted Hanford tank waste supernatant.

  3. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    PubMed

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion.

  4. Evaluation of Ultrasonic Measurement Variation in the Double-Shell Tank Integrity Project

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.; Crawford, Susan L.; Munley, John T.

    2010-01-12

    Washington River Protection Solutions (WRPS) under contract from the U.S. Department of Energy (DOE) is responsible for assessing the condition of the double-shell tanks (DST) on the Hanford nuclear site. WRPS has contracted with AREVA Federal Services LLC (AFS) to perform ultrasonic testing (UT) inspections of the 28 DSTs to assess the condition of the tanks, judge the effects of past corrosion control practices, and satisfy a regulatory requirement to periodically assess the integrity of the tanks. Since measurement inception in 1997, nine waste tanks have been examined twice (at the time of this report) providing UT data that can now be compared over specific areas. During initial reviews of these two comparable data sets, average UT wall-thickness measurement reductions were noted in most of the tanks. This variation could be a result of actual wall thinning occurring on the waste-tanks walls, or some other unexplained anomaly resulting from measurement error due to causes such as the then-current measurement procedures, operator setup, or equipment differences. WRPS contracted with the Pacific Northwest National Laboratory (PNNL) to assist in understanding why this variation exists and where it stems from.

  5. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  6. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  7. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  8. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  9. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    SciTech Connect

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-11-14

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106.

  11. Mobile X-ray imaging systems for the tank waste characterization project at the Hanford site

    SciTech Connect

    Weber, J.R.

    1996-09-25

    Stored waste tank sampling of radioactive high-level nuclear waste is reilu ired for continued operations, waste characterization, and site safety. The Hanford site tank farms consist of 28 double- shell and 1.49 single-shell underground storage tanks. The ``full`` capacity of each of these tanks is approximately 1 million gallons. The waste stored in these tanks was generated as a result of defense materials production over the course of 4 decades. The single shell tanks are out-of-service and no longer receive liquid waste. Core samples of salt cake, liquid and sludge are remotely obtained using truck-mounted core drill platforms. Samples are recovered from the tanks through a 2.25-inch diameter drill pipe,, in segments contained in specially designed stainless steel samplers approximately 1.5-inch in outside diameter and 26-inches long. The sampled material in a given segment can include crystalline salt-cake, liquid, sludge and entrained gas. Drilling parameters will necessarily vary with different waste types, e.g., crystalline salt-cake versus sludge. At times, the core sample recovery has been marginal and inadequate for laboratory analysis needs. This necessitated a system to provide the drill-truck operators with ``real-time`` feedback about the physical condition of the sampled ``formation`` and the percent recovery, prior to receiving .,isual characterization information and nuclear assay measurements from the Hanford site 222-S Analytic!al laboratories, a process often requiring two week turn-around of data. This real- time information allows the drill-truck engineers to immediately vary the drilling parameters to maintain sample recovery.

  12. Performance of a hypersonic hot fuselage structure with a carbon dioxide frost projected, nonintegral cryogenic tank

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Jackson, L. R.

    1975-01-01

    A model which consisted of a hot structure and a nonintegral tank protected by a carbon dioxide frost thermal protection system was tested under the following conditions: (1) room temperature loading and (2) heating and loading corresponding to the Mach 8 flight of an air-breathing launch vehicle. In the simulated flight tests, liquid nitrogen inside the tank was withdrawn at the rate fuel would be consumed. Prior to each simulated flight test, carbon dioxide was cryodeposited in the insulation surrounding the tank; during the tests, subliming CO2 frost absorbed heat and provided a purge gas for the space between the tank and the structure. A method of flame spraying the joints between panels with a nickel-aluminum material was developed to prevent excessive leakage of the purge gas through the outer structure. The tests indicated that the hot structure (with a joint repaired by riveting), the nonintegral tank and suspension system, and the carbon dioxide frost thermal protection system provide a workable concept with predictable performance.

  13. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  14. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  15. Kockovaella libkindii sp. nov., a yeast species isolated from water tanks of bromeliad.

    PubMed

    Gomes, Fatima C O; Safar, Silvana V B; Santos, Ana Raquel O; Lachance, Marc-André; Rosa, Carlos A

    2016-12-01

    During a study of yeast community associated with water tanks (phytotelmata) of the bromeliad Vriesea minarum, two strains of a novel stalk-forming yeast species were found. The sequences of the region spanning the ITS and D1/D2 domains of the large subunit rRNA gene showed that this species belongs to the genus Kockovaella. The novel species differs by 14 or more nucleotide substitutions in the D1/D2 domains and by 26 or more substitutions in the ITS-5.8S region from all other Kockovaella species. We describe this species as Kockovaella libkindii sp. nov. The type strain of Kockovaella libkindii sp. nov. is UFMG-CM-Y6053T (=UFMG-BRO-488T=CBS 12685T). The MycoBank number is MB 817710.

  16. Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project

    SciTech Connect

    Olsen, K.B.; Pool, K.H.; Evans, J.C.

    1997-06-01

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

  17. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  18. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK 23H SIMULANT IN REMOVING RESIDUES ON TANK 48H WALLS

    SciTech Connect

    Fondeur, F; Thomas02 White, T; Lawrence Oji, L; Chris Martino, C; Bill Wilmarth, B

    2006-07-31

    Solid residues on two sets of thermowell pipe samples from the D2 riser in SRS Tank 48H were characterized. The residue thickness was determined using the ASTM standard D 3483-05 and was found to be three order of magnitudes below the 1mm thickness estimated from an earlier video of the tank cooling coil inspection. The actual estimated thickness ranged from 4 to 20.4 microns. The mass per unit area ranged from 1 to 5.3 milligrams per square inch. The residues appear to consist primarily of potassium tetraphenylborate (39.8 wt% KTPB) and dried salt solution (33.5 wt% total of nitrates, nitrites and oxalate salts), although {approx}30% of the solid mass was not accounted for in the mass balance. No evidence of residue buildup was found inside the pipe, as expected. The residue leaching characteristics were measured by placing one pipe in inhibited water and one pipe in DWPF Recycle simulant. After soaking for less than 4 weeks, the inhibited water was 95.4% effective at removing the residue and the DWPF Recycle simulant was 93.5% effective. The surface appearance of the pipes after leaching tests appeared close to the clean shiny appearance of a new pipe. Total gamma counts of leachates averaged 48.1 dpm/ml, or an equivalent of 2.35E-11 Ci/gm Cs-137 (dry solids basis), which is much lower than the 1.4 E-03 Ci/gm expected for Tank 48 dry slurry solids.

  19. Functions and Requirements for West Valley Demonstration Project Tank Lay-up

    SciTech Connect

    Elmore, Monte R.; Henderson, Colin

    2002-06-21

    Documents completion of Milstone A.1-1, "Issue Functions and Requirements for WVDP Tank Lay-Up," in Technical Task Plan TTP RL3-WT21A - "Post-Retrival and Pre-Closure HLW Tank Lay-Up." This task is a collaborative effort among Pacific Northwest National Laboratory, Jacobs Engineering Group Inc., and West Valley Nuclear Services (WVNS). Because of the site-specific nature oft his task, the involvement of WVNS personnel is critical to the success of this task.

  20. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    SciTech Connect

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  1. Effect of nitrate injection on the bacterial community in a water-oil tank system analyzed by PCR-DGGE.

    PubMed

    Jurelevicius, Diogo; von der Weid, Irene; Korenblum, Elisa; Valoni, Erika; Penna, Mônica; Seldin, Lucy

    2008-04-01

    Sulfide production by sulfate-reducing bacteria (SRB) is a major concern for the petroleum industry since it is toxic and corrosive, and causes plugging due to the formation of insoluble iron sulfides (reservoir souring). In this study, PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) using two sets of primers based on the 16S rRNA gene and on the aps gene (adenosine-5-phosphosulfate reductase) was used to track changes in the total bacterial and SRB communities, respectively, present in the water-oil tank system on an offshore platform in Brazil in which nitrate treatment was applied for 2 months (15 nitrate injections). PCR-DGGE analysis of the total bacterial community showed the existence of a dominant population in the water-oil tank, and that the appearance and/or the increase of intensity of some bands in the gels were not permanently affected by the introduction of nitrate. On the other hand, the SRB community was stimulated following nitrate treatment. Moreover, sulfide production did not exceed the permissible exposure limit in the water-oil separation tank studied treated with nitrate. Therefore, controlling sulfide production by treating the produced water tank with nitrate could reduce the quantity of chemical biocides required to control microbial activities.

  2. Support Provided to the External Tank (ET) Project on the Use of Statistical Analysis for ET Certification Consultation Position Paper

    NASA Technical Reports Server (NTRS)

    Null, Cynthia H.

    2009-01-01

    In June 2004, the June Space Flight Leadership Council (SFLC) assigned an action to the NASA Engineering and Safety Center (NESC) and External Tank (ET) project jointly to characterize the available dataset [of defect sizes from dissections of foam], identify resultant limitations to statistical treatment of ET as-built foam as part of the overall thermal protection system (TPS) certification, and report to the Program Requirements Change Board (PRCB) and SFLC in September 2004. The NESC statistics team was formed to assist the ET statistics group in August 2004. The NESC's conclusions are presented in this report.

  3. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  4. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  5. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed.

  6. Effects of Material Choice on Biocide Loss in Orion Water Storage Tanks

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Wallace, S. L.; Gazda, D. B.; Lewis, J. F.

    2016-01-01

    When preparing for long-duration spaceflight missions, maintaining a safe supply of potable water is of the utmost importance. One major aspect of that is ensuring that microbial growth is minimized. Historically, this challenge has been addressed through the use of biocides. When using biocides, the choice of materials for the storage containers is important, because surface reactions can reduce biocide concentrations below their effective range. In the water storage system baselined for the Orion vehicle, the primary wetted materials are stainless steel (316 L) and a titanium alloy (Ti6Al4V). Previous testing with these materials has shown that the biocide selected for use in the system (ionic silver) will plate out rapidly upon initial wetting of the system. One potential approach for maintaining an adequate biocide concentration is to spike the water supply with high levels of biocide in an attempt to passivate the surface. To evaluate this hypothesis, samples of the wetted materials were tested individually and together to determine the relative loss of biocide under representative surface area-to-volume ratios after 24 hours. Additionally, we have analyzed the efficacy of disinfecting a system containing these materials by measuring reductions in bacterial counts in the same test conditions. Preliminary results indicate that the use of titanium, either individually or in combination with stainless steel, can result in over 95% loss of biocide, while less than 5% is lost when using stainless steel. In bacterial testing, viable organisms were recovered from samples exposed to the titanium coupons after 24 hours. By comparison, no organisms were recovered from the test vessels containing only stainless steel. These results indicate that titanium, while possessing some favorable attributes, may pose additional challenges when used in water storage tanks with ionic silver biocide.

  7. Tank 241-C-103 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1994-10-06

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank.

  8. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995

    SciTech Connect

    Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text.

  9. Tank Vapor Characterization Project. Headspace vapor characterization of Hanford Waste Tank AX-102: Results from samples collected on June 27, 1995

    SciTech Connect

    Clauss, T.W.; Pool, K.H.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-AX-102 (Tank AX-102) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. Detailed descriptions of the analytical results appear in the text.

  10. Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

    SciTech Connect

    Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C.

    1997-09-01

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

  11. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-203, Results from samples collected on August 8, 1995

    SciTech Connect

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-203 (Tank U-203) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text.

  12. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-109: Results from samples collected on 06/04/96

    SciTech Connect

    Pool, K.H.; Thomas, B.L.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-109 (Tank S-109) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  13. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-BX-105: Results from samples collected on 04/24/96

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; Pool, K.H.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-BX-105 (Tank BX-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  14. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-S-107: Results from samples collected on 06/18/96

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-107 (Tank S-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National. Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  15. Tank vapor characterization project - Tank 241-TY-103 headspace gas and vapor characterization: Results for homogeneity samples collected on November 22, 1996

    SciTech Connect

    Olsen, K.B.; Pool, K.H.; Evans, J.C.; Hayes, J.C.

    1997-07-01

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-TY-103 (Tank TY-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 8 and Riser 18) were sampled at three different elevations (Top, Middle, and Bottom) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. No analytes were determined to be above immediate notification limits specified by the sampling and analysis plan (SAP).

  16. Field monitoring of solar domestic hot water systems based on simple tank temperature measurement

    SciTech Connect

    Burch, J.; Xie, Yuantao; Murley, C.S.

    1995-05-01

    By dynamically measuring solar storage tank temperature(s), the solar storage tank effectively becomes a dynamic calorimeter to measure the energy flows in a solar system. The energy flows include solar loop gain, tank losses, and potentially draw extraction. With one-channel temperature loggers storing data over several days to several weeks, this approach provides low-cost, modest-accuracy performance assessment, useful for determination of savings persistence and diagnostics. Analysis is based upon the tank energy balance, identifying solar gain during the day and tank losses at night. These gains and losses can be compared to expectations based upon prior knowledge, and estimated weather conditions. Diagnostics include controller and pump operation, and excessive nighttime losses. With one point temperature logger, solar gain accuracy is expected to be 20 to 50%, depending on draw frequency and volume. Two examples are shown, a properly operating system and a system with excessive nighttime losses.

  17. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  18. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  19. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  20. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  1. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  2. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  3. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    SciTech Connect

    1980-07-01

    The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

  4. The Impact of Traditional Septic Tank Soakaway Systems and the Effects of Remediation on Water Quality in Ireland

    NASA Astrophysics Data System (ADS)

    Kilroy, Kate; Keggan, Mary; Barrett, Maria; Dubber, Donata; Gill, Laurence W.; O'Flaherty, Vincent

    2014-05-01

    In Ireland the domestic wastewater of over 1/3 of the population is treated by on-site systems. These systems are based on a traditional design for disposal of domestic wastewater and rely on the surrounding subsoil for further treatment. Inefficient treatment is often associated with these systems and can cause pollution of local aquifers and waterways. The effluent nutrient load can contribute to eutrophication, depletion of dissolved oxygen and excessive algae growth in surface water bodies. Human enteric pathogens associated with faecal pollution of water sources may promote the outbreak of disease through contamination of drinking water supplies. The subsoil attenuation plays an important role in the protection of groundwater from effluent pollution. Therefore, as over 25% of the countries domestic water supplies are provided by groundwater, the protection of groundwater resources is crucial. This project involves both the assessment of traditional septic tank soakaway systems and the effects of remediation in low permeability subsoil settings on water quality in Ireland. The study aims to confirm by microbial source tracking (MST), the source (human and/or animal) of faecal microorganisms detected in groundwater, surface water and effluent samples, and to monitor the transport of pathogens specific to on-site wastewater outflows. In combination with MST, the evaluation of nitrification and denitrification in surrounding soil and effluent samples aims to assess nitrogen removal at specific intervals; pre-remediation and post-remediation. Two experimental sites have been routinely sampled for effluent, soil and groundwater samples as well as soil moisture samples using suction lysimeters located at various depths. A robust and reproducible DNA extraction method was developed, applicable to both sites. MST markers based on host-specific Bacteriodales bacteria for universal, human and cow-derived faecal matter are being employed to determine quantitative target

  5. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    USGS Publications Warehouse

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  6. Double Shell Tank (DST) Utilities Specification

    SciTech Connect

    SUSIENE, W.T.

    2000-04-27

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  7. Analysis of heavy metal content of Pb in ballast water tank of commercial vessels in port of Tanjung Emas Semarang, Central Java province

    NASA Astrophysics Data System (ADS)

    Tjahjono, Agus; Bambang, Azis Nur; Anggoro, Sutrisno

    2017-03-01

    Commercial vessels that do not conduct ballast water exchange, in accordance with International Convention Ballast Water Management, will endager the environment of ports. This research is aimed to know the metal content in ballast water tank of commercial vessels that have not performed ballast water exchange, in accordance with regulations of International Maritime Organization (IMO). The research about the heavy metal content of ballast water of commercial vessels, both passenger or cargo vessels, berthing in Port of Tanjung Emas Semarang (PTES), has been conducted by using method of AAS (Atomic Absorption Spectroscopy). Sample was gathered from vessels berthed in PTES, dated on December 18th 2014 to October 21st 2015. Results of the research show that the mean content of Pb in ballast water tank is 0.37192 mg/l. Based on the Decree of Minister of Environment Number 51/2004, the heavy metal content of Pb in ballast water tank has exceeded the quality standards of port waters.

  8. EPA Awards Oklahoma over $1.2 million to Reduce Water Contamination Risk in Underground Tanks

    EPA Pesticide Factsheets

    DALLAS - (June 30, 2015) The U.S. Environmental Protection Agency (EPA) has recently awarded the Oklahoma Corporation Conservation Commission $459,000 to respond to petroleum leaks from underground storage tanks (UST). The agency will also receive $

  9. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  10. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. Construction Progress of the S-IC Pump House Water Tanks

    NASA Technical Reports Server (NTRS)

    1963-01-01

    round water storage tanks.

  12. A wave tank study of the dependence of X band cross sections on wind speed and water temperature

    NASA Technical Reports Server (NTRS)

    Keller, Mary Ruth; Keller, William C.; Plant, William J.

    1992-01-01

    The effects of varying the water temperature, wind speed, and wind stress on the values of backscatter were investigated using measurements of normalized radar cross sections of wind-generated waves, made at X band for both vertical and horizontal polarization for incidence angles 10, 28, 48, and 68 deg. The experiment was conducted using the Naval Research Laboratory wind-wave tank. Measurements made for a wide range of wind speeds and water temperatures are compared with results of backscattering models currently in use.

  13. Tanks and Tank Troops

    DTIC Science & Technology

    1982-03-01

    operational in the Bundeswehr. These include the well-known U.S. M113 APC, the HS-30 APC, developed by the Swiss company Hispano- Suiza , as well as the...powered by the Leyland L-60 engine, and the French AMX-30, powered by the Hispano- Suiza HS-110 engine. The new Japanese STB-6 tank (ඒ") is...of all foreign series-produced tank engines. A complete tank engine replacement can be performed in four hours. The Hispano- Suiza HS-110 engine

  14. Tank farm restoration and safe operation, project W-314, upgrade scope summary report (USSR)

    SciTech Connect

    Jacobson, R.W.

    1997-04-01

    This revision to the Project W-314 Upgrade Scope Summary Report (USSR), incorporates changes to the project scope from Alternative Generation Analysis (AGA), customer guidance, and changing requirements. It defines the actual upgrades currently in scope, and provides traceability to the requirements and/or drivers.

  15. An Eco-tank system containing microbes and different aquatic plant species for the bioremediation of N,N-dimethylformamide polluted river waters.

    PubMed

    Xiao, Jibo; Chu, Shuyi; Tian, Guangming; Thring, Ronald W; Cui, Lingzhou

    2016-12-15

    An Eco-tank system of 10m was designed to simulate the natural river. It consisted of five tanks sequentially connected containing microbes, biofilm carriers and four species of floating aquatic plants. The purification performance of the system for N,N-dimethylformamide (DMF) polluted river water was evaluated by operating in continuous mode. DMF was completely removed in Tanks 1 and 2 at influent DMF concentrations between 75.42 and 161.05mg L(-1). The NH4(+)-N concentration increased in Tank 1, followed by a gradual decrease in Tanks 2-5. Removal of NH4(+)-N was enhanced by aeration. The average effluent NH4(+)-N concentration of Tank 5 decreased to a minimum of 0.89mg L(-1), corresponding to a decrease of 84.8% when compared with that before aeration. TN concentration did not decrease significantly as expected after inoculation with denitrifying bacteria. The average effluent TN concentration of the system was determined to be 4.58mg L(-1), still unable to satisfy the Class V standard for surface water environmental quality. The results of this study demonstrated that the Eco-tank system is an efficient process in removing DMF, TOC, and NH4(+)-N from DMF polluted river water. However, if possible, alternative technologies should be adopted for controlling the effluent TN concentration.

  16. Tank 241-C-107 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 7, 1997. Tank vapor characterization project

    SciTech Connect

    Hayes, J.C.; Pool, K.H.; Evans, J.C.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 3.233% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.342% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  17. Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S.

    1997-08-01

    This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  18. Tank Vapor Characterization Project: Tank 241-BX-106 headspace gas and vapor characterization results from samples collected on August 15, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Edwards, J.A.; Julya, J.L.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-106 (Tank BX-106) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan. Ammonia was the principal flammable constituent of the Tank BX-106 headspace, determined to be present at approximately 0.031% of it lower flammability limit (LFL). Total headspace flammability was estimated to be <0.143% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  19. Tank Vapor Characterization Project: Tank 241-BX-111 headspace gas and vapor characterization results from samples collected on August 27, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Sklarew, D.S. Edwards, J.A.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-111 (Tank BX-111) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Ammonia was the principal flammable constituent of the Tank BX-111 headspace, determined to be present at approximately 0.042 of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.157% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  20. Tank 241-BY-108 fifth temporal study: Headspace gas and vapor characterization results from samples collected on January 30, 1997. Tank vapor characterization project

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Olsen, K.B.

    1997-09-01

    This report presents the results from analyses of samples taken from tile headspace of waste storage tank 241-B-108 (Tank BY - 108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Services Corporation (SESC) and analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 0.888% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.979% of tile LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  1. Tank 241-BX-104 fourth temporal study: Headspace gas and vapor characterization results from samples collected on April 7, 1997. Tank vapor characterization project

    SciTech Connect

    Mitroshkov, A.V.; Hayes, J.C.; Evans, J.C.

    1997-09-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-04 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.208% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.536% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  2. Tank vapor characterization project: Tank 241-BY-101 headspace gas and vapor characterization results from samples collected on August 29, 1996

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-101 (Tank BY-101) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Total non-methane organic compounds (TNMOCs) were the principal flammable constituent of the Tank By-101 headspace, determined to be present at approximately 0.136% of the LFL. Averaged measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  3. Tank Vapor Characterization Project: Tank 241-BX-102 headspace gas and vapor characterization results from samples collected on July 31, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B. Edwards, J.A.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-102 (Tank BX-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and and analysis plan. Ammonia and TNMOCs were the principal flammable constituents of the Tank BX-102 headspace, each determined to be present at approximately 0.002% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.107% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  4. Tank 241-BY-108 fourth temporal study: Headspace gas and vapor characterization results from samples collected on November 14, 1997. Tank vapor characterization project

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Olsen, K.B.

    1997-07-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected nonradioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.390% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.830% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  5. Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997

    SciTech Connect

    Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B.

    1997-07-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  6. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-B-105: Results from samples collected on 07/30/96

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  7. Tank 241-BX-104 third temporal study: Headspace gas and vapor characterization results from samples collected on February 6, 1997. Tank vapor characterization project

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Hayes, J.C.

    1997-09-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.178 % of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.458% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  8. Tank Vapor Characterization Project: Tank 241-BX-103 headspace gas and vapor characterization results from samples collected on August 1, 1996

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S.; Edwards, J.A.

    1997-08-01

    This report presents the results from analyses of samples taken from headspace of waste storage tank 241-BX-103 (Tank BX-103) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-103 headspace, determined to be present at approximately 0.385% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.633% if the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  9. Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project

    SciTech Connect

    Mitroshkov, A.V.; Evans, J.C.; Hayes, J.C.

    1997-09-01

    This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0.

  10. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-C-204: Results from samples collected on 07/02/96

    SciTech Connect

    Thomas, B.L.; Evans, J.C.; Pool, K.H.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-204 (Tank C-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  11. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-103: Results from samples collected on 06/12/96

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-103 (Tank S-103) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  12. Tank Vapor Characterization Project: Tank 241-C-107 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 17, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 2.825% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.935% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  13. Tank Vapor Characterization Project: Tank 241-BX-104 second temporal study headspace gas and vapor characterization results from samples collected on December 12, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Hayes, J.C.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.248% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.645% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  14. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Olsen, K.B.; Hayes, J.C.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  15. Tank Vapor Characterization Project: Tank 241-BX-104 headspace gas and vapor characterization results from samples collected on August 22, 1996

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Julya, J.L.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analyses plan (SAP). Total non-methane organic compounds was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.310% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.784% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  16. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-TY-102: Results from samples collected on 04/12/96

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-TY-102 (Tank TY-102) at the Hanford Site in Washington State. The results described in this report were obtained to`characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes, and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA{trademark} canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices.

  17. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  18. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis

  19. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and...) Approved 15 ppm oily-water separating equipment for the processing of oily mixtures from bilges or fuel...

  20. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and...) Approved 15 ppm oily-water separating equipment for the processing of oily mixtures from bilges or fuel...

  1. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and...) Approved 15 ppm oily-water separating equipment for the processing of oily mixtures from bilges or fuel...

  2. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and...) Approved 15 ppm oily-water separating equipment for the processing of oily mixtures from bilges or fuel...

  3. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and...) Approved 15 ppm oily-water separating equipment for the processing of oily mixtures from bilges or fuel...

  4. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Bureau of Reclamation Northwest Area Water Supply Project, North Dakota AGENCY: Bureau of Reclamation... 1969 (NEPA) on a Supplemental Environmental Impact Statement (EIS) for the Northwest Area Water Supply... Water Supply Project EIS, Bureau of Reclamation, Dakotas Area Office, P.O. Box 1017, Bismarck, ND...

  5. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... Bureau of Reclamation Northwest Area Water Supply Project, North Dakota AGENCY: Bureau of Reclamation... 1969 (NEPA) on a Supplemental Environmental Impact Statement (EIS) for the Northwest Area Water Supply..., Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area Office, P.O. Box 1017,...

  6. Transitory flow in a complex hydroelectric scheme with multiple intakes and water tanks

    NASA Astrophysics Data System (ADS)

    Bucur, D. M.; Ghergu, C. M.; Tănase, N. O.; Isbăşoiu, E. C.

    2010-08-01

    This paper analyzes the free surface level variation in the surge tank and in the secondary shafts of a complex hydro electrical scheme with two headraces and four secondary intakes. An analysis of the transient operating regimes of the hydropower plant must take in account the complex flow in the surge tank and in all the secondary catchments. Important operation restrictions and different transport capacities of the headraces must be considered. The study is completed with the mathematical model of the phenomenon and with the numerical simulation of the regimes. It is pointed out which are the operating regimes and the maneuvers that can cause malfunctions or undesirable incidents.

  7. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

  8. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    SciTech Connect

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  9. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    SciTech Connect

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  10. Tank vapor characterization project. Headspace vapor characterization of Hanford waste Tank SX-101: Results from samples collected on 07/21/95

    SciTech Connect

    Evans, J.C.; Clauss, T.W.; McVeety, B.D.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-05-01

    Results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. They include air concentrations of inorganic and organic analytes and grouped compounds from samples. The vapor concentrations are based either on whole-volume samples or on sorbent traps exposed to sample flow. No immediate notifications were needed because analytical results indicated no specific analytes exceeded notification levels. Summary of results: NH3, 3.8 ppmv; NO2, 0.10 ppmv; NO, 0.13 ppm; H2O, 11.8 mg/L; CO2, 338 ppmv; CO, <25 ppmv; CH4, <25 ppmv; H2, <25 ppmv; N20, <25 ppmv; hydrocarbons, 0.98 mg/m{sup 3}; methanol, 0.060 ppmv; acetone, 0.033 ppmv; trichlorofluoromethane, 0.023 ppmv; and acetone, 0.034 ppmv.

  11. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-T-104: Results from samples collected on 02/07/96

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-06-01

    This report describes the analytical results, which were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds; the analyses were performed by PNNL`s Vapor Analytical Laboratory. Results are summarized as: NH{sub 3} 105{+-}3 ppmv, NO{sub 2} 0.3{+-}0.1 ppmv, NO 0.3{+-}0.2 ppmv, H{sub 2}O 12.0{+-}0.5 mg/L, CO{sub 2} 241 ppmv, CO undetected, CH{sub 4} undetected, H{sub 2} detected, N{sub 2}O detected, and hydrocarbons 1.93 mg/m{sub 3}.

  12. Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project

    SciTech Connect

    McGrail, B.P.

    1994-11-01

    A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, {sup 137}Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ``hot spot`` is critically dependent on the temperature dependence for the solubility of Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6}. For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the {sup 137}Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs{sub 2}NiFe(CN){sub 6}(c) does not exhibit retrograde solubility over the temperature range 25{degree}C to 90{degree}C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks.

  13. Tank Vapor Characterization Project: Tank 241-C-107 temporal study headspace gas and vapor characterization results from samples collected on September 5, 1996

    SciTech Connect

    Pool, K.H.; Evans, J.C.; Thomas, B.L.; Edwards, J.A.; Silvers, K.L.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-C-107 at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank C-107 headspace, determined to be present at approximately 1.405% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.519% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  14. Tank Vapor Characterization Project: Tank 241-BY-108 temporal study headspace gas and vapor characterization results from samples collected on September 10, 1996

    SciTech Connect

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BY-108 headspace, determined to be present at approximately 1.463% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.940% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  15. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  16. Project specific quality assurance plan, W-151, Tank 241-AZ-101 waste retrieval system. Revision 2

    SciTech Connect

    Manthei, M.E.

    1994-11-21

    This project specific quality assurance program plan establishes the responsibility for the implementation of QA requirements, defines and documents the QA requirements associated with design, procurement, and construction, and defines and documents the degree of QA reviews and verifications on the design and construction necessary to assure compliance to project and DOE requirements. Revision 2 updates the QAPP to provide concurrence with approved work scope deletion. In addition, the Quality Assurance Program Index is being updated to reflect the current Quality Assurance Program requirements per DOE Order 5700.6C.

  17. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ..., Revision 2, ``Generic Aging Lessons Learned (GALL) Report,'' and the NRC staff's AMP Final Safety Analysis... INFORMATION: Background The NRC issues LR-ISGs to communicate insights and lessons learned and to address..., ``Aboveground Metallic Tanks,'' (e) corrosion under insulation, (f) external volumetric examination of...

  18. An Analysis of the Second Project High Water Data

    NASA Technical Reports Server (NTRS)

    Woodbridge, David D.; Lasater, James A.; Fultz, Bennett M.; Clark, Richard E.; Wylie, Nancy

    1963-01-01

    Early in 1962 NASA established "Project High Water" to investigate the sudden release of large quantities of water into the upper atmosphere. The primary objectives of these experiments were to obtain information on the behavior of liquids released in the ionosphere and the localized effects on the ionosphere produced by the injection of large quantities of water. The data obtained in the two (2) Project High Water experiments have yielded an extensive amount of information concerning the complex phenomena associated with the sudden release of liquids in the Ionosphere. The detailed analysis of data obtained during the second Project High Water experiment (i.e., the third Saturn I vehicle test or SA-3) presented in this report demonstrates that the objectives of the Project High Water were achieved. In addition, the Project High Water has provided essential information relevant to a number of problems vital to manned explorations of space.

  19. Managed aquifer recharge in weathered crystalline basement aquifers in India: Monitoring of the effect of tank infiltration on water quality over several monsoon events

    NASA Astrophysics Data System (ADS)

    Alazard, Marina; Boisson, Alexandre; Maréchal, Jean-Christophe; Dewandel, Benoît; Perrin, Jérôme; Pettenati, Marie; Picot-Colbeaux, Géraldine; Ahmed, Shakeel; Thiéry, Dominique; Kloppmann, Wolfram

    2015-04-01

    . It also provides insights into the possible risk for groundwater quality deterioration in cases of light and short monsoons periods. This research was conducted within the framework of the Saph Pani project and co-financed by the European Commission within the Seventh Framework Programme, grant agreement No. 282911 and the Research Division of BRGM. Boisson A., Villesseche D., Baisset M., Perrin J., Viossanges M., Kloppmann W., Chandra S., Dewandel B., Picot-Colbeaux G., Rangarajan R., Maréchal J. C., and Ahmed S. (2014) Questioning the impact and sustainability of percolation tanks as aquifer recharge structures in semi-arid crystalline context. Environ Earth Sci., DOI 10.1007/s12665-014-3229-2. Pettenati M., Perrin J., Pauwels H., and Ahmed S. (2013) Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: Application to a crystalline aquifer of Southern India. Appl. Geochem. 29, 102-116. Pettenati M., Picot-Colbeaux G., Thiéry D., Boisson A., Alazard M., Perrin J., Dewandel B., Maréchal J.-C., Ahmed S., and Kloppmann W. (2014) Water Quality Evolution During Managed Aquifer Recharge (MAR) in Indian Crystalline Basement Aquifers: Reactive Transport Modeling in the Critical Zone. Procedia Earth and Planetary Science 10, 82-87.

  20. SSWR Water Systems Project 3: Transformative Approaches and Technologies

    EPA Science Inventory

    This project aims to develop approaches and evaluate technologies that will help transform water systems towards a more sustainable future. Water systems challenged by issues such as shrinking resources, aging infrastructure, shifting demographics, and climate change need transf...

  1. Conservation Project Shows Substantial Reduction in Home Water Use

    ERIC Educational Resources Information Center

    Sharpe, William E.; Smith, Donald

    1978-01-01

    Describes a water use study-conservation project conducted by the Washington Suburban Sanitary Commission in Maryland. Results show a significant decrease in the amount of water used by home customers over a ten-year period. (Author/MA)

  2. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  4. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  6. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  7. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    SciTech Connect

    Hays, W.H.

    1998-08-12

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation.

  8. Interior view, looking up toward project west at the heavy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, looking up toward project west at the heavy timber joists and center beam supporting the wood water tank. Note the iron compression bands around the perimeter of the tank. Note also the iron (steel?) water fill pipe for the tank, bent to fit between the joists and the tank wall. - East Broad Top Railroad & Company, Water Tank at Coles Station, East Broad Top Railroad & Company (at Milepost 24.3), 0.5 miles east of Coles Valley Road, Saltillo, Huntingdon County, PA

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    SciTech Connect

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency

  10. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  11. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  12. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  13. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  14. 33 CFR 157.218 - Dedicated clean ballast tanks: Alterations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.218 Dedicated clean ballast tanks: Alterations. The dedicated clean ballast tanks or equipment on a tank vessel that has...

  15. A pilot study on water pollution and characterization of multidrug-resistant superbugs from Byramangala tank, Ramanagara district, Karnataka, India.

    PubMed

    Skariyachan, Sinosh; Lokesh, Priyanka; Rao, Reshma; Kumar, Arushi Umesh; Vasist, Kiran S; Narayanappa, Rajeswari

    2013-07-01

    Urbanization and industrialization has increased the strength and qualities of municipal sewage in Bangalore, India. The disposal of sewage into natural water bodies became a serious issue. Byramangala reservoir is one such habitat enormously polluted in South India. The water samples were collected from four hotspots of Byramangala tank in 3 months. The biochemical oxygen demand (BOD) and bacterial counts were determined. The fecal coliforms were identified by morphological, physiological, and biochemical studies. The antibiotics sensitivity profiling of isolated bacteria were further carried out. We have noticed that a high content of BOD in the tank in all the 3 months. The total and fecal counts were found to be varied from 1.6 × 10(6) to 8.2 × 10(6) colony forming unit/ml and >5,500/100 ml, respectively. The variations in BOD and total count were found to be statistically significant at p > 0.05. Many pathogenic bacteria were characterized and most of them were found to be multidrug resistant. Salmonella showed resistance to cefoperazone, cefotaxime, cefixime, moxifloxacin, piperacillin/tazobactam, co-trimoxazole, levofloxacin, trimethoprim, and ceftazidime. Escherichia coli showed resistance to chloramphenicol, trimethoprim, co-trimoxazole, rifampicin, and nitrofurantoin while Enterobacter showed resistant to ampicillin, cefepime, ceftazidime, cefoperazone, and cefotaxime. Klebsiella and Shigella exhibited multiple drug resistance to conventional antibiotics. Staphylococcus showed resistance to vancomycin, methicillin, oxacillin, and tetracycline. Furthermore, Salmonella and Klebsiella are on the verge of acquiring resistance to even the strongest carbapenems-imipenem and entrapenem. Present study revealed that Byramanagala tank has become a cesspool of multidrug-resistant "superbugs" and will be major health concern in South Bangalore, India.

  16. Water Resources Research Grant Program Project Descriptions: Fiscal Year 1988

    USGS Publications Warehouse

    Lew, Melvin; McCoy, Beverly M.

    1989-01-01

    This report contains information on the 38 new projects funded by the U.S. Geological Survey's Water Resources Research Grant Program in fiscal year 1988 and on 11 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, and (4) approach. The 38 projects include 14 in the area of ground-water quality problems, 10 in the science and technology of water-quality management, 4 in climate variability and the hydrologic cycle, 7 in institutional change in water-resources management, and 3 in miscellaneous water-resources management problems. For the 11 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization.

  17. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross...) Has the capacity to retain on board all oily mixtures and is equipped to discharge these oily...

  18. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross...) Has the capacity to retain on board all oily mixtures and is equipped to discharge these oily...

  19. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross...) Has the capacity to retain on board all oily mixtures and is equipped to discharge these oily...

  20. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross...) Has the capacity to retain on board all oily mixtures and is equipped to discharge these oily...

  1. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross...) Has the capacity to retain on board all oily mixtures and is equipped to discharge these oily...

  2. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome

    PubMed Central

    Lipus, Daniel; Ross, Daniel

    2017-01-01

    ABSTRACT We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water. PMID:28302780

  3. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome.

    PubMed

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; Gulliver, Djuna

    2017-03-16

    We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water.

  4. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  5. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  6. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  7. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  8. 33 CFR 157.206 - Dedicated Clean Ballast Tanks Operations Manual for U.S. tank vessels: Submission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.206 Dedicated Clean Ballast Tanks Operations Manual for U.S. tank...

  9. FY2003 Visual examination of In Tank and Tank annuli at 241-SY tank farm

    SciTech Connect

    AFTANAS, B.L.

    2003-07-08

    This report documents the completion of the FY 2003 in-tank and annulus video inspections for the 241-SY tank farms. Representative photos of observed anomalies, water-streaks, corrosion deposits, pitting, and in-tank strains on the 241-SY-101, 102 & 103

  10. International Senior Design Service Learning Project: Creating a Water System for Kuna Nega in Panama City, Panama

    NASA Astrophysics Data System (ADS)

    Budny, Dan

    2013-11-01

    International service-learning projects are an effective educational tool for universities striving to meet the ABET engineering criterion, while also providing transformational experiences to their students and a service to needy populations in the world. This student poster discusses the benefits of an international service-learning project in Panama City, Panama. The presentation will discuss the design and installation of a water distribution system including a two pressure system, two ground storage tanks, a pump station and the various control systems to fill the tanks. To meet the water demand with the limited supply additional individual rain water collection systems were also installed at individual houses to provide a gray water system for bathing. The year-long process of development design and construction will be described and how it fits within the Swanson School of Engineering Department of Civil Engineering senior design course. This project was a collaboration between the senior design course, and a local chapter of Engineers Without Borders.

  11. Laboratory studies of gas generation and potential for tank wall corrosion during blending of high-level wastes at the West Valley Demonstration Project

    SciTech Connect

    Gray, W.J.; Westerman, R.E.

    1995-05-01

    Laboratory experiments were conducted to simulate the transfer of acidic THOREX waste from Tank 8D-4 into the alkaline PUREX waste in Tank 8D-2 at West Valley. The purpose of the experiments was to explore means of minimizing the production of nitric oxide (NO) gas during mixing of the two wastes and to assess the potential for the gas to further react in the vapor space possibly leading to enhanced corrosion of the tank walls. Forty one THOREX/PUREX mixing tests were conducted to explore the effects of stirring rate, pH, THOREX addition rate, THOREX or PUREX dilution, and temperature. The two most important criteria for minimizing NO production were to maintain some degree of agitation and the keep the pH in the PUREX high, preferably >12. Steel corrosion tests were performed in the presence of low partial pressures of NO{sub 2} and liquid water or water vapor. The NO{sub 2} (from oxidation of NO in the vapor space) concentrations were representative of those derived from the THOREX/PUREX mixing tests. It was concluded that no significant corrosion of the tank walls would be expected under the anticipated THOREX/PUREX mixing conditions if the exposure was short (<100 days).

  12. Water transfer projects and the role of fisheries biologists

    USGS Publications Warehouse

    Meador, M.R.

    1996-01-01

    Water transfer projects are commonly considered important mechanisms for meeting increasing water demands. However, the movement of water from one area to another may have broad ecosystem effects, including on fisheries. The Southern Division of the American Fisheries Society held a symposium in 1995 at Virginia Beach, Virginia, to discuss the ecological consequences of water transfer and identify the role of fisheries biologists in such projects. Presenters outlined several case studies, including the California State Water Project, Garrison Diversion Project (North Dakota), Lake Texoma Water Transfer Project (Oklahoma-Texas), Santee-Cooper Diversion and Re-diversion projects (South Carolina), and Tri-State Comprehensive Study (Alabama-Florida-Georgia). Results from these studies suggest that fisheries biologists have provided critical information regarding potential ecological consequences of water transfer. If these professionals continue to be called for information regarding the ecological consequences of water transfer projects, developing a broader understanding of the ecological processes that affect the fish species they manage may be necessary. Although the traditional role of fisheries biologists has focused on the fishing customer base, fisheries management issues are only one component of the broad spectrum of ecosystem issues resulting from water transfer.

  13. 8. VIEW FROM NORTHWEST OF CONDENSATE STORAGE TANK (LEFT), PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW FROM NORTHWEST OF CONDENSATE STORAGE TANK (LEFT), PRIMARY WATER STORAGE TANK (CENTER), CANAL WATER STORAGE TANK (RIGHT) (LOCATIONS E,F,D) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  14. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    HOHL, T.M.

    2001-09-20

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  15. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    STRODE, J.N.

    2002-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  16. Single Shell Tank (SST) Retrieval Sequence and Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    KIRCH, N.W.

    2003-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  17. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    NASA Astrophysics Data System (ADS)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  18. Integrated Surface and Ground Water modeling of a tank cascaded sub basin using physically based model in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Ilampooranan, I.; Muthiah, K.; Athikesavan, R.

    2013-05-01

    Hydrological Modeling of tank (small reservoirs) cascaded sub-basin of a semi-arid region is a complex process. Physically based approach can simulate the various processes in surface, unsaturated and saturated ground water zones of such sub basin in an integrated manner. The objectives of the study are (i) to characterize the study area to replicate the physical conditions of surface and saturated zones (ii) to carryout overland flow routing of a tank cascaded basin using physically based modular approach (iii) To simulate the ground water levels in the unconfined aquifer (iv) to study the surface and groundwater dynamics on incorporation of tank cascades in the integrated model. An integrated, physically based model MIKE 11 & MIKE SHE was applied to study the hydrological processes of a tank cascaded semi-arid basin in which flow through tanks were modeled using MIKE 11 and coupled with MIKE SHE in-order to best represent the surface water dynamics in a distributed manner. Sindapalli Uppodai sub-basin, Southern Tamilnadu, India is chosen as study area. There are 15 tanks connected in series forming a tank cascade. Other tanks and depressions in the sub basin are also considered for the study and their effectiveness were analysed. DEM was obtained from SRTM data. The maps such as drainage network, land use and soil are prepared. Soil sampling was carried out. The time series data of rainfall and climate parameters are given as input. The characterization of unconfined aquifer formation was done by Geo-Resistivity survey. 71 observation and pumping wells are monitored within and periphery of sub basin which are used for calibration of the model. The flow routing over the land is done by MIKE SHE's Overland Flow Module, using the diffusive wave approximation of the Saint Venant equation. The hydrograph of routed runoff from the tank cascaded catchment was obtained. The spatial and temporal variation of hydraulic head of the saturated ground water zone is simulated

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    SciTech Connect

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  20. Effects of septic tank effluent on ground-water quality, Dade County, Florida: an interim report

    USGS Publications Warehouse

    Pitt, William A.

    1974-01-01

    Except at one site, no fecal coliforms were found below the 10-foot depth. Total coliforms exceeded a count of one colony per ml at the 60- foot depth at two sites. At one site a fecal streptococci count of 53 colonies per ml was found at the 60-foot depth and at another a count of seven colonies was found at the 40-foot depth. The three types of bacteria occur in higher concentration in the northern areas of the county than in the south. Bacteria concentrations were also higher where the septic tanks were more concentrated. 

  1. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

    2002-04-24

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion

  2. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

    2002-04-24

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension

  3. Water Resources Research Grant Program project descriptions, fiscal year 1987

    USGS Publications Warehouse

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  4. Water Resources Research Grant Program project descriptions, fiscal year 1989

    USGS Publications Warehouse

    Lew, Melvin; Murray, Pamela D.

    1990-01-01

    Information on the 36 new projects funded by the US Geological Survey 's (USGS) Water Resources Research Grant Program in fiscal year 1989 and on 27 projects completed during the year, is presented. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach; (2) contribution to problem solution; (3) objectives; and (4) approach. The 36 projects include 6 in groundwater transport and flow, 4 in the water quality treatment processes, 5 in water quality processes, 5 in biology, 9 in economics and management, and 7 in climate and hydrology. For the 27 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing: (1) proposals received according to area of research interest; (2) grant awards and funding according to area of research interest; (3) proposals received according to type of submitting organization; and (4) awards and funding according to type of organization. (Lantz-PTT)

  5. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  6. Concentration-driven models revisited: towards a unified framework to model settling tanks in water resource recovery facilities.

    PubMed

    Torfs, Elena; Martí, M Carmen; Locatelli, Florent; Balemans, Sophie; Bürger, Raimund; Diehl, Stefan; Laurent, Julien; Vanrolleghem, Peter A; François, Pierre; Nopens, Ingmar

    2017-02-01

    A new perspective on the modelling of settling behaviour in water resource recovery facilities is introduced. The ultimate goal is to describe in a unified way the processes taking place both in primary settling tanks (PSTs) and secondary settling tanks (SSTs) for a more detailed operation and control. First, experimental evidence is provided, pointing out distributed particle properties (such as size, shape, density, porosity, and flocculation state) as an important common source of distributed settling behaviour in different settling unit processes and throughout different settling regimes (discrete, hindered and compression settling). Subsequently, a unified model framework that considers several particle classes is proposed in order to describe distributions in settling behaviour as well as the effect of variations in particle properties on the settling process. The result is a set of partial differential equations (PDEs) that are valid from dilute concentrations, where they correspond to discrete settling, to concentrated suspensions, where they correspond to compression settling. Consequently, these PDEs model both PSTs and SSTs.

  7. Operation and maintenance manual for septic holding tank system for project W-519, two double-wide construction support trailers

    SciTech Connect

    MORTIMER, C.S.

    1999-08-25

    This manual was prepared to provide detailed information for the operation and maintenance of the sanitary wastewater holding system. This procedure sets forth system operations which include type and frequency of required maintenance as well as system failure response procedures. The system consists of a sanitary sewage holding tank, two alarms and appurtenances necessary to provide a functional system. The maximum daily design flow is 696 liters. The holding tank is located as shown on the site plan.

  8. Rainwater tank drowning.

    PubMed

    Byard, Roger W

    2008-11-01

    Drowning remains a significant cause of accidental death in young children. The site of drowning varies among communities and is influenced by cultural and geographic factors, including the availability of particular water sources. The drowning deaths of a twin two-year-old brother and sister in a rainwater tank are reported to demonstrate specific issues that may arise. Ladders, vegetation and trellises may provide access to tanks and should be removed. Secure child-proof access points should also be installed, particularly on in-ground tanks (given the ready accessibility of the latter). As there has been a recent trend in Australia to install more domestic rainwater tanks, the number of childhood rainwater tank drownings and near-drownings will need to be monitored by forensic pathologists and child death review committees to ensure that this has not led to the introduction of a new hazard into the home environment.

  9. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  10. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  11. A Water Tank Study of the Effects of Seawater Temperature on Coral Metabolism and Changes in Chemical Compositions in Seawater

    NASA Astrophysics Data System (ADS)

    Fujimura, H.; Arakaki, T.; Hamdun, A. M.; Oomori, T.

    2002-12-01

    For the past several years, large-scale coral bleaching has been observed in many coral reef areas around the world. Coral bleaching is considered to be caused mainly by high seawater temperature together with other factors such as strong UV-light and changes in salinity. However, the mechanism of coral bleaching is not clearly understood. We have conducted experiments using water tanks under well-controlled light and temperature conditions to elucidate the effects of seawater temperature on coral_fs metabolism and changes in chemical compositions in the seawater around the coral. Metabolism of coral was studied by analyzing changes in seawater chemical compositions. Coral specimen used in our experiment, Goniastrea aspera, was collected from northern shore of Okinawa island, Japan. pH, nitrate ion, dissolved organic carbon, and alkalinity were measured. Photochemically formed hydroxyl radical was also studied in those seawater samples.

  12. Water tank experiment of gas diffusion from a stack in stably and unstably stratified layers under calm conditions

    NASA Astrophysics Data System (ADS)

    Ohba, R.; Kakishima, S.; Ito, S.

    Water tank experiments were conducted to investigate plume rrise and diffusion of gases discharged from a stack under calm conditions with stable and unstable thermal stratifications. First, tracer liquid with fluorescent dye and salt was emitted from a model of a stack in a stably stratified layer and the behavior of a plume was recorded by video camera. Using these results. we obtained formulae for plume rise height, and horizontal and vertical width of a plume as a function of thedensimetric Froude number, stability ratio and time. After the completion of these experiments under stable conditions, an unstably stratified layer was developed from a ground surface by heating a floor and the resulting concentration distribution was measured with electric conductivity probes. Using these results, we analyzed the height of the convection layer and concentration distribution as a function of the overall Richardson number and time.

  13. Water Resources Research Grant Program project descriptions, fiscal year 1986

    USGS Publications Warehouse

    ,

    1986-01-01

    Information is presented on the 43 projects funded by the United States Geological Survey 's Water Resources Grant Program in fiscal year 1986. The report gives the grant number; project title; performing organization; principal investigator(s); dates; and a project description which includes (1) identification of the water related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, (4) approach, and (5) result users. The 43 projects include 14 in the area of groundwater management, 6 in surface-water management, 2 in systems-operating/planning, 3 in irrigation management, 8 in desalination/reuse, 6 in economic/institutional studies, and 4 in climate variability. The reports contain tables showing (1) funding according to research topic, (2) projects funded to type of submitting organization, (3) proposals received, research topic, and funding levels, and (4) submitting organization. A comparison is given to fiscal year 1985 in each case. (USGS)

  14. Impact of rural water projects on hygienic behaviour in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana

    In Swaziland, access to safe water supply and sanitation has improved significantly and was expected to result in improved health and, in particular, reduced infant mortality rates. On the contrary, mortality rates in the under 5 years age group are high and have doubled from 60 in 1996, to 120 deaths per 1000 in 2006. The main objective of the study was to assess whether the water projects permit, and are accompanied by, changes in hygienic behaviour to prevent transmission of diseases. The study area was Phonjwane, located in the dry Lowveld of Swaziland, where water projects play a significant role in meeting domestic water demands. Hygienic behaviour and sanitation facilities were analysed and compared before and after project. The results of the study show that domestic water supply projects have significantly reduced distances travelled and time taken to collect water, and that increased quantities of water are collected and used. While the majority of respondents (95.6%) used the domestic water project source, the quantities allowed per household (125 l which translates to an average of 20.8 l per person) were insufficient and therefore were supplemented with harvested rainwater (57.8%), water from a polluted river (17.8%), and water from a dam (2.2%). Increased water quantities have permitted more baths and washing of clothes and hands, but significant proportions of the population still skip hygienic practices such as keeping water for washing hands inside or near toilet facilities (40%) and washing hands (20%). The study concludes that the water supply project has permitted and improved hygienic practices but not sufficiently. The health benefits of safe domestic water supplies are hampered by insufficient quantities of water availed through the projects, possible contamination of the water in the house, poor hygienic behaviours and lack of appropriate sanitation measures by some households. There is a need to provide sufficient quantities of safe water

  15. Water Systems Project 1: Current Systems and Regulatory Support

    EPA Science Inventory

    Water Systems Project 1 objectives: 1) Supply research results to support federal regulations and guidance; 2) provide strategies to regions, states, and communities for improved regulatory compliance, and 3) provide rapid and effective emergency response where appropriate (e.g. ...

  16. The Water-to-Wire (W2W) Project

    SciTech Connect

    Lovelace, Edward C.

    2011-11-01

    Presentation from the 2011 Water Peer Review in which the principal investigator discusses project progress to evaluate & optimize the performance, environment, and cost factors of the Free Flow Power hydrokinetic system for Mississippi River commercial deployment

  17. Sidewall-box airlift pump provides large flows for aeration, CO2 stripping, and water rotation in large dual-drain circular tanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require a considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular culture tank can interfere with the hydrodynamics of water rotation a...

  18. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  19. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  20. Lessons Learned from a Third World Water and Sanitation Project.

    ERIC Educational Resources Information Center

    Jenkins-McLean, Terri

    1991-01-01

    The seven-step project cycle used in a water sanitation project in Belize from 1986-89 is described. The direct involvement of community organizations, village councils, family gatherings, parent-teacher organizations, political groups, Village Health Committees, and volunteer organizations is emphasized. (CW)

  1. 77 FR 59240 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... INFORMATION: This notice lists the projects, described below, being rescinded for the consumptive use of...

  2. 77 FR 55893 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... INFORMATION: This notice lists the projects, described below, being rescinded for the consumptive use of...

  3. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    SciTech Connect

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    necessary to de-rate critical components. There are currently no tools that automatically convert the NDE data to formats compatible with structural analysis programs. While radiographic techniques still provide significant advantages in spatial resolution, non-ionizing techniques are still preferred. Radar imagining in the 1–5 GHz has become the most useful. Unfortunately the algorithms and underlying assumptions used in these reconstructions are proprietary, and it is not possible to assess the quality and limitations of the analytical methods used to generate the derived structural data. The hypothesis that water intrusion may contribute to potential rebar corrosion of the tank domes provided the primary guidance in reviewing and evaluating available NDE technologies. Of primary concern is the need to employ technologies that provide the best opportunity for visualizing the rebar and providing quantitative data that can be integrated into structural analysis efforts to better understand and quantify the structural capacity of the domes. The conclusion is that an imaging system capable of locating and quantifying the distribution and conditions of the cement, aggregate, and rebar will provide the most valuable baseline upon which to build a case for the integrity of the structure. If successful, such a system would fulfill the need to incorporate valuable data into current structural load capacity analysis.

  4. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    SciTech Connect

    Not Available

    1994-02-01

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.

  5. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    SciTech Connect

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability.

  6. EPA Provides Puerto Rico $27 Million for Clean Water Projects

    EPA Pesticide Factsheets

    (New York, N.Y.) The U.S. Environmental Protection Agency has allotted $27 million to Puerto Rico to help finance improvements to water projects that are essential to protecting public health and the environment. The funds will be used to finance water qua

  7. EPA Provides New Jersey $74 Million for Clean Water Projects

    EPA Pesticide Factsheets

    (New York, N.Y.) The U.S. Environmental Protection Agency has allotted $74 million to New Jersey to help finance improvements to water projects that are essential to protecting public health and the environment. The funds will be used to finance water qual

  8. WATER SYSTEM OPERATOR TRAINING FOR THE CENTRAL ARIZONA PROJECT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Arizona Project (CAP) is designed to bring about 1.5 million acre-feet of Colorado River water per year to Maricopa, Pima, and Pinal counties in Arizona. CAP carries water from Lake Havasu down to Tucson. The CAP canal system is a 336-mile long system of aqueducts, tunnels, pumping pla...

  9. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltrat...

  10. 77 FR 4859 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION..., described below, receiving approval for the consumptive use of water pursuant to the Commission's...

  11. 77 FR 25010 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  12. 78 FR 27470 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  13. 77 FR 66909 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  14. 77 FR 59239 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  15. 78 FR 17281 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  16. 76 FR 66117 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION..., described below, receiving approval for the consumptive use of water pursuant to the Commission's...

  17. 76 FR 42159 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  18. 77 FR 55892 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  19. 78 FR 15402 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR Sec. 806.22(e) and...

  20. 77 FR 55891 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  1. 77 FR 16317 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  2. 78 FR 27471 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e)...

  3. 77 FR 21143 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  4. 78 FR 2315 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  5. 76 FR 53526 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  6. 77 FR 34455 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  7. 78 FR 11947 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  8. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    SciTech Connect

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  9. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  10. 33 CFR 157.220 - Dedicated clean ballast tanks: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated clean ballast tanks... CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels Design and Equipment § 157.220 Dedicated clean ballast tanks: Standards. (a) Cargo tanks that are designated as dedicated clean ballast...

  11. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its...

  12. 49 CFR 179.300-16 - Tests of tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-16 Tests of tanks. (a) After postweld heat treatment, tanks shall be subjected to hydrostatic expansion test in a water jacket, or by other approved... for 30 seconds and sufficiently longer to insure complete expansion of tank. Pressure gage...

  13. 49 CFR 179.300-16 - Tests of tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.300-16 Tests of tanks. (a) After postweld heat treatment, tanks shall be subjected to hydrostatic expansion test in a water jacket, or by other approved... for 30 seconds and sufficiently longer to insure complete expansion of tank. Pressure gage...

  14. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cleaning. (4) Fuel tanks shall be adequately supported and braced to prevent movement. Portable tanks are... the tank for tank cleaning purposes. (iii) Liquid level gages must penetrate at a point that is more..., whichever is greater. A standpipe of 111/2 feet in height attached to the tank may be filled with water...

  15. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cleaning. (4) Fuel tanks shall be adequately supported and braced to prevent movement. Portable tanks are... the tank for tank cleaning purposes. (iii) Liquid level gages must penetrate at a point that is more..., whichever is greater. A standpipe of 111/2 feet in height attached to the tank may be filled with water...

  16. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cleaning. (4) Fuel tanks shall be adequately supported and braced to prevent movement. Portable tanks are... the tank for tank cleaning purposes. (iii) Liquid level gages must penetrate at a point that is more..., whichever is greater. A standpipe of 111/2 feet in height attached to the tank may be filled with water...

  17. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  18. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  19. Calculation of ecological compensation for water sources for water diversion projects

    NASA Astrophysics Data System (ADS)

    Su, H. B.; Zhang, T. M.; Hu, C. Y.; Long, L. Y.

    2016-08-01

    This study considers the compensation of water diversion projects for the values of the terrestrial biological resources, water environment, and aquatic biological resources in water sources. An analysis of capital dynamics was conducted, and the economic development coefficient was used to correct the current method for calculating ecological compensation. A model was constructed to calculatethe ecological compensation for the water sources for water diversion projects. This model was used to calculate the ecological compensation for the Niulanjiang River provided by the Niulanjiang River to the Dianchi Lake water diversion project, which was calculated to be 136,799,400 RMB. As long as we know the occupying area of the project, the change of the river net flow after diversion and the local average GDP, the ecological compensation for water sources could be calculated by the model. The proposed model for calculating the ecological compensation for water sources is simple and incorporates the compensation provided by water diversion projects for the various environmental effects on water sources. It provides a guarantee for the capital to be used for the environmental protection of water sources and facilitates the sustainable development of the ecological environments of water sources.

  20. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  1. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... table: Kind of gas Maximum permitted filling density Percent by weight (see Note 1) Percent by volume... the weight of gas in the tank to the weight of water that the tank will hold. For determining the water capacity of the tank in pounds, the weight of a gallon (231 cubic inches) of water at 60 °F....

  2. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  3. Pandemic serotypes of Vibrio cholerae isolated from ships' ballast tanks and coastal waters: assessment of antibiotic resistance and virulence genes (tcpA and ctxA).

    PubMed

    Dobbs, Fred C; Goodrich, Amanda L; Thomson, Frank K; Hynes, Wayne

    2013-05-01

    There is concern that ships' ballasting operations may disseminate Vibrio cholerae to ports throughout the world. Given evidence that the bacterium is indeed transported by ships, we isolated pandemic serotypes O1 and O139 from ballast tanks and characterized them with respect to antibiotic resistance and virulence genes ctxA and tcpA. We carried out concurrent studies with V. cholerae isolated from coastal waters. Of 284 isolates, 30 were serotype O1 and 59 were serotype O139. These serotypes were overrepresented in ballast tanks relative to the coastal waters sampled. All locations, whether coastal waters or ballast tanks, yielded samples from which serotype O1, O139, or both were isolated. There were three groups among the 62 isolates for which antibiotic characterization was conclusive: those exhibiting β-lactamase activity and resistance to at least one of the 12 antibiotics tested; those negative for β-lactamase but having antibiotic resistance; those negative for β-lactamase and registering no antibiotic resistance. When present, antibiotic resistance in nearly all cases was to ampicillin; resistance to multiple antibiotics was uncommon. PCR assays revealed that none of the isolates contained the ctxA gene and only two isolates, one O139 and one O1, contained the tcpA gene; both isolates originated from ballast water. These results support the bacteriological regulations proposed by the International Maritime Association for discharged ballast water.

  4. Tank characterization report for Single-Shell Tank T-102

    SciTech Connect

    Remund, K.M.; Hartley, S.A.; Toth, J.J.; Tingey, J.M.; Heasler, P.G.; Ryan, F.M.; Simpson, B.C.

    1994-09-01

    Tank 241-T-102 (hereafter referred to as T-102) is a 530,000 gallon single-shell waste tank located in the 200 West T Tank farm at the Hanford Site. In 1993, two cores were taken from this tank and analysis of the cores was conducted by Battelle`s 325-A Laboratory. Characterization of the waste in this tank was conducted to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank T-102 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks T-101 and T-103. During its process history, Tank T-102 received mostly Metal Waste (MW) from the Bismuth Phosphate Process and Coating Waste (CW) from the REDOX Process via the cascade from Tank T-101 and in transfers from Tank C-102. In 1956, the MW was removed from T-102 by pumping and sluicing`. This tank was declared inactive and retired from service in 1976. In 1981, intrusion prevention and stabilization measures were taken to isolate the waste in T-102. The tank presently contains approximately 121,100 liters (32,000 gallons) of liquid and sludge-like waste. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1993. An extensive set of analytical measurements was performed on the core composites. The major constituents (>0.5 wt%) of the waste are water, aluminum, sodium, iron, and nitrate, ordered from the largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303).

  5. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  6. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

  7. Water development projects and marital violence: experiences from rural Bangladesh.

    PubMed

    Karim, K M Rabiul; Emmelin, Maria; Resurreccion, Bernadette P; Wamala, Sarah

    2012-01-01

    In this study, we explored the implications of a groundwater development project on women's workload and their experience of marital violence in a Bangladesh village. We believe that the project facilitated irrigation water but also that it resulted in seasonal domestic water shortages. Men used deep motorized pumps for irrigation, and women used shallow handpumps for domestic purposes. Many handpumps dried out, so women had to walk to distant wells. This increased their workload and challenged their possibilities of fulfilling household obligations, thereby increasing the risk of normative marital male violence against women as a punishment for their failure.

  8. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    SciTech Connect

    D'Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  9. Tank characterization data report: Tank 241-C-112

    SciTech Connect

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  10. Robustness and uncertainties in global water scarcity projections

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Eisner, Stephanie; Hanasaki, Naota; Wada, Yoshihide

    2014-05-01

    Water scarcity is both a natural and human-made phenomenon and defined as the condition where there are insufficient water resources to satisfy long-term average requirements. Many regions of the world are affected by this chronic imbalance between renewable water resources and water demand leading to depletion of surface water and groundwater stocks. Total freshwater abstraction today amounts to 3856 km³ of which 70% are withdrawn by the agricultural sector, followed by the industry (19%) and domestic sectors (11%) (FAO 2010). Population growth and consumption change have led to threefold increase in total water withdrawals in the last 60 years through a rising demand for electricity, industrial and agricultural products, and thus for water (Flörke et al. 2013). The newly developed "Shared Socio-Economic Pathways" (SSPs) project global population to increase up to 7.2 or even 14 billion people by 2100 (O'Neill et al. 2012); and meeting future water demand in sufficient quantity and quality is seen as one of the key challenges of the 21st century. So far, the assessment of regional and global water-scarcity patterns mostly focused on climate change impacts by driving global hydrological models with climate projections from different GCMs while little emphasis has been put on the water demand side. Changes in future water scarcity, however, are found to be mainly driven by changes in water withdrawals (Alcamo et al. 2007, Hanasaki et al. 2012), i.e. sensitivity to climate change outweighs exposure. Likewise, uncertainties have mainly been assessed in relation to the spread among climate scenarios and from global hydrological models (GHMs) (Haddeland et al. 2011, 2013; Schewe et al. 2013, Wada et al. 2013) while the contribution of water use modelling related to total uncertainty remains largely unstudied. The main objective of this study is to address the main uncertainties related to both climate and socio-economic impacts on global and regional water scarcity

  11. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    PubMed

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.

  12. Tank Tests of the Effect of Rivet Heads, etc., on the Water Performance of a Seaplane Float, Special Report

    NASA Technical Reports Server (NTRS)

    Parkinson, J. B.; Robertson, J. B., Jr.

    1936-01-01

    A 1/3.5 full-size model of the Mark V float of the Bureau of Aeronautics, Navy Department, was tested in the NACA tank both with smooth painted bottom surfaces and with roundhead rivets, plate laps, and keel plates fitted to simulate the actual bottom of a metal float. The augmentation in water resistance due to the added roughness was found to be from 10-12% at the hum speed and from 12-14% at high speeds. The effect of the roughness of the afterbody was found to be negligible except at high trims. The model data were extrapolated to full size by the usual method which assumes the forces to vary according to Froude's law, and in the case of the smooth model by a method of separation that takes into account the effect of scale on the frictional resistance. It was concluded that the effect of rivet heads on the takeoff performance of a relatively high-powered float seaplane is of little consequence but that it may be of greater importance in the case of more moderately powered flying boats.

  13. Analysis of heavy metal content of Cd and Zn in ballast water tank of commercial vessels in Port of Tanjung Emas Semarang, Central Java Province

    NASA Astrophysics Data System (ADS)

    Tjahjono, A.; Bambang, A. N.; Anggoro, S.

    2017-02-01

    Commercial vessels that do not conduct ballast water exchange, in accordance with International Convention Ballast Water Management, will endager the environment of ports. This research is aimed to know the metal content in ballast water tank of commercial vessels that have not performed ballast water exchange, in accordance with regulations of International Maritime Organization (IMO). The present research is focused on the heavy metal content of ballast water of commercial vessels, both passenger or cargo vessells, berthing in Port of Tanjung Emas Semarang (PTES). Water sample in ballast tank is collected by method of AAS (Atomic Absorption Spectrophotometer). Results of the research show that the content of Cd is about 0.001-0.46 mg l-1, and Zn is about 0.001-2.464 mg l-1. Based on the Decree of Minister of Environment Number 51/2004, the heavy metal content of Cd and Zn has exceeded quality standards of sea water for port water, which is 0.1 mg l-1 both.

  14. Blue water transfer versus virtual water transfer in China, with a focus on the South-North Water Transfer Project

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Zhou, Yuan; Liu, Junguo

    2015-04-01

    Alongside its astonishing economic growth during the past decades, there has been increasing water stress in many areas in China. Water diversion has been one of the measures in dealing with the problem. The South-North Water Transfer Project is the largest project as such in the world, which aims to transfer water from the Yangtze River to primarily the North China Plain to alleviate the water stress in the region. Water diversion projects play an important role in supporting the continuous economic growth and safeguarding food production in the country. However, they also bring about many negative impacts concerning the environmental and ecosystem sustainability, as well as socio-economic development, both in the source and destination regions of diversions. One question arising is whether a virtual water transfer, primarily in the form of agricultural products, would be one of the tools economically and environmentally advantageous over transferring massive amounts of water to water deficit regions. This study presents an overview of China's water and land endowments and uses across regions, and the spatial distribution of food production. Based on this, the extent to which the virtual water strategy may be useful in dealing with the water stress in northern China as well as its limitations will be discussed. The focus will be on the South-North Water Transfer Project.

  15. DOE plan for UMTRA Project water protection standards

    SciTech Connect

    Not Available

    1986-07-01

    This plan was developed to define DOE's implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  16. Applying Water-Level Difference Control to Central Arizona Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Arizona Project (CAP) has been supplying Colorado River water to Central Arizona for roughly 25 years. The CAP canal is operated remotely with a Supervisory Control and Data Acquisition (SCADA) System. Gate position changes are made either manually or through the use of automatic control...

  17. Water Erosion Prediction Project (WEPP) model status and updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will provide current information on the USDA-ARS Water Erosion Prediction Project (WEPP) model, and its implementation by the USDA-Forest Service (FS), USDA-Natural Resources Conservation Service (NRCS), and other agencies and universities. Most recently, the USDA-NRCS has begun ef...

  18. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  19. Corrosion monitoring of high-level waste storage Tank 8-D2 at the West Valley Demonstration Project

    SciTech Connect

    Shukla, R.K.; Bourgeois, P.M.; Jaramins, R.J.; Secen, W.G.; Stroud, D.J.; Perkins, A.J.

    1994-12-31

    From 1966 to 1972, nearly 600,000 gallons of highly radioactive liquid waste were generated at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States, located in West Valley, New York. This waste has been held in underground storage tanks since reprocessing operations ceased in 1972. Premature failure of tank walls represents a significant safety risk at West Valley. For this reason, application of conventional methods of probe insertion and data acquisition are impractical. Because a satisfactory corrosion monitoring system must allow for remote monitoring, as well as decontamination of any probe or coupon that comes into contact with the liquid high-level waste (HLW) held in the tanks, a fully automated Integrated Corrosion Monitoring System has been implemented at West Valley. This system allows for remote continuous monitoring of corrosion effects by linear polarization and electrical resistance probes. Real time corrosion data that indicates metal loss versus time and corrosion rate for electrical resistance probes, as well as corrosion rate and pitting tendencies for linear polarization resistance probes is depicted on a electroluminescent display. Because corrosion rates are being continuously checked, this system is ideal for monitoring the corrosive conditions that will affect the life of the containment HLW storage vessels. The probes in the system also permits the simultaneous use of coupons for determining specific types of corrosion occurring, and the average corrosion rate for the entire exposure period. This paper describes the design parameters, installation procedures, and the results of data collected from the Integrated Corrosion Monitoring System installed at West Valley.

  20. UMTRA project water sampling and analysis plan, Durango, Colorado

    SciTech Connect

    Not Available

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.